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Abstract. Recently Laurie presented a fast algorithm for the computatiof2ef+ 1)-point Gauss-Kronrod
quadrature rules with real nodes and positive weights. We describe modifications of this algorithm that allow the
computation of Gauss-Kronrod quadrature rules with complex conjugate nodes and weights or with real nodes and
positive and negative weights.
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1. Introduction. Let dw be a nonnegative measure with support on the real axis and
an infinite number of points of increase. Assume that the moments= ffooo P dw(x),
k=0,1,2,..., exist and are bounded. For notational convenience, we assumethat.

An n-point Gauss quadrature rule for the integral

(1.2) If:= /_00 f(z)dw(z)

is a formula of the form

k=1

with nodesz; < zo < ... < z, in the convex hull of the support of the measuie and
positive weightauvy, such that

(1.3) Gnf=1f Vf e Pa_1.

Here and throughout this papBs denotes the set of polynomials of degree at mjosthe
(2n + 1)-point Gauss-Kronrod quadrature rule associated with the Gauss rule (1.2) is an
integration rule of the form

2n+1
(1.4) Koniif =Y f(@k)dx,
k=1
such that
(1.5) Kontr1f=1f Vf € Pspta
and
(1.6) {mi )iy C @)t
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For notational simplicity we assume throughout this paper that

We refer to the nodes (1.7) as Gauss nodes and the remaining{rﬁng}é:ﬁrl as Kronrod
nodes.

Pairs of Gauss and Gauss-Kronrod rules (1.2) and (1.4) are often evaluated together in
order to determine accurate approximations with error estimates of integrals (1.1). Proper-
ties of Gauss-Kronrod rules (1.4) can be investigated by studying the Stieltjes polynomial
Sny1(x) == ]‘[i’;ﬁrl(x — Z1), whose zeros are the Kronrod nodes; see Monegato [16] and
the recent paper by Ehrich and Mastroianni [5]. Nice surveys of Gauss-Kronrod rules and
their properties are provided by Gautschi [7] and Laurie [13]; see also Gautschi [8] for a
recent discussion and further references.

It is known that Gauss-Kronrod quadrature rules, i.e., rules with the properties (1.5) and
(1.6), do not always exist. If th€n + 1)-point Gauss-Kronrod rule (1.4) does exist, then
the Kronrod nodes may be real or appear in complex conjugate pairs. Weightsociated
with complex conjugate Kronrod nodes are complex conjugate. Note that the nonnegativity of
the measurdw implies that the Gauss nodes are real. Gauss-Kronrod rules with real nodes
may have positive or negative weights, and the nodes may or may not be contained in the
smallest interval containing the supportdf. Gautschi [7, p. 52] notes that “Little has been
provedwith regard to these properties; any new piece of information, from whatever source
- computational or otherwise - should therefore be greeted with appreciation.” It is our hope
that the algorithms of the present paper will be helpful in shedding light on these questions,
as well as be useful for the computation of Gauss-Kronrod rules required in applications.

Laurie [13], and more recently Calvetti et al. [3], presented efficient algorithms that
require onlyO(n?) arithmetic operations for the computation of the nodes and weights of
(2n 4 1)-point Gauss-Kronrod quadrature rules with real nodes and positive weights. This
paper describes modifications of Laurie’s algorithm that allow the computation of the nodes
and weights of2n + 1)-point Gauss-Kronrod rules with complex conjugate nodes, or with
real nodes and positive and negative weight€){n?) or O(n?) arithmetic operations. The
faster algorithm yields nodes and weights with sufficient accuracy for most applications. The
slower algorithm gives higher accuracy for certain difficult problems.

The present paper is organized as follows. Section 2 reviews results by Laurie [13] and
discusses maodifications required for the computation of Gauss-Kronrod rules with complex
conjugate nodes, or with real nodes and positive and negative weights. The new algorithms
are described in Section 3, and Section 4 presents computed examples. Concluding remarks
and a discussion of an extension can be found in Section 5. Throughout this paper we let

i:=+/—1.
2. Some tridiagonal matrices. Let {p;} 32, be a sequence of monic orthogonal poly-
nomials with respect to the inner product

2.1) ()= [ " @)g(@)du(@),
i.e.,
(2.2) deg(p;) = 7; (pj.pe) =0, j# k.

Thep; satisfy the recursion relations

prr1(®) = (x—ar)pr(z) — b2pr_1(x), k=1,2,...,
(23) ;1($) = T —aop, po(fll) k: ]-a
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with coefficients

(2.4) g e PRTPE) g
(pk;Pk)

(2.5) b?::M, k=1,2,....
(Pkfhpkfﬂ

We will assume that the coefficienig andb;, are explicitly known. When only the measure

dw is available, these coefficients can be computed by (2.4) and (2.5). It may be attractive to
evaluate necessary inner products by a Clenshaw-Curtis quadrature rule; see Gautschi [6] for
a discussion.

Laurie [13] and Calvetti et al. [3] presented efficient algorithms for the computation of
nodes and weights of Gauss-Kronrod rules (1.4) with distinct real nodes and positive weights.
These algorithms are based on Laurie’s observation that to 2aghl )-point Gauss-Kronrod
guadrature rule with real nodes and positive weights, there is associated a real symmetric
tridiagonal(2n + 1) x (2n + 1) matrix with positive subdiagonal entries

o b
by ay bo
(2.6) Topyr =

ban—1 G2n-1 b2n
b2n 6271,

We refer to this matrix as the Gauss-Kronrod matrix. fgprl have spectral factorization
(27) T27L+1 = W271,+1A27L+1W2_n1+1; A2n+1 = diaqj\la XQ; o 7x2n+1]-
SinceTs, . 1 is symmetric, the columns of the eigenvector matrix can be scaled so that
(2.8) Wyt =Wi .
The nodes and weights of the Gauss-Kronrod quadrature rule (1.4) are then given by
2.9) {@’_Xﬁr ) 1<j<2n+1:
w; = (e1 Want1€5)7,
see Golub and Welsch [11] for a discussion. Here we only note that formula (2.9) requires
that the normalization (2.8) holds. We refer to the set
(2.10) (N el Wonire; }??{1

as the partial spectral resolution of the maffix,, ;. The positivity of the subdiagonal entries
of Ty, +1 implies that the eigenvalues, and therefore the nodes, are distinct.

Laurie’s algorithm [13] for determining the nodes and weights @ra+ 1)-point Gauss-
Kronrod quadrature rule with real nodes and positive weights consists of two steps: i) com-
pute the entries of the Gauss-Kronrod matrix (2.6) from the recursion coefficients (2.4) and
(2.5), and i) if eachb? > 0 (1 < k < 2n + 1), compute the partial spectral resolution of the
Gauss-Kronrod matrix (2.6) by the Golub-Welsch algorithm [11]. Each step req{ie%)
arithmetic operations. We will discuss these steps further below. At this point we remark that
for certain functionsf, such as rational functions with known poles or functions that satisfy
a recursion relation with few terms, the representation

(2.11) Kont1f = € f(Tant1)er
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may provide a more convenient way of evaluating the Gauss-Kronrod rule than (1.4), because
(2.11) does not require the computation of the partial spectral resolutif,of. Formula
(2.11) follows by combining (1.4) with (2.7)-(2.9); see Golub and Meurant [9].
Laurie’s algorithm is based on the following key result.
PropPosITION2.1. (Laurie [13])The leading and trailing: x n principal submatrices
of T»,, 1 have the same spectrum. Moreover, for n odd,

(212) C~I'jfl = Qj-1, b] = bj; 1< .7 <

and, for n even,

aj = aj, 0<j <%,

(213) { bj = bj, 1<j<3

where thez; andb; are given by (2.4) and (2.5).
Example 2.1. Let = 2. The entriega; }%_, and{b,}?_, of the Gauss-Kronrod matrix

Ts are recursion coefficients for orthogonal polynomials associated with the measuret
the entries marked byare not explicitly known,

ao b
_ 61 a 62
(2.14) Ty = by a2 bs

* %

It follows from Proposition 2.1 that the leading and trailing principal 2 submatrices of’;
have the same trace. This yields the equation

(2.15) Go + a1 = a3 + da

for a,. The determinants of the leading and trailing principal 2 submatrices are also the
same, and this gives the equation

(2.16) Aoy — b? = asdy — b2

for bs. When (2.16) is satisfied by a real positive valué.nfa Gauss-Kronrod rule with real
nodes and positive weights exists. A purely imaginary solulioof (2.16) signals that the
Gauss-Kronrod quadrature rule either has complex conjugate nodes or real nodes and positive
and negative weight§l

Example 2.2. Let» = 2 and consider the measure associated with the Hermite poly-
nomials,dw(x) := 7~ /2 exp(—22)dz. Then the recurrence coefficients (2.4) and (2.5) are
given bya; = 0 andb; = /5 /2. Equation (2.15) yields that, = 0 and by equation (2.16)
b2 = b2. We can choosé, = b;, which shows that thé-point Gauss-Kronrod quadrature
rule has distinct real nodes and positive weights.

Letn = 3 instead. Then the Gauss-Kronrod maffixis complex symmetric with all
entries real, except fdr, = i. The Gauss-Kronrod rule has one pair of complex conjugate
nodes, see Example 4.1 below, in agreement with the discussion by Monegafd [15].

Example 2.3. Let, = 2 and consider the measure associated with the Laguerre polyno-
mials,

e Fdx, x>0,
(2.17) dw(x) := { 0, <0
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Then the recursion coefficients (2.4) and (2.5) are givem;by 2j+1 andb; = j. Equations
(2.15) and (2.16) yield, = —3 andb? = —23, respectively; henck, = i1/23. The5-point
Gauss-Kronrod quadrature rule has one pair of complex conjugate nodes; see Example 4.2
and the discussion in [15]1

By Proposition 2.1 abouj{tth of the entries of the Gauss-Kronrod matrix (2.6) are known.
Laurie [13] observed that the entries of the trailimg< n principal submatrixZ}, of (2.6)
are recursion coefficients for a family of orthogonal polynom{a‘iJs};’;O1 with respect to a
bilinear form

(2.18) <fg>= [ " f(@)g(e)dis(z).

The measurdw is not explicitly known, and is not unique. Laurie [13] showed that the un-
known entries ofl,, and thereby ofgnH, can be computed i@ (n?) arithmetic operations
by applying recursion formulas closely related to those used in the modified Chebyshev al-
gorithm; see also Gautschi [8] for a discussion. The Gauss-Kronrod matrices (2.6) generated
in this manner belong t@',, 1, the set of complex symmetric tridiagonal matrices of order
2n + 1 with real diagonal entries and real or purely imaginary subdiagonal elements. Since,
in general, (2.18) is not an inner product, it may happenthat, p; >= 0 for some index
j < n—1. Inthese (rare) cases the Gauss-Kronrod matrix (2.6) cannot be computed. We
will assume thak p;, p; ># 0 for 0 < j < n. Then the Gauss-Kronrod matrix (2.6) exists
and has nonvanishing subdiagonal entries.
Laurie’s scheme [13, Appendix A] for computing the unknown entries of the Gauss-

Kronrod matrix (2.6) actually yields the elements of the real tridiagonal matrix

apg 1

¥oa 1
(219)  Shusri= € RerHIxGntl),

b%n—l &%n,1 1
b%n d2n

which is similar to the Gauss-Kronrod matrix (2.6), i.e.,
(2.20)  Sont1 = Danp1Tons1D5 1, Doy = diagl,dy, da, ..., dan],

where

(2.21) dj :=Dbiba---bj,  j=1,...2n.

The entries?)? may be negative; see Example 2.3. When the mégj,xH has one or several
negative subdiagonal entries, evaluation of the Gauss-Kronrod rule by the formula

(2.22) Koni1f = €] f(Sant1)er

may be more convenient than by (2.11), because the latter representation requires complex
arithmetic. Formula (2.22) follows from (2.11) and (2.20).
We remark that sometimes using the matrix

do  sign(b?)|b | o
|b1] a sign(3) b2 |
(223) 527L+1 = . .
|b2n71| d%n,1 5|gr(b§n)|b2n|
|b2n| dQn
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instead of (2.19) may be preferable because it is better balanced; we will comment further on
this at the end of Subsection 3.2. Here we only note that the matrix (2.23) also is diagonally
similar to the Gauss-Kronrod matrix (2.6), i.e.,

Sonp1 = D27L+1T271,+1D2_n1+1 ;
Doy = diagl, \/sign(@), \/sign(@), .., \/sign(d3, )]

(2.24)

where thed; are given by (2.21).

For many integrands, formula (1.4) provides the most convenient way of evaluating the
Gauss-Kronrod quadrature rule. This formula requires that the nodes and weights be com-
puted. We therefore seek to develop algorithms for their efficient and accurate computation.

Golub and Welsch [11] used the connections between Gauss quadrature, orthogonal poly-
nomials, and real symmetric tridiagonal matrices to show that the Gauss weights are the
squares of the first component of the normalized eigenvectors. In fact, any real symmetric
tridiagonal matrix with nonzero subdiagonal elements corresponds to a finite sequence of
orthogonal polynomials for some (honunique) nonnegative medsuré&he eigendecompo-
sition of the matrix of orden determines the-point Gauss rule for this family of measures.

In contrast, not every complex symmetric tridiagonal matrix with nonzero subdiagonal
elements can be associated with a quadrature rule of the form (1.4), because these matrices
are not guaranteed to have distinct eigenvalues. In fact, they need not be diagonalizable.

Example 2.4. Consider the matrix

M = € Ts.

O~ O
S O =
O = O

It has the eigenvalue zero of algebraic multiplicity three and geometric multiplicityfone.
PROPOSITION2.2. Let M be a complex symmetric tridiagonal matrix with nonvanishing
subdiagonal elements. Thé# is diagonalizable if and only if it has no multiple eigenvalue.
Proof. This follows from the well-known result that every eigenvalue of an upper Hes-
senberg matrix with nonzero subdiagonal elements has geometric multiplicity equal to one
[10, Theorem 7.4.4]: since the subdiagonal elements of the matrix are nonzero, the nullspace
of M — A\I has dimension equal to one for every eigenvalg M . O
Assume now that the eigenvaluesff@hh and hence o§2n+1, are distinct, and let

(2.25) Sony1 = ‘72n+1/~\2n+1‘72:111; Aopir = diaghi, Aa, -5 Aot ],

be a spectral factorization &b, 1.

THEOREM 2.3. Let Sy, 1 be a matrix of the form (2.23) with distinct eigenvalues and
spectral factorization (2.25). Then the nodes and weights of the associated Gauss-Kronrod
quadrature rule (1.4) can be computed from

(2.26) iy =\

(2.27) Wy = (el Vi, 1e1)(ef Vansie;),

fori1 <j<2n+1.
Proof. As shown in [1], this result follows directly from results of Gragg [12].
We refer to the set

(2.28) {S\j, eJTf/Q;}Hel, elTVgnHej}?ZTl
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as the partial spectral resolution of the nonsymmetric tridiagonal msirix; .

The following theorem discusses a structure-preserving spectral decomposition of com-
plex symmetric tridiagonal matrices of the form generated in step i) of Laurie’s algorithm.

THEOREM2.4. LetT}nH € T9,41 have distinct eigenvalues, and further assume that
every eigenvectar of Tgnﬂ satisfiest” = # 0. Thenfgnﬂ has a spectral factorization of
the form (2.7) with a complex orthogonal eigenvector mafrix, ., € C2»+Dx(2n+1) The
eigenvalues\; are real or appear in complex conjugate pairs. The nodes and weights of the
Gauss-Kronrod rule (1.4) can be determined by (2.9).

Proof. The matrixT%, ., is of the form (2.6) and is diagonally similar to the real matrix
(2.23). Therefore its eigenvalues are real or appear in complex conjugate pairs. The (formal)
orthogonality of the eigenvectors @%,,; associated with distinct eigenvalues can be shown
in the same way as the analogous result for real symmetric matrices. Moreover, since each
eigenvector satisfiese” « # 0, the columns of the eigenvector matﬁxgnﬂ can be scaled
so that the eigenvector matriXs,, ., satisfies (2.8). Note that’,,, .1 might not be unitary.
Formula (2.9) now follows from (2.24), (2.25) and (2.21).

Theorem 2.4 provides the basis for a structure-exploiting algorithm that determines the
partial spectral resolution (2.10) of a matffix, ;1 € T2, 1 in O(n?) arithmetic operations.

The algorithm is of QR type, and generates a sequence of matrities.in similar toT5, 1

by applying a succession of real orthogonal and complex orthogonal similarity transforma-
tions, and is a generalization of the Golub-Welsch algorithm [11]; see Subsection 3.1 for
details.

Complex orthogonal matrices can be ill-conditioned, and when very ill-conditioned sim-
ilarity transformations are used in the algorithm, reduced accuracy of the computed partial
spectral resolution may result. This loss of accuracy may be avoided by instead applying
the standard QR algorithm for nonsymmetric Hessenberg matricés,to. The latter al-
gorithm uses only real orthogonal similarity transformations, and reqdl(es) arithmetic
operations because it does not preserve the tridiagonal structfisg of. (In [1], this tech-
nigue is applied tcﬁgnﬂ.) We will show in Subsection 3.2 how the standard QR algorithm
can be used to compute the partial spectral resolution (2.10) without storing the eigenvector
matrix.

3. Algorithms for computing the partial spectral resolution. This section describes
two algorithms for the computation of the nodes and weights @ra+ 1)-point Gauss-
Kronrod rule (1.4) from its associated Gauss-Kronrod matrix (2.6) or the similar real non-
symmetric matrix (2.23). We rely on ideas related to the well-known QR algorithm. A nice
presentation of the QR algorithm is provided by Watkins [20, Chapter 4]. Many issues of im-
portance for an efficient implementation are discussed by Golub and Van Loan [10, Chapter
7.

3.1. Ageneralized Golub-Welsch algorithm.We describe a generalization of the Golub-
Welsch algorithm [11] that allows for the computation of the partial spectral resolution (2.10)
of matrices in the s€Ty, ;1 in O(n?) arithmetic operations. The algorithm of Golub and
Welsch for computing Gauss rules corresponding to a real symmetric tridiagonal matrix is
based on the QR algorithm, which preserves the tridiagonal structure of the initial matrix.
Our generalization relies on a QR-type algorithm, based on similarity transformations that
are orthogonal, but possibly complex (and therefore non-unitary). These similarity transfor-
mations preserve the complex symmetric structure of the initial matrix, and can therefore be
used to compute the partial spectral resolutio®{m?) arithmetic operations.

A structure-preserving QR-type iteration for matrices in the clBss,;, and other
classes of related structures, is the HR algorithm of Bunse-Gerstner [2]. In fact]'each
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Tan+1 is aJ-Hermitian matrix for some matrif = diag+1, +1, ..., 1], so the HR algo-

rithm can be applied efficiently to such a matifix More recently, Cullum and Willoughby

[4] considered aspects of a structure-preserving QR-type algorithm for the slightly larger class
of all complex symmetric tridiagonal matrices. A related algorithm is also outlined by Luk
and Qiao [14].

We describe here a generalization of the Golub-Welsch algorithm based on a modification
of the complex symmetric tridiagonal QR algorithm of [4]. A generalization based on the HR
algorithm of [2] can be obtained similarly.

LetT = 7 be a given matrix ifT',, ;. Our algorithm generates a sequence of similar
matrices

(3.1) TUtY .= QUTWQUNT € Topyy, [QW)T = [QW] ! e CRrHDXx(2nt1)

forj =0,1,...,which converge to a diagonal matrix or a block diagonal matrix with blocks
of order1 or 2. The matriceQ?) are products of plane transformations, i.e., matrices that
are equal to the identity matrix of appropriate size, except a2 block on the diagonal.
We represent these blocks as

(3.2) G::[c _5}, A4 s?=1,

so thatG? = G~!. Of course, wher ands are realG is a (unitary) Givens rotation.
Each of the matrice& is generated so that it maps a vector= [a,b]T € C? to a
multiple of the axis vectoe;:

GTv = dey, whered := /a2 + b2 € C.

If d # 0, then we can take c &/d ands = b/d. If both a andb are real or purely imaginary,
then we can chooseands real, andG is a real Givens matrix. I = b = 0, then we take
G = I,; otherwiseG remains undefined whe## = a? + b2 = 0. Note that a complex
orthogonal plane transformatiad can be arbitrarily ill-conditioned. I is real andb is
purely imaginary, then we may chooseeal ands = io, o € R, and the condition number
of G is given by

e[ + |o]
e[ = o]

(3.3) K(G) =

The algorithm of [4] uses an implicit single-shift strategy based on Wilkinson shifts. In
order to avoid possible difficulties associated with complex conjugate eigenvalues (which is
a contingency that is not relevant for real matricesli, 1), the iteration begins with a
single randomly chosen complex shift to move the matrices into the larger class of complex
symmetric tridiagonal matrices. Of course this then releases the constraint that the non-real
eigenvalues occur in complex conjugate pairs. We therefore implement the algorithm using
the Francis double shift strategy so that the complex conjugate symmetry of the eigenvalues
is preserved.

If it were known beforehand thdt(®) had only real eigenvalues, then a single-shift strat-
egy could be employed with real shifts. In this case the algorithm could be viewed as being
the reverse of the inverse eigenvalue algorithm presented in [17] for the construction of a
complex symmetric tridiagonal matrix from the partial spectral resolution (2.10).

Although Cullum and Willoughby [4] only discuss the computation of the spectrum of
T, the eigenvectors can also be computed®{m?) operations by accumulating the individ-
ual plane transformations in the same way as is done in the QR algorithm when the latter is
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applied to a real matrif’ € To,+1. Accordingly, the first components of the complex sym-
metric eigenvector matri¥/’ can be computed by accumulating the transformations against
the first axis vector, as in the Golub-Welsch algorithm.

3.2. Application of the standard QR algorithm. We outline the computations required
by the QR algorithm for real symmetric upper Hessenberg matrices with distinct eigenvalues,
and discuss its application to the computation of the nodes and weights of the Gauss-Kronrod
quadrature rule (1.4) from the matrbe,,; defined by (2.23). We apply the QR algorithm
to Sgnﬂ rather than to the similar Gauss-Kronrod matrix (2.6), because this reduces the
complex arithmetic necessary.

The QR algorithm applies a sequence of unitary Givens similarity transformations to
San1 to obtain a Schur factorization

(34) 527L+1 = U27L+1R271,+1U§n+1) U;nJrlUQn-i-l = 127L+17

whereR;,, 1 € Cn+1)x(2n+1) s a an upper triangular matrix and the superscrigénotes
transposition and complex conjugation.

The spectral factorization o, is then given by (2.25), where the diagonal matrix
A2n+1 is formed from the diagonal entries ﬂgnH, and where the eigenvector matrix is
given by

(3.5) Vont1 = Usny1Z2n 41

Here,Z,,,1 is an upper triangular eigenvector matrix®f,,, 1, which is computed by back
substitution. In view of (2.24), the matrix

- S -
W2n+1 = D2n+1‘/2n+1

is an eigenvector matrix of the Gauss-Kronrod matrix (2.6).

The straightforward computation of the weights by formula (2.27) requies') arith-
metic operations. We now describe thTVQnHel, e; VQ,LHeJ}Q”“ can be computed
in O(n?) arithmetic operations without storing the eigenvector maibix,,. Introduce the
vectors

_ —1 _ =1 7=
- ‘/2n+161 - ZQTL+1U27L+161’

&

T _ 5T 7T
w =V, 61 =25,,1Us, €1,

where the right-most expressions follow from (3.5). We first complig, ;e; andUZ, | e

by applying the unitary Givens matrices that makéigp, | in the order they are generated to
vectorse;. Thus, the matri>(72n+1 does not have to be stored. The columns of the triangular
eigenvector matri¥Z,; are generated one at a time starting with last one and ending with
the first one. One column at a time is used in back substitution to conpfrem U;nﬂel.

The matrix vector produdEQTnH(UQTnHel) which yieldsw' also is evaluated by using the
columns ongnH one at a time. In particular, entries of the malﬁgglﬂ do not need to be
stored simultaneously. The computationeindw’ as described requir€®(n?) arithmetic
operations.

We have described how the QR algorithm can be applied to compute the partial spectral
resolution of the matrixS,, ;. We note that the QR algorithm can be applied to the ma-
trix SgnH defined by (2.19) in an analogous fashion. However, in our experience the latter
approach often yields inferior accuracy due to poor balancing of the n&t,msl.
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Properties of Gauss-Kronrod rules for the Hermite measure

TABLE 4.1
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number of pairs of number of real
n || complex conjugate weights negative weights
3 0 2
4 0 2
5 2 0
10 2 0
25 10 0

TABLE 4.2

Errors in computed Gauss-Kronrod rules for the Hermite measure

discrepancy in| discrepancy in| discrepancy in| discrepancy in
n | max k(QG) Gauss nodes| Gauss nodes|| nodes by HQR| weights by HQR
by CSTQR by HQR and CSTQR and CSTQR

3 2.4 1.2E-15 6.7E-16 1.8E-15 3.1E-16

4 3.6 3.7E-15 2.6E-15 1.6E-15 6.8E-16

5 2.4E2 4.4E-14 8.9E-16 4.4E-14 2.1E-15
10 6.0E2 7.0E-13 4.0E-15 7.0E-13 7.6E-16
25 1.7E4 2.3E-12 2.2E-14 2.7E-10 2.2E-15

4. Numerical examples.The computations were carried out on an HP 9000 workstation
using Matlab, i.e., with about significant digits. We refer to the fast algorithm of QR-type
for complex tridiagonal matrices described in Subsection 3.1 as “CSTQR.” This algorithm
is compared to the implementation of the QR algorithm for real Hessenberg matsices
furnished by Matlab (function eig). We refer to the latter algorithm as “HQR.” The nodes and
weights are determined by (2.9) and (2.26)-(2.27). Several of the quadrature rules listed in the
tables have been discussed by Monegato [15]. In all examples the recursion coeffigients
andb? for the orthogonal polynomials associated with the given measusesre explicitly
known; see, e.g., [19].

Example 4.1. We considé@n + 1)-point Gauss-Kronrod rules (1.4) associated with
the Hermite measuréw(z) := m~ /2 exp(—z?)dz. Table 4.1 shows the number of pairs of
complex conjugate weights with nonvanishing imaginary parts, as well as the number of real
negative weights, of a few Gauss-Kronrod rules. The Gauss-Kronrod rules$oR and
n = 3 already have been considered in Example 2.2. The latter rule has one pair of complex
conjugate nodes, each of which is associated with a real negative weight. These weights
are of the same magnitude. The other quadrature rules of Table 4.1 have the same number
of pairs of complex conjugate nodes as they have pairs of complex conjugate weights with
nonvanishing imaginary parts. Far= 25 all weights associated with nonreal nodes are of
magnitude less thak- 1020,

Table 4.2 illustrates the accuracy achieved by the algorithms CSTQR and HQR for the
quadrature rules of Table 4.1. In exact arithmetic the Gauss nodes are a subset of the Gauss-
Kronrod nodes; cf. (1.6). We mark computed approximations of nodes with a prime or a
double prime. Thus, we compute Gauss nodles. =, < ... < 2/, as the eigenvalues of the
leading real symmetrie x n principal submatrix of the Gauss-Kronrod matrix (2.6) using
the Matlab function eig. Lef#,, @, };"' denote the set of node-weight pairs of the Gauss-
Kronrod rule computed by algorithm CSTQR, andi§t< ), < ... < Z], be the subset
of (approximations of) Gauss nodes; cf. (1.7). Similarly,{lef, «wg},igl denote the set
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TABLE 4.3
Properties of Gauss-Kronrod rules for the Laguerre measure
number of pairs of number of real
n || complex conjugate weights negative weights
2 1 0
3 1 0
10 5 0
TABLE 4.4
Errors in computed Gauss-Kronrod rules for the Laguerre measure
discrepancy in| discrepancy in|| discrepancy in| discrepancy in
n | maxk(G) Gauss nodes| Gauss nodes|| nodes by HQR| weights by HQR
by CSTQR by HQR and CSTQR and CSTQR
2 1.0E2 3.3E-15 8.9E-16 9.6E-14 6.1E-16
3 3.1E1 3.6E-15 5.3E-15 6.5E-15 6.7E-16
10 2.6E4 3.8E-12 3.7E-14 3.9E-11 1.3E-12

of node-weight pairs of the Gauss-Kronrod rule computed by algorithm HQR. We order the
pairs in both sets so that computed nodes and weights with the same index are approximations
of the same (exact) node-weight pair.

A large number of plane transformations (3.2) are applied during the computations with
algorithm CSTQR. When the matri¥ has real entries only, it is a (unitary) Givens matrix,
and therefore its condition number is one. Transformations (3.2) with not all entries real can
have an arbitrarily large condition numbe(G). The second column of Table 4.2 displays
(4.2) max £(G),
where the maximum is taken over all plane transformations (3.2) applied in algorithm CSTQR.
We use the notation 2.4E2 for4 - 102.

The third column of Table 4.2 displays the discrepanaies; <x<», |}, — )| and the
fourth column shows the discrepanciasxi<i<n |z}, — }|. Under the assumption that the
error in all computed nodes is of about the same magnitude, these columns yield estimates of
the magnitude of the error in all the nodes. These estimates were computed by Laurie [13]
for Gauss-Kronrod rules with real nodes and positive weights.

The fifth and sixth columns tabulate the discrepaneies: <x<2n+1 |}, — Zj| and
maxi<k<on+1 |W), — Wy|, respectively.

The error estimates displayed in the table suggest that both algorithms CSTQR and HQR
yield accuracy much higher than required in many applications. Generally, algorithm HQR
gives higher accuracy. The quantity (4.1) is seen to give an indication of the error in the
computed nodes and weights by algorithm CSTQR. For instance, when (4.1) islaod
then the nodes and weights are computed with an error of magnitude ofldBout. O

Example 4.2. We considé2n + 1)-point Gauss-Kronrod rules (1.4) associated with the
Laguerre measure (2.17). The Gauss-Kronrod rulenfer 3 already has been considered
in Example 2.3. Table 4.3 is analogous to Table 4.1. None of the tabulated rules have real
negative weights. The complex conjugate weightsifet 10 are all of magnitude less than
3-107'5. Table 4.4 is analogous to Table 4[D.

Example 4.3. We considé2n + 1)-point Gauss-Kronrod rules (1.4) associated with the
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TABLE 4.5
Properties of Gauss-Kronrod rules for the Jacobi measure

number of pairs of number of real
n | « G || complex conjugate weights negative weightg
15| 35| 35 0 3
251 35| 35 0 10
5|75|75 0 2
251 75|75 12 0
10| O 5 4 1
TABLE 4.6
Errors in computed Gauss-Kronrod rules for the Jacobi measure
discrepancy| discrepancy|| discrepancy, discrepancy
in Gauss in Gauss in nodes in weights
max £(G) nodes by nodesby || by CSTQR | by CSTQR
CSTOR HQR and HQR and HQR
a=3.5
8=3.5
n =15 1.3E3 1.0E-13 1.3E-15 1.0E-13 2.7E-14
n =25 2.9E3 1.6E-12 4.3E-15 1.6E-12 4.7E-11
a=71.5
68 =75
n =5 2.1E1 2.8E-15 3.5E-15 5.4E-15 2.0E-12
n =25 2.8E2 1.1E-13 5.3E-15 1.4E-13 1.5E-15
a =0
6 =5
n =10 1.8E2 3.7E-14 2.1E-15 3.4E-14 1.0E-14
Jacobi measure
dw(z) == co(1 — 2)*(1 + z)°dz, -l<z <1, o, B> -1,

where the scaling factay, is chosen to makgg = 1. The Tables 4.5 and 4.6 are analogous
to the Tables 4.1 and 4.2, respectivély.

5. Conclusion and extension.This paper describes two algorithms for the computation
of Gauss-Kronrod quadrature rules with complex conjugate nodes and weights or with real
nodes and positive and negative weights. In our experience both algorithms yield sufficient
accuracy for many applications. The slower scheme HQR generally yields nodes and weights
with higher accuracy.

We have assumed throughout this paper that the meadsuta (1.1) is nonnegative.
However, the algorithms discussed may be applied also when the measure is indefinite; see
Struble [18] for a discussion on orthogonal polynomials and quadrature rules for indefinite
measures with support on the real axis.

Acknowledgement. L.R. would like to thank Jane Cullum for discussions on the QL algo-
rithm for complex symmetric matrices.
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