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A MULTISHIFT ALGORITHM FOR THE NUMERICAL SOLUTION
OF ALGEBRAIC RICCATI EQUATIONS ∗

GREGORY AMMAR†, PETER BENNER‡ , AND VOLKER MEHRMANN§

Abstract. We study an algorithm for the numerical solution of algebraic matrix Riccati equa-
tions that arise in linear optimal control problems. The algorithm can be considered to be a multishift
technique, which uses only orthogonal symplectic similarity transformations to compute a Lagrangian
invariant subspace of the associated Hamiltonian matrix. We describe the details of this method and
compare it with other numerical methods for the solution of the algebraic Riccati equation.
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1. Introduction. We consider the numerical solution of algebraic matrix Riccati
equations of the form

G + ATX + XA−XRX = 0,(1)

with A,G,R ∈ Rn,n, and where G and R are symmetric positive semidefinite matri-
ces. These equations arise in linear quadratic optimal control problems, differential
games, and Kalman filtering problems. In these applications the symmetric positive
semidefinite solution X of (1) is often desired; this is called a stabilizing solution
because the eigenvalues of the resulting closed-loop matrix A − RX are in the open
complex left-half plane. The existence and uniqueness of such a solution is guaranteed
by certain assumptions on the problem. See, for example, [10, 14].

It is easy to see that the matrix X is a solution of (1) if and only if the columns of[
In
X

]
span an n-dimensional invariant subspace of the Hamiltonian matrix

H =
[

A R
G −AT

]
∈ R2n,2n(2)

where In is the n × n identity matrix. Moreover, it is well known [15, 20] that the
unique positive semidefinite solution of (1), when it exists, can be obtained from the
stable invariant subspace of H; i.e., from the invariant subspace corresponding to
the eigenvalues of H with negative real parts. More precisely, we have the following
well-known result (see [20]).

Theorem 1.1. Assume that the algebraic Riccati equation (1) has a unique sta-
bilizing symmetric positive semidefinite solution X. Then the Hamiltonian matrix
H given in (2) has precisely n eigenvalues with negative real parts. Furthermore, if

the columns of
[

Q1

Q2

]
∈ R2n,n span the invariant subspace of H corresponding to
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these eigenvalues, then Q1 is invertible and the desired solution of (1) is given by
X := −Q2Q

−1
1 .

In general, the numerical methods for the solution of (1) can be divided in two
major classes.

The methods in the first class approach the Riccati equation directly as a nonlin-
ear algebraic equation via fixed point or Newton iteration. The latter is generally
attributed to Kleinman [13]. At each step of Newton’s method one has to solve a
Lyapunov equation, and it can be shown that for an appropriate starting matrix the
iteration converges monotonically; see [18]. Unfortunately, it is usually difficult to ob-
tain a starting matrix that guarantees convergence to the desired solution while being
close enough to the solution so that the algorithm converges in a reasonable number
of iterations. This is the reason why Newton’s method is generally most useful in the
iterative refinement of solutions obtained from other methods; see [4].

The second class consists of the methods that are based on the computation of
the stable invariant subspace of H in (2). These methods include the Schur vector
method of Laub [15], the Hamiltonian QR-algorithm of Byers [8], the SR-algorithm
of Bunse-Gerstner and Mehrmann [5], the HHDR-algorithm of Bunse-Gerstner and
Mehrmann [6] and the matrix sign function method [9].

Unlike earlier attempts based on the computation of eigenvectors of the Hamiltonian
matrix H, Laub’s method uses the numerically reliable QR-algorithm to compute the
desired invariant subspace. This Schur vector method is numerically backwards stable
and of complexity O(n3). However, this algorithm does not respect the Hamiltonian
structure of the problem. There has therefore been a significant amount of work
devoted to computing the stable invariant subspace of H with a structure-preserving
method that could be shown to be strongly stable; i.e., the computed solution should
be the exact solution of a nearby Hamiltonian problem. Both the SR-algorithm and
the sign function method respect the Hamiltonian structure, but are not backwards
stable. The most promising approach has been the development of a Hamiltonian
QR-algorithm.

We now summarize some definitions and basic facts concerning Hamiltonian matri-
ces and QR-type algorithms for computing their invariant subspaces. Let

J :=
[

0 In
−In 0

]
.

Definition 1.2.

(i) The matrix H ∈ R2n,2n is Hamiltonian if (JH)T = JH.
(ii) The matrix S ∈ R2n,2n is symplectic if STJS = J .

Observe that any matrix of the form (2), with R and G symmetric, is a Hamiltonian
matrix. Also note that if H is Hamiltonian and S is symplectic, then S−1HS is
Hamiltonian.

We will make use of the fact that the n dimensional invariant subspace of H corre-
sponding to the eigenvalues with negative real part is a Lagrangian subspace.

Definition 1.3. A subspace Q of R2n is called isotropic if xTJy = 0 for all
x, y ∈ Q. A Lagrangian subspace is an isotropic subspace of R2n of dimension n,
or equivalently, a maximal isotropic subspace (i.e., an isotropic subspace that is not
contained in a larger isotropic subspace).

Lagrangian subspaces are important for the control-theoretic Riccati equation be-

cause the subspace spanned by the columns of
[

I
X

]
is Lagrangian if and only if
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X is symmetric. Consequently, the symmetric solutions of the Riccati equation (1)

correspond with the Lagrangian H-invariant subspaces of the form span
[

I
X

]
. We

will consider an algorithm for the computation of any Lagrangian invariant subspace
of a Hamiltonian matrix H.

Structure-preserving methods for computing eigenvalues and invariant subspaces of
Hamiltonian matrices are based on the fact that symplectic similarity transformations
preserve the Hamiltonian structure and that we can compute the required Lagrangian
invariant subspace via a symplectic similarity transformation to a triangular-like form.
But symplectic similarity transformations are not necessarily numerically stable, since
symplectic matrices can be unbounded in norm and hence transformations with sym-
plectic matrices can cause large roundoff errors. In order to avoid such instabilities,
it is desirable to use orthogonal similarity transformations; see, e.g., [26, 12]. There
therefore has been considerable effort made toward the development of algorithms for
finding the required invariant subspace by performing orthogonal symplectic similarity
transformations on the initial Hamiltonian matrix.

Paige and Van Loan [20] first considered the use of orthogonal symplectic transfor-
mations on a Hamiltonian matrix. They introduced the Hamiltonian analog of the
real Schur form, and gave sufficient conditions for when a Hamiltonian matrix can
be transformed by an orthogonal symplectic similarity transformation to Hamiltonian
Schur form. This is summarized, and the existence result extended, in the following
theorem of Lin [16].

Theorem 1.4. Let H be a Hamiltonian matrix whose eigenvalues on the imagi-
nary axis have even algebraic multiplicity. Then there exists an orthogonal symplectic
matrix Q such that QTHQ is in the Hamiltonian Schur form

QTHQ =
[

T W
0 −T T

]
,(3)

where T is quasi upper triangular and all eigenvalues of T are in the closed complex
left-half plane.

Despite the fact that this result has been essentially known now for more than 10
years, no numerically stable algorithm of complexity O(n3) that operates only with
symplectic orthogonal similarities has been found to compute this form.

The only completely satisfactory method for reducing H to Hamiltonian Schur form
has been given by Byers [7, 8]. It is a structure preserving, numerically stable QR-
like algorithm for the case that the Hamiltonian matrix is in Hamiltonian Hessenberg
form, i.e.

H =
[

A R
G −AT

]
=

@@
* @@

 ,(4)

where A = [aij ] ∈ Rn,n is an upper Hessenberg matrix, G = αeneTn , where en is the
nth column of In, and R is symmetric.

The only obstacle to the use of Byers’ Hamiltonian QR-algorithm is that it is
not known how to reduce a general Hamiltonian matrix in complexity O(n3) via
orthogonal symplectic similarity transformations to Hamiltonian Hessenberg form.
Byers [7, 8] shows that this reduction is possible for the matrix H in (2) if either
of the matrices G or R is of rank one. But the reduction for general Hamiltonian
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matrices remains elusive. In [1], a result is given that indicates why this is such a
difficult task. In particular, the first column vector x of an orthogonal symplectic
matrix that reduces a Hamiltonian matrix H to Hamiltonian Hessenberg form has to
satisfy the set of nonlinear equations

xTJH2i−1x = 0, i = 1, . . . , n.(5)

Actually the same set of equations has to be satisfied even if we use nonorthogonal
symplectic transformations, as is shown by Raines and Watkins [22]. Thus, any
method for reducing a Hamiltonian matrix to Hamiltonian Hessenberg form must, at
least implicitly, solve the nonlinear equations (5).

On the other hand it is observed in [1] that every vector x ∈ R2n that is contained
in a Lagrangian invariant subspace of H automatically satisfies (5). If we could find
such a vector, we might be able to use it to obtain the Lagrangian invariant subspace
without transforming the initial matrix to Hamiltonian Schur form. A framework for
such a method is suggested in [1]. In this paper we consider an implementation of this
method, discuss its advantages and disadvantages, and compare it to other Riccati
solvers.

2. A multishift method for the algebraic Riccati equation. The basic idea
of the method proposed in [1] is to compute the invariant subspace corresponding to
the stable eigenvalues of the Hamiltonian matrix H, but to do it without iterating
to the Hamiltonian Schur form. The key ingredients of this method are the following
two structure-preserving methods.

The first is a method due to Van Loan [25] for computing the eigenvalues of a
Hamiltonian matrix. This method provides an efficient algorithm for computing the
eigenvalues of H, but it cannot be used directly to compute the required invariant
subspace.

The second is a reduction procedure to a Hessenberg-like form introduced by Paige
and Van Loan [20]. Any Hamiltonian matrix can be reduced to this form in O(n3)
arithmetic operations using orthogonal symplectic similarity transformations. How-
ever, this condensed form is not invariant under the Hamiltonian QR-algorithm, so it
cannot be used for a structure preserving QR-like algorithm.

This reduction is achieved by performing a sequence of elementary orthogonal sym-
plectic similarity transformations to the initial matrix. These elementary transforma-
tions are of two types (see, e.g., [20, 8, 18]). The first is a symplectic Householder
matrix, which is a matrix of the form

P =
[

W 0
0 W

]
,

where W is a Householder transformation of order n. The second is a symplectic
Givens rotation, which is a standard Givens rotation of order 2n that operates only
in coordinate planes j and n + j for some j, 1 ≤ j ≤ n.

We now describe the reduction procedure applied to an arbitrary matrix of order
2n.

Algorithm 2.1 (PVLRED).

Input: M ∈ R2n,2n

Output: Orthogonal symplectic Q such that QTMQ =
[

M11 M12

M21 M22

]
, where M11

is an upper Hessenberg matrix and M21 is upper triangular. M will be overwritten
with the transformed matrix.
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Set Q := I2n.
FOR k = 1, . . . , n− 1

IF k ≤ n− 2 THEN

Let
[

y
z

]
:= Mek and let Pk be the Householder symplectic matrix

diag[Wk,Wk], where Wk is a Householder transformation of order n
that operates in coordinate planes k + 1 through n and annihilates
elements k + 2, . . . , n of z.
Set M := PkMPk, Q := QPk.

END IF

Let Gk be a symplectic Givens rotation such that Mn+k+1,k is eliminated
with Mk+1,k when forming GT

kM .
Set M := GT

kMGk, Q := QGk

IF k ≤ n− 2 THEN

Let
[

y
z

]
:= Mek and let P̃k be the Householder symplectic matrix

diag[W̃k, W̃k], where W̃k is a Householder transformation of order n
that operates in coordinate planes k + 1 through n and annihilates
elements k + 2, . . . , n of y.
Set M := P̃kMP̃k, Q := QP̃k.

END IF
END FOR

END.
Observe that the transformation Q generated by Algorithm 2.1 does not involve the
first axis vector e1; that is, QTe1 = e1.

If the initial matrix M in Algorithm 2.1 is Hamiltonian, then it is reduced to the
following form, which will be called Paige-Van Loan form:

QTMQ =

@@
@ @@

 .(6)

The algorithm of Van Loan [25] for the computation of the eigenvalues of a Hamil-
tonian matrix has the following form.

Algorithm 2.2 (SQRED).

Input: Hamiltonian matrix H =
[

A R
G −AT

]
.

Output: Eigenvalues λ1, . . . , λ2n of H.

Step 1: Form

N = H2 =
[

A2 + RG AR −RAT

GA−ATG GR + (AT )2

]
.(7)

Step 2: Apply Algorithm 2.1 PVLRED to N to determine an orthogonal symplectic
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matrix Q such that

QTNQ =
[

N1 N2

0 NT
1

]
=

@@
@@

 .(8)

Step 3: Determine the eigenvalues µ1, . . . , µn of N1 with the QR–Algorithm; see,
e.g., [12, 23].

Step 4: Set λi =
√

µi and λi+n = −λi for i = 1, . . . , n.
END.

The only disadvantage of this method is that the Hamiltonian matrix has to be
squared, which may lead to roundoff errors on the order of the square root of machine
precision [25].

Based on these two methods, the basic framework of the method suggested in [1] is
the following:

Algorithm 2.3 (LISH).

Input: A Hamiltonian matrix H ∈ R2n,2n having an n–dimensional Lagrangian
invariant subspace Q, the corresponding eigenvalues λ1, . . . , λn, and a tolerance eps.

Output: A real orthogonal symplectic matrix Q ∈ R2n,2n such that the first n
columns of Q span the Lagrangian subspace of H corresponding to the other eigen-
values λn+1, . . . , λ2n of H.

Set Q := I.
Step 1 (Computation of the first column of the transformation matrix.)
Form

x = α(H − λ1I) · · · (H − λnI)e1,(9)

where α ∈ R is an arbitrary nonzero scaling factor, and let Q1 ∈ R2n,2n be an
orthogonal symplectic matrix such that

QT
1 x = α1 e1, α1 = ±‖x‖.(10)

Such a matrix is constructed in the obvious way, analogous to the construction used
in Algorithm 2.1; see [20]. Set

H := QT
1 HQ1, Q := QQ1(11)

Step 2 (Reduction to Paige/Van Loan form.)
Use Algorithm 2.1 PVLRED to generate an orthogonal symplectic matrix Q2 such

that QT
2 HQ2 is in the form (6).

Set

H := QT
2 HQ2, Q := QQ2.(12)

Step 3 (Deflation.)
Set p := 0.
WHILE p < n

FOR i = 1, . . . , n
IF |hn+i,i| < eps THEN set hn+i,i := 0.

END FOR



ETNA
Kent State University 
etna@mcs.kent.edu

Gregory Ammar, Peter Benner, and Volker Mehrmann 39

FOR i = 2, . . . , n
IF |hi,i−1| < eps THEN set hi,i−1 := 0.

END FOR
Set ` := p + 1, and let p be the largest integer in {`, . . . , n} such that
hp+1,p = 0 and hn+k,k = 0 for k = 1, . . . , p. If no such integer exists, then
set p := n.
IF p < n THEN

Partition H as
A11 A12 R11 R12

0 A22 R21 R22

0 0 −AT11 0
0 G22 −AT12 −AT22


p

n− p
p

n− p

(13)

Set H22 :=
[

A22 R22

G22 −AT22

]
and

x2 := α2(H22 − λ1I) · · · (H22 − λnI)e1.(14)

Let P1 be an orthogonal symplectic matrix such that PT
1 x2 = ± ||x2|| e1

and determine as in the second step an orthogonal symplectic matrix
P2 that reduces H22 to the Paige/Van Loan form via Algorithm 2.1
PVLRED. Set

P := P1P2 =:
[

U V
−V U

]
∈ R2(n−p),2(n−p)(15)

and

Q̃p :=


I 0 0 0
0 U 0 V
0 0 I 0
0 −V 0 U

 , H := Q̃T
pHQ̃p, Q := QQ̃p(16)

END IF
END WHILE

END.
In this algorithm only orthogonal symplectic transformations are used, and hence

the Hamiltonian structure is preserved. This is done implicitly to avoid a deterioration
due to roundoff. Another advantage of this method is the fact that we can allow
eigenvalues to be on the imaginary axis (if they appear with even multiplicity), which
none of the other methods can.

By analogy with the use of an exact shift in the QR algorithm to isolate a one-
dimensional invariant subspace, Algorithm 2.3 can be considered to be a multishift
method in the sense that the computed eigenvalues are simultaneously used to isolate
the desired invariant subspace. In exact arithmetic, Algorithm 2.3 will transform the
Hamiltonian matrix to block upper triangular form to obtain the desired Lagrangian
invariant subspace. In practice, however, the (2,1) block of the transformed Hamil-
tonian matrix can be far from zero, and hence the computed subspace is only an
approximation to the required Lagrangian subspace. One reason for this inaccuracy
is the fact that the eigenvalues are usually not exact. A second difficulty, in particular
in the presence of multiple eigenvalues, is the decision of when to perform a deflation,
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which is critical for the speed and accuracy of this method. Moreover, roundoff errors
can create difficulties even when one is working with a single exact shift, as observed
and analyzed by Parlett [21]. Nevertheless, these difficulties can often be surmounted
with defect correction techniques, which are described in the next section. In fact, we
can use Algorithm 2.3 iteratively as a defect correction method.

There are many variations how this method can be implemented. A detailed anal-
ysis of different implementation issues is given in [3]. In all considered cases it was
observed that the computed solution is often not satisfactory unless the method is
combined with iterative refinement. We will discuss this issue in the next section.

3. Defect correction. Any numerical solution X̃ of the algebraic Riccati equa-
tion

0 = G + ATX + XA−XRX,(17)

is usually corrupted from roundoff and other errors. Thus it is in most cases advisable
to use iterative refinement to improve the accuracy. A general refinement algorithm
for (17) was proposed in [19].

Theorem 3.1. Let X = XT be the positive semidefinite solution of (17) and let X̃
be a symmetric approximation to X. Let P = X − X̃, Ã = A−GX̃ and

G̃ = G + AT X̃ + X̃A− X̃RX̃(18)

the residual when inserting X̃, then P is the stabilizing solution of the Riccati equation

0 = G̃ + PÃ + ÃTP − PRP.(19)

Proof. See [19, 18].
This idea leads to the following defect correction method:

Algorithm 3.2 (DCORC).

Input: A,R,G ∈ Rn,n from (17) and a tolerance ε > 0 for the defect.
Output: An approximation X̃ to the positive semidefinite solution X of (17) and

an error estimate P ∈ Rn,n with ‖P‖ ≤ ε.
Step 1: Compute with any method a stabilizing approximate solution of (17).
Step 2: Set P := X̃, X̃ := 0.
Step 3:

WHILE ‖P‖ > ε
Set

X̃ := X̃ + P

G̃ := G + AT X̃ + X̃A− X̃RX̃

Ã := A−RX̃

Compute with any method a stabilizing approximate solution of

0 = G̃ + ÃTP + PÃ− PRP(20)

END WHILE
END.
Different methods can be used in Step 1 and 3 of this method. In particular,

Newton’s method (see, e.g., [18]) is used effectively in Step 3, but also the multishift
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method can be used again in Step 3, since the eigenvalues have not changed for the
Hamiltonian matrices. The difficulty with the defect correction method is that the
computed residual may be corrupted either from subtractive cancellation or from the
fact that the linear system that has to be solved to obtain the solution X is badly
conditioned. A particularly bad example for this effect was given by Laub [15]. We
will discuss it in Section 4. The cancellation can partially be avoided by computing
the residual with higher precision. Another way to avoid this problem in intermediate
steps of the defect correction method is the following. Let

Q =
[

Q11 Q12

Q21 Q22

]
(21)

be an orthogonal symplectic such that the span of the first n columns of Q is approx-
imately the stable invariant subspace of the Hamiltonian matrix

H =
[

A R
G −AT

]
(22)

and let

X̃ = −Q21Q
−1
11(23)

be the corresponding approximate solution of (1). Then the residual given in (18) has
the form

G̃ = G−ATQ21Q
−1
11 −Q−T11 QT

21A−Q−T11 QT
21RQ21Q

−1
11(24)

Multiplying this equation from the left with QT
11 and from the right with Q11, we

obtain the lower left block of the transformed Hamiltonian matrix

Ĥ := QTHQ =
[

Â R̂

Ĝ −ÂT

]
(25)

as

Ĝ = QT
11G̃Q11 = QT

11GQ11 −QT
11AQ21 −QT

21A
TQ11 −QT

21RQ21.(26)

Now Ĝ is available from the transformation to triangular-like form and it does not
involve the inversion of Q11. Hence it is conceivable that we will obtain better results
if we work with a defect correction on the triangular-like form, with residual Ĝ, rather
than on the Riccati equation, and postpone the solution of the linear system (which
may be ill conditioned) until the defect correction has converged. In combination with
the multishift algorithm we then have the following Orthogonal Symplectic Multishift
method for the solution of the Algebraic Riccati Equation.

Algorithm 3.3 (OSMARE).

Input: Hamiltonian matrix H =
[

A R
G −AT

]
.

Output: Approximate solution X of the algebraic Riccati equation

0 = G + ATX + XA−XRX.

Step 1: Compute the eigenvalues of H with Algorithm 2.2 SQRED.
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Step 2: Set

H0 := H =:
[

A0 R0

G0 −AT0

]
, Q := I2n.(27)

FOR i = 1, 2, . . . UNTIL Gi ≈ 0
Compute with Algorithm 2.3 LISH Qi, Hi, such that

Hi = QT
i Hi−1Qi =

[
Ai Ri

Gi −ATi

]
,(28)

and set Q := QQi.
END FOR

Step 3. Let Q =:
[

Q1 −Q2

Q2 Q1

]
. Solve the linear matrix equation

XQ1 = −Q2(29)

for example via the QR decomposition or Gaussian elimination with pivoting.
END.
If a subspace has deflated in Algorithm LISH then the iteration in the second step

only operates on the subproblem. The cost for this algorithm depends strongly on
the number of iteration steps in LISH and the number of defect correction steps. In
practice we have observed an increased number of deflation steps with an increase of
the matrix dimension. The major difficulty arises from the fact that we do not have
a suitable deflation criterion in the deflation procedure of LISH. If we use the usual
deflation criterion used in the QR algorithm

|ĥk+1,k| < cu(|ĥk,k|+ |ĥk+1,k+1|)(30)

where c is a constant and u is the machine precision, then often a deflation was not rec-
ognized. Based on the error estimates for the eigenvalues computed by Algorithm 2.2
[25], we therefore use the less stringent deflation criterion

|ĥk+1,k| < c
√

u(|ĥk,k|+ |ĥk+1,k+1|)(31)

but this may lead to inaccurate subspaces.

4. Numerical examples. In this section we describe the results of our com-
parison. All the described methods were implemented in MATLAB as well as in
FORTRAN 77 according to the implementation standards described in [17] using
LINPACK [11] and EISPACK [23] subroutines and some routines provided by R.
Byers [7]. The codes are documented in [3] and are available from the authors.

The described algorithms were extensively tested and compared with other methods
for the algebraic Riccati equation. In this section we describe the results of this
comparison. All computations were performed on a Silicon Graphics IRIS Indigo
R3000 (u ≈ 2.22 · 10−16) at the Institut für Geometrie und Praktische Mathematik
in Aachen. Codes for the generation of the test examples are also available from
the authors. The implementation of OSMARE is based on elimination via Givens
rotations rather than Householder transformations. The reason is that after one
iteration step of LISH the elements of the first column vector in (9) become very
small in magnitude, and Givens rotations performed much better.
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Example 4.1. [2]

A =
[

1 0
0 −2

]
, R =

[
ε2 0
0 0

]
, G =

[
1 1
1 1

]
.(32)

The exact solution of the Riccati equation is

X =

 1+
√

1+ε2

ε2
1

2+
√

1+ε2

1
2+
√

1+ε2
1
4

(
1− ε2

(2+
√

1+ε2)2

)  .(33)

For ε→ 0 the pair (A,G) becomes unstabilizable and the solution X satisfies

lim
ε→0

x11 =∞.

The relative errors in x11, x12, x22 in OSMARE are given in the following table. In
parentheses we give the number of implicit defect correction steps.

ε rel. error
x11 0.0

1 x12 3.8 · 10−16 (0)
x22 1.2 · 10−16

x11 6.6 · 10−13

10−2 x12 1.6 · 10−12 (1)
x22 4.4 · 10−16

x11 1.2 · 10−9

10−4 x12 7.7 · 10−9 (1)
x22 2.2 · 10−16

x11 3.0 · 10−5

10−6 x12 1.9 · 10−4 (1)
x22 0.0

The results are in accordance with the condition estimate for the inversion of Q1,
which is O(1/ε2).

Example 4.2. [2]

A =


−ε 1 0 0
−1 −ε 0 0
0 0 ε 1
0 0 −1 ε

 , G = R =


1
1
1
1

[ 1 1 1 1
]
.(34)

For ε → 0 a pair of complex conjugate eigenvalues of the Hamiltonian matrix ap-
proaches the imaginary axis and the system approaches one which is unstabilizable.
The computed eigenvalues in SQRED have real part 0 with respect to the machine
precision u for ε = 10−7. We do not know the analytic solution in this case and give
therefore the Frobenius norm of the residual. In parentheses we again give the number
of implicit defect correction steps.
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ε ||residual||F
1 2.8 · 10−14 (1)

10−1 2.0 · 10−15 (1)
10−2 1.4 · 10−15 (1)
10−3 1.2 · 10−15 (1)
10−4 5.7 · 10−14 (0)
10−5 4.1 · 10−14 (1)
10−6 6.5 · 10−14 (3)
10−7 3.5 · 10−15 (8)

In both first examples the Schur vector method gave analogous results. The Sign
function method gave much worse results in the second example due to eigenvalues
approaching the imaginary axis. Observe that the multishift method can deal with
eigenvalues on the imaginary axis provided a Lagrangian subspace exists, while the
sign function method and Newton’s method do not work on such problems and the
Schur vector method often has difficulties in determining the correct invariant sub-
space.

Example 4.3. [2]

A =
[
−0.1 0

0 −0.02

]
, G =

[
100 1000
1000 10000

]
,

R =
[

0.1 0
0.001 0.01

] [
1 + ε 1

1 1

]−1 [ 0.1 0
0.001 0.01

]T
.

For ε → 0 the elements and the condition of R become increasingly large, and the
elements of the solution tend to zero. Again we give the Frobenius norm of the
computed residuals

ε ||residual||F
1 1.8 · 10−12 (0)

10−1 1.1 · 10−11 (0)
10−2 1.7 · 10−10 (0)
10−3 7.6 · 10−8 (0)
10−4 8.3 · 10−7 (0)
10−5 4.2 · 10−7 (1)
10−6 5.3 · 10−7 (1)
10−7 1.1 · 10−3 (0)

Here the Schur vector method achieved slightly more accurate results but one or two
more steps of explicit defect correction with Algorithm 3.2 DCORC improved also the
results of OSMARE.

Example 4.4. (Laub [15], Example 4)

A =



A11 A12 0 . . . 0
0 A22 A23 0 . . . 0
...

. . . . . . . . . . . .
...

0 AN−2,N−2 AN−2,N−1 0

0 AN−1,N−1
0
−1

0 . . . 0 0 −1


∈ R2N−1,2N−1
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G = diag(1, 0, 1, 0, . . . , 1, 0, 1)
F = diag(0, 10, 0, 10, . . . , 0, 10, 0),

where

Ak,k =
[
−1 0
1 0

]
, 1 ≤ k < N,

Ak+1,k =
[

0 0
−1 0

]
, 1 ≤ k < N − 1.

Again we give the Frobenius norm of the residual.

n ||residual||F
9 7.5 · 10−14 (1)
19 2.6 · 10−13 (1)
29 5.4 · 10−13 (3)
39 2.0 · 10−12 (7)
49 7.4 · 10−12 (11)

For large dimensions the number of iterations for OSMARE increases which has the
effect that here the Schur vector method and the sign function method are faster for
obtaining the same accuracy.

In this case one step of explicit defect correction with Algorithm 3.2 DCORC im-
proved the residuals to O(10−14).

Example 4.5. (Laub [15], Example 5) The system has the form

A =



−2 1 0 . . . 0 1
1 −2 1 0 . . . 0
0 1 −2 1 0 . . . 0
...

. . .
. . .

. . .
...

0 1
1 0 . . . 0 1 −2


, G = R = In.(35)

Most eigenvalues of the Hamiltonian matrix have multiplicity 2, hence as expected
there will be a number of deflation steps in LISH. Here the abovementioned difficulty
with choosing the right deflation criterion occurred and only the relaxed criterion (31)
secured convergence.

n ||residual||F
5 2.1 · 10−15 (1)
10 3.4 · 10−15 (1)
20 9.6 · 10−15 (4)
30 1.8 · 10−14 (6)
64 8.7 · 10−14 (15)

The accuracy is for the given sizes equal to the accuracy obtained from the Schur
vector method while for much larger n the accuracy is smaller than that for the Schur
vector method due to the inaccurate subspaces obtained from the relaxed deflation
criterion.
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Example 4.6. (Laub [15], Example 6)

A =


0 1 0 . . . 0
...

. . . . . . . . .
...

0 0 1
0 . . . 0 0

 ,

G = diag(0, . . . , 0, 1), F = diag(1, 0, . . . , 0).

The eigenvalues of the Hamiltonian matrix are the roots of λ2n = (−1)n+1. It is known
[15] that x1n = 1. The difficulty in this example lies in the fact that the linear system
XQ1 = −Q2 is extremely ill conditioned and the elements of X become very large.
The residual therefore gives no information on the accuracy of the solution. Here we
use therefore the accuracy of the computed element x1n.

The condition estimate from the LINPACK procedure DGECO for Q1 is over 109

for n = 21. Using δrel = |x1n − 1| we obtained the following results

without def. corr. with def. corr.
||residual||F 3.0 · 10−4 244 (1)

δrel 2.4 · 10−15 1.4 · 10−7

The result computed without any defect correction is several digits more accurate
than the results obtained from the Schur vector and sign function methods.

The decrease in accuracy after defect correction arises from the fact that the solution
matrix X has elements of very large magnitude. Even in the implicit defect correction
the residual based on (26) is very inaccurate and used in the next step. This shows
that it is important to monitor the condition numbers and sizes of the elements of
X in order to avoid the situation that the computation of the residual corrupts all
further refinement steps. An error analysis of the algorithm is needed in order to
better understand the situations where defect correction does not lead to improved
solutions.

Example 4.7. We also generated random Hamiltonian matrices to compare the
different methods. These matrices had the following properties: Let Remin, Remax
be the smallest and largest modulus of the real part of an eigenvalue of H

example no.
1 2 3 4 5 6

n 10 10 20 20 30 40
‖H‖F 39.9 325.6 147.3 96.3 330.3 577.0
Remax 26.44 216.14 102.3 9.309 229.51 403.21
Remin 0.59 0.803 0.367 0.051 0.835 1.098

For the residuals we obtained the following Frobenius norms:

example no.
1 2 3 4 5 6

OSMARE 7 · 10−14 3 · 10−13 2 · 10−13 3 · 10−12 7 · 10−13 2 · 10−12

SIGNF 1 · 10−13 5 · 10−13 2 · 10−13 3 · 10−13 9 · 10−13 2 · 10−12

SCHUR 1 · 10−13 5 · 10−13 2 · 10−13 4 · 10−12 8 · 10−13 2 · 10−12

The results did not differ from those for the sign function and Schur vector method
also in all other random test cases, which had dimensions up to n = 50.
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5. Conclusion. We have outlined the multishift technique first proposed in [1]
for the computation of any Lagrangian invariant subspace of a Hamiltonian matrix,
and considered its use in solving algebraic matrix Riccati equations that arise in linear
optimal control. We have seen that the algorithm can be used iteratively, as a defect
correction procedure, to accurately compute solutions of Riccati equations. The pro-
cedure has the desirable property that it isolates the required invariant subspace by
performing orthogonal symplectic similarity transformations on the initial Hamilto-
nian matrix. Further refinements and analysis of the algorithm are currently under
investigation.
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