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Abstract. Here, we investigate the relationships between G(A), the union of Geršgorin disks, K(A), the union

of Brauer ovals of Cassini, and B(A), the union of Brualdi lemniscate sets, for eigenvalue inclusions of an n × n

complex matrix A. If σ(A) denotes the spectrum of A, we show here that

σ(A) ⊆ B(A) ⊆ K(A) ⊆ G(A)

is valid for any weakly irreducible n×n complex matrix A with n ≥ 2. Further, it is evident that B(A) can contain
the spectra of related n × n matrices. We show here that the spectra of these related matrices can fill out B(A).
Finally, if GR(A) denotes the minimal Geršgorin set for A, we show that

GR(A) ⊆ B(A).

Key words. Geršgorin disks, Brauer ovals of Cassini, Brualdi lemniscate sets, minimal Geršgorin sets.
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1. Geršgorin Disks and Ovals of Cassini. For any n ≥ 2, let A be any n × n com-
plex matrix (written A = [ai,j ] ∈ ICn×n), and let σ(A) denote its spectrum (i.e., σ(A) :=
{λ ∈ IC : det[A− λIn] = 0}). A familiar result of Geršgorin [3] is that if

Gi(A) :=











z ∈ IC : |z − ai,i| ≤ ri(A) :=

n
∑

j=1

j 6=i

|ai,j |











(1 ≤ i ≤ n)(1.1)

denotes the i-th Geršgorin disk for A, then the union of these n Geršgorin disks contains all
eigenvalues of A:

σ(A) ⊆ G(A) :=

n
⋃

i=1

Gi(A).(1.2)

A less familiar result of Brauer [1] is that if

Ki,j(A) := {z ∈ IC : |z − ai,i| · |z − aj,j | ≤ ri(A) · rj(A)} (1 ≤ i, j ≤ n; i 6= j)(1.3)

denotes the (i, j)-th Brauer oval of Cassini for A, then similarly

σ(A) ⊆ K(A) :=

n
⋃

i,j=1

i6=j

Ki,j(A),(1.4)
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114 Geršgorin-Type Eigenvalue Inclusion Theorems and their Sharpness

where K(A) now depends on
(

n
2

)

= n(n−1)
2 sets Ki,j(A).

It is interesting that both G(A) and K(A) are defined solely from the same 2n numbers,

{ai,i}
n

i=1 and {ri(A)}n
i=1 ,(1.5)

determined from the matrix A, and it is natural to ask which of the sets G(A) and K(A)
is smaller, as the smaller set would give a “tighter” estimate for the spectrum σ(A). That
K(A) ⊆ G(A) holds in all cases is a result, not well known, which was stated by Brauer [1],
and, as the idea of the proof is simple and will be used later in this paper, its proof is given
here.

Theorem A. For any A = [ai,j ] ∈ ICn×n with n ≥ 2,

K(A) ⊆ G(A).(1.6)

Proof. Fix any i and j, with 1 ≤ i, j ≤ n and i 6= j, and let z be any point of Ki,j(A),
so that from (1.3),

|z − ai,i| · |z − aj,j | ≤ ri(A) · rj(A) (1 ≤ i, j ≤ n; i 6= j).(1.7)

If ri(A) · rj(A) = 0, then z = ai,i or z = aj,j . But, as ai,i ∈ Gi(A) and aj,j ∈ Gj(A) from
(1.1), then z ∈ Gi(A) ∪Gj(B). If ri(A) · rj(A) > 0, we have from (1.7) that

(

|z − ai,i|

ri(A)

)

·

(

|z − aj,j |

rj(A)

)

≤ 1.(1.8)

As the factors on the left of (1.8) cannot both exceed unity, then at least one of these factors
is at most unity, i.e., z ∈ Gi(A) or z ∈ Gj(z). Hence, in either case, it follows that z ∈
Gi(A) ∪Gj(A), so that

Ki,j(A) ⊆ Gi(A) ∪Gj(A) (1 ≤ i, j ≤ n, i 6= j).(1.9)

With (1.9), it follows from (1.2) and (1.4) that

K(A) :=

n
⋃

i,j=1

i6=j

Ki,j(A) ⊆
n
⋃

i,j=1

i6=j

{Gi(A) ∪Gj(A)} =

n
⋃

`=1

G`(A) =: G(A),

the desired result of (1.6)
We remark that the case of equality in the inclusion of (1.9) is covered (cf. [7]) in

{

Ki,j(A) = Gi(A) ∪Gj(A) only if
ri(A) = rj(A) = 0, or ri(A) = rj(A) > 0 and ai,i = aj,j .

(1.10)

As mentioned above, G(A) and K(A) depend solely on the same 2n numbers of (1.5)
which are derived from the matrix A, but there is a continuum of matrices (for n ≥ 2) which
give rise to the same numbers in (1.5). More precisely, following the notations of [6], let
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Ω(A) :=
{

B = [bi,j ] ∈ ICn×n : bi,i = ai,i and ri(B) = ri(A), 1 ≤ i ≤ n
}

,(1.11)

and let

Ω̂(A) :=
{

B = [bi,j ] ∈ ICn×n : bi,i = ai,i and ri(B) ≤ ri(A), 1 ≤ i ≤ n
}

,(1.12)

so that Ω(A) ⊆ Ω̂(A). We note, from the final inequality in (1.3), that the first inclusion of
(1.4) is then valid for all matrices in Ω(A) or Ω̂(A), i.e., with (1.6) and with the definitions of

σ(Ω(A)) :=
⋃

B∈Ω(A)

σ(B), and σ(Ω̂(A)) :=
⋃

B∈Ω̂(A)

σ(B),(1.13)

it follows that

σ(Ω(A)) ⊆ σ(Ω̂(A)) ⊆ K(A) ⊆ G(A).(1.14)

Recently in Varga and Krautstengl [7], the following was established. (For notation, if T
is a set in the complex plane IC, then T denotes its closure, T ′ := IC\T its complement, and

∂T := T
⋂

(T ′) its boundary.)

Theorem B. For any A = [ai,j ] ∈ ICn×n with n ≥ 2,

σ(Ω(A)) =







∂K(A) = ∂K1,2(A) if n = 2, and

K(A) if n ≥ 3,
(1.15)

and, in general, for any n ≥ 2,

σ(Ω̂(A)) = K(A).(1.16)

In other words, for n ≥ 3, each point of the Brauer ovals of CassiniK(A) is an eigenvalue
of some matrix in Ω(A) or Ω̂(A), and, given only the data of (1.5), K(A) does a perfect job
of estimating the spectra of all matrices in Ω(A) or Ω̂(A).

2. Lemniscate and Brualdi Lemniscate Sets. Given an n × n complex matrix A =
[ai,j ] ∈ ICn×n, let {ij}m

j=1 be any m distinct positive integers from N := {1, 2, · · · , n}, so
that n ≥ m. Then, the lemniscate1 of order m, derived from {ij}m

j=1 and the 2n numbers
{ai,i}n

i=1 and {ri(A)}n
i=1, is the compact set in IC defined by

`i1,···,im
(A) :=







z ∈ IC :

m
∏

j=1

∣

∣z − aij ,ij

∣

∣ ≤
m
∏

j=1

rij
(A)







,(2.1)

and their union, denoted by

1The classical definition of a lemniscate (cf. Walsh [8, p. 54]) is the curve, corresponding to the case of equality
in (2.1). The above definition of a lemniscate then is the union of this curve and its interior.
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L(m)(A) :=
⋃

1≤i1,i2,···,im≤n

`i1,i2,···,im
(A) ({ij}

m
j=1 are distinct in N),(2.2)

is over all
(

n
m

)

such choices of {ij}m
j=1 from N . As special cases, the Geršgorin disks Gi(A)

of (1.1) are lemniscates of order 1, while the Brauer ovals of Cassini Ki,j(A) of (1.3) are
lemniscates of order 2, so that with (1.2) and (1.4)), we have

L(1)(A) = G(A) and L(2)(A) = K(A).(2.3)

When one considers the proof of Geršgorin’s result (1.2) or the proof of Brauer’s result
(1.4), the difference is that the former focuses on one row of the matrix A, while the latter
focuses on two distinct rows of the matrix A. But, from the result of (1.6) of Theorem A, this
would seem to suggest that “using more rows in A gives better eigenvalue inclusion results
for the spectrum of A”. Alas, it turns out that L(m)(A), as defined in (2.2), fails, in general
for m > 2, to give a set in the complex plane which contains the spectrum of each A in
ICn×n, n ≥ m, as the following example (attributed to Morris Newman in Marcus and Minc
[4]) shows. It suffices to consider the 4× 4 matrix

B :=









1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1









, where σ(B) = {0, 1, 1, 2},(2.4)

where {bi,i = 1}4
i=1 and where r1(B) = r2(B) = 1; r3(B) = r4(B) = 0. On choosing

m = 3 in (2.1), then, for any choice of three distinct integers {i1, i2, i3} from {1, 2, 3, 4}, the
product ri1(B) · ri2 (B) · ri3(B) is zero, and the associated lemniscate in (2.1), for B of (2.4),
always reduces to the set of points z for which |z − 1|3 = 0, so that z = 1 is its sole point.
Hence, with (2.2), L(3)(B) = {1}, which does not contain σ(B). (The same argument also
gives L(4)(B) = {1}, and this can be extended to all n > 2.)

This brings us to the penetrating work of Brualdi [2], which shows how the union of
higher-order lemniscates for a general matrix A (these lemniscates not necessarily being of
the same order) can give compact sets in the complex plane IC which contain σ(A), thereby
circumventing the counterexample of (2.4). Brualdi’s construction depends on a very clever
use of circuits, from the directed graph of A, which we now describe. Given A = [ai,j ] ∈
ICn×n, n ≥ 2, then Γ(A) is the directed graph on n distinct vertices {vi}n

i=1 for the matrix
A, consisting of a (directed) arc

−→
vivj , from vertex vi to vertex vj , only if i 6= j and if ai,j 6= 0.

(This omits the usual use of loops when ai,i 6= 0.) A path π from vertex vi to vertex vj is a
sequence i = i0, i1, · · · , ik = j of vertices for which

−→
vi0vi1 ,

−→
vi1vi2 , · · · ,

−→
vik−1

vik
are abutting

arcs, and the length of the path π is said to be k. Then, the directed graph Γ(A) is said to be
strongly connected if, for each ordered pair (i, j) of vertices vi and vj , there is a path from
vi to vj . (As is well-known, A is irreducible if and only if Γ(A) is strongly connected.) A
circuit γ of Γ(A) is a path corresponding to the sequence i1, i2, · · · , ip, ip+1 = i1 (where

p ≥ 2), where i1, i2, · · · , ip are all distinct, and where
−→

vi1vi2 , · · · ,
−→

vip
vi1 are arcs of Γ(A).

(The length of this circuit γ is p.) Then, C(A) denotes the set of all circuits γ in Γ(A).
Following Brualdi [2], a matrix A is said to be weakly irreducible if each vertex vi of Γ(A)
belongs to some circuit γ in C(A). (Obviously, A irreducible implies A is weakly irreducible.)

Next, for n ≥ 2, we define the set
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Pn := { all cycles, of length at least two,
from the integers (1, 2, · · · , n) } ,

where it can be verified that the cardinality of Pn is given by

card (Pn) =
n

∑

k=2

(

n

k

)

(k − 1)! .(2.5)

Then, a circuit γ of Γ(A), given by the sequence i1, i2, · · · , ip, ip+1 with ip+1 = i1, can be
associated with an element in Pn, i.e.,

γ = (i1, i2, · · · , ip) ∈ Pn, where 2 ≤ p ≤ n and where ip+1 = i1.(2.6)

With the above notations and definitions, a result of Brualdi [2, Cor. 2.4], is

Theorem C. For any A = [ai,j ] ∈ ICn×n, n ≥ 2, for which A is weakly irreducible, then

σ(A) ⊆
⋃

γ∈C(A)







z ∈ IC :
∏

i∈γ

|z − ai,i| ≤
∏

i∈γ

ri(A)







=: B(A).(2.7)

We have introduced in (2.7) the quantity B(A), which we call the Brualdi lemniscate
set for A, as it is the union of lemniscates (see (2.1)), of possibly different orders, derived
from the matrix A.

For the matrix B = [bi,j ] of (2.4), its directed graph is
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and, as C(B) consists solely of the circuit (1, 2), then B is not weakly irreducible, as there are
no circuits through vertices v3 or v4. However, on considering the near-by matrix Bε, defined
by

Bε :=









1 1 0 0
1 1 0 0
0 0 1 ε
0 0 ε 1









(ε > 0), with σ(Bε) = {0, 1− ε, 1 + ε, 2},

its directed graph is
Then, C(Bε) = (1, 2)∪(3, 4), and Bε is thus weakly irreducible for any ε > 0. Applying

Theorem C to Bε gives a valid eigenvalue inclusion for Bε:

σ(Bε) ⊆
{

z ∈ IC : |z − 1|2 ≤ 1
}

∪
{

z ∈ IC : |z − 1|2 ≤ ε2
}

.
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We note that the eigenvalue inclusion of Brualdi’s Theorem C, applied to a weakly irre-
ducible matrix A = [ai,j ] ∈ ICn×n with n ≥ 2, now depends on all the quantities of

{ai,i}
n
i=1, {ri(A)}n

i=1, and C(A).(2.8)

As (2.8) requires more information from the matrix A, in order to form the Brualdi lemniscate
set B(A), then is required by the Brauer ovals of Cassini K(A) or the Geršgorin disks G(A),
one might expect that B(A) is a set, which is no larger, in the complex plane, than K(A)
or G(A). This will be shown to be true in Theorem 1 of the next section. In addition, one
can ask, in the spirit of Theorem B, if the union of the spectra of all matrices, which match
the data of (2.8), fills out the Brualdi lemniscate set B(A) of (2.7). This will be precisely
answered in Theorem 2 of Section 4.

3. Comparison of Brauer’s Ovals of Cassini and Brualdi’s Lemniscate Sets. Our
new result here is very much in the spirit of the proof of Theorem A. (See also [6].)

Theorem 1. For any A = [ai,j ] ∈ ICn×n, n ≥ 2, which is weakly irreducible, then, with
the definitions of (1.4) and (2.7),

B(A) ⊆ K(A).(3.1)

Remark. This establishes that the Brualdi lemniscate set for a matrix A is always no
larger than the union of the Brauer ovals of Cassini for this matrix.

Proof. Consider any circuit γ in C(A). If this circuit has length two, i.e., γ = (i1, i2),
where i3 = i1, it follows from (2.7) that

Bγ(A) := {z ∈ IC : |z − ai1,i1 | · |z − ai2,i2 | ≤ ri1(A) · ri2 (A)} ,(3.2)

which, from (1.3), is exactly Ki1,i2(A), i.e.,

Bγ(A) = Ki1,i2(A).(3.3)

Next, assume that γ has length p > 2, i.e., γ = (i1, i2, · · · , ip), where ip+1 = i1. Since A
is weakly irreducible, each vertex of Γ(A) has a circuit passing through it, so that r`(A) > 0
for each ` in N . From (2.7), we define

Bγ(A) :=







z ∈ IC :

p
∏

j=1

∣

∣z − aij ,ij

∣

∣ ≤

p
∏

j=1

rij
(A)







.(3.4)
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Let z be any point of Bγ(A). On squaring the inequality in (3.4), we have

|z − ai1,i1 |
2 · |z − ai2,i2 |

2 · · ·
∣

∣z − aip,ip

∣

∣

2
≤ r2

i1
(A) · r2

i2
(A) · · · r2

ip
(A).

As these rij
(A)’s are all positive, we can equivalently express the above inequality as

(

|z − ai1,i1 | · |z − ai2,i2 |

ri1 (A) · ri2(A)

)

·

(

|z − ai2,i2 | · |z − ai3,i3 |

ri2(A) · ri3 (A)

)

· · ·

·

(

|z − aip,ip
| · |z − ai1,i1 |

rip
(A) · ri1(A)

)

≤ 1.

(3.5)

As the factors on the left of (3.5) cannot all exceed unity, then at least one of the factors is at
most unity. Hence, there is an ` with 1 ≤ ` ≤ p such that

|z − ai`,i`
| ·

∣

∣z − ai`+1,i`+1

∣

∣ ≤ ri`
(A) · ri`+1

(A)

(where if ` = p, then i`+1 = i1). But from the definition in (1.3), we see that z ∈ Ki`,i`+1
(A),

and, as a consequence, it follows that

Bγ(A) ⊆

p
⋃

j=1

Kij ,ij+1
(A) (where ip+1 = i1).(3.6)

Thus, from (2.7) and (3.6),

B(A) :=
⋃

γ∈C(A)

Bγ(A) ⊆
n
⋃

i,j=1

i6=j

Ki,j(A) := K(A),

the desired result of (3.1).

We next show that there are many cases where equality holds in (3.1). Consider any
matrix A = [ai,j ] ∈ ICn×n, with n > 2, for which every non-diagonal entry ai,j of A is
nonzero. The matrix A is then clearly irreducible, and hence, weakly irreducible. Moreover,
every partition, of length ≥ 2, of Pn of (2.5) can be associated with a circuit γ of C(A), so
that the total number of these circuits is, from (2.5),

n
∑

k=2

(

n

k

)

(k − 1)! .(3.7)

In this case, as each Brauer oval of Cassini Ki,j(A), i 6= j, corresponds to a circuit (of length
2) in B(A), it follows from (2.7) that K(A) ⊆ B(A), but as the reverse inclusion holds in
(3.1), then

B(A) = K(A).(3.8)

In other words, the Brualdi lemniscate set B(A) need not, in general, be a proper subset of
the Brauer ovals of Cassini K(A). We remark that for a 10 × 10 complex matrix A, all of
whose off-diagonal entries are nonzero, there are, from (3.7), 1,112,073 distinct circuits in
C(A). But because of (3.8), only

(

10
2

)

= 45 of these circuits, corresponding to the Brauer
ovals of Cassini, are needed to determine B(A).
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4. The Sharpness of Brualdi Lemniscate Sets. Given A = [ai,j ] ∈ ICn×n, with n ≥ 2
for which A is weakly irreducible, we have from (2.7) of Theorem C that

σ(A) ⊆ B(A),(4.1)

where the associated Brualdi lemniscate set B(A) is determined, in (2.7), from the quantities

{ai,i}
n

i=1 , {ri(A)}n
i=1 , and C(A).(4.2)

It is again evident that any matrix B = [bi,j ] ∈ ICn×n, having the identical quantities of (4.2),
has its eigenvalues also in B(A), i.e., with notations similar to (1.11) and (1.12), if

ΩB(A) :=
{

B = [bi,j ] ∈ ICn×n : bi,i = ai,i, ri(B) = ri(A), 1 ≤ i ≤ n,
and C(B) = C(A)} ,

(4.3)

where σ(ΩB(A)) :=
⋃

B∈ΩB(A)

σ(B), and if

Ω̂B(A) :=
{

B = [bi,j ] ∈ ICn×n : bi,i = ai,i, 0 < ri(B) ≤ ri(A), 1 ≤ i ≤ n,
and C(B) = C(A)} ,

(4.4)

where σ(Ω̂B(A)) :=
⋃

B∈Ω̂B(A)

σ(B), it follows, in analogy with (1.14), that

σ(ΩB(A)) ⊆ σ(Ω̂B(A)) ⊆ B(A).(4.5)

(We note, since A is weakly irreducible, that ri(A) > 0 for all 1 ≤ i ≤ n.)
It is natural to ask if equality can hold throughout in (4.5). The answer, in general, is no,

as the following simple example shows. Consider the matrix

D =





+1 1 0
1
2 −1 1

2
1
2 0 +1



 ,(4.6)

so that

r1(D) = r2(D) = 1, and r3(D) =
1

2
.

The directed graph Γ(D) is then
so that D is irreducible, and the circuit set of D is

C(D) = (1, 2) ∪ (1, 2, 3).

Now, any matrix E in ΩB(D) can be expressed, from (4.3), as

E =





1 eiθ1 0
(1− s)eiθ2 −1 seiθ3

1
2eiθ4 0 1



 ,(4.7)
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where s satisfies 0 < s < 1 and where {θi}4
i=1 are any real numbers. (Note that letting

s = 0 or s = 1 in (4.7) does not preserve the circuit sets of C(D).) With γ1 := (1, 2) and
γ2 := (1, 2, 3), we see that











Bγ1
(D) = {z ∈ IC : |z − 1| · |z + 1| ≤ 1} , and

Bγ2
(D) =

{

z ∈ C : |z − 1|2 · |z + 1| ≤ 1/2
}

,
(4.8)

where the set Bγ2
(D) consists of two disjoint components. These sets are shown in Figure 1.

−2 −1 0 1 2
−2

−1

0

1

2

| z2−1 | = 1

| z2−1 || z+1 | = 1/2

Figure 1

It can be seen, from (4.8) and from Figure 1, that z = 0 is a boundary point of the
compact sets Bγ1

(D) and B(D) := Bγ1
(D) ∪ Bγ2

(D). Suppose that we can find an s with
0 < s < 1 and real values of {θ1}4

i=1 for which an associated matrix E of (4.7) has eigenvalue
0. This implies that det E = 0, which, by direct calculations with (4.7), gives
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0 = det E = −1− (1− s)i(θ1+θ2) +
1

2
sei(θ1+θ3+θ4), or

1 =

{

−(1− s)ei(θ1+θ2) +
1

2
sei(θ1+θ3+θ4)

}

.(4.9)

But as 0 < s < 1, the right side of (4.9) is in modulus at most

(1− s) +
1

2
s =

2− s

2
< 1,

so that det E 6= 0 for any E in ΩB(D), i.e., 0 /∈ σ(ΩB(D)). A similar argument shows (cf.
(4.4)) that 0 /∈ σ(Ω̂B(D)). But as 0 ∈ B(D), we have

σ(ΩB(D)) ⊆ σ(Ω̂B(D))
⊂

6= B(A).(4.10)

But, in order to achieve equality in (4.10), suppose that we allow s to be zero, noting from
(4.8) that the parameter s plays no role in B(D) = Bγ1

(D)∪Bγ2
(D). Then, on setting s = 0

in (4.7), the matrix E of (4.7) becomes

Ê =





1 eiθ1 0
eiθ2 −1 0
1
2eiθ4 0 1



 ,(4.11)

and on choosing θ1 = 0 and θ2 = π, then z = 0 is an eigenvalue of Ê, where Ê is the limit
of matrices E in (4.7) when s ↓ 0. We note that the directed graph of Γ(Ê) is
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so that C(Ê) 6= C(D), but Ê remains an element of Ω(A) of (1.11).
This example suggests that we consider the closures of the sets ΩB(A) and Ω̂B(A) of

(4.3) and (4.4), where A = [ai,j ] ∈ ICn×n, n ≥ 2, is weakly irreducible:

ΩB(A) := {B = [bi,j ] ∈ ICn×n : there is a sequence of matrices {Ej}∞j=1

in ΩB(A), for which B = lim
j→∞

Ej}.
(4.12)

and
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Ω̂B(A) := {B = [bi,j ] ∈ ICn×n : there is a sequence of matrices {Ej}
∞
j=1

in Ω̂B(A), for which B = lim
j→∞

Ej .}
(4.13)

This brings us to the new result of

Theorem 2. For any A = [ai,j ] ∈ ICn×n, n ≥ 2, which is weakly irreducible, then

∂B(A) ⊆ σ(ΩB(A)) ⊆ σ(Ω̂B(A)) = B(A),(4.14)

i.e., each boundary point of B(A) is an eigenvalue of some matrix in ΩB(A), and each point

of B(A) is an eigenvalue of some matrix in Ω̂B(A).

Remark. This establishes the sharpness of the Brualdi set B(A) for the matrix A, as the
final equality in (4.14) gives that the spectra of matrices in Ω̂B(A) are dense in B(A).

Proof. Since σ(ΩB(A)) ⊆ σ(Ω̂B(A)) from (4.5), it follows that their closures of (4.12)

and (4.13) necessarily satisfy σ(ΩB(A)) ⊆ σ(Ω̂B(A), giving the middle inclusion of (4.14).
It suffices to establish the first inclusion and the final equality in (4.14).

Consider any circuit γ in C(A). From our discussion in Section 2, we can express γ as
an element of Pn of (2.5), i.e.,

γ = (i1, i2, · · · , ip) where ip+1 := i1, and where 2 ≤ p ≤ n.(4.15)

Without loss of generality, we can assume, after a suitable permutation of the rows and
columns of A, that

γ = (1, 2, · · · , p),(4.16)

noting that this permutation leaves unchanged the collection of diagonal entries, row sums,
and circuits of A. This permutated matrix, also called A, then has the partitioned form

A =





















a1,1 · · · a1,p a1,p+1 · · · a1,n

...
...

ap,1 ap,p ap,p+1 ap,n

ap+1,1 ap+1,p ap+1,p+1 ap+1,n

...
...

an,1 · · · an,p an,p+1 · · · an,n





















=

[

A1,1 A1,2

A2,1 A2,2

]

,(4.17)

where the matrices A1,2, A2,1, and A2,2 are not present in (4.17) if p = n. Our aim below is
to construct a special matrix B(t) = [bi,j(t)] ∈ ICn×n, whose entries depend continuously on
the parameter t in [0, 1], such that







bi,i(t) = ai,i, ri(B(t)) = ri(A), for all 1 ≤ i ≤ n, and all 0 ≤ t ≤ 1, and

C(B(t)) = C(A) for all 0 < t ≤ 1.
(4.18)
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124 Geršgorin-Type Eigenvalue Inclusion Theorems and their Sharpness

To this end, write

B(t) :=

[

B1,1(t) B1,2(t)
A2,1 A2,2

]

,(4.19)

i.e., the rows p + 1 ≤ ` ≤ n of B(t) are exactly those of A, and are independent of t. We
note from (4.16) that

a1,2 · a2,3 · · · ap−1,p · ap,1 6= 0,(4.20)

and the rows of B(t) are then defined, for all t ∈ [0, 1], by































bi,i(t) := ai,i for all 1 ≤ i ≤ p;

|bi,i+1(t)| := (1− t)ri(A) + t|ai,i+1|, and |bi,j(t)| := t|ai,j | (j 6= i, i + 1),
for all 1 ≤ i < p;

|bp,1(t)| := (1− t)rp(A) + t|ap,1|, and |bp,j(t)| := t|ap,j | (all j 6= 1, p).

(4.21)

It is evident that the entries of B(t) are all continuous in the variable t of [0, 1]. Moreover,
B(t) and A have the same diagonal entries and the same row sums for all 0 ≤ t ≤ 1, and,
as ai,j 6= 0 implies bi,j(t) 6= 0 for all 0 < t ≤ 1, then B(t) and A have the same circuits in
their directed graphs for all 0 < t ≤ 1. As A is weakly irreducible by hypothesis, it follows
that B(t) is weakly irreducible for all 0 < t ≤ 1. Also, from (4.3), B(t) ∈ ΩB(A) for all
0 < t ≤ 1, and from (4.12), B(0) ∈ ΩB(A). Hence, from (4.5),

σ(B(t)) ⊆ B(A) for all 0 < t ≤ 1.(4.22)

But as B(A) is a closed set from (2.7), and as the eigenvalues of B(t) are continuous functions
of t, for 0 ≤ t ≤ 1, we further have, for the limiting case t = 0, that

σ(B(0)) ⊆ B(A),(4.23)

where, from the definitions in (4.21),

B(0) =

[

B1,1(0) O
A2,1 A2,2

]

,

with

B1,1(0) =















a1,1 r1(A)eiθ1

a2,2 r2(A)eiθ2

. . .
. . .

ap−1,p−1 rp−1(A)eiθp−1

rp(A)eiθp ap,p















.(4.24)

We note from (4.21) that the nondiagonal entries in the first p rows of B(t) are defined only
in terms of their moduli, which allows us to fix the arguments of certain nondiagonal nonzero



ETNA
Kent State University 
etna@mcs.kent.edu

Richard S. Varga 125

entries of B1,1(0) through the factors {eiθj}p
j=1 where the {θj}

p
j=1 are all real. (These factors

appear in B1,1(0) of (4.24).) The partitioned form of B(0) gives us that

σ(B(0)) = σ(B1,1(0)) ∪ σ(A2,2),(4.25)

and, from the special cyclic-like form of B1,1(0) in (4.24), it is easily seen that each eigen-
value λ of B1,1(0) satisfies

p
∏

i=1

|λ− ai,i| =

p
∏

i=1

ri(A),(4.26)

for any real choices of {θj}
p
j=1 in (4.24). But (4.26), when coupled with the definition in

(3.4), immediately gives us that λ ∈ ∂Bγ(A), and, as all different choices of the real numbers
{θj}

p
j=1, in B1,1(0) of (4.24), give eigenvalues of B1,1(0) which cover the entire boundary

of Bγ(A), we have

⋃

θ1,···,θpreal

σ(B1,1(0)) = ∂Bγ(A).(4.27)

This can be used as follows. Let z be any boundary point of B(A) of (2.7). As B(A) is
the union of a finite number of closed sets Bγ(A), this implies that there is a circuit γ of C(A)
with z ∈ ∂Bγ(A), where Bγ(A) is defined in (3.4). As the result of (4.27) is valid for any γ
of C(A), then each boundary point z of B(A) is an eigenvalue of some matrix in ΩB(A) of
(4.12), i.e.,

∂B(A) ⊆ σ(ΩB(A)),(4.28)

which is the desired first inclusion of (4.14).

To investigate how the eigenvalues of Ω̂B(A) of (4.13) fill out B(A), we make a small
change in the definition of the matrix B(t) of (4.18) and (4.21). Let {τi}

p
i=1 be any positive

numbers such that

0 < τi ≤ ri(A) (1 ≤ i ≤ p),(4.29)

and let B̃(t) = [b̃i,j(t)] ∈ ICn×n have the same partitioned form as B(t) of (4.19), but with
(4.21) replaced by











b̃i,i(t) := ai,i for all 1 ≤ i ≤ p, and

|b̃i,j(t)| :=
τi

ri(A)
|bi,j(t)| (j 6= i), for 1 ≤ i ≤ p.

(4.30)

Then, B̃(t) and A have the same diagonal entries, the row sums of B̃(t) now satisfy rj(B̃(t)) =

τj for all 1 ≤ j ≤ p, all 0 ≤ t ≤ 1, and B̃(t) and A have the same circuits for all 0 < t ≤ 1.

From (4.4), B̃(t) ∈ Ω̂B(A) for all 0 < t ≤ 1, and from (4.13), B̃(0) ∈ Ω̂B(A). In analogy
with (4.23), we have
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B̃(0) =

[

B̃1,1(0) O
A2,1 A2,2

]

,

with

B̃1,1(0) =















a1,1 τ1e
iθ1

a2,2 τ2e
iθ2

. . .
. . .

ap−1,p−1 τp−1e
iθp−1

τpe
iθp ap,p















,(4.31)

where

σ(B̃(0)) = σ(B̃1,1(0)) ∪ σ(A2,2).(4.32)

It similarly follows that any eigenvalue λ of B̃1,1(0) in (4.31) now satisfies

p
∏

j=1

|λ− ai,i| =

p
∏

i=1

τi,(4.33)

for any choice of the real numbers {θj}
p
j=1 in B̃1,1(0) of (4.31). Using the fact that {τi}

p
i=1

are any numbers satisfying (4.29) and that {θi}
p
i=1 are any real numbers, it follows from (3.4)

and closure considerations that all the eigenvalues of B̃1,1(0) fill out Bγ(A), i.e.,

⋃

τ ′
i
s,θ′

j
s

σ(B̃1,1(0)) = Bγ(A).(4.34)

As this holds for any γ ∈ C(A), where B̃(0) ∈ Ω̂B(A), then

σ(Ω̂B(A)) = B(A),(4.35)

the desired final result of (4.14).

5. A Comparison of Minimal Geršgorin Sets and Brualdi Lemniscate Sets. Given
A = [ai,j ] ∈ ICn×n and x = [x1, x2, · · · , xn]T > 0 in IRn, then with X := diag [x1, x2, · · · , xn],
we have that X−1AX = [

ai,jxj

xi
], where, since A and X−1AX are similar matrices, σ(A) =

σ(X−1AX). On setting

rx

i (A) :=

n
∑

j=1

j 6=i

|ai,j |xj

xi

(all i ∈ N),(5.1)

then Geršgorin Theorem, applied to X−1AX , gives
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σ(A) = σ(X−1AX) ⊆
n
⋃

i=1

{z ∈ IC : |z − ai,i| ≤ rx

i (A)} =: Gx(A).(5.2)

As this eigenvalue inclusion holds for each x = [x1, x2, · · · , xn]T > 0 in IRn, we have

σ(A) ⊆
⋂

x>0

Gx(A) =: GR(A),(5.3)

and GR(A) is called (cf. [5]) the minimal Geršgorin set for A, relative to the collection of
all weighted row sums {rx

i (A)}n
i=1. As Gx(A) is, for each x > 0, the union of n closed disks

in the complex plane IC, then Gx(A) is compact, as is GR(A).
Another natural question is how the Brualdi lemniscate set B(A) of (2.7), a compact set

in IC, compares with the minimal Geršgorin set GR(A) of (5.3), for every A = [ai,j ] ∈ ICn×n.
The first apparent difference is that the Brualdi lemniscate set B(A) requires A to be weakly
irreducible, whereas the minimal Geršgorin set GR(A) does not make this restriction. But, if
we assume that A = [ai,j ] ∈ ICn×n is weakly reducible, we can compare the associated sets
in the complex plane. Given A = [ai,j ] ∈ ICn×n, n ≥ 2, we consider the following set of
matrices, associated with A:

∆(A) := {B = [bi,j ] ∈ ICn×n : bi,i = ai,i and

|bi,j | ≤ |ai,j | for all i 6= j; i, j ∈ N}.
(5.4)

Lemma 3. For any A = [ai,j ] ∈ ICn×n, n ≥ 2, which is weakly irreducible, then (cf.
(4.13))

∆(A) ⊆ Ω̂B(A).(5.5)

Proof. We first note that as A is weakly irreducible, then ri(A) > 0 for all i ∈ N .
Consider any matrix B = [bi,j ] in ∆(A), so that from (5.4),

ri(B) ≤ ri(A) for all i ∈ N.(5.6)

Set Si(A) := {j ∈ N : j 6= i and |ai,j | > 0}, for each i ∈ N . Then, Si(A) 6= ∅ for any
i ∈ N , since A is weakly irreducible. If there is a j in Si(A) for which bi,j = 0, we note that

ri(B) < ri(A).(5.7)

Then, for a fixed ε > 0, replace this (i, j)-th entry of B by any number having modulus ε,
and do the same for every k in Si(A) for which bi,k = 0, leaving the remaining entries in
this i-th row, of B, unchanged. On carrying out this procedure for all rows of the matrix B,
a matrix B(ε), in ICn×n, is created, whose entries are continuous in the parameter ε, and for
which the circuit set C(B(ε)) of B(ε) is identical with the circuit set C(A) of A, for each
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ε > 0. In addition, because of the strict inequality in (5.7) whenever bi,j = 0 with j ∈ Si(A),
it follows, for all ε > 0 sufficiently small, that

ri(B(ε)) ≤ ri(A) for all i ∈ N.(5.8)

Hence from (4.4), B(ε) ∈ Ω̂B(A) for all ε > 0, sufficiently small. As such, we see from

the definition in (4.13) that B(0) = B ∈ Ω̂B(A), and as this holds for any B ∈ ∆(A), the
inclusion of (5.5) is valid.

This brings us to the following new result which is both surprising and simple.

Theorem 4. For any A = [ai,j ] ∈ ICn×n, n ≥ 2, which is weakly irreducible, then

GR(A) ⊆ B(A).(5.9)

Remark. The word “minimal” in the minimal Geršgorin set GR(A) seems to be appro-
priate!

Proof. It is known from [5] that GR(A) of (5.3) satisfies

GR(A) = σ(∆(A)),(5.10)

and as ∆(A) ⊆ Ω̂B(A) from (5.5) of Lemma 3, then σ(∆(A)) ⊆ σ(Ω̂B(A)). But as

σ(Ω̂B(A) = B(A) from (4.14) of Theorem 2, then these inclusions give that

GR(A) ⊆ B(A),

the desired result of (5.9).

6. An Example. To illustrate the above results, consider the matrix

F =









1 1 0 0
1
2 i 1

2 0
0 0 −1 1
1 0 0 −i









.(6.1)

Then, F is irreducible, with C(F ) = (1, 2) ∪ (1, 2, 3, 4), with row sums ri(F ) = 1 for all
1 ≤ i ≤ 4. In this case, we have from (2.7) that B(F ) consists of the union of the two closed
sets







Bγ1
(F ) := {z ∈ IC : |z − 1| · |z − i| ≤ 1} = K1,2(A), and

Bγ2
(F ) := {z ∈ IC : |z4 − 1| ≤ 1}.

(6.2)

These sets are shown in Figure 2, where Bγ2
(F ) has the shape of a four-leaf clover.

Next, any matrix h in Ω̂B(F ) can be expressed from (4.4) as

H =









1 τ1e
iθ1 0 0

τ2se
iθ2 i τ3(1− s)eiθ3 0

0 0 −1 τ4e
iθ4

τ5e
iθ5 0 0 −i









,(6.3)
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−2 −1 0 1 2
−2

−1

0

1

2

| z−1 || z−i | = 1

| z4−1 | = 1

Figure 2

where 0 < τi ≤ 1 and 0 ≤ θi ≤ 2π for all 1 ≤ i ≤ 5 and 0 < s < 1. To show how the
eigenvalues of H fill out B(F ), we take random numbers {τi}5

i=1, random numbers {θi}5
i=1

from [0, 2π), and a random number s from (0, 1), and the eigenvalues of all these matrices,
are plotted in Figure 3. Figure 3 indeed shows that these eigenvalues of F tend to fill out
B(F ).

−2 −1 0 1 2
−2

−1

0

1

2

| z−1 || z−i | = 1

| z4−1 | = 1

Figure 3
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It is of interest to note the following near paradox arising from Theorem 2. As an
example, F of (6.1) is irreducible, and it is a known result of Brualdi [3, Cor. 2.11] that a
boundary point z of B(F ) can be an eigenvalue of F only if z is a boundary point of each of
the lemniscates Bγ1

(F ) and Bγ2
(F ) of (6.2). But from Figure 2, it is apparent that z = 0 is

the only point for which ∂Bγ1
(F ) and ∂Bγ2

(F ) have a common point. Yet, (4.14) of Theorem
2 gives the nearly contradictory result that, for each point of ∂B(F ), there is an arbitrarily
close eigenvalue of some matrix in ΩB(F ). The difference, of course, lies in the fact that Cor.
2.11 of [2] applies to the fixed matrix F , while the common data of (4.2) apply to all matrices
in ΩB(F ).

Next, we consider the minimal Geršgorin set, GR(F ), for the matrix F of (6.1). The
boundary of this set, ∂GR(F ), can be verified to be

∂GR(F ) =

{

z ∈ IC : |z4 − 1| =
1

2
(|z + 1| · |z + i|) +

1

2

}

,(6.4)

and ∂GR(F ) is shown in Figure 4. Note that ∂GR(F ) consists of three separate components.

−2 −1 0 1 2
−2

−1

0

1

2

| z4−1 | = (| z+1 || z+i |)/2  + 1/2

Figure 4

Next, we see from (5.4) that any matrix J in ∆(F ) is of the form

J =









1 τ1e
iθ1 0 0

τ2eiθ2

2 i τ3eiθ3

2 0
0 0 −1 τ4e

iθ4

τ5e
iθ5 0 0 −i









,(6.5)

where 0 ≤ τi ≤ 1 and 0 ≤ θi ≤ 2π, for all 1 ≤ i ≤ 5. We similarly consider the eigenvalues
of j of (6.5), where we take random choices of {si}5

i=1 in [0, 1], and random choices of
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{θi}5
i=1 in [0, 2π] in (6.5). These eigenvalues are plotted in Figure 5, which show again how

they fill out GR(F ). In Figure 6, we show both B(F ) and GR(F ), and we directly see that

GR(F ) ⊂6= B(F ).(6.6)

That (6.6) holds can be seen from the fact that each matrix J of (6.5) is necessarily a matrix
H of (6.4), but not conversely.

−2 −1 0 1 2
−2

−1

0

1

2

| z4−1 | = (| z+1 || z−i |)/2  + 1/2

−2 −1 0 1 2
−2

−1

0

1

2

| z4−1 | = (| z+1 || z−i |)/2  + 1/2

−2 −1 0 1 2
−2

−1

0

1

2

| z4−1 | = (| z+1 || z−i |)/2  + 1/2

−2 −1 0 1 2
−2

−1

0

1

2

| z4−1 | = (| z+1 || z−i |)/2  + 1/2

−2 −1 0 1 2
−2

−1

0

1

2

| z4−1 | = (| z+1 || z−i |)/2  + 1/2

Figure 5

7. A Final Equality. The result, of (5.9) of Theorem 4, shows that the minimal Geršgorin
set GR(A) is always a subset of the Brualdi lemniscate set. Adding to this from the inclusion
of (3.1) and (1.6), we then have

GR(A) ⊆ B(A) ⊆ K(A) ⊆ G(A),(7.1)

for any A = [ai,j ] ∈ ICn×n, n ≥ 2, which is weakly irreducible. But, the last three sets
in (7.1) have no dependence on weighted row sums, while the first set certainly does from
its definition in (5.3). To see the effect that weighted sums can have, consider any x =
[x1, x2, · · · , xn] > 0, and with rx

i (A) of (5.1), we define (cf. (1.3)), in analogy with (5.2)
and (5.3),

Kx

i,j(A) := {z ∈ IC : |z − ai,i| · |z − aj,j | ≤ rx

i (A) · rx

j (A)} (1 ≤ i, j ≤ n; i 6= j),(7.2)

and (cf. (1.4))

Kx(A) :=

n
⋃

i,j=1

i6=j

Kx

i,j(A), and KR(A) :=
⋂

x>0

Kx(A).(7.3)
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−2 −1 0 1 2
−2

−1

0

1

2

Figure 6

Similarly, for any circuit γ of Γ(A), we similarly define (cf. (3.4) and (2.7))

Bx

γ (A) := {z ∈ IC :
∏

i∈γ

|z − ai,i| ≤
∏

i∈γ

rx

i (A)},(7.4)

and

Bx(A) =
⋃

γ∈C(A)

Bx

γ (A), and BR(A) :=
⋂

x>0

Bx(A).(7.5)

As we see from (1.1) and (5.2), rx

i (A) = ri(X
−1AX). Hence, the last three inclusions of

(7.1), applied to the matrix X−1AX , become

Bx(A) ⊆ Kx(A) ⊆ Gx(A),(7.6)

and as (7.6) holds for any x > 0, then

BR(A) ⊆ KR(A) ⊆ GR(A).(7.7)

On the other hand, we have from (5.9) and (7.4) that

GR(X−1AX) ⊆ B(X−1AX) = Bx(A), for any x > 0.

But as is easily verified, GR(X−1AX) = GR(A) for any x > 0, so that

GR(A) ⊆ Bx(A) for any x > 0.
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As this inclusion holds for all x > 0, then with (7.5),

GR(A) ⊆ BR(A).(7.8)

Thus, on combining (7.7) and (7.8), we immediately have the result of

Theorem 5. For any A = [ai,j ] ∈ ICn×n, n ≥ 2, which is weakly irreducible, then

GR(A) = KR(A) = BR(A).(7.9)
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