Electronic Transactions on Numerical Analysis. ETNA
Volume 11, pp. 94-120, 2000. Kent State University
Copyright O 2000, Kent State University. etna@mcs.kent.edu
ISSN 1068-9613.

NUMERICAL ANALYSIS OF THE RADIOSITY EQUATION USING THE
COLLOCATION METHOD *

KENDALL ATKINSON f, DAVID DA-KWUN CHIEN ¥, AND JAEHOON SEOL

Abstract. The collocation method for solving the occluded radiosity equation is examined, theoretically and
empirically. Theoretical results are examined, including questions of superconvergence of the collocation solution.
The use of “discontinuity meshing” is examined for both piecewise constant and piecewise linear collocation. Also,
numerical integration of the collocation integrals is examined, and a near-analytic evaluation method is given.
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1. Introduction. Theradiosity equatioris a mathematical model for the brightness of
a collection of one or more surfaces when their reflectivity and emissivity are given. The
equation is

oP)

™

L1 u(P) - / WQ)G(P,Q)V(P.Q)dSq = E(P), Pe S5,

S
with u(P) the “brightness” oradiosityat P andE(P) theemissivityat P € S. The function
p(P) gives thereflectivityat P € S, with 0 < p(P) < 1. In deriving this equation, the
reflectivity at any pointP € S is assumed to be uniform in all directions frof) and in
addition, the diffusion of light from all point® € S is assumed to be uniformin all directions
from P. Such a surface is calledambertian diffuse reflectoi he radiosity equation is used
in the approximate solution of the ‘global illumination problem’ of computer graphics; see
Cohen and Wallacel[)] and Sillion and Pueche[l].

The functionG is given by

cos Op cosfg

G(P,Q) = P QP
(1.2) _ (@=P)np][(P-Q) ng]
P-ql

In this, np is the inner unit normal t&¢' at P, 0p is the angle betweenp and@ — P, and

ng andédq are defined analogously; cf. Figutel. The functionV' (P, @) is a “line of sight”
function. More precisely, if the point® and (@ can “see each other” along a straight line
segment which does not intersegtat any other point, theW (P, Q) = 1; and otherwise,
V(P,Q) = 0. An unoccluded surface is one for which” = 1 on S, and the numerical
solution of this case by some collocation methods was studied previoudlly INdte thatS

need not be connected, and it is usually only piecewise smooth. General introductions to the
derivation, numerical solution, and application of the radiosity equafidj ¢an be found in

the books 10] and [21]. The thesis ] 7] contains an analysis of the radiosity equation and of
the Galerkin method for its solution. In this paper, we consider some practical aspects of the
numerical solution ofX.1) by collocation methods whesiis occluded.
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FiG. 1.1.lllustrative graph for defining radiosity kernel (2)

We often write (.1) in the simpler form
(13) uP) - [ K(PQu@dso=E(P),  Pes,
S

or in operator form as
(1.4) (I-Kju=E.

In §2, we give general stability and convergence results for the collocation solution of this
equation. We pay particular attention to the use of piecewise constant and piecewise linear
approximants; and we consider the possibility of ‘superconvergence’ of the approximating
solutions. We also give some discussion of the behaviour of the solution.

In §3, we describe our test examples. Two different surfaces are used to illustrate the
variety of behaviours which can occur in the radiosity solution; and associated test problems
are defined. In addition, experimental calculations are given to illustrate the results given in
§2 and to note other phenomena of interes4ywe examine the numerical integration of the
collocation integrals. There are difficulties in such integrations when the integration element
is close to an edge of the surfaGeWe propose a near-analytic approximation procedure for
such integrals. Experimental calculations are given.

2. The Theoretical Framework for Collocation. A number of the results in this report
are true for general piecewise smooth surfaces, but we limit our presentation to polyhedral
surfaces. The treatment of more general surfaces requires certain nuances which we do not
want to consider here; and the problems and methods in which we are interested are illus-
trated well with polyhedral surfaces. Moreover, many of the surfaces of practical interest are
polyhedral.

2.1. The triangulation of S and interpolation over it. Our scheme for the triangu-
lation of S is essentially that described i8,[Chap. 5] and implemented in the boundary
element packagBIEPACK,described in4]. We subdivide the surfac§ into closed trian-
gular element§ A, } and we approximate by a low-degree polynomial over each element.
We assume there is a sequence of triangulatiorts @f, = {A,, 1 | 1 < k < n}, with some
increasing sequence of integer valuesonverging to infinity. In our codes, the valuesrof
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increase by a factor of 4, due to our method for refining a triangulation. To refine a triangle
A, ,, we connect the midpoints of its sides, creating four new smaller and congruent trian-
gular elements. There are standard assumptions made on the triangulations. We describe the
triangulation process briefly, and the details are lefB{dJhap. 5].

Associated with most surfaces are parameterizations of the surface. We assume the sur-
faceS can be written as

S=5USU---USy,
with eachS; a closed polygonal region. Triangulaig, say as
(2.1) {A] L1k =1,..n;}.

This need not be a ‘conforming triangulation’, in contrast to the situation with finite element
methods for solving partial differential equations. Foas a whole, define

T, :JQ {A{%k k= 1nj}

Often we will dispense with the subscripin Aflk although itis to be understood implicitly.
Themesh sizef this triangulation is defined by

h = h, = max max diameter(A’ ).
1<5<J 1<k<n, ’

As noted earlier, the elements Bf are denoted collectively by, = {A, x| 1 <k < n}.
With each increase of to 4n, the meshh decreases téh.
Note that if the mesh is uniform, then

(2.2) n=0(h"?).

Although all of our examples use various types of uniform triangulations, one could also
consider the use of ‘graded meshes’ under our schema. In that case, the use of error bounds
of the formO (h?) would need to be replaced by error bounds of the farm 7).

For functionsf € L*(S) andk > 0, we write f € C*(S) when f € C*(S;) for
1 < j < J. Of course, this implies that or its derivatives may be discontinous across edges
joining adjacent polygonal faces 6f In fact, we often may want to allow this to be true of
the reflectivityp, the emissivityE, and the radiosity:. Within the context ofL>°(.5), this is
not a problem, as such edges form a set of measure zero with respect to the totalSurface
Note that this is honstandard notation, although it serves well our needs in working with the
radiosity equation.

For purposes of numerical integration and interpolation over the triangular elements in
7., we need a parameterization of each such triangular element with respect to a standard
reference triangle in the plane, namely the unit simplex

o={(s,t):0<s,t,s+t<1}.

LetA, , € 7,, and let the vertices ak,, ;, be denoted byv,, v, v3}. Define a parameteri-
zation functionmy, : o i A, by
onto

(2.3) mg(s,t) = uvsg + tvg + svq, (s,t) € o,
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with u = 1 — s — t. Using this, we can write

(2.9) [ 1(Q)asq = 1Dy x Dy / Flmi(s, 1)) do,

since|Dsmy, x Dymy| is a constant function, equal to twice the area\gfy,. This formula
can be used to numerically evaluate the left-hand integral by using numerical integration
formulas developed for the regian

Thecentroidof A,, ;. is defined as

(2.5) Pe=my (3,5) = 5 (01 +v2+v3).
Define the operatoP,, associated with piecewise constant interpolation évby
(2.6) (Puf)(P)=f(Py), PeAx, k=1, ..n,

for f € C(S). We are not concerned with the values®ff on the boundaries of the elements
Ay, sinceP,, f is to be regarded as an elementsf (S) and needs only to be defined almost
everywhere. We want to extend the above definition to all elemenis<dfS), and this is
described in some detail i8] The operatofP,, is a projection on.>°(.S), and its norm is
the same as when it was defined@(S), namely

(2.7) [Pl = 1.
Assumingf € C(S), itis straightforward to show
(2.8) |lu — Ppull,, = O (h).

We also wish to consider approximations based on piecewise linear approximations over
the triangulatiorZ,,. Giveng € C(S), we define the interpolating functioh, g as follows,
basing it on interpolation over the unit simplexLet « be a given constant with < o < %;
and define interpolation nodesdnby

(29) {QD q2, Q3} = {(aa O‘)? (av 1- 20&), (1 - 2@, a)}

If « = 0, these are the three vertices @f and otherwise, they are symmetrically placed
points in the interior ob. Define correspondingagrange interpolation basis functioty

U — « t—« S —
lo(s,t) = — L py(st) = —— L
[ 3q0 GO =13, 6EH=73,

Kl(s, t) =

for (s,t) € o andu = 1 — s — t. The linear polynomial interpolating € C(c) at the nodes
of (2.9) is given by

(2.10) Fls,t) = > flai)li(s,t).
Forg € C(S), define

(211) (Png) (mk<svt)) = Zg(mk(qi))gi(svt)v (S,t) € o,

i=1



ETNA

Kent State University
etna@mcs.kent.edu

98 K. Atkinson, D. Chien, and J. Seol

for k = 1,2,...,n. This interpolateg(P) over each triangular elemerk;, C .S, with the
interpolating function linear in the parameterization varialesd¢. Let the interpolation
nodes inA; be denoted by

v =me(q), 1=1,2,3; k=1,..,n.

Then @.17) can be written

3
(2.12) (Prg) (P) = glvni)li(s,t), P =my(s,t) € Ay,

i=1

for k = 1, ..., n. Collectively, we refer to the interpolation nodgs; ;} by {v1, ..., vs,, }, for
a > 0.

In the casex = 0, the formula 2.11) defines a projection operator ¢i.S), provided
the triangulation is conforming; and easily,

1Pl =1, with o = 0.
For0 < o < 3, the functionP,g is usually not continuous; and if the standard type of
collocation error analysis is to be carried out in the context of function spacesCttfen
must be enlarged to include the piecewise linear approxinfans We do this in exactly the

same manner as mentioned above for piecewise constant interpolatio,al@ne within
the context of.>°(.S). For suchu,

1+« 1
2.1 =— —.
(2.13) |Pnl T35’ 0<a< 3

A particularly important case is = % for which

7 1
2.14 = =, =
(2.14) IPall =5, o=

Assumingf € C?(9), itis relatively straightforward to show
(2.15) lu—Ppul, = O (h?).

Higher degree piecewise polynomial interpolation can be defined in a manner analogous
to the above. In this paper, our numerical examples are restricted to piecewise constant and
piecewise linear collocation methods.

2.2. General properties of radiosity equation. The collocation method for solving
(1.4) can be written abstractly as

(2.16) (I = PuK)un =PpE,

with P,, an interpolatory projection on the function space being used. The first complication
arises from the fact that our approximatiansare generally not continuous over the bound-
aries of the triangular elements of our mesh $orOur collocation node points are chosen
interior to the elements of the triangular meghwe impose onS. This is done to avoid
having node points on edges of the original surfdcas the normahp in (1.2) is undefined
where two edges come together. For our function space setting.®rahd @.16), we use

the Banach spac& = L>°(.5), as discussed earlier.
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There are two possible approaches to the analysis of collocation methods for solving
(1.1) or (1.4). The first approach combines the result

(2.17) Ik < 1

and the geometric series theorem. The second approach uses the observation that when con-
sidered locally to the edge common to two faces of subsurfacés tife operatoiC is a
‘Mellin convolution integral operator’. We discuss both approaches in this section, empha-
sizing the former.

For the origins of2.17), we note the following result proven i8]

LEMMA 2.1. Assumd’ is the boundary of a bounded convex open{3et R?, and
assumd’ is a surface to which the Divergence Theorem can be appliedPLetl’, and let
I" be smooth in an open neighborhoodrf ThenG (P, Q) > 0 for Q € T', and

(2.18) /F G(P,Q)dT'g = .

With this theorem, we can obtain the result
(2.19) | cw.vrQiso<n
s

at each pointP? € S for which S is smooth in some neighborhood Bf Since we assume
that S is polyhedral, this means for all poinf3 in the interior of the polygonal faces 6f.
The proof is similar, although slightly more complicated, to that giverbjngnd we omit it
here. Using2.19 and the definition ok, we have

@/SG(P’Q)V(P’Q) dSq < p(P) < |lpll

for all points P € S except for those belonging to an edge of one of the polygonal facgs of
(a set of measure zero). From this, we have

IKI < ol o -

We assume thdffp|| ., < 1, and thus2.17) follows for K as an operator oh>(.S) to L>(S).

2.3. A convergence theory based on the geometric series theorehe principal
means of analyzing numerical schemes for solving the radiosity equation has been to base
the stability analysis on the geometric series theorem. V¥ith7), it clearly follows that
(I — k)" exists as a bounded linear operator frdft (S) to L>°(S), and

. 1
_ <
J-07" <= KT
For the stability analysis o(16), begin with
(2.20) [Pl < 1Pnll |-

If we have

(2.21) B= [supw)nn] 1K) < 1.
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then we havél — P,,K) ™" exists as a bounded operatorbit (S), for alln > 1. Moreover,

1 1
. — P, < — .
(2.22) H(I Pok) ‘ <—
For the comparison of the solutiongndu,,, the respective solutions of @) and @.16),
it is straightforward to obtain

(2.23) U=ty = (I = PK) " (u—Pou).
This leads to the bounds

lu = Prull
1+ B

The speed of uniform convergencewf to u is exactly that ofP,,u to u. Thus the regularity

of u will affect the rate of convergence af,, a point we discuss further below. The bound
(2.24) is not the entire story, as it is sometimes possible to obtain more rapid convergence at
selected points, a phenomena known as ‘superconvergence’. We discuss this in the context of
particular methods.

le—Puul

(2.24) oz

< lu =l <

2.4. The centroid method. When?P,, is the piecewise constant interpolatory projection
of (2.6), we refer to the collocation method as tentroid methodWith it, we have||P,,|| =
1; and when combined with2(17), we have 2.21) with B < 1. Thus the centroid method
is stable and convergent. What is its speed of convergence? This depends on a humber of
factors, including the nature of the surfaggethe regularity of the solution, and the way in
which the triangulatior?,, has been defined. Fror.g), we have that ifs € C*(.9), then
(2.24) implies

(2.25) [t — wn|. = O(h) = O (n*1/2) .

We now discuss various extensions of this result.
Suppose that the closed polyhedral fase®f S are disjoint. Then we can show that if
u € C?(9), then
) — . = 2 = -1
(2.26) 11;1?5{n|u(P1) un(P;)| =0(h") =0 (n ) ,
with {P;} the centroids of the triangulatidh, .
To begin, we introduce the iterated collocation solution

Uy, = E + Ku,,.
It follows that
,Pnan = Unp,
(2.27) (I-KP,)u, =E.

The solvability of £.27) is equivalent to that of the original collocation meth@di@), and
(I-KP,) ' =T4+K(I—-P.K) " Pa.

With (2.27), we have

(2.28) w—1, = —KP,) ' K(I —P,)u,
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and it is then possible to prove

(2.29) max |u(P;) — u,(P))] < ¢ max | (I —Py) u(F;)l,
J J

with { P;} the collocation nodes used in definiy. For a complete development of iterated
projection methods, se&,[p. 71]. For a proof of .29, see the derivation given ir8]
pp. 449-450]. These results are valid for all piecewise polynomial collocation methods for
solving the radiosity equation, not just the centroid method.

Returning to the proof of4.26), assume that the closed polyhedral fasgsf S are
disjoint and that: € C2(.S). Then it is straightforward to show that

I = Pn)ull, = O (h?)

thus showing 2.26). For a closely related derivation, s€& p. 81]. The proof depends
crucially on the fact that over each triangular fakg,

/A w(Q) dSg = area (Ay) u (P.)

if w(P) is alinear polynomial and®. is the centroid ofA .

2.4.1. Singular behaviour. If the surfaceS has polygonal faces which join along an
edgeL, then it is generally not possible to improve up@m§):

(2.30) max |u(P;) — un(P;)| = O(h) = O (n—l/z) ’

1<i<n

foru € C? (9). Thisis the same dgt — u,, || . from (2.25, and itis primarily because of the
error behaviour adjacent to the edfeA sketch of a proof is given irg], p. 281], although it
was for piecewise linear collocation rather than the centroid method.

More importantly, along such edgéswe can have algebraic singularities in the solution
u. For simplicity, assume the eddeis a subinterval of the-axis inR3, and assume that
one of the polygonal faces containiigs contained in they-plane,y > 0. Then within this
plane, the solutiom is likely to have the behaviour

(2.31) u(z,y,0) =0 (y*), y—0,

with 0 < a < 1; and an analogous situation holds in the other face borddring detailed

derivation of this behaviour is given in Rathsfelds] Thm. 1.2]. The exponent varies with

both the angle in the surfaceat the edgd. and the reflectivity on the faces bordering.
For functions satisfyingd.31), it is relatively straightforward to show that

(2.32) lu — Ppull,, = O (h*).

In analogy with the results irf] for one-dimensional Mellin convolution integral equations,
and using the results inLp], we expect that one can improve the rate of convergence to
O(n~'/?), or evenO(n~') at the centroids of,,, provided a suitably graded mesh is used in
creating the triangulatiofi,,. We do not consider this further in this paper, preferring to study
how the behaviour of the solution affects the rate of convergeneg tf © when a ‘uniform’
triangulation scheme is used.
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2.4.2. Using a discontinuity meshing.One of the effects of occlusion is to produce
‘shadows’ on portions of the surface For the planar radiosity equation, the effects of these
shadows on the differentiability are studied 8).[ The situation inR3 can be considerably
more complicated. Our test surfacés shown in Figures3.1 and 3.2, have the edges of
subsurfaces all parallel to the coordinates axes, a highly artificial situation. The case with
more general polyhedral surfaces is studied in S&@| [Nonetheless, most of our discussion
for numerical schemes in the presence of such shadow lines will transfer to the more general
situation.

What has been recommended in the literature is to use a ‘discontinuity meshing’ scheme,
not allowing the shadow lines to intersect with the interiors of the elements of the triangula-
tion. An example of such is given in FiguBe3 for the surfaces in Figureés1and3.2 There
are two possible reasons for wanting to use such a meshing scheme; and in some cases, such
a discontinuity meshing is actually not needed, at least as it affects the order of convergence
of the collocation scheme.

Assuming that the unknown radiosity has a discontinuous derivative along the
shadow line, usually perpendicular to that line, this can affect the order of convergence of
|lu — Prul| ., and thus also that dfu — u, || . There are two cases of interest, and they are
most easily studied and illustrated for functions of one variable.

Consider a functiorf defined or0, 1] and assume we have the mesh

(2.33) g:%, j=0,1,...,n.

Approximate f with piecewise constant functions, interpolatificgat the midpoint of each
subintervalt;_1,¢;],j =1,...,n.
For the first case, assunfénas a bounded discontinuity jit att = ¢ € (0, 1), generally
with ¢ not a mesh point. Then it is straightforward to show the following.
SF Assumef’(t) is continuous orf0, ¢] with a finite limit f/(¢ — 0); and similarly,
assumef’(t) is continuous on¢, 1] with a finite limit f/(¢ +0). Then the piecewise
constant interpolating functiofj, (¢) satisfies

(2.34) 1f = falloo = O (h).
In addition, ifg € C[0,1] and if f” is twice-continuously differentiable 00, (]
and[¢, 1], then
1
(2.35) [ 150 fu(0) de =0 (42).

This implies that no discontinuity meshing is needed in this case, either to obtain the correct
order of uniform convergence in the collocation scheme or to obtain superconvergence at the
midpoints of the mesh.

These results extend to the two-dimensional case in a straightforward way. The general-
ization of .35 is the tool used to show the right side @79 is O(h?). Assuming that
can be extended to a twice-continuously differentiable function on the closure of the region
on each side of the shadow line, it follows that the order of convergence results are unaffected
by whether or not a discontinuity meshing is used. This is illustrated in the following section
in Figure3.5, although the accuracy is greater when using a discontinuity meshing. As a note
of caution, these results do not extend to the piecewise linear collocation method, which we
discuss and illustrate below.
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For the second case of interest, assume the fungti@gn has an unbounded derivative at
¢. Then the order of convergence results are affected. Assume that

FO+(C—0)"k(t), 0<t<(,
(2.36) ﬂ“:{f«H<t<f@uL4<tgL

with 0 < a < 1, k1 € C?[0,¢], andky € C?[¢, 1]. Itis straightforward and well-known that

(2.37) 1 = Falloe = O (%),
and
(2.38) Agwww—ﬂﬁnﬁ:owH%.

To recapture the optimal order of convergence, giver2i4-(2.35), it is necessary to use a
graded mesh in a neighborhood of the singular poifithe construction of this graded mesh

is explored in depth ing, Section 4.2.5], and we omit it here. Again, these results extend to
the two-dimensional case, and such graded meshes are explored in Rattgjfeldspally,
however, the type of behaviour seen !3g) is not seen along shadow lines, but rather along
the common edge of two subsurfacesSofas discussed above following.81). The graded

mesh is still needed to restore an optimal order of convergence, but the discontinuity mesh
would not be needed in such a case, at least as it affects the order of convergence.

2.5. Piecewise linear collocationRecall the piecewise linear interpolatory function of
(2.12 with the interpolation parameter € (0,1). There are three collocation node points
within each triangular element, and thus there3arenode points on the surface To carry
out the stability analysis of Subsecti@rB, we need to require

1+«

— < 1
I

For the important case of = % this means requiring

3
(2:39 ol < 5

which is a fairly stringent restriction. For surfac&swithout subsurfaces joining at some
common edge (e.g. the surface in Fig@r&), the operatoiC is compact onL.>°(.S). This
means we can use a standard analysis &1{Chap. 3]) to justify the piecewise linear colloca-

tion method, obtaining again the error boud?¢). But with some subsurfaces §fjoining

at a common edge (e.g. the surface in Figh&, K is no longer compact and another type of
stability and error analysis must be used. For cases such as that in in Eigufe analysis

of [16] can be used to give the needed stability analysis. But if the surface contains a vertex
that is interior toS, then no means of analysis is known at present.

2.6. Rates of convergenceWe now consider the rates of convergence to be expected in
the situations discussed earlier for the centroid method. We assume that the piecewise linear
collocation method is stable,

(2.40) H(I - n,ﬁ)‘lH <c<oo, n>N,
for someN. If the radiosity solution: € C?(S), then it is straightforward to show

flu — Pnu”oo =0 (h2) )
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and therefore,
(2.41) u—u, =0 (h?).

If the surfaceS is composed of disjoint subsurfacgs then we can obtain superconvergence

results at the collocation node points. In particular, if we ause é then

4
(2.42) Jmax [u(P) = un(P)| = O (h").
This reduces t® (h?) in the case of othex € (0, ). A proof is given in p].

As with the centroid method, i¥ contains polygonal faces which join along an edge
then the resultq.41) is the best that can be expected, for all choices &f (0, ). This is
discussed ing, pp. 281-282]. Moreover, the presence of singular behaviour such @B (
leads to the rate of convergence showndr8f). Again, a suitably graded mesh is needed
in order to restore the order of convergence given2id1)-(2.42. This is also true if the
singular behaviour occurs along some other liné'jiperhaps a shadow line, rather than just
at an edge of. These results are illustrated in Sectibn

2.6.1. Using a discontinuity meshing.Consider the earlier single-variable example
given following €.33. For piecewise linear interpolation, use the interpolation node points

1
tin =5 -1 +) =Bt —t-1),

1
tin =5 (tGi—1 +8) + Bt —tj-1),

for someps € (0, %) 1 < j < n. An optimal special choice i$ = @ leading to the

Gauss-Legendre zeros of order 2 relativé}a, t;]. For the above case in Subsectibn.2
of SFfor the centroid method, and with any sugte (0, 5 ), the resultsZ.34-(2.35 are still
valid; and more importantly, they cannot be improved.

As before, these results extend to the case of triangulafiprser S. Thus, a disconti-
nuity meshing is needed in order to recover the convergence resulisi@f-(2.42. This is
illustrated in Figure3.7 of the following SectiorB.

2.7. The linear system.Let the number of collocation nodes be denoted bhYd,, = n
for the centroid methodd,, = 3n for the piecewise linear method), and Ig®;} denote
collectively these nodes. Létp; | i =1,...,d,} denote the Lagrange basis functions for
the interpolation scheme being used. For the centroid rule,

1, Pe Ai,
‘pi(P){ 0, P¢A,
For piecewise linear interpolation, use the basis functions implic2 ib, which are again
nonzero over only a single triangular element. We also will write

Spkj,z(Q)v kj,f :SJ_3+€7 = 172737

for the three linear basis functions over the elem&nt Also introduce the parameter= 1
for the centroid method, and= 3 for the piecewise linear method.

The solution of 2.16), namely(I — P,K)u, = P,E, reduces to the solution of the
linear system

@43)  n(P) =D un(P) [ VIR QGP Q) Q) dSo = E(P)

J=1 /=1 AJ
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with {P;,, : 1 < ¢ < v} thew collocation nodes insida;, fori = 1,...,d,. In practical
problems,d,, can be quite large, namely 10,000 or larger. For larger values, oft is
impractical to setup this system completely, and so-called “fast matrix-vector multiplication
methods” are needed. An example of such is giverrjridr unoccluded surfaces, and other
schemes have been given, based on the “fast multipole method” and wavelet compression
multi-resolution schemes.

In setting up this system, simplifications are possible. First; iindA ; are contained
in the same polyhedral face 6f, thenG(P;, Q) = 0. Second if a viewer aP;, cannot see
any portion ofA ;, then the corresponding integral is zero. Thus it is important to create view
information of this kind for all of the elements @f, and all the collocation nodes,.

An important consideration is knowing how to calculate the integralg.i4 for which
only a portion ofA; can be seen fron®;. In a number of cases, these integrals have been
estimated by various crude schemes, in the interest of speeding the setup of the linear system.
All of these schemes have an error of s(z&:) in their impact on the accuracy of,. Thus
all superconvergence phenomena are destroyed; and the higher rate of convergence associated
with piecewise linear interpolation is also destroyed. These integrals, in which only a portion
of A; can be seen fron®;, must be calculated as accurately as the remaining integrals in the
linear system. Determining the portion &f; which can be seen from; is, however, quite a
difficult task, and we do not attempt any kind of general solution here.

In Sectiond we give a direct way to evaluate all of the integralsam@ for the centroid
method, and we give a very fast way to evaluate them for piecewise linear interpolation.
Without sufficiently accurate evaluation of these integrals, the faster rates associated with
superconvergence and piecewise linear interpolation are destroyed.

3. Numerical Examples. Dealing with the general case of occluded polyhedral surfaces
was too daunting a task, as it requires a fairly sophisticated framework to handle the subsur-
faces ofS, along with being able to determine the occluded regions as the field point varies.
Moreover, it was not necessary for our experimental study of the effects of various types of
surface behaviour and solution behaviour. We have used two surfaces for our experiments.
We believe that these two surfaces, together with suitably chosen testucasessufficient
to examine experimentally a number of properties of the numerical analysis of the occluded
radiosity equation.

3.1. The experimental surfaces.
e The 4-piece surface. The surface consists of four square subsections, denoted by
Sy,52,83,54.
— 51 =10, 4] x [0, 4] in thezy-plane;
— S, and S are the bottom and top, respectively,j0f B] x [0, B] in the plane
z=1;
— S4=[0,C] x [0,C] in the planez = 2.
This surfaces is illustrated in Figure3.1. We choose the parametess B, C' to
satisfy

(3.1) C < B, 2B < A.

The surface has shadow lines.$h along the boundaries of the squafes2B —
C] x [0,2B — C] and0,2B] x [0,2B].

e The 5-piece surface. This surfaeconsists of the 4-piece surface together with the
additional faceSs:
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N

(0,C.2)

(0,8,1)

(AA0)

FIG. 3.1.The 4-piece surface

N

(AAL)

(A,A,0)

FiG. 3.2.The 5-piece surface

Thus the surface has an edge, wh&reand S5 are in contact. This surfacg is
illustrated in Figure3.2, and the parameter$, B, C satisfy the same restrictions as
for the 4-piece surface.
A surprising number of phenomena can be studied with the use of only these two quite simple
surfaces. In all of our examples, we usg B, C) = (5,2, 1).
We have shadow lines iff;, and these can be used to study the effect of triangulating
in various ways. For our first type of triangulation scheme, we define the initial triangulation
of Sy by breaking it into two triangular elements, dividisg by using the diagonal line from
(0,0,0) to (A, A,0); and an analogous initialization is used with the remaining rectangles
So, 53,54, 55. The subsequent triangulatiofis are derived by applying the standard re-
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y

2B-C 2B A

FiG. 3.3. The initial discontinuity mesh for subsurfase

finement procedure to this initial triangulation. We refer to this triangulation asimitmrm
mesh The second triangulation procedure is to respect the shadow lirtgswfth the trian-

gular elements so chosen that the shadow lines do not intersect any triangular element. The

initial triangulation ofS; is illustrated in Figure3.3, a matching conforming triangulation
is used forS5 (for the 5-piece surface). The resulting triangulati@psare referred to as a
discontinuity mesh

3.2. Test solutions.Among our test cases are the following true solutiondn these
cases, we calculate the emissivityusing highly accurate numerical integration. Then the
collocation procedure is applied to find the approximate solutigrwhich is then compared
to the known true solution. The accurate calculation of the collocation integra®s43 (s
discussed irg4.

e We begin with a very well-behaved type of solution function.

With this solutionu, we can see the best type of behaviour that can be expected in

our numerical procedures.
e The significance of the shadow lines$h is that the first partial derivative of is

often discontinuous when the derivative is in a direction perpendicular to the shadow

line. This affects the accuracy of the approximati®mn ~ u. To study this phe-
nomena, we use the following true solution

3.3)
Uy(ey) [2B—2), 2B-y),]",  (w4.2) €S,
u(m,y,z) = 1, (x,y,z) € SoUS3U Sy,
07 (I7y7'z) S S5»

wv(x’ y) = 377(23*@(23*9).
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TABLE 3.1
Centroid method errors for given by 8.2) and with a uniform mesh triangulation

4-Piece Surface 5-Piece Surface
n E, Ratio n E, Ratio
8| 6.67 10 | 6.58

32 | 0.910 7.3 40 | 3.28 2.01

128 | 0.214 4.3 160 | 1.86 1.76
512 | 0.0487 4.4 640 | 0.991 | 1.88
2048 | 0.0123 4.0 2560 | 0.511 | 1.94

10"

——  Standard mesh
--- Discontinuity mesh

10 -~

10 L L n
10 10’ 10 10

FiIG. 3.4.Errors with different meshing schemes, for centroid method and fun@iéngn 5-piece surface

The functiony., is used to decrease the sizeu¢t:, y, 0) away from the shadow line

on the boundary o), 28] x [0, 2B]. The quantity(f)__is equal tof if f > 0,and it
equals zero iff < 0. The exponent > 0. With 8 = 1, we have a continuous non-
linear function which has bounded, but some discontinuous first derivatives along
the boundary of0,2B] x [0,2B]. With g = % we have an algebraic singularity
along this boundary, and we can study the effects of different types of triangulations
for such a solution function. We choogse= 0 on bothsSs (for the 5-piece surface)

and on the subset ¢, outside of the squari@, 2B] x [0, 2B].

To study the ill-behaviour which can occur around at edge, we the numerical solution
of the radiosity equation with the true solution

(A-y)”, (z,y,2) € S,
(3.4) u(z,y,z) = 1, (2,y,2) € Sy U S5 U Sy,
0, (x,y,2) € Ss.

In all cases, we useg = 1. This does not present a problem, as we still hgéé¢ < 1 due to
S not being a closed surface. We performed calculations with other choigesaffying it
overS. We have found that the case®f 1 is sufficient for illustrative purposes.
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10°
o Uniform mesh
x Discontinuity mesh

107

Error
=
(=}

107

10’4 L L
10 10" 10 10 10

FiGc. 3.5. The centroid method errors (at the node points) for thef (3.3) with (3,~) = (1.0,1.5) on the
4-piece surface

TABLE 3.2
Centroid method errors for given by 8.3) with (3,~) = (0.5, 1.5)

Uniform Mesh Discontinuity Mesh
n E, n E, Ratio
8 | 7.97TE — 2 24 | 9.04F — 4
32 | 5.54F —3 96 | 1.50F — 3
128 | 5.60FE —3 | 384 | 6.13F —4 | 2.45
512 | 5.22FE —4 | 1536 | 2.31E —4 | 2.65
2048 | 1.38FK — 3

3.3. The centroid method. We first apply the centroid method for both the 4-piece and
5-piece surfaces. We begin with results for an ideally well-behavdtat given by 8.2).
The numerical results using the uniform mesh are given in Taldleand the given error
E,, is the maximum of the errors at the node points, as on the left sid2.»§( These
numerical results are consistent withZ6 and @.30, showing a convergence &} (hQ)
for the 4-piece surface and approximatélfh) for the 5-piece surface. The discontinuity
meshing improved the error, but the results on the rate of convergence were quite similar. A
comparison of the two forms of meshing is shown in FigBi&for the 5-piece surface. The
discontinuity meshing puts relatively more triangular elements into subsusfacear to the
edge aty = A; and this may account for the greater accuracy when solving the radiosity
equation.

To see the effect of a discontinuity in a derivativeucdlong a shadow line, we solve for
u given by 3.3) with 5 = 1 and~ = 1.5 for the 4-piece surface. We solve with both the
uniform mesh and the discontinuity mesh. Graphs of these results are given in F.iganed
the error with the discontinuity meshing is consistent with a convergence ré?téhff) With
the uniform meshing, the error is also consistent \@tth) when the error for the coarsest
mesh is compared to that of the finest mesh which we used. The discontinuity meshing is
superior, both in accuracy and in the regularity of the behaviour of the error.
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Uniform mesh
Discontinuity mesh

10"
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FiG. 3.6.The centroid method errors (at the node points) fordoé (3.3) with (3,~) = (0.5, 1.5).

TABLE 3.3
Centroid method errors for given by 8.4) with 3 = 0.5 on the 5-piece surface

Uniform Mesh Discontinuity Mesh
n E, Ratio n E, Ratio
10 | .286 30 | .0749
40 | 174 1.64 120 | .0255 | 2.94
160 | .124 1.40 480 | .0177 | 1.44
640 | .0879 | 1.41 1920 | .0125 | 1.42
2560 | .0622 | 1.41

To see the effect of an algebraic singularity along the shadow line on the boundary of

[0,2B] x [0,2B], we look at the case af given by 8.3 with 3 = 0.5 and~ = 1.5 for the

4-piece surface. We solve with both the uniform mesh and the discontinuity mesh. Graphs of
these results are given in Figuses, and Table3.2 contains the errors. Ratios are given only
for the discontinuity meshing, as the convergence is so irregular for the uniform meshing. The

final ratio given in the table is equivalent to a convergence rafe ((1f1-41); and we expect it

to improve toO (h1-5) ash decreases further, in line witB.39. As with the previous case in
Figure3.5, using the uniform meshing gives a decrease in the error that is also consistent with
(0] (h1-5), based on comparing the error for the coarse mesh to that of the finest mesh which
we used. Still, the discontinuity meshing is superior, both in accuracy and in the regularity of
the behaviour of the error.

To see the effect of an algebraic singularity along an edge, we consider the fumction
defined by 8.4) over the 5-piece surface, with= %. We use both a uniform meshing and a
discontinuity meshing, giving the results in Talll8. The results are consistent with a rate

of convergence of)(h-5), as is asserted ir2(30). As in the example of Figur@.4, the error

is smaller with the discontinuity meshing; and it is probably due to the mesh being relatively

smaller near tgy = A, the location of the singular behaviour in the solution
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TABLE 3.4
Piecewise linear collocation method errors fergiven by 8.2) with a uniform triangulation mesh

4-Piece Surface 5-Piece Surface
n E, Ratio | n E, Ratio
8 | 1.43 10 | 1.44
32| 213E—-1 | 6.71 40 | 3.17TE —1 | 4.54
128 | 8.89FE —3 | 24.0 | 160 | 7.96FE —2 | 3.98
512 | 2.7T4F — 4 32.5 640 | 1.99FE — 2 4.00

4-piece surface
T T

107

5-piece surface
T

o Uniform mesh
x  Discontinuity mesh

10’5 1 1 10’5 1 n

10° 10" 10° 10° 10 10° 10

FiG. 3.7. The piecewise linear collocation method errors (at the node points) for thieg(3.3) with (3, ) =
(1.0,1.5)

3.4. Piecewise linear collocationWe repeat the example of Tabll, with the un-
knownw of (3.2) and with both the 4-piece and 5-piece surfaces; and these results both use
a uniform triangulation. The collocation nodes are defined using % These results are
given in Table3.4; note that the number of node points3is. The results for the 4-piece
surface illustrate and exceed the prediction2fi)); and the results for the 5-piece surface
illustrate @.47).

To compare the use of uniform vs. discontinuity meshing, we again considemgikien
by (3.3) for both the 4-piece and 5-piece surfaces, with= 1 andy = 1.5, and we use
o = ¢. The results are illustrated in FiguBe7. For the 4-piece surface, the convergence
results with discontinuity meshing are fairly consistent with @1(3h4) predicted by 2.42)
for the error at the node points, and there is an overall rate at all poircfs(b?). For
n = 384, the maximum error at the node pointid4 x 10~°. With the uniform meshing,
the results are more erratic, much as for the centroid method in this case. From the discussion
in Subsectior?.5, the convergence will also be slower than with the discontinuity meshing,
with at bestO (h?) at the node points an@ (h) overall. The results for the 5-piece surface
in this example are quite similar to those for the 4-piece surface when discontinuity meshing
is used; and the results are worse in the case of the uniform spacing. Clearly, discontinuity
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TABLE 3.5
Piecewise linear collocation method errors fogiven by 8.4) with 8 = 0.5 and using a uniform triangulation
mesh

4-Piece Surface 5-Piece Surface
n E, Ratio n E, Ratio
8 | 1.98E — 2 10 | 8.90F — 2

32 | 1438 -3 | 1.38 40 | 6328 -2 | 1.41
128 | 9.24E -5 | 155 | 160 | 4.46E —2 | 1.42
012 | 3.93E -5 | 235 | 640 | 3.16E—2 | 1.41

meshing is important when dealing with ‘shadow lines’.
We conclude by considering the solutiarof (3.3) with 5 = % anda = % The results
for uniform meshing with both the 4-piece and 5-piece surfaces are given inI&bkerom
the extension of the discussion following.88 to piecewise linear collocation, the order
of convergence for the 4-piece surface shouldﬁb@hl*’)); and the extension of2(32) to
piecewise linear collocation should yield a convergenc@® Qho*')). The results in the table
are consistent with what is expected for the 5-piece surface; whereas the ratios for the 4-piece
surface would be expected to approach 2.83 m&reases, and they have not yet settled down
to this in the table.

4. Calculation of the Collocation Integrals. The setup of the collocation linear system
(2.43 requires the evaluation, potentially, @f double integrals,

(a.1) L= /A V(P Q)G(P, Q)gr, ,(Q) dSo,

with d,, = n and3n for the centroid and piecewise linear methods, respectively. In fact,
any scheme for setting up this linear system should recognize two factors which can decrease
dramatically the number of such integrals needing to be evaluated. Fidt,isflocated

on the same subsurface §fas the triangular element;, thenG(P;, Q) = 0 and thus the
integral is zero. Second, F; cannot see any part &, thenV (P;, Q) = 0 overA; and the
integral is again zero. We consider now the evaluation of the remaining integrals (

We note one other point. IP; can see only a portion dk;, then the numerical scheme
needs to know fairly precisely that portion. It is important to evaluate accurately the integrals
over such partially visible elements. Doing otherwise will introduce new errors, and many
schemes used in the past seriously degrade the accuracy attainable by the collocation method.
Numerical examples show this quite clearly, although we omit such examples here.

Our initial schemes were based on first converting the integrdl.it) {o an integral

/Ug(s,t) do

over the unit simplexe = {(s,t) : 0 < s,t,s+t < 1}. There are a number of numerical
approximations to such integrals; cf. Strow®][ In particular, we have used the 3-point
scheme

(4.2) / g(s,t)do =

with {¢; } the midpoints of the sides of, and we have used the 7-point scheme

[9(q1) + 9(q2) + 9(g3)],

=

7
4.3) / g(s,t) do ~ 3" wglp;),

j=1
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with the weights and nodes taken from the formula T2:5-1 of Str@ddg. 314]. The first
of these has degree of precision 2 and the second has degree of precision 5. We used these to
form composite numerical integration schemes aever

Subsequently, we used another well-known approach. Introduce the change of variables

s=(1-y)x, t =y, 0<z,y<l1.

With this, we have

(4.4) /Ug(s,t) dU:/Ol/olxg((l—y)x,yx)da:dy.

Apply Gauss-Legendre quadrature over the intefal] for both integrals. Originally, this
scheme was intended to treat integrals in whjdiad some kind singular behaviour around
(s,t) = (0,0). Our numerical experiments have shown this scheme to generally be preferable
(but not always) to composite schemes based4od) or (4.3), even for smooth integrands
g. For additional information on this approach to quadrature eysee [L9]. An additional
analysis of variable order composite quadrature schemes for integrals mvgiven in [L8],
although the focus is on singular and near-singular integrals.

Most of the integrals4.1) are well-behaved and not difficult to evaluate. However,
suppose; is located on a subsurfaceof S, and supposé\; is located on a subsurfacg
with S and S having a common edge. Then the integra&id®;, Q) becomes increasingly
ill-behaved as the distance betweBnandA; decreases. To illustrate this, we consider the
following special case.

Let P = (2,0,2) and@ = (&,7,0). We will consider the integran@ (P, Q) over the
regionS = [0, /] x [0,h]. Let P = (1h,0,1R), corresponding td® being the centroid of
the triangle with vertice$§0,0,0) , (»,0,0), (0,0, k). Then

Nz ~
(2= )% + 2+ 22]

G(P,Q) =

To further simplify, let(z, z,&,n) = h- (,%,£,7), with Z,z, £, 77 varying over{0, 1]. Then

GPQ =gy
[(z -8+ + 52}

This is unbounded ove§ asz,n — 0, assuminge € [0, h]. Thus the integrand is increas-
ingly peaked a& — 0, with the domainm.c becoming smaller.

Figure 4.1 contains a graph ofs for an actual case using the 5-piece surfacg3f
for piecewise linear collocation. The region of integration is the triangular domain bounded
by the line segments joining the three poiis375,5,0), (5,4.375), and(5,5,0) in the
én-plane; andP = (4.7917,5.0,0.0208). The maximum value ofF over this region is
approximately 750. This particular triangle is obtained in the uniform divisio$y afito 128
elements.

4.1. Analytic evaluation. It is important to be able to evaluate the integrdls) accu-
rately and efficiently. We have devised a method for analytic evaluation in the case of the
collocation integrals for the centroid method, and an associated ‘nearly-analytic’ method for
collocation of higher degree piecewise polynomial approximations, including piecewise lin-
ear collocation. The method is quite efficient, especially for nearly singular integrands such
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FIG. 4.1.The functionG(P;, Q) over a region inS; in the 5-piece surface with; € S5

as that illustrated in Figuré.1l It extends ideas ofl{], developed for boundary integral
equations, to the radiosity equation. In the cited case, all collocation integrals over poly-
hedral surfaces could be evaluated analytically. In contrast, we can only evaluate some of
those integrals analytically; but all such integrals can be reduced to a much simpler form as
one-variable integrals.

In this section, we describe the method we use to evaluate the integrdlsl)in \\Ve
assume every triangld; in (4.1) is a right triangle with verticegv;, v2, v3}. Since any
triangle without a right angle can be divided into two right triangles, this assumption is not
restrictive. Furthermorey; is to be the vertex at the right angle and the other vertices are
numbered counter-clockwise with respect to the inner normal vector given for the triangle.
We begin by using an affine transformation to convert the integral.it) o an integral

/Uab 9(& n) do

over the simplex

SN
S |
IN

Ogb = {(57 7, O)OS

3
>3

1

wherea andb are the lengths af;v; andvoyos, respectively.

Let P = (z, y, z) andn, = (i, j, k), wherez > 0 andi® + j2 + k? = 1. Sinceoy,
is in thezy-plane, we have) = (£, n, () = (£, n, 0) andn, = (0, 0, 1). The integrals in
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(4.1) are converted and simplified to the form of

G(P, Q)p(Q) do

Oab

—932+ (n—y)j — zk)z(co + c1& + can)

/ — &2+ (y—n)® +22)° d
@5 :/%b zeo(( —a:z+(77) j/)zj))
PR (R CES THEAESIEE
“n /a (x—¢ 25007;) e
9 = zk T
w0 o S

where the’;s are constants.
The integrals in4.5) and @.6) can be evaluated analytically and we give two examples
here.

o rbmas z-(n—y)
dnd
L Gmra e
az an-1 a” + by —ax
V/(ab — ay — bx)? + 22(a? + b2)
_1 b* — by + ax
+ tan <\/(ab—ay—bx)2+22(a2+b2)>]

tan~! _a-r +tan ! v
/y2 +22 /y2 +22

2y/(ab — ay — bx)? + 22(a? + b2)

A
N
o rbqt Ez-(n—y)
dnd
// (E—aP+m—y2ry %

21 (a—x)*+y*+z 2x ton—1 x—a ton—1 x
= — n —_ n B — — n _—
4 2 + y2 + 22 /y2 122 /y2 + 22 /y2 + 22

a’z(b* — by + ax) { . (bQ—by+ax) 1 (az—&—by—am)}
- t ST ) 4t SRR
2+ WAL | VL o NG

o at
4(a2 + b2)

where%1 = a(b — y)? + b*(2* + 22 — 2ax) + a?2* + 2abxy.

I ((a—2)* +y*+2%) —In(2® + (b—y)* + 2%)],
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FIG. 4.2. The decomposition of a general triangle associated with1)

The integral in 4.7) can not be analytically evaluated for an arbitrary pdin R?, but
it can be evaluated for a special point. LRt (a, 0, z), z > 0, then

/“ /b—%f 22dndé
o Jo (=824 (y—m?+22)°

@ rb-at 22dnd¢ az? . b
(4_10) = 5 = tan —_— .
o Jo (a—&)2+n>+22)° 2Va®+22 Va2 + 22

For an arbitrary poinP = (z, y, z), we apply the formula4.10) six times. The geometry of
the situation is shown in the Figu#e2, whereP,, = (z, y, 0) is the projection of the point
P onto thexzy-plane. The case shown is whepdlies outside the triangle,,. The integral
overo,, becomes the sum of the integrals over the six triangles:

(4.11) /:/ +/ - 7/ +/ +/ :
Tab Tdpo Tdpa Tepa Tepb Tfpb VO

fpo

The integrals in4.8) are the combinations of integrals .5 and @.7). For example,

/ ¢ 5 do
o (2 =82 + (y —n)* + 22)

/ §-= 5 do —|—/ 5 do.
o (= &) + (y —1)* + 22) o (2 =)+ (y —n)? +22)

(4.12) =

The first integral in4.12) is the same type ag (5) and the second integral is the same type
as @.7).

The integrals in4.9) can be reduced to a one-dimensional integration, and it is evaluated
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with a numerical method. For example,

z-(n—vy)
// +(n y)? 4—22)2dnd5
1 b-a¢ z dnd§ abz (a—2)%+y>+ 22
3, / E—aP (-2t L@+ {mxu(bym%}

B abz(a? — ax + by) [tanl <a2 —ar+ by> +tan-! <b2 +ax — by)}
2(a2 + b2)V%1 V%1 V%1 '

This integral can not be evaluated analytically, but it is reduced to a one-dimensional integra-

tion.
/ /b er?gsE y)? + 22

tan- (’;( —)- (1/+b’ -b)

Yy
413) - e ) dé + / ( Ve orte W“z) d.

0 V(€ —x)2 422 V(€ —x)% 4 22

In order to choose a better numerical integration scheme4fd3( we simplify the
integrals in it and then study the integrands of those simplified integrals. For the simplified
integral, we le{z, y, z) = (a, 0, z); and then following a simple change of variables, we have

tan! (”(w O+t

)24 22 an = v
Vi d§ = / R du

0 V(€ —1x)2+ 22 V1+u?

From the Figured.3 for the right-hand integrand, we can see that the integrand increases
very rapidly around zero, and it stays relatively flat around one and beyond. Also, it goes up
faster as the numbéra gets larger. For the integrand with such behaviour, we use the IMT
numerical integration metho@®[p. 307]. We use it withi28 nodes, which appears to be
more than is needed for the cases we have dealt with.

The integrals4.5—(4.9) are used for the case of approximating the solutiamith lin-
ear functions. For the centroid method, which approximates the solutioith constant
functions, only the integrals infk(5) and @.7) are used, and thus all needed integrals can be
evaluated analytically.

(4.14)

4.2. Numerical examples.We present some timing and error comparisons on the vari-
ous means of setting up the collocation matrix2#Qd. Before doing so, we review the three
methods of evaluation. The first method was described directly abgvelinand we refer to
it as theexact methodlt uses analytic evaluation of the collocation integrals for the centroid
method. For piecewise linear collocation, it uses a mix of analytic evaluation and numerical
evaluation of some one-dimensional integrals, as described above follodig. (Recall
that for each call on the IMT quadrature method, we have chosen tt28s®des, to ensure
sufficient accuracy.

The second method of evaluating the collocation integrals is a composite method based
on the 7-point rule of4.3), and we refer to it as thé-point method The third method uses
the change of variable given id.¢), followed by Gaussian quadrature in each variable; we
refer to this as th€&auss methadwith the second method, we have a paramktaxLevto
determine the number of subdivisions to be used in the composite rule; and referring to the
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FIG. 4.3.The integrand for single variable integration with varyibda

collocation integral in4.1), the number of subdivisions also depends on the distance between
the field pointP; and the integration region ;. When this distance is small, we divida ;

into 4MarLev smaller congruent triangles, applying the 7-point rule over each of them. As
the distance betweeR; andA; increases, we use a smaller exponent, gradually having it
decrease to 0 (corresponding to applying the 7-point rule over the full triahigle This is
described in greater detail in botl3, p. 460] and {].

The third method uses two parametéBaseandMaxLev As with the second method,
we use the largest number of nodes whigrand A ; are closest, decreasing the number of
nodes as the distance betweBnand A; increases. We begin by using Gauss-Legendre
quadrature withp! Base+MazLev nodes in each dimension of.), decreasing it eventually
to 2/B2s¢ nodes.

For the numerical examples, we set up the linear system for solving the radiosity equation
with v = 22 + 32 on S, as in B.2). We then solved the linear system and looked at the
error in the solution. We have chosen the parameters so as to have the quadrature error be
small enough as to match the best possible for the given valugtb& number of triangular
elements being used. The timings given below are for the setup time for the maziX¥ & (

For our values ofn, this dominated all other times (except for calculating the emissivity
function with the given true value of). We give timings for only the 5-piece surface, as that
involves the more practical situation in which two subsurfaces share a common edge.

Tables4.1 and 4.2 contain the timings and errors (maximum at the node points) for
the centroid collocation method and piecewise linear collocation method, respectively. The
timings were done on a Hewlett-Packard C200 workstation with a 200MHz PA-8200 CPU,
768MB RAM. The machine was networked, but otherwise was restricted to only the given
program being timed; and several runs were made, with the lowest timings given in the tables.
For the centroid collocation method, the 7-point method uUdledlLev=3, and the Gauss
method usedIBase,MaxLe)=(1,3). For the piecewise linear collocation method, we used
(IBase,MaxLe)~(1,4) and (1,5). The timings for the smaller values:aire unreliable, but
are indicative of the magnitude of time being used. The errors may seem large, but note that
the solution is also large; and thus an error of 0.511 corresponds to an approximate relative
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TABLE 4.1
Centroid collocation errors fow given by 8.2), for varying integration methods

Fzxact 7 — Point Gauss
n Error | Time | Error | Time | Error | Time
40 | 3.28 .031 3.28 4.11 3.28 .594
160 1.86 .469 1.86 32.7 1.85 4.93
640 991 7.12 991 163 .986 84.2
2560 .51l 111 .510 846 .506 2940

TABLE 4.2
Piecewise linear collocation errors far given by 8.2), for varying integration methods
FExact Gauss : MaxLev =4 | Gauss : MaxLev = 5
n Error | Time | Error Time Error Time
10 1.44 .164 1.44 3.52 1.44 14.2
40 317 1.79 317 34.8 317 139
160 | .0796 29.3 .0795 158 .0796 625
640 | .0199 474 .103 558 .0199 2150

error of 0.01. Also recall that with piecewise linear collocation, the order of the linear system
(2.43 is 3n.

It is clear by comparing the two tables for thxact method that the integrals for the
piecewise linear collocation are more costly to evaluate. This is due to both the more com-
plicated form of the integration and to the use of the IMT method for the one-dimensional
integration. It is also clear that the use of thract method is preferable over tHgauss
methodas regards running time. This will become even clearer for larger valugsasfthen
the parameterlaxLevandIBasewill need to be increased, which will again increase signif-
icantly the cost of the quadratures. Also, with the greater accuracy possible with piecewise
linear collocation, one also needs greater accuracy in calculating the coefficients. This is seen
in Table4.2in comparing the&Gauss methotbr the parameter values bMaxLev Clearly, the
higher valueMaxLev=5is needed, but it is also quite expensive when compared tixhet
method The same type of results are true for the 7-point method, and it is due to the type of
singular behaviour illustrated in Figufel If numerical integration is to be used, it must be
more carefully designed than the methods we have used here.
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