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NEUMANN–NEUMANN METHODS FOR VECTOR FIELD PROBLEMS∗

ANDREA TOSELLI †

Abstract. In this paper, we study some Schwarz methods of Neumann–Neumann type for some vector field
problems, discretized with the lowest order Raviart–Thomas and Nédélec finite elements. We consider a hybrid
Schwarz preconditioner consisting of a coarse component, which involves the solution of the original problem on a
coarse mesh, and local ones, which involve the solution of Neumann problems on the elements of the coarse triangu-
lation, also called substructures. We show that the condition number of the corresponding method is independent of
the number of substructures and grows logarithmically with the number of unknowns associated with an individual
substructure. It is also independent of the jumps of both the coefficients of the original problem. The numerical
results presented validate our theoretical bound.
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1. Introduction. In this paper, we consider the two boundary value problems

Lu := −grad (a div u) +B u = f in Ω,
u · n = 0 on ∂Ω,

(1.1)

with Ω a bounded polyhedral domain in R
n, n = 2, 3, and

Lu := curl (a curlu) +B u = f in Ω,
u× n = 0 on ∂Ω,

(1.2)

with Ω a bounded polygonal domain in R
2. The domain Ω has unit diameter and n is its

outward normal. The coefficient matrix B is a symmetric uniformly positive definite matrix–
valued function with bi,j ∈ L∞(Ω), 1 ≤ i, j ≤ n, and a ∈ L∞(Ω) is a positive function
bounded away from zero. We refer to [3, 32, 19, 33], for some some significant applications
of (1.1) and (1.2) to flow and electromagnetic problems.

The weak formulation of problems (1.1) and (1.2) requires the introduction of the Hilbert
spaces H(div ; Ω) and H(curl ; Ω), defined by

H(div ; Ω) :=
{
v ∈ (L2(Ω))n| div v ∈ L2(Ω)

}
, n = 2, 3,

H(curl ; Ω) :=
{
v ∈ (L2(Ω))2| curlv ∈ L2(Ω)

}
.

We first consider problem (1.1). The space H(div ; Ω) is equipped with the following inner
product and graph norm,

(u,v)div :=

∫

Ω

u · v dx+

∫

Ω

div udiv v dx, ‖u‖2
div := (u,u)div,

and the normal component u · n, of a vector u ∈ H(div ; Ω) on the boundary ∂Ω, belongs
to the space H− 1

2 (∂Ω); see [15, 7]. The subspace of vectors in H(div ; Ω) with vanishing
normal component on ∂Ω is denoted by H0(div ; Ω).
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If, for any D ⊂ Ω, we define the bilinear form

aD(u,v) :=

∫

D

(a div udiv v +B u · v) dx, u, v ∈ H(div ; Ω),(1.3)

with

a(·, ·) := aΩ(·, ·),

in case D = Ω, the variational formulation of Equation (1.1) is then:
Find u ∈ H0(div ; Ω) such that

a(u,v) =

∫

Ω

f · v dx, v ∈ H0(div ; Ω).

We associate an energy norm, defined by || · ||2a := a(·, ·), to this bilinear form; our
assumptions on the coefficients guarantee that this norm is equivalent to the graph norm.

In this paper, we introduce and analyze some Neumann–Neumann preconditioners for
the solution of systems arising from the finite element approximation of (1.1) and (1.2). An
iterative substructuring method usually consists of local components, which involve the so-
lution of local problems, related to a partition of the original domain Ω into non–overlapping
subdomains, called substructures. In order to obtain a condition number that is independent
of the number of substructures, a coarse component can be added to the method, which typi-
cally involves the solution of a problem defined on a coarse space related to the partition into
substructures. Depending on the particular method, the substructures can be the elements
of a coarse mesh or arbitrary connected subsets of Ω, consisting of unions of elements of
the fine mesh. The lack of generous overlap results in bounds for the condition number that
are not optimal, but which can be made independent of the jumps of the coefficients. In a
Neumann–Neumann method, the degrees of freedom of the local spaces are related to the
entire boundaries of the substructures; see [5, 9, 20, 21, 8, 12, 28, 10, 22, 31]. For an intro-
duction to iterative substructuring methods, we refer to [31] and to the references therein.

The study and analysis of preconditioners for Nédélec and Raviart–Thomas approxima-
tions is quite new. Extensive work has started only in the past three years, in order to extend
classical Schwarz preconditioners to these vector problems. Two–level overlapping Schwarz
preconditioners for H(div ; Ω) and H(curl ; Ω) were initially developed for two dimensions,
in [3], and then extended to three dimensions, in [32, 19]. Multigrid and multilevel methods
were considered in [3, 2, 18, 17, 4, 19], and iterative substructuring methods in [1, 34, 36].
We also mention [16, 13, 6, 23, 24, 8, 29, 30], which report on a study of a class of two- and
multi-level methods for mixed approximations of Poisson’s equation.

An important element in the definition of a Neumann–Neumann method is a set of scal-
ing functions defined on the boundaries of the substructures, which involve the values of the
coefficients of the partial differential equation. The use of these functions can ensure that the
condition number of the corresponding preconditioned system be independent of the jumps of
the coefficients across the substructures. Here, we propose a set of scaling functions, which
involve only the values of one coefficient in (1.1) and (1.2). An important feature of our
method is that it is independent of jumps of both coefficients. We know of no previous work
on a Neumann–Neumann method for the vector problems (1.1) and (1.2), or no previous the-
oretical study of a Neumann–Neumann method for the case where more than one coefficient
has jumps. Our original analysis is contained in [33].
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We only consider problem (1.1), in full detail. For problem (1.2) in two dimensions, the
associated bilinear form is

∫

D

(a curlu curlv +B u · v) dx, u, v ∈ H(curl ; Ω),

and the result follows from that of (1.1) and the observation that the functions in H(curl ; Ω)
are obtained from those in H(div ; Ω) by a rotation of ninety degrees; see [15, Rem. 2.3, P.
35]. To our knowledge, the case of H(curl ; Ω) in three dimensions remains to be studied
almost completely. We know of only one study of a two–subdomain iterative substructuring
method for a problem in H(curl ; Ω) in three dimensions; see [1]. We also remark that,
in this paper, we only consider Dirichlet boundary conditions, in full detail, but that the
generalization to the case of Neumann or Robin conditions is straightforward.

The outline of the paper is as follows: In Section 2, we state some additional properties
of the space H(div ; Ω) and describe the Raviart–Thomas finite element spaces together with
some trace spaces. In Section 3, we consider the discrete problem and its Schur comple-
ment formulation, while in Section 4, we introduce our algorithm. In Section 5, we recall
some technical results, which we need in Section 6, for the proof of our main result. After
discussing some implementation issues, in Section 7, we present some numerical results in
Section 8, in order to validate our analysis.

2. Continuous and discrete spaces. In addition to H(div ; Ω), we also use some stan-
dard Sobolev spaces. Given a bounded open Lipschitz domain D ⊂ R

n, with boundary ∂D,
let ‖·‖0;D denote the L2–norm and |·|s;D the semi–norm of the Sobolev spaceHs(D), s > 0.
In case that D = Ω, we drop the reference to the region. Throughout, we work with scaled
norms for the spaces Hs(D), s > 0. We define

‖u‖2
1;D := |u|21;D +

1

HD
2 ‖u‖

2
0;D,

and

‖u‖2
1
2 ;∂D := |u|21

2 ;∂D +
1

HD
‖u‖2

0;∂D.

Here and in the following, given a generic subset D of R
n, we denote its diameter by HD.

These scaled norms are obtained from the standard definition of the Sobolev norms on a re-
gion with diameter one and a dilation, and dropping, possibly, common multiplicative factors;
see, e.g., [31].

As already mentioned, the normal component of any vector field u ∈ H(div ;D) belongs
to H− 1

2 (∂D), and the corresponding trace operator is continuous and surjective; see [15, 7].
Here, H− 1

2 (∂D) is equipped with the norm

||u · n||− 1
2 ;∂D := sup

φ∈H
1
2 (∂D)
φ6=0

〈u · n, φ〉

||φ|| 1
2 ;∂D

,(2.1)

where 〈·, ·〉 represents the duality pairing between H− 1
2 (∂D) and H

1
2 (∂D). The following

inequality holds

‖u · n‖2
− 1

2 ;∂D ≤ C
(
||u||20;D +H2

D||div u||20;D
)
,(2.2)
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with a constant C that is independent ofHD. The scaling factor is obtained by dilation from a
region of unit diameter. From now on, we denote by C a positive generic constant, uniformly
bounded from above, and by c a positive generic constant uniformly bounded away from zero.

We now introduce some finite element spaces. Let TH be a shape–regular triangulation
of Ω, of maximum diameter H , consisting of triangles or rectangles, for n = 2, and of
tetrahedra or parallelepipeds, for n = 3. Let also Th be a shape–regular and quasi–uniform
triangulation, with characteristic diameter h, obtained by refining the elements of TH , in such
a way that Th is conforming in Ω. A generic element of Th and TH is denoted by t and T ,
respectively. For n = 3, the sets of faces of the triangulations Th and TH , are denoted by
Fh and FH , respectively. For n = 2, the sets of edges of the triangulations Th and TH , are
also denoted by Fh and FH , respectively. A generic face (or edge, for n = 2) is denoted by
f or F . In the following, we refer to the elements in Fh and FH as faces, both for n = 2
and n = 3. The elements of the coarse triangulation are called substructures. We define the
interface Γ as the union of the parts of the boundaries of the substructures that do not belong
to ∂Ω,

Γ :=
⋃

T∈TH

∂T \ ∂Ω.(2.3)

We also suppose that the coefficients a and B are constant on each substructure T and
equal to aT and BT , respectively. They may have arbitrary jumps across the interface. In
addition, the matrices {BT } satisfy

βT η
T η ≤ ηTBT η ≤ γT η

T η, ∀η ∈ R
n
,(2.4)

where βT and γT are positive constants, which can depend on the substructure T .
In the following, we only consider, in full detail, triangulations based on rectangles and

parallelepipeds, but our results are equally valid for finite element spaces built on triangles
and tetrahedra. Much of the analysis is carried out on a square or cubic substructure divided
into square or cubic elements, but the results remain equally valid if the elements and sub-
structures are images of a reference square or cube under sufficiently benign mappings, which
effectively means that their aspect ratios have to remain uniformly bounded. We remark that
our analysis is carried out locally for one substructure at a time. We can therefore interpret
the factor H/h, which appears in our estimates, as

max
T∈TH

max
t∈Th
t⊂T

HT

Ht
.

We first consider the lowest order Raviart–Thomas elements defined on the fine mesh,

Xh = Xh(Ω) :=
{
u ∈ H(div ; Ω)| u|t ∈ RT (t), t ∈ Th

}
,

where the local space, for a rectangle or a cube with sides parallel to the coordinate axes, is
given by

RT (t) := {u| ui = αi + βi xi, i = 1, · · · , n} ;

see [25, 7]. Here, the i–th component of the vector u is denoted by ui, and x is the position
vector. The normal components over the faces (four, if n = 2, six, if n = 3) of t are
constant and the local degrees of freedom in RT (t) can be taken as the averages of the
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normal components over the faces. The global degrees of freedom are the averages of the
normal component over the faces in Fh:

λf (u) :=
1

|f |

∫

f

u · n ds, f ∈ Fh.(2.5)

Here |f | is the area of the face f and the direction of the normal can be fixed arbitrarily for
each face.

As in the case of nodal elements, the L2–norm of a vector u ∈ RT (t) can be bounded
from above and below by means of its degrees of freedom

c
∑

f⊂∂t

(
H

n/2
f λf (u)

)2

≤ ‖u‖2
0;t ≤ C

∑

f⊂∂t

(
H

n/2
f λf (u)

)2

,(2.6)

where the constants c and C only depend on the aspect ratio of the element t. The proof given
for nodal elements in [26, Prop. 6.3.1] can easily be adapted to the present case.

We also need the finite element space conforming in H0(div ; Ω),

X0;h = X0;h(Ω) := Xh(Ω) ∩H0(div ; Ω),

the corresponding space defined on the coarse triangulation TH ,

X0;H = X0;H(Ω) :=
{
u ∈ H0(div ; Ω)| u|T ∈ RT (T ), T ∈ TH

}
,

and the local spaces defined on a generic substructure T ,

Xh(T ) :=
{
u ∈ H(div ;T )| u|t ∈ RT (t), t ∈ Th, t ⊂ T

}
,

X0;h(T ) := Xh(T ) ∩H0(div ;T ).

For n = 2, the Nédélec finite element spaces, conforming in H(curl ; Ω), are obtained from
the Raviart–Thomas spaces by a rotation of ninety degrees; see [25, 7].

We now define some finite element spaces on the boundaries of the substructures. Given
a substructure T , define SH(∂T ) as the space of functions which are constant on each coarse
face F ⊂ ∂T

SH(∂T ) := {ψ : ∂T → R | ψ|F constant, F ∈ FH , F ⊂ ∂T};

its dimension is four, for n = 2, and six, for n = 3. We also define Sh(∂T ) as the space of
functions that are constant on each fine face f ∈ Fh, f ⊂ ∂T

Sh(∂T ) := {ψ : ∂T → R | ψ|f constant, f ∈ Fh, f ⊂ ∂T},

and its subspace S0;h(∂T ), of functions that have mean value zero on ∂T

S0;h(∂T ) :=



ψ ∈ Sh(∂T ) |

∫

∂T

ψ ds = 0



 .

It is immediate to check that Sh(∂T ) is the space of normal traces on ∂T of vectors inXh(T ).
Finally let Sh(Γ) be the global space of piecewise constant functions on Γ, such that their
restriction to the boundary of a substructure T belongs to Sh(∂T )

Sh(Γ) := {ψ : Γ → R | ψ|∂T ∈ Sh(∂T ), T ⊂ TH}.
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We now define some extension and interpolation operators. For each substructure T and each
function ψ ∈ Sh(∂T ), the discrete “harmonic” extension operator

HT : Sh(∂T ) −→ Xh(T ),

is the vector u := HTψ which satisfies

aT (u,v) = 0, v ∈ X0;h(T ),(2.7)

u · n|∂T = ψ.(2.8)

The corresponding global operator

H : Sh(Γ) −→ X0;h,

satisfies

a(Hψ,v) = 0, v ∈ X0;h(T ), T ∈ TH ,(2.9)

Hψ · n|Γ = ψ.(2.10)

or, equivalently,

(Hψ)|T = HT

(
ψ|∂T

)
.

The space of discrete harmonic extensions on the substructures is denoted by X̃0;h ⊂ X0;h,
and u ∈ X̃0;h if and only if u verifies (2.7).

We also need the space of the coarse discrete harmonic extensions, X̃0;H ⊂ X̃0;h:
X̃0;H is the space of discrete harmonic functions, the normal component of which is constant
on each coarse face F ∈ FH , i.e., u ∈ X̃0;H if and only if

u · n|∂T ∈ SH(∂T ), T ∈ TH .

We remark that the functions in the spaces X0;H and X̃0;H have the same normal traces on
the boundaries of the substructures.

The interpolation operator ρH onto the coarse space X0;H ,

ρH : X0;h −→ X0;H ,

is defined in terms of the degrees of freedom of the coarse space

λF (ρHu) :=
1

|F |

∫

F

n · u ds, F ∈ FH .(2.11)

In a similar fashion, the degrees of freedom (2.11) define a unique interpolation operator ΠH

ΠH : X0;h −→ X̃0;H .

Here, for any vector u ∈ X0;h, ΠHu is the unique function in X̃0;h, such that

(ΠHu) · n|∂T = (ρHu) · n|∂T , T ∈ TH .
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3. Discrete problem and Schur complement system. We consider the approximate
problem: Find u ∈ X0;h such that

a(u,v) = (f ,v) ∀v ∈ X0;h,(3.1)

where f ∈ L2(Ω)n. The generalization to the case of the Xh(Ω) (Neumann boundary con-
ditions) does not present any particular difficulty. In particular, we remark that if Neumann
conditions are considered on some part of the boundary ∂ΩN ⊂ ∂Ω, ∂ΩN has to be added to
Γ; see definition (2.3) and, e.g., [12].

We now introduce a Schur complement formulation of problem (3.1). We refer to [31,
Ch. 4] for a general discussion of Schur complement methods, and to Section 7 for some
implementation issues.

Let Ti be a substructure. Let A and A(i) be the matrices of the bilinear forms a(·, ·) and
aTi(·, ·). The variational problem (3.1) can then be written as a linear system

AU = F,

where U is a column vector containing the degrees of freedom of u. The local matrices A(i)

can be represented as


A

(i)
II A

(i)
IB

A
(i)
BI A

(i)
BB


 ,

where we divide the local vectors U (i) into two subvectors, U (i)
I and U

(i)
B , of degrees of

freedom corresponding to faces inside Ti and on ∂Ti, respectively.
Since the variables interior to the substructures are associated with only one substructure,

they can be eliminated in parallel across the substructures, using a direct method, and the
reduced system

SUB = G,(3.2)

only involves the variables corresponding to the degrees of freedom on the interface Γ. Once
the solution UB of (3.2) is found, the local values U (i)

I of the solution can be obtained by
solving one local problem for each subdomain.

The local Schur complements are

S(i) := A
(i)
BB −A

(i)
BI

(
A

(i)
II

)−1

A
(i)
IB .(3.3)

Let R̃i be the restriction matrix, such that R̃iUB contains the coefficients relative to the
degrees of freedom on ∂Ti. The global Schur complement and the vector G can then be
obtained by subassembling local contributions:

S =
∑

Ti∈TH

R̃T
i S

(i)R̃i,(3.4)

G = FB −
∑

Ti∈TH

R̃T
i A

(i)
BI

(
A

(i)
II

)−1

F
(i)
I .(3.5)

For a substructure Ti and a vector U (i)
B , it immediately follows that

U
(i)
B

T
S(i)U

(i)
B = min

V
(i)

B
=U

(i)

B

V (i)T
A(i)V (i),(3.6)
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and that the minimum is obtained for the vector U (i) that satisfies

A
(i)
IIU

(i)
II +A

(i)
IBU

(i)
B = 0.(3.7)

We recall that, if U (i) are the degrees of freedom of a local vector u, (3.7) is equivalent to
(2.7), and, consequently, (3.7) defines the discrete harmonic functions.

Since the degrees of freedom U
(i)
B of a local function u ∈ Xh(Ti) are the normal compo-

nents u · n|f , on the fine faces f contained in the boundary ∂Ti, and u ·n belongs to Sh(∂Ti),

the column vector Ψ(i) := U
(i)
B determines a unique function ψ ∈ Sh(∂Ti). For ψ and φ in

Sh(∂Ti), the following local bilinear form is then well–defined

sTi(ψ, φ) := Ψ(i)T
S(i)Φ(i).

In the same way, a vector Ψ = UB , of degrees of freedom on Γ, uniquely determines a
function ψ ∈ Sh(Γ), and, for ψ and φ in Sh(Γ), we can define the global bilinear form

s(ψ, φ) :=
∑

Ti∈TH

Ψ(i)T
S(i)Φ(i),

where Ψ(i) and Φ(i) are the subvectors of Ψ and Φ, respectively, containing the entries relative
to ∂Ti.

With these definitions, (3.6) and (3.7) give, for ψ ∈ Sh(∂Ti),

sTi(ψ,ψ) = min
u∈Xh(Ti)

u·n=ψ

aTi(u,u) = aTi(HTiψ,HTiψ),(3.8)

and, for ψ ∈ Sh(Γ),

s(ψ,ψ) = min
u∈X0;h
u·n=ψ

a(u,u) = a(Hψ,Hψ) =
∑

Ti∈TH

aTi(HTiψ
(i),HTiψ

(i)),(3.9)

where ψ(i) = ψ|∂Ti . In (3.8) and (3.9), the normal component u · n is taken on ∂Ti and Γ,
respectively.

Finally, the variational formulation of (3.2) can be given as: Find ψ ∈ Sh(Γ), such that,

s(ψ, φ) =

∫

Γ

g ψ ds, ψ ∈ Sh(Γ),(3.10)

where g ∈ Sh(Γ) is the normal trace determined by the degrees of freedom G.

4. Description of the algorithms. In this section, we build a Schwarz preconditioner
for the Schur complement system (3.2), corresponding to the variational problem (3.10). Be-
cause of (3.9), instead of working with functions in Sh(Γ) and the bilinear form s(·, ·) , we
can work with the space of discrete harmonic extensions X̃0;h and the original bilinear form
a(·, ·). We refer to [11, 31, 35, 27] and to the references therein, for an introduction and
discussion of Schwarz methods.

An important element in the definition of a Neumann–Neumann method is a set of scaling
functions defined on the boundaries of the substructures, which involve the values of the
coefficients of the partial differential equation. The use of these functions can ensure that the
condition number of the corresponding preconditioned system be independent of the jumps
of the coefficients across Γ; see [5, 9, 20, 21, 8, 12, 28, 10, 22, 31]. Here, we propose a set
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of scaling functions, which involve only the values of one coefficient of (1.3). An important
feature of our method is that it is independent of jumps of both coefficients a and B in (1.3).
This is due to the particular divergence–free extension employed in the proof of Lemma
6.2; see Lemma 5.2. Because of the nature of the degrees of freedom in X0;h, our scaling
functions are particularly simple, compared to those for problems in H1(Ω).

Following [28, 29], our family of scaling functions depend on a parameter

δ ≥ 1/2.(4.1)

Let T be a substructure. We define a piecewise constant function µT ∈ Sh(∂T ) by

µT |f ≡

∑
D

γδ
D

γδ
T

, f ∈ Fh, f ⊂ ∂T,(4.2)

where γD and γT are the largest eigenvalues of the coefficient matrices BD and BT , respec-
tively, as in (2.4), and the sum is taken over the substructures that share the face f . We remark
that if the coefficient matrix B is constant, µT |f

is the total number of subdomains to which
f belongs. In addition, due to the nature of the degrees of freedom in X0;h, the sum in (4.2)
always has just two terms, and the function µT belongs to the subspace SH(∂T ), of piecewise
constant functions on the coarse faces F ⊂ ∂T . We also need the corresponding function in
Sh(Γ), still denoted by µT , obtained from µT by extending it by zero to all of Γ. Given two
substructures T and D that have a common face F = T ∩D, we also use the notation

µT ;D := µT |F .

We remark that if Neumann conditions are considered on some part of the boundary
∂ΩN ⊂ ∂Ω, the functions µT are also defined on ∂ΩN . In this case, the sum in (4.2) has only
one term, if f ⊂ ∂ΩN , and µT |f

= 1.
For δ = 1, the same scaling functions are considered in [8], where a Neumann–Neumann

method for the mixed approximation of the Laplace equation is studied.
We now define the pseudoinverses {µ†T } of the functions {µT } on Γ, by

µ†T |f ≡ µ−1
T |f

, f ⊂ ∂T ; µ†T |f ≡ 0, f ⊂ Γ \ ∂T.(4.3)

The functions {µ†T } are also constant on each coarse face F ⊂ FH .
It is immediate that {µ†T } is a partition of unity on Γ:

0 ≤ µ†T ≤ 1,
∑

T∈TH

µ†T ≡ 1, a.e. on Γ.

In order to define a Schwarz algorithm, we need a family of subspaces and a bilinear form
for each of them. Given a substructure T , we define X̃T ⊂ X̃0;h, as the space of discrete
harmonic extensions, that vanish on Γ\∂T . We remark that the support of a function u ∈ X̃T

is contained in the closure of the union of T and the substructures with a common face with
T . Since the degrees of freedom of the Raviart–Thomas spaces are defined on the faces of
the triangulation, the discrete harmonic extension u vanishes on the substructures that share
only a vertex with T and, if n = 3, also on the substructures that share only an edge with T .

We define the following decomposition of the space of discrete harmonic extensions:

X̃0;h = X̃0;H +
∑

T∈TH

X̃T .(4.4)
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Our next step is to define suitable bilinear forms on the subspaces. On the coarse space, we
employ the original bilinear form a(·, ·).

On the space X̃T , we define an approximate bilinear form. The corresponding local
problem only involves the solution of a Neumann problem on the substructure T . It is defined
by

ãT (u,v) := aT (HT (µT u · n),HT (µT v · n)) , u,v ∈ X̃T ;(4.5)

cf. [28]. We note that the local bilinear form is built with the original one, defined in the
substructure T , and with the discrete harmonic extensions of the traces on ∂T , scaled by µT .
In addition, ãT (·, ·) is always positive definite.

We then consider a hybrid Schwarz preconditioner, where one solves first the global
problem and then the local ones, in parallel. The error propagation operator is given by

E := (I −
∑

T∈TH

QT )(I − P0),

where the orthogonal projection P0 and the operators {QT } are defined by

P0 : X̃0;h → X̃0;H ; a(P0u,v) = a(u,v), v ∈ X̃0;H ,(4.6)

QT : X̃0;h → X̃T ; ãT (QT u,v) = a(u,v), v ∈ X̃T .(4.7)

The corresponding Schwarz operator is

I − E = P0 +
∑

T∈TH

QT (I − P0).

In the following, we employ the symmetrized operator, obtained by adding an additional
coarse solve,

Qhyb := I − (I − P0)

(
I −

∑

T∈TH

QT

)
(I − P0)

= P0 + (I − P0)

(
∑

T∈TH

QT

)
(I − P0) = P0 +

∑
T∈TH

Q̃T ,

(4.8)

where

Q̃T := (I − P0)QT (I − P0), T ∈ TH .

Since P0 is a projection, this can be done at no extra cost; see Section 7.
Our Schwarz method provides a new equation

Qhyb UB = G̃,(4.9)

which can be much better conditioned than the original problem given by (3.2); it can be
solved effectively with the conjugate gradient method, without any further preconditioner,
employing s(·, ·) as the inner product. The right hand side G̃ can be chosen so that the
new problem has the same solution as the original one. We refer to Section 7, for some
implementation issues.

We choose this hybrid algorithm since the norms of the local operators QT are not, in
general, uniformly bounded with respect to H , but grow quadratically with 1/H , thus, giving
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a condition number that depends on the number of substructures. On the other hand, the
norms of the projected operators Q̃T = (I − P0)QT (I − P0) can be bounded by a quantity
that only grows logarithmically with H/h, which is only related to the number of degrees of
freedom in each substructure. We note that the largest eigenvalue of the Schwarz operator
Qhyb is related to the norm of the local operators Q̃T ; see Lemma 6.3.

Similar hybrid algorithms have been employed successfully in some Neumann–Neum-
ann methods for scalar or vector equations in H1(Ω); see [21, 22, 8, 31, 35]. For these
methods, the local operators QT are not defined on the whole space but only on Ran(I−P0)
and the local bilinear forms are positive definite only on local spaces contained in Ran(I −
P0). For our method, the situation is somewhat different, since the local problems are always
solvable, but a good stability constant for the local operators is obtained only on local spaces
contained in Ran(I − P0).

5. Technical tools. In this section, we recall some technical results. For the correspond-
ing proofs, we refer to [34, 36, 33].

We first consider the interpolation operator onto the coarse space ρH , defined in Section
2. We have the following stability estimate. For a proof, we refer to [34, 33], for the case
n = 2, and to [36, 33], for n = 3.

LEMMA 5.1. Let n = 2, 3 and let T be a substructure. Then, there exists a constant
C > 0, which depends only on the aspect ratios of T and the elements in Th, such that for all
u ∈ Xh,

‖div (ρHu)‖2
0;T ≤ ‖div u‖2

0;T ,(5.1)

‖ρHu‖2
0;T ≤ C

((
1 + log

(
H

h

))
‖u‖2

0;T +H2
T ‖div u‖2

0;T

)
.(5.2)

The following lemma ensures the existence of a divergence–free extension of the normal
traces in S0;h(∂T ). For a proof, we refer to [36, 33].

LEMMA 5.2. Let n = 2, 3 and let T be a substructure. Then, there exists an extension
operator H̃T : S0;h(∂T ) → Xh(T ), such that, for any ψ ∈ S0;h(∂T ),

div H̃Tψ = 0,

and

||H̃Tψ||0;T ≤ C‖ψ‖− 1
2 ;∂T .(5.3)

Here C is independent of h, H , and ψ.
We then need a decomposition lemma for the trace of a function on the boundary of a

substructure. For a proof, we refer to [33, Sect. 5.5], for the case n = 2, and to [36, 33], for
n = 3.

LEMMA 5.3. Let n = 2, 3 and let T be in TH . Let {ψF , F ⊂ ∂T} be functions in
S0;h(∂T ), which vanish on ∂T \ F and let ψ :=

∑
F⊂∂T ψF . Then there exists a constant

C, independent of h and ψH , such that, ∀ψH ∈ SH(∂T ),

||ψF ||
2
− 1

2 ;∂T ≤ C(1 + logH/h)
(
(1 + logH/h)||ψ + ψH ||

2
− 1

2 ;∂T + ||ψ||2− 1
2 ;∂T

)
.

The proof of the following lemma can be found in [33, Sect. 5.5].
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LEMMA 5.4. Let n = 2, 3 and let T1 and T2 be two substructures with a common face
F ∈ FH . Let ψF be a function in L2(∂T1 ∪ ∂T2), that vanishes outside F . Then there is a
positive constant C, that only depends on the aspect ratios of T1 and T2, such that

‖ψF ‖− 1
2 ;∂T1

≤ C‖ψF ‖− 1
2 ;∂T2

.

We end this section by recalling a well–known result on Schwarz methods. We refer to
[11, 31] for a proof.

LEMMA 5.5. Let the operators {QT } be defined by (4.7). If a representation

u =
∑

T⊂TH

uT , uT ∈ X̃T ,

can be found, such that
∑

T⊂TH

ãT (uT ,uT ) ≤ C2
0 a(u,u), u ∈ X̃0;h,(5.4)

then

a

(
∑

T⊂TH

QT u,u

)
≥ C−2

0 a(u,u), u ∈ X̃0;h.(5.5)

6. Main result. In this section, we prove a logarithmic bound for the condition number
of the hybrid operator Qhyb, introduced in Section 4. We refer to [35], for similar proofs for
a hybrid method for the Laplace equation.

Our first lemma gives a uniform bound for the lowest eigenvalue of the hybrid operator
Qhyb.

LEMMA 6.1. We have

a(Qhybu,u) ≥ a(u,u), u ∈ X̃0;h.

Proof. We first prove a lower bound for the smallest eigenvalue of the operator
∑

T∈TH

QT .

Given a function u ∈ X̃0;h, let

uT := H
(
µ†T (u · n|Γ)

)
∈ X̃T , T ∈ TH ,(6.1)

where the partition of unity {µ†T } is defined in (4.3). We remark that uT is obtained from u

by taking its normal component on Γ and multiplying it by the cut–off function µ†T , obtaining
a function that is non–zero only on ∂T . We finally extend it harmonically into T and its
neighboring substructures.

Since {µ†T } is a partition of unity on Γ and the vectors u and uT are all discrete harmonic
extensions, we have

u =
∑

T∈TH

uT .
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In view of Lemma 5.5, we have to bound the sum of the energies of the uT . Using the
definition of uT and the fact that the functions {µ†T } are the pseudoinverses of the {µT }, we
have

∑

T∈TH

ãT (uT ,uT ) =
∑

T∈TH

aT (HT (µT uT · n),HT (µT uT · n))

=
∑

T∈TH

aT (u,u) = a(u,u).

Lemma 5.5, ensures that the smallest eigenvalue of
∑

T∈TH
QT is bounded from below by

one. The same quantity is also a lower bound for the smallest eigenvalue of Qhyb since P0 is
an orthogonal projection. In fact,

a(Qhyb u,u) = a

(
P0u +

∑

T∈TH

Q̃T u,u

)

= a(P0u, P0u) + a

(
(
∑

T∈TH

QT ) (I − P0)u, (I − P0)u

)
≥ a(u,u).

In order to bound the largest eigenvalue, it is enough to find an upper bound for the norm
of the local operators {Q̃T }; see, e.g., [11]. We then use a standard coloring argument.

LEMMA 6.2. Let T be a substructure. Then there is a constant C, independent of h, H ,
the coefficients a and B, and the parameter δ, such that

‖Q̃T ‖a ≤ C η

(
1 + log

H

h

)2

,

where

‖Q̃T ‖
2
a := sup

u∈X̃0;h

a(Q̃T u, Q̃T u)

a(u,u)
,

and

η := max
T∈TH

{ηT } := max
T∈TH

max

{
γT

βT
,
γTH

2
T

aT

}
.(6.2)

Proof. Let ΠH : X0;h → X̃0;H be the interpolation operator defined in Section 2. Since
P0 is an orthogonal projection and it has the same range as ΠH , we have

(I − P0) (I −ΠH) = I − P0,

and we can then write

Q̃T = (I − P0)QT (I − P0) = (I − P0) (I −ΠH)QT (I − P0).(6.3)

It is therefore enough to estimate the norm of

(I −ΠH)QT ,

when applied to Ran(I − P0).
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Let u ∈ Ran(I − P0), and w := (I − ΠH)QT u. The support of QT u ∈ X̃T

and w extends to the neighboring substructures of T , while the approximate bilinear form
ãT (QT u, QT u) only involves the values of QT u in T . We first bound the energy of w in T
and that from the neighboring substructures, in terms of ãT (QT u, QT u); see (6.11), (6.14),
and (6.15). We remark that we only need to consider the substructures that have a common
face with T . We also remark that w is discrete harmonic. Let D be one of these substructures
and let F = ∂T ∩ ∂D. Using then the fact that w · n has mean value zero on F and vanishes
elsewhere on ∂D, and Lemma 5.2, we have

aD(w,w) ≤ aD

(
H̃D(w · n), H̃D(w · n)

)

≤ γD

∥∥∥H̃D(w · n)
∥∥∥

2

0;D
≤ C γD‖w · n‖2

− 1
2 ;∂D

,

(6.4)

with a constant C that does not depend on the diameter of D. Using Lemma 5.4 gives

γD ‖w · n‖2
− 1

2 ;∂D ≤ CγD‖ϑF w · n‖2
− 1

2 ;∂T = C
γD

µ2
T ;D

‖ϑF (µT w · n)‖2
− 1

2 ;∂T ,(6.5)

where ϑF is identically one on F and vanishes on the rest of ∂T . Lemma 5.3 and the fact
that µT w · n has mean value zero on each face of T ensures that the last term in (6.5) can be
bounded by

C
γD

µ2
T ;D

(
1 + log

H

h

)
×

(
‖µT w · n‖2

− 1
2 ;∂T

+

(
1 + log

H

h

)
‖µT w · n + ψH‖

2
− 1

2 ;∂T

)
,

(6.6)

where ψH is an arbitrary function of SH(∂T ).
Combining (6.4), (6.5), and (6.6), we obtain

aD(w,w) ≤
γD

µ2
T ;D

(
1 + log

H

h

)
×

(
‖µT w · n‖2

− 1
2 ;∂T

+

(
1 + log

H

h

)
‖µT w · n + ψH‖

2
− 1

2 ;∂T

)
.

(6.7)

The second term in (6.7) can be bounded by taking ψH = −µT (ΠH QT u) ·n, and using the
trace estimate (2.2), and the definition (4.5),

‖µT w · n + ψH‖
2
− 1

2 ;∂T = ‖µT (QT u) · n‖2
− 1

2 ;∂T

≤ C
(
H2

T ‖div (HT (µT (QT u) · n))‖
2
0;T + ‖HT (µT (QT u) · n)‖

2
0;T

)

≤ C
η

γT
aT (HT (µT (QT u) · n) ,HT (µT (QT u) · n))

= C
η

γT
ãT (QT u, QT u).

(6.8)

For the first term in (6.7), we use the definition of w and obtain

‖µT w · n‖2
− 1

2 ;∂T ≤ 2 ‖µT (QT u) · n‖2
− 1

2 ;∂T + 2 ‖µT (ΠH QT u) · n‖2
− 1

2 ;∂T .(6.9)
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A bound for the second term in (6.9) can be found in the following way: It can easily be
checked that the normal component of the vector

wH := ρH (HT (µT (QT u) · n)) ,

on ∂T is equal to µT (ΠH QT u) · n. We remark that wH is obtained by first extending the
normal trace (µT (QT u) ·n) harmonically into T and then interpolating into the coarse space
X0;H . Using the trace estimate (2.2) and the stability estimates for ρH in Lemma 5.1, we find

‖µT (ΠH QT u) · n‖2
− 1

2 ;∂T = ‖wH · n‖2
− 1

2 ;∂T ≤ C
(
H2

T ‖div wH‖
2
0;T + ‖wH‖

2
0;T

)

≤ C

(
1 + log

H

h

)(
H2

T ‖div (HT (µT (QT u) · n))‖
2
0;T

+ ‖HT (µT (QT u) · n)‖
2
0;T

)

≤ C
η

γT

(
1 + log

H

h

)
aT (HT (µT (QT u) · n) ,HT (µT (QT u) · n))

= C
η

γT

(
1 + log

H

h

)
ãT (QT u, QT u).

(6.10)

Finally, combining (6.7), (6.8), and (6.10), we obtain

aD(w,w) ≤ C η

(
1 + log

H

h

)2
γD

µ2
T ;D γT

ãT (QT u, QT u).(6.11)

An estimate for the energy aT (w,w) can be found in a similar way:
If a substructure D shares a face with T , let FD := ∂T ∩ ∂D be the common face. Since
w · n has mean value zero on each face of ∂T , Lemma 5.2 can still be applied. We have

aT (w,w) ≤ aT

(
H̃T (w · n), H̃T (w · n)

)
≤ γT

∥∥∥H̃T (w · n)
∥∥∥

2

0;T

≤ CγT ‖w · n‖2
− 1

2 ;∂T
= γT

∥∥∥∥∥
∑

D

ϑFD (w · n)

∥∥∥∥∥

2

− 1
2 ;∂T

≤ C
∑

D

γT

µ2
T ;D

‖ϑFD (µT w · n)‖
2
− 1

2 ;∂T ,

(6.12)

where the sum is taken over the substructures D that share a face with T , and ϑFD is equal
to one on FD and vanishes on the rest of ∂T . Lemma 5.3 thus gives the following bound for
the last term in (6.12):

C
∑

D

γT

µ2
T ;D

(
1 + log

H

h

)
×

(
‖µT w · n‖2

− 1
2 ;∂T

+

(
1 + log

H

h

)
‖µT w · n + ψH‖

2
− 1

2 ;∂T

)
,

(6.13)

where ψH is an arbitrary function of SH(∂T ).
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An upper bound for (6.13) can be obtained in the same way as for (6.7), and (6.12) and
(6.13) give

aT (w,w) ≤ C η

(
1 + log

H

h

)2
(
∑

D

1

µ2
T ;D

)
ãT (QT u, QT u).(6.14)

Employing (6.11) and (6.14), and summing over the substructures that share a face with T ,
we obtain

a(w,w) ≤ C η

(
1 + log

H

h

)2
(
∑

D

γT + γD

µ2
T ;D γT

)
ãT (QT u, QT u).

It can easily be checked that the terms

γT + γD

µ2
T ;D γT

=
(γT + γD) γ2δ

T

(γδ
T + γδ

D)2 γT
,

are homogeneous functions of γT and γD, that can be bounded by 2, independently of
γT , γD > 0, and δ ≥ 1/2. We then obtain

a(w,w) ≤ C η

(
1 + log

H

h

)2

ãT (QT u, QT u).(6.15)

Using the definition of QT and and the fact that we have chosen u ∈ Ran(I − P0), we can
write

a(w,w) ≤ C η

(
1 + log

H

h

)2

a(u, QT u)

= C η

(
1 + log

H

h

)2

a (u, (I − P0)QT (I − P0)u)

= C η

(
1 + log

H

h

)2

a(u,w).

By applying Schwarz inequality, we finally obtain

a ((I −ΠH)QT u , (I −ΠH)QT u) = a(w,w) ≤ C η2

(
1 + log

H

h

)4

a(u,u),

and the proof is completed by noting that (I − P0) is an orthogonal projection.
LEMMA 6.3. There is a constant C, independent of h, H , u, the coefficients a and B,

and the parameter δ, such that

a(Qhybu,u) ≤ C η

(
1 + log

H

h

)2

a(u,u), u ∈ X̃0;h.

Proof. The proof employs the bounds for the local operators Q̃T given by the previous
lemma and a standard coloring argument. It can be found in [33, Lem. 5.6.3]; see also [31, P.
165] and [3, Th. 4.1].

Lemmas 6.1 and 6.3 combine to give the following theorem.
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THEOREM 6.1. There is a constant C, independent of h, H , the coefficients a and B,
and the parameter δ, such that

κ(Qhyb) ≤ Cη

(
1 + log

H

h

)2

,

where η is the constant in Lemma 6.2.

We remark that the same constant η also appears in the estimates for some edge and
face–space methods for the same problems considered in this paper; see [34, 36, 33].

The estimate given in Theorem 6.1 remains bounded when the coefficient matrixB tends
to zero, but becomes unbounded when a becomes small. The following lemma ensures that
in the limit case a = 0, the condition number of the hybrid operator is bounded independently
of H/h and the jumps of the coefficient B.

LEMMA 6.4. In the limit case a = 0, there is a constant C, independent of h, H , the
coefficient matrix B, and the parameter δ, such that

κ(Qhyb) ≤ C ξ,

where

ξ := max
T∈TH

{
γT

βT

}
.

Proof. It is immediate to check that Lemma 6.1 still holds. It is then enough to prove a
bound for ‖Q̃T ‖a, as in Lemma 6.2, since the coloring argument in the proof of Lemma 6.3
can also be employed in the limit case a = 0.

Let T be a substructure and let Q̃T = (I−P0)QT (I−P0) be defined in Section 4. Since
a = 0, the bilinear forms a(·, ·) and aT (·, ·) are just weighted L2–scalar products, and we can
employ (2.6).

Let u ∈ X̃0;h, and w := QT u ∈ X̃T . The proof is similar to the one of Lemma 6.2.
We first bound the energy of w in T , and that from the neighboring substructures, in terms of
ãT (QT u, QT u). We only need to consider the substructures that have a common face with
T . Let D be one of these substructures and F = ∂T ∩ ∂D. We have

aD(w,w) ≤ aD

(
ĤD(w · n), ĤD(w · n)

)

≤ γD

∥∥∥ĤD(w · n)
∥∥∥

2

0;D
≤ C γD

∑

f⊂F

Hn
f λf (w)2 ,

(6.16)

where ĤD(w ·n) is the extension by zero of w ·n into D and, for the last inequality, we have
used (2.6).

The last term in (6.16) can be bounded using the fact that the function µT is constant on
F and the degree of freedom λf (w) is the normal component of w on f ⊂ F . We can then
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write
∑

f⊂F

Hn
f λf (w)2 =

1

µ2
T ;D

∑

f⊂F

µ2
T ;D Hn

f λf (w)2

=
1

µ2
T ;D

∑

f⊂F

Hn
f λf (HT (µT w · n))

2

≤
1

µ2
T ;D

∑

f⊂T

Hn
f λf (HT (µT w · n))

2

≤ C
1

µ2
T ;D

‖HT (µT w · n)‖
2
0;T

≤ C ξ
1

µ2
T ;D γT

aT (HT (µT w · n),HT (µT w · n))

= C ξ
1

µ2
T ;D γT

ãT (w,w) ,

(6.17)

where we have also used (2.6). Combining (6.16) and (6.17), and using the definition of w,
we obtain

aD(w,w) ≤ C ξ
γD

µ2
T ;D γT

ãT (QT u, QT u) ;(6.18)

see (6.11).
An estimate for the energy aT (w,w) can be found in a similar way:

If a substructure D shares a face with T , let FD := ∂T ∩ ∂D be the common face. We have

aT (w,w) ≤ aT

(
ĤT (w · n), ĤT (w · n)

)

≤ γT

∥∥∥ĤT (w · n)
∥∥∥

2

0;T
≤ C γT

∑

f⊂∂T

Hn
f λf (w)2,

(6.19)

where ĤT (w ·n) is the extension by zero of w ·n into T and, for the last inequality, we have
used (2.6).

The right hand side of (6.19) can be bounded using similar arguments as in (6.17):

γT

∑

f⊂∂T

Hn
f λf (w)2 ≤ C γT

∑

FD⊂∂T

1

µ2
T ;D

∑

f⊂FD

Hn
f λf (HT (µT w · n))2

≤ C
∑

FD⊂∂T

γT

µ2
T ;D

∑

f⊂T

Hn
f λf (HT (µT w · n))2

≤ C ξ aT (HT (µT w · n),HT (µT w · n))
∑

FD⊂∂T

1

µ2
T ;D

= C ξ ãT (QT u, QT u)
∑

FD⊂∂T

1

µ2
T ;D

,

(6.20)

where we have used (2.6) and the definition of w.
Employing (6.18), (6.19), and (6.20), and summing over the substructures that share a

face with T , we obtain

a(w,w) ≤ C ξ

(
∑

D

γT + γD

µ2
T ;D γT

)
ã (QT u, QT u) ,
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and a bound for ‖Q̃T ‖a can then be found as in the proof of Lemma 6.2.
We remark that Lemma 6.4 gives an optimal bound for the limit case a = 0. Thus, as

the ratio between the coefficients B and a becomes large, we expect an upper bound for the
condition number which is independent of H/h; see the numerical results in the Section 8.

7. Implementation of the method. In this section, we describe a particular implemen-
tation of our method. We refer to [31, Ch. 4] and to the references therein, for additional
comments on the implementation of iterative substructuring methods.

The hybrid operator Qhyb has been defined in (4.8). We first note that the Schur com-
plement S does not need to be calculated explicitly, but its action can be evaluated using
Equations (3.4) and (3.3), at the expense of solving one Dirichlet problem for each substruc-
ture.

The matrix representation of the projection P0, still denoted by P0, is

P0 = BH S := (R̃T
H S−1

H R̃H)S,(7.1)

where R̃T
H is the natural extension matrix from the coarse space into the fine space, defined on

the interface Γ, and SH is the matrix representation of the bilinear form s(·, ·) on the coarse
space, defined by

SH := R̃H S R̃T
H .

We remark that, if nH is the dimension of the coarse space, nH applications of the Schur
complement are required, in order to calculate SH . Since the basis functions of the coarse
space are supported on the unions of two substructures that have a common face, only the so-
lution of at most two Dirichlet problems on two substructures are required for the application
of S to a coarse basis function.

For a generic substructure Ti, the matrix representation of the local operator QTi , still
denoted by QTi , is

QTi = Bi S :=
(
R̃T

i D
−1
i Si

−1D−1
i R̃i

)
S;(7.2)

see (4.5). Here the natural extension R̃T
i maps the local degrees of freedom on ∂Ti into the

corresponding global ones on Γ, the diagonal matrix Di represents the multiplication by the
scaling function µTi , and Si is the Schur complement of the local bilinear form aTi(·, ·), with
respect to the variables on ∂Ti. The matrix Si does not need to be calculated explicitly, but
the action of its inverse on a local vector can be calculated by solving a Neumann problem on
the substructure Ti; see [31, Sect. 4.2.1]. We also note that, as is often the case for Neumann–
Neumann methods, the local averaging operators {D−1

i } satisfy

∑

i

R̃iD
−1
i R̃i = I;

see, e.g., [10, 31].
If we define the local preconditioner

Ŝ :=
∑

Ti∈TH

Bi,

for a particular choice of the initial guess, the conjugate gradient method applied to the
new equation (4.9) is equivalent to the following preconditioned projected conjugate gradient
method.
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TABLE 8.1
Estimated condition number and number of CG iterations necessary for a reduction of 10−6 of the norm of the

preconditioned residual (in parentheses), versus H/h and n. Case of a = 1, b = 1.

H/h 32 16 8 4 2

n=32 - 3.075 (4) 2.881 (10) 2.182 (8) 1.505 (5)
n=64 4.004 (4) 3.791 (11) 3.023 (10) 2.113 (7) 1.508 (5)
n=128 4.860 (12) 3.985 (11) 2.935 (8) 2.033 (6) x
n=192 - 3.978 (10) 2.854 (7) 1.974 (5) x
n=256 5.112 (12) 4.01 (10) 2.854 (7) 1.974 (5) x

1. Initialize

U0 = BH G

r0 = G− SU0

2. Iterate k = 1, 2, · · · until convergence

Project: Wk−1 = (I − P0)
T rk−1

Precondition: Zk−1 = Ŝ Wk−1

Project: Yk−1 = (I − P0)Zk−1

βk = Y t
k−1Wk−1/Y

t
k−2Wk−2 [β1 = 0]

pk = Yk−1 + βkpk−1 [p1 = Y0]

αk = Y t
k−1Wk−1/p

t
kSpk

Uk = Uk−1 + αkpk

rk = rk−1 − αkSpk

We remark that the residuals rk are perpendicular to the coarse space, since R̃Hrk = 0,
for every k. In addition, the first projection can be omitted, sinceWk = rk for every k, thanks
to the choice of the initial vector U0. See [14], for a similar algorithm.

8. Numerical results. In this section, we present some numerical results on the perfor-
mance of the hybrid Neumann–Neumann method described in the previous sections, when
varying the diameters of the coarse and fine meshes, and the coefficients a and B. We only
consider two–dimensional problems.

For our numerical experiments, we have considered the domain Ω = (0, 1)2 and uni-
form rectangular triangulations Th and TH . The fine triangulation Th consists of n2 square
elements, with h = 1/n. The matrix B is given by

B = diag{b, b}.

In Table 8.1, we show the estimated condition number and the number of iterations in
order to obtain a reduction of the norm of the preconditioned residual by a factor 10−6, as a
function of the dimensions of the fine and coarse meshes. For a fixed ratioH/h, the condition
number and the number of iterations are quite insensitive to the dimension of the fine mesh.
Our results compare very well with those for finite element approximations in H1 of the
Laplace equation; see, e.g. [31], and with those for the iterative substructuring method based
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TABLE 8.2
Estimated condition number and number of CG iterations necessary for a reduction of 10−6 of the norm of the

preconditioned residual (in parentheses), versus H/h and b. Case of n = 128 and a = 1.

H/h 4 8 16 32

b=1e-5 2.033 (6) 2.935 (8) 3.988 (11) 4.871 (12)
b=1e-4 2.033 (6) 2.936 (8) 3.988 (11) 4.871 (12)
b=1e-3 2.033 (6) 2.936 (8) 3.988 (11) 4.871 (12)
b=1e-2 2.033 (6) 2.936 (8) 3.988 (11) 4.871 (12)
b=1e-1 2.033 (6) 2.935 (8) 3.988 (11) 4.87 (12)
b=1 2.033 (6) 2.935 (8) 3.985 (11) 4.86 (12)
b=1e+1 2.032 (6) 2.931 (8) 3.959 (11) 4.765 (12)
b=1e+2 2.026 (6) 2.881 (8) 3.705 (10) 4.15 (10)
b=1e+3 1.932 (5) 2.507 (7) 2.806 (8) 2.862 (7)
b=1e+4 1.613 (4) 1.717 (5) 1.751 (5) 1.771 (5)
b=1e+5 1.124 (3) 1.134 (3) 1.15 (3) 1.154 (3)
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FIG. 8.1. Estimated condition number from Table 8.1 (asterisk) and least–square second order logarithmic
polynomial (solid line), versus H/h; relative fitting error about 2.8 per cent.

on individual edges, described in [36].

In Figure 8.1, we plot the results of Table 8.1, together with the best second order log-
arithmic polynomial least–square fit. The relative fitting error is about 2.8 per cent. Our
numerical results are therefore in good agreement with the theoretical bound obtained in the
previous section and suggest that our bound is sharp.

In Table 8.2, we show some results when the ratio of the coefficients b and a is changed.
For a fixed value of n = 128 and a = 1, the estimated condition number and the number
of iterations are shown as a function of H/h and b. In accordance with Theorem 6.1, the
condition number is independent of the ratio b/a, when b/a ≤ 1. Table 8.2 also shows that,
in practice, this holds for b/a ≥ 1, and that, when b/a is very large, the condition number
tends to be independent of H/h. Our numerical results then confirm our analysis of the limit
case a = 0, in Lemma 6.4.

We finally consider some cases where the coefficients have jumps. In Table 8.3, we
show some results when the coefficient b has jumps across the substructures. We consider
the checkerboard distribution shown in Figure 8.2, where b is equal to b1 in the shaded area
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TABLE 8.3
Checkerboard distribution for b: (b1, b2). Estimated condition number and number of CG iterations for

a reduction of 10−6 of the norm of the preconditioned residual (in parentheses), versus H/h and b2. Case of
n = 128, a = 1, and b1 = 100.

H/h 4 8 16

b2 = 1e− 4 5.344 (14) 7.514 (16) 9.989 (19)
b2 = 1e− 3 5.321 (14) 7.481 (16) 9.945 (19)
b2 = 1e− 2 5.248 (13) 7.379 (16) 9.81 (19)
b2 = 1e− 1 5.031 (12) 7.073 (15) 9.402 (18)
b2 = 1 4.442 (11) 6.239 (14) 8.289 (17)
b2 = 1e+ 1 3.249 (8) 4.532 (11) 5.987 (14)
b2 = 1e+ 2 2.026 (6) 2.881 (8) 3.705 (10)
b2 = 1e+ 3 3.15 (8) 4.138 (11) 4.932 (13)
b2 = 1e+ 4 3.556 (9) 4.043 (11) 4.384 (13)
b2 = 1e+ 5 2.638 (8) 3.24 (11) 3.912 (13)
b2 = 1e+ 6 2.417 (8) 3.176 (11) 3.919 (13)

�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����
�����
�����
�����
�����

���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������

21

FIG. 8.2. Checkerboard distribution of the coefficients in the unit square.

and to b2 elsewhere. For a fixed value of n = 128, b1 = 100, and a = 1, the estimated
condition number and the number of iterations are shown as a function of H/h and b2. For
b2 = 100, the coefficient b has a uniform distribution, and this corresponds to a minimum
for the condition number and the number of iterations. When b2 decreases or increases, the
condition number and the number of iterations also increase, but they can still be bounded
independently of b2.

In Table 8.4, we show some results when the coefficient a has jumps. We consider the
checkerboard distribution shown in Figure 8.2, where a is equal to a1 in the shaded area and
to a2 elsewhere. For a fixed value of n = 128, a1 = 0.01, and b = 1, the estimated condition
number and the number of iterations are shown as a function of H/h and a2. We remark that
for a2 = 0.01, the coefficient a has a uniform distribution. A slight increase in the number of
iterations and the condition number is observed, when a2 is decreased or increased and when
H/h is large.

Acknowledgments. The author is grateful to Olof Widlund for his endless help and
enlightening discussion of my work.
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TABLE 8.4
Checkerboard distribution for a: (a1, a2). Estimated condition number and number of CG iterations for

a reduction of 10−6 of the norm of the preconditioned residual (in parentheses), versus H/h and a2. Case of
n = 128, b = 1, and a1 = 0.01.

H/h 4 8 16

a2 = 1e− 7 2.1 (6) 3.399 (9) 5.909 (13)
a2 = 1e− 6 2.1 (6) 3.196 (9) 5.537 (13)
a2 = 1e− 5 2.059 (6) 2.882 (8) 4.165 (11)
a2 = 1e− 4 2.051 (6) 2.857 (8) 3.403 (10)
a2 = 1e− 3 1.944 (5) 2.853 (8) 3.611 (10)
a2 = 1e− 2 2.026 (6) 2.881 (8) 3.705 (10)
a2 = 1e− 1 2.032 (6) 2.933 (8) 3.948 (11)
a2 = 1 2.033 (6) 2.938 (8) 3.975 (11)
a2 = 1e+ 1 2.033 (6) 2.939 (8) 3.977 (11)
a2 = 1e+ 2 2.033 (6) 2.939 (8) 3.978 (11)
a2 = 1e+ 3 2.033 (6) 2.939 (8) 3.978 (11)

REFERENCES

[1] Ana Alonso and Alberto Valli, An optimal domain decomposition preconditioner for low-frequency time-
harmonic Maxwell equations, Math. Comp., 68 (1999), pp. 607-631.

[2] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Multigrid preconditioning in H(div) on non-convex
polygons, Comput. and Appl. Math., 17 (1998), pp. 303-315.

[3] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Preconditioning in H(div) and applications, Math.
Comp., 66 (1997), pp. 957-984.

[4] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Multigrid in H(div) and H(curl), Technical Report
13 1997/98, Mittag-Leffler Institute, 1998.

[5] Jean-François Bourgat, Roland Glowinski, Patrick Le Tallec, and Marina Vidrascu, Variational formulation
and algorithm for trace operator in domain decomposition calculations, Domain Decomposition Meth-
ods, Tony Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund, eds., SIAM, Philadelphia, PA,
1989. pp. 3-16.

[6] Susanne Brenner, A multigrid algorithm for the lowest order Raviart-Thomas mixed triangular finite element
method, SIAM J. Numer. Anal., 29 (1992), pp. 647–678.

[7] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer-Verlag, New York,
1991.

[8] Lawrence C. Cowsar, Jan Mandel, and Mary F. Wheeler, Balancing domain decomposition for mixed finite
elements, Math. Comp., 64 (1995), pp. 989-1015.
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