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A THEORETICAL COMPARISON BETWEEN INNER PRODUCTS IN THE
SHIFT-INVERT ARNOLDI METHOD AND THE SPECTRAL

TRANSFORMATION LANCZOS METHOD �

KARL MEERBERGENy

Abstract. The spectral transformation Lanczos method and the shift-invert Arnoldi method are probably the
most popular methods for the solution of linear generalized eigenvalue problems originating from engineering appli-
cations, including structural and acoustic analyses and fluid dynamics. The orthogonalization of the Krylov vectors
requires inner products. Often, one employs the standard inner product, but in many engineering applications one
uses the inner product using the mass matrix. In this paper, we make a theoretical comparison between these inner
products in the framework of the shift-invert Arnoldi method. The conclusion is that when the square-root of the
condition number of the mass matrix is small, the convergence behavior does not strongly depend on the choice of
inner product. The theory is illustrated by numerical examples arising from structural and acoustic analyses. The
theory is extended to the discretized Navier-Stokes equations.
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1. Introduction. This paper is concerned with the solution of generalized eigenvalue
problems of the form

Ax = �Bx; A;B 2 Rn�n; x 6= 0 ;(1.1)

whereA may be symmetric or non-symmetric, andB is symmetric positive (semi) definite,
by the spectral transformation Lanczos method [6, 18] and the shift-invert Arnoldi method
[17]. Applications include the modal analysis of structures without damping, which leads to

Ku = !2Mu;(1.2)

whereK andM are symmetric matrices and often positive definite [9]. Typically, the number
of wanted eigenmodes for representing the structural properties for low and mid frequencies
ranges from a few tens to a few thousands. The modal extraction of acoustic finite element
models also leads to a problem of the form (1.2). The required number of eigenmodes is often
small, since the modes are usually employed for a low frequency analysis. For the (Navier)
Stokes problem, we have

�
K C
CT 0

��
u
p

�
= �

�
M 0
0 0

��
u
p

�
;(1.3)

whereM is symmetric positive definite,C is of full rank andK is symmetric (Stokes [14])
or nonsymmetric (Navier-Stokes). This eigenvalue problem arises in the determination of
the stability of a steady state solution. Here only the rightmost eigenvalue is wanted [14, 3].
This paper concentrates on the solution of (1.2), but (1.3) will also be touched on. In both
applications,M is a discretization of the continuous identity operator, i.e., the continuous
inner producthx; yi is replaced by the discretexTMy. As a result, the condition number
of M is usually small. We study this specific case. The theory is illustrated by numerical
examples arising from real applications.

�Received November 11, 1997. Accepted for publication August 4, 1998. Recommended by R. Lehoucq.
yLMS International, Interleuvenlaan 70, 3001 Leuven, Belgium. Current address: Rutherford Appleton Labora-

tory, Chilton, Didcot, OX11 0QX, UK. (K.Meerbergen@rl.ac.uk)

90



ETNA
Kent State University 
etna@mcs.kent.edu

Karl Meerbergen 91

One approach to the solution of generalized eigenvalue problems is the shift-invert
Arnoldi method [17, 20, 15]. Instead of solving (1.1) directly, one solves the shifted and
inverted problem

(A� �B)�1Bx = �x(1.4)

by the Arnoldi method. The scalar� is called the shift, which explains the name ‘shift-
invert’. If (�; x) is an eigenpair of(A � �B)�1B, then (� + ��1; x) is an eigenpair of
Ax = �Bx. This relation demonstrates that�’s can be computed from�’s. Without loss of
generality, we assume a shift� = 0 is used. In general,A�1B is a nonsymmetric matrix,
even whenA andB are symmetric, and this is the reason why the Arnoldi method is used.
However, whenA is symmetric andB is symmetric positive definite,A�1B is self-adjoint
with respect to theB-inner product. This implies that the Lanczos methodcanbe used, when
theB-inner productxTBy is employed instead of the standard inner productxT y. This idea
was proposed by Ericsson [5] and Nour-Omid, Parlett, Ericsson and Jensen [18]. A block
version was proposed by Grimes, Lewis and Simon [10]. In the case whereB is positive
semi-definite, which, e.g. arises in applications of the form (1.3), theB-semi-inner product
can be used in the Lanczos method or the Arnoldi method. This is suggested by Ericsson [5],
Nour-Omid, Parlett, Ericsson and Jensen [18], and Meerbergen and Spence [16] and applied
to linearized and discretized Navier-Stokes equations by Lehoucq and Scott [12].

In this paper, we show by both analysis and numerical examples that if the square root
of the condition number of the mass matrixB is small, the choice of inner product does
not influence the convergence speed. The choice of inner product should be based on other
criteria than rate of convergence. We illustrate this for two classes of applications. WhenA is
symmetric, the use of theB-inner product reduces the Arnoldi method to the Lanczos method.
The Lanczos method has two advantages over the Arnoldi method. First, the eigenvalues have
quadratic error bounds and their convergence is well understood [19, 20]. Second, the cost
per iteration consists of the action ofA�1B on a vector and the orthogonalization of the new
iteration vector against the previous ones. The cost for the construction of the Krylov basis
is smaller than for the Arnoldi method, since only the last two basis vectors are used in the
orthogonalization process. The Arnoldi method uses all vectors. The Lanczos method uses
theB-inner product which can be quite expensive compared to the standard inner product.
The overall orthogonalizationcost, however, can be much smaller than for the Arnoldi method
with standard inner product, when the number of iteration vectors is large. This is often the
case for a structural analysis for low and mid frequencies since a large number of eigenmodes
is wanted. The use of the standard inner product instead of theB-inner product may be
preferred whenA is nonsymmetric and the Arnoldi method needs to be used anyway, so full
orthogonalization against all previous basis vectors cannot be avoided. Lehoucq and Scott
[12] demonstrate for discretized Navier-Stokes applications that theB-inner productis more
expensive than the standard inner product, but leads to a more reliable Arnoldi method.

A side effect of the use ofB-orthogonalization is that the approximate eigenvectors are
B-orthogonal, whenA is symmetric. This is very natural since the exact eigenvectors cor-
responding to different eigenvaluesare B-orthogonal. In finite element applications, it is
assumed that the computed eigenmodes satisfy this property. This is automatically satisfied
by the Lanczos method withB-orthogonalization, but not by the Arnoldi method.

The plan of this paper is as follows. Inx2, a theoretical comparison between standard and
B orthogonalization is established. Inx3, we present an easy way of obtainingB-orthogonal
eigenvectors from the Arnoldi method whenA is symmetric. Inx4, we illustrate the theory
by numerical examples. Section 5 generalizes the ideas fromx2 to the Navier-Stokes prob-
lem. Finally, we summarize the main conclusions inx6. We assume computations in exact
arithmetic.
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2. A relation between standard andB-orthogonalization. In this section, a theoreti-
cal study of the Arnoldi method with standard orthogonalization andB-orthogonalization is
established for the eigenvalue problem (1.2). The goal is to relate the residual norms as well
as the Hessenberg matrix (which is tridiagonal for the Lanczos method) and the computed
eigenvalues for both types of inner product. The analysis assumes exact arithmetic.

First, in x2.1, some preliminaries and notation are presented. Second,x2.2 puts both
types of orthogonalization into a single theoretical framework: we present the algorithm and
some properties. The relation between standard andB-inner products in the Arnoldi method
will be formulated and derived inx2.3.

2.1. Notation and preliminaries. This section is devoted to some notation and matrix
properties. In general, we use the Euclidean norm for vectors and matrices, denoted byk � k2
or k � k. The matrix Frobenius norm is denoted byk � kF . Let �(C) denote the condition
number of the matrixC.

First, sinceB is a positive definite matrix, there existsL 2 Rn�n such thatB = LTL.
LEMMA 2.1. ConsiderV;W 2 Rn�k. LetV TV = I ,W TBW = I and let the columns

of V span the same space as the columns ofW . Then there is anS such thatV = WS.
Moreover,�(S) = �(W ) �p�(B).

Proof. It is clear that there is anS such thatV = WS. HenceV TBV = STS and
W TW = S�TS�1. SincekV k = 1, we havekSk2 = kV TBV k � kBk, and since
W TBW = (LW )T (LW ) = I , we havekS�1k2 = kW TWk = k(LW )TB�1(LW )k �
kB�1k. This completes the proof.

We will compare two algorithms that differ primarily in their choice of inner product or
norm. We will use the notationhx; yi to stand for a generic inner product, such asxT y or
xTBy. The notation is also generalized to matricesV = [v1; : : : ; vk] andW = [w1; : : : ; wl],
as follows :

hV; xi = [hvj ; xi]kj=1 2 Rk

hW;V i = [hwi; vji](l;k)(i;j)=(1;1) 2 Rl�k :

Sinceh�; �i is an inner product, it follows thathWS; V Zi = SThW;V iZ.

TheB norm of a vectorx is defined bykxkB =
p
xTBx. TheB norm of a matrixC is

defined bykCkB = kLCk2, whereB = LTL. Obviously, for two matrices,V 2 Rn�k and
W 2 Rn�l, we havekV TBWk � kV kBkWkB.

For a matrixC, the Krylov spaceKk(C; v1) of orderk with starting vectorv1 is defined
by

Kk(C; v1) = spanfv1; Cv1; C2v1; : : : ; C
k�1v1g :

We assume that all Krylov spaces of orderk have dimensionk. In practice, a space is repre-
sented by a basis. The following lemma gives a relation between two different bases.

LEMMA 2.2. Let Vk;Wk 2 Rn�k be such that the firstj columns ofVk and the firstj
columns ofWk form two bases forKj(C; v1) for j = 1; ::; k. Then there is a full rank upper
triangular matrixSk 2 Rk�k such thatVk =WkSk.

The following lemma shows the uniqueness of a normalized Krylov basis.
LEMMA 2.3 (Implicit Q Theorem).([8, Theorem 7.4.2]) Let the firstj columns ofVk and

Wk 2 Rn�k form two bases forKj(C; v1) for j = 1; : : : ; k andhVk; Vki = I = hWk ;Wki.
Thenvi = wi�i with �i = �1 for i = 1; : : : ; k.
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2.2. A general (theoretical) framework for Krylov methods. The Arnoldi and Lanc-
zos methods for the solution of (1.2) are Krylov subspace methods, i.e., the eigenvalues and
eigenvectors are computed from the projection ofA�1B on a Krylov space. The following
algorithm covers both methods. Recall thathx; yi denotes the inner product, e.g. the standard
inner producthx; yi = xT y or theB-inner producthx; yi = xTBy.

ALGORITHM 1. General framework for the Lanczos and Arnoldi methods.
0. Givenv1 with hv1; v1i = 1.
1. For j = 1 to k do

1.1. Formpj = A�1Bvj .
1.2. Compute the Gram Schmidt coefficientshij = hvi; pji; i = 1; : : : ; j.
1.3. Updateqj = pj �

Pj
i=1 vihij .

1.4. Compute normhj+1;j = hqj ; qji1=2.
1.5. Normalize :vj+1 = qj=hj+1;j .

2. LetHk = [hij ]
(k+1;k)
(i;j)=(1;1) 2 Rk+1�k wherehij = 0 wheneveri > j + 1.

LetHk be the firstk rows ofHk.
Let Vk = [v1; : : : ; vk].

3. Compute eigenpairs(�; z) of Hk, with z 2 Rk, by the QR method.
4. Compute the ‘Ritz’ vectorx = Vkz 2 Rn.
5. Compute the residual norm� = hk+1;kjeTk zj.
Step 1.1 is performed by a matrix vector multiplication withB and the solution of a linear
system withA. The solution of the linear system is usually performed by a direct method,
since one can take advantage of the fact thatA needs to be factored only once. Moreover,
direct methods usually give a solution with a small backward error. This is required for
the Arnoldi method to find the eigenpairs of (1.1) [15]. Steps 1.1 to 1.5 compute a basis
Vk+1 = [v1; : : : ; vk+1] of the Krylov space

Kk+1(A
�1B; v1) = spanfv1; A�1Bv1; : : : ; (A�1B)kv1g ;

normalized such thathVk+1; Vk+1i = I . The normalization is performed by Gram-Schmidt
orthogonalization. For reasons of numerical stability, practical implementations use reorthog-
onalization [4] in the Arnoldi method and modified Gram-Schmidt with partial reorthogonal-
ization in the Lanczos method [10]. The Gram-Schmidt coefficients are collected in the upper
Hessenberg matrixHk. Note thatHk is ak + 1 by k matrix. We denote thek � k upper
submatrix ofHk byHk. By the elimination ofpj andqj from Steps 1.1 to 1.5, it follows that

A�1BVk = Vk+1Hk(2.1a)

= VkHk + vk+1hk+1;ke
T
k :(2.1b)

This is the well known recurrence relation for the Arnoldi and Lanczos methods. Usually,
k � n, so thatHk has much smaller dimensions thanA andB. In Steps 3-4, an eigenpair
(�; x) is computed by the Galerkin projection ofA�1B onKk, i.e.,x 2 Kk and the residual
r = A�1Bx� �x is orthogonal to the Krylov space :

x = Vkz with Hkz = �z :(2.2)

The�’s are the eigenvalues ofHk and are called ‘Ritz’ values and thex’s are the correspond-
ing ‘Ritz’ vectors. They form an approximate eigenpair ofA�1B. Recall thatHk is an upper
Hessenberg matrix, so the eigenpairs(�; z) are efficiently computed by the QR method [8,
x7.5]. The residualr = A�1Bx� �x also follows from (2.1b) :

r = A�1Bx� �x = vk+1hk+1;ke
T
k z(2.3)
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and the induced norm is very cheaply computed as

� = hr; ri1=2 = hk+1;kjeTk zj :(2.4)

This explains Step 5 in the algorithm. The residual norm is a measure of the accuracy of the
eigenvalues. (See eigenvalue perturbation theory, e.g., [20, Ch. III] and [1, Ch. 2].) In the
following, we also use a block formulation of the recurrence relation for the ‘Ritz’ vectors.
Let Xl = [x1; : : : ; xl] = VkZl andDl = diag(�1; : : : ; �l) representl � k Ritz pairs and
Rl = [r1; : : : ; rl] the corresponding residual terms of the form (2.3). Then it follows that

A�1BXl = XlDl +Rl; Rl = hk+1;kvk+1e
T
kZl :(2.5)

In the rest of this paper, we use the following notation to distinguish between the standard
andB-orthogonalization. For standard orthogonalization, the Krylov vectors are denoted by
Vk+1 and the Hessenberg matrix isHk. They satisfy

A�1BVk = Vk+1Hk; Hk = V T
k+1A

�1BVk ; V T
k+1Vk+1 = I :

ForB-orthogonalization, the Krylov vectors are denoted byWk+1 and the Hessenberg matrix
by T k. They satisfy

A�1BWk = Wk+1T k; T k = W T
k+1BA

�1BWk; W T
k+1BWk+1 = I :

It is clear that ifA is symmetric, the Hessenberg matrixTk = V T
k BA�1BVk is symmetric,

hence tridiagonal.

2.3. Comparison between both orthogonalization schemes.In this section, a rela-
tionship between standard andB-orthogonalization is established. Clearly, the computed
Krylov spaces are the same, but the projections differ and this may lead to different eigen-
value approximations. The theoretical result in this section uses Lemma 2.2, which makes the
link between two Krylov bases by use of an upper triangular matrix. First, in Theorem 2.4,
we relatehk+1;k andtk+1;k andHk andTk, and in Theorem 2.5, we relate the eigenvalues of
Tk andHk.

THEOREM 2.4. Letv1 = w1=kw1k. Then there is a matrixSk 2 Rk�k, such that

Tk = SkHkS
�1
k +E(2.6)

kEk2 � hk+1;k�(Wk+1)

�(Wk+1)
�1 � tk+1;k

hk+1;k
� �(Wk+1) ;

and

�(Sk); �(Wk+1) �
p
�(B) :

Proof. Recall thatVk+1 andHk satisfy the Arnoldi recurrence relation (2.1a). Let
Sk+1 2 Rk+1�k+1 be the upper triangular Cholesky factor ofV T

k+1BVk+1, i.e.,

V T
k+1BVk+1 = ST

k+1Sk+1 :

As a consequence,Vk+1S
�1
k+1 forms aB-orthogonal Arnoldi basis for the Krylov space. Since

Krylov bases are unique (see Lemma 2.3),Wk+1 = Vk+1S
�1
k+1. (Eventually, the columns
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Sk+1 must be multiplied by�1, see�i in Lemma 2.3.) The Arnoldi relation (2.1a) can be
rewritten as

A�1B(VkS
�1
k ) = (Vk+1S

�1
k+1)(Sk+1HkS

�1
k );

whereSk is thek � k principle submatrix ofSk+1. Consequently,T k = Sk+1HkS
�1
k .

Decompose

Sk+1HkS
�1
k =

�
Sk s
0 sk+1;k+1

��
Hk

hk+1;ke
T
k

�
S�1k

T k =

�
Tk

tk+1;ke
T
k

�
:

Then, we have

Tk = SkHkS
�1
k +E

where

E = hk+1;ks
�1
k;kse

T
k(2.7)

and

tk+1;k = hk+1;ksk+1;k+1s
�1
k;k :

The proof now follows from Lemma 2.1.
This theorem says that when the square root of the condition number ofB is small, the

residual terms are of the same order. It also says thatTk is a rank-one update ofHk of the
order ofhk+1;k.

The following theorem establishes a relationship between eigenpairs ofTk andHk.
THEOREM 2.5. Let (�; Vkz) be a ‘Ritz’ pair of the Arnoldi method and let� be the

corresponding residual norm. Assume thatv1 = w1=kw1k. Then there exists an eigenvalue
� of Tk such that

j� � �j � �(Yk)�(Wk+1)� ;

whereYk is the matrix whose columns contain the eigenvectors ofTk.
Proof. From (2.6) and the fact thatHkz = �z, we have

SkHkz � TkSkz = �ESkz
TkSkz � �Skz = ESkz :

With y = Skz=kSkzk and� = hk+1;kjeTk zj, it follows from (2.7) andeTk Sk = sk;ke
T
k that

kTky � �yk � hk+1;kjs�1k;kjkskjeTk Skzj
kSkzk

� hk+1;kkskjeTk zj
kSkzk =

ksk
kSkzkhk+1;kje

T
k zj

� �(Sk+1)� = �(Wk+1)� :(2.8)

Following the Bauer-Fike Theorem [20, Theorem 3.6], it follows thatTk has an eigenvalue�
for which

j� � �j � �(Yk)kTky � �yk ;
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from which the proof follows.
The eigenvalues ofHk can similarly be related to the eigenvalues ofTk. WhenA is

symmetric, so isTk. Therefore�(Yk) = 1, and the error bound becomes sharper. The most
important conclusion is that the ‘Ritz’ values with a small residual norm� are almost the
same for both the standard and theB-inner products.

3. Computation ofB-orthogonal eigenvectors in the Arnoldi method.When theB-
inner product is used andA andB are symmetric, the tridiagonal matrixTk is symmetric, so
Tk has an orthogonal set of eigenvectorszj ; j = 1; : : : ; k. Therefore, the Ritz vectorsWkzj ,
j = 1; : : : ; k form aB-orthogonal set ofk vectors.

When the standard inner product is used, the ‘Ritz’ vectors are not necessarilyB-
orthogonal. The following theorem shows the dependence of theB-orthogonality on the
separation between the eigenvalues and on the norms of the residuals.

THEOREM 3.1. Let (�j ; xj), j = 1; : : : ; l < k be ‘Ritz’ pairs andrj the corresponding
residuals computed by the Arnoldi method with the standard inner product. Then, for1 �
i; j � l, we have

jxTi Bxj j
kxikBkxjkB � krjkB=kxjkB + krikB=kxikB

j�i � �j j ;

provided that�i 6= �j .
Proof. Denote byDl the diagonal matrix containing�1; : : : ; �l, and let the columns of

Xl be the corresponding Ritz vectors. By multiplying (2.5) on the left byXT
l B, we have

XT
l BA

�1BXl = XT
l BXlDl +XT

l BRl :(3.1)

Since the left-hand side is symmetric,

XT
l BXlDl +XT

l BRl = DlX
T
l BXl +RT

l BXl(3.2)

and, so

XT
l BXlDl �DlX

T
l BXl = RT

l BXl �XT
l BRl :

The(i; j) element of this matrix leads to the result of the theorem.
This theorem shows that eigenvectors corresponding to different distinct eigenvalues are

almostB-orthogonal, but the eigenvectors corresponding to clustered eigenvalues can lose
B-orthogonality. So, an additionalB-orthogonalization of the eigenvectors is desirable.

In the following, we use the notations of (2.5), i.e.,Dl denotes the diagonal matrix con-
taining l � k Ritz values�1; : : : ; �l and the columns ofXl denote the corresponding Ritz
vectors. The most robust way to obtainB-orthogonal Ritz vectors, is to compute theB-
orthogonal projection ofA�1B onto the range ofXl and compute new eigenpairs from this
projection. This is established as follows. LetSl be the upper triangular Cholesky factor of
XT

l BXl = ST
l Sl. Then, withYl = XlS

�1
l , we haveY T

l BYl = I . A Ritz pair obtained by
B-orthogonalization is of the form(�; y = Ylz) with (�; z) satisfying

Y T
l BA�1BYlz = �z :(3.3)

This additional projection leads to quadratic error bounds for the eigenvalues. (See e.g. the
Kato-Temple theorem [20, Theorem 3.8].) The matrix on the left-hand side of (3.3) can be
computed explicitly, but can as well easily be computed without the action ofA�1 by the use
of (3.1) :

Y T
l BA�1BYl = SlDlS

�1
l + Y T

l BRlS
�1
l(3.4)
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Box car interior exhaust pipe

(by courtesy of Bosal)

FIG. 4.1.Meshes for the three eigenvalue problems inx4

In practice, we could compute(�; z) from

(SlDlS
�1
l + Y T

l BRlS
�1
l )z = �z(3.5)

instead of (3.3).
However, there is an alternative to performing an additional projection. The columns of

Yl can be taken as theB-orthogonal ‘Ritz’ vectors. From the following theorem, it follows
that if the residual norms of(�j ; xj) for j = 1; : : : ; l are small and

p
�(B) is small, the

residuals for(�j ; Ylej) for j = 1; : : : ; l are also small. Of course, the ‘Ritz’ values do not
satisfy a quadratic error bound.

THEOREM 3.2. Recall the definition ofDl andXl from Eq. (2.5). LetSl be the upper
triangular Cholesky factor ofXT

l BXl and letYl = XlS
�1
l . Then

kA�1BYl � YlDlkB � (
p
l+ 1)

p
�(B)kRlk :

Proof. From (3.4), we have

Y T
l BA�1BYl = SlDlS

�1
l +E

with E = Y T
l BRlS

�1
l . SinceSl is upper triangular, andDl diagonal,SlDlS

�1
l = Dl + U

whereU is strictly upper triangular. Note thatSlDlS
�1
l +E is symmetric and so isU +E :

U +E = UT +ET : This implies

U � UT = E �ET

2kUk2F � 2kEk2F
and sokUk2 � kEkF � p

lkEk2. From (2.5), we have

A�1BYl � YlDl = Yl(SlDlS
�1
l �Dl) +RlS

�1
l

= YlU +RlS
�1
l

kA�1BYl � YlDlkB � kUk2 +
p
�(B)kRlk2

� (
p
l + 1)

p
�(B)kRlk2

from which the proof follows.

4. Numerical examples.All examples have been generated using SYSNOISE, a soft-
ware tool for vibro-acoustic simulation [22]. The matricesA andB arise from acoustic and
structural finite element models and are symmetric. We present results for the following
problems.
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PROBLEM 1. The first application concerns the structural modal analysis of a square box
with Young modulus2: � 1011Pa, Poisson coefficient0:3 and volume density7800 kg=m3.
The thickness of the material is0:01m. One of the six faces of the box is fixed. For the finite
element analysis, we used 150 shell elements. This analysis leads to an eigenvalue problem
(1.2). For this problem,A = K andB = M . The dimension of the problem isn = 852 andp
�(B) � 1:20 � 103. We used a shift� = �10 in the shift-invert transformation of (1.4).

PROBLEM 2. The acoustic modal analysis of a Volvo 480 3D car interior discretized with
744 cubic elements and 68 pentaedral finite elements leads to a problem of the form (1.2) with
K positive semi-definite. The fluid has volume density1:225 kg=m3 and sound has a speed
of 340m/s (air). For this problem,A = K andB = M . The dimension of the problem is
n = 1176 and

p
�(B) � 21:2. We used a shift� = �10 in the shift-invert transformation of

(1.4).
PROBLEM 3. This concerns the coupling of a structural and an acoustic problem. We

consider a square box of1m3 with Young modulus2: � 1011Pa, Poisson coefficient0:3 and
volume density7800 kg=m3. The thickness of the material is0:01m. One of the six faces
of the box is fixed. The box is filled with air (speed of sound340m/s and volume density
1:29 kg=m3). The box is discretized by294 shell elements, which represents the structural
model. The acoustic behavior of the fluid is modeled by a boundary element mesh of294
quadrangular elements. The matrixA is the structural stiffness matrix, whileB is the sum of
the structural mass matrix and the added mass matrix coming from the acoustic model. The
dimension of the problem isn = 1692 and

p
�(B) � 1:2 � 103. A shift � = 0 was used.

PROBLEM 4. The acoustic modal analysis of a Jaguar X100MS exhaust pipe discretized
with 39254 cubic finite elements leads to a problem of the form (1.2) withK positive semi-
definite. The fluid has volume density1:225kg=m3 and the sound has a speed of340m/s (air).
The dimension of the problem isn = 46966 and

p
�(B) � 42:8. For this problem,A = K

andB = M . The shift� is chosen such that the 11 dominant eigenvalues of(A � �B)�1B
correspond to the eigenfrequencies between0 and200Hz.

4.1. Illustration for Theorem 3.1. We compare the Ritz values of(A + 10B)�1B
for Problems 1 and 2 and their residual norms afterk = 10 Arnoldi/Lanczos steps, started
with a random initial vector. Theorem 3.1 states that the Ritz values obtained byB-
orthogonalization and standard orthogonalization lie within a distance of�

p
�(B) where

� is the residual norm (2.4). For Problem 1, we havehk+1;k = 3:8375 � 10�7, tk+1;k =
4:1245 � 10�6 and�(Wk+1) = 24:755 and for Problem 2, we havehk+1;k = 4:1966 � 10�7,
tk+1;k = 3:2867 � 10�7 and�(Wk+1) = 2:7. These values are consistent with Theorem 2.4.
The matching significant digits of the respective Ritz values and the residual norms are shown
in Tables 4.1 and 4.2, except for the multiple eigenvalue at0:1 (�1; : : : ; �4) for Problem 1,
which is not displayed. Ritz values that do not share any digits are not shown. All Ritz values
satisfy Theorem 2.5.

4.2. Illustration of the B-orthogonalization of the ‘Ritz’ vectors. When Ritz vec-
tors are computed by Arnoldi’s method with standard orthogonalization, they are notB-
orthogonal. We could perform an explicitB-orthogonal projection by solving (3.5). Instead,
we use the columns ofYl as Ritz vectors, as suggested inx3. We illustrate Theorem 3.2, which
states that the columns ofYl are sufficiently accurate Ritz vectors. The�j are unchanged. The
results reported come from the Arnoldi computations fromx4.1. The ‘Ritz’ vectors before
and afterB-orthogonalization are denoted byxj andyj respectively. Tables 4.3 and 4.4 show
the explicitly computed residual norms before and afterB-orthogonalization. (Note that the
�
(2)
j in Tables 4.3 and 4.4 corresponds well to the�j in Tables 4.1 and 4.2 respectively. The

difference is that�j is computed from (2.4) and�(2)j is the explicitly computed residual norm.)
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TABLE 4.1
Matching the eigenvalues ofHk andTk after 10 steps for Problem 1. The value�j is defined by (2.4).

j hx; yi = xT y hx; yi = xTBy
�j �j �j

5 5:941�10�6 7�10�9 4�10�9
6 3:98875�10�6 5�10�8 4�10�8
7 1�10�6 9�10�7 6�10�7
8 8�10�7 2�10�7 2�10�7
9 2�10�7 3�10�7
10 1�10�7 2�10�8

TABLE 4.2
Matching the eigenvalues ofHk andTk after 10 steps for Problem 2. The value�j is defined by (2.4).

j hx; yi = xT y hx; yi = xTBy
�j �j �j

1 9:9999999994941�10�2 0: 0:
2 6:260362�10�6 2�10�13 2�10�13
3 2:208�10�6 2�10�9 2�10�9
4 1:8�10�6 2�10�7 2�10�7
5 1:364�10�6 3�10�8 3�10�8
6 8�10�7 2�10�7 3�10�7
7 6�10�7 3�10�7 2�10�7
8 2�10�7 1�10�7 1�10�7
9 7�10�8 8�10�8
10 2�10�8 2�10�8

The results are consistent with Theorem 3.2. In Table 4.3,�
(B)
4 � 10�6, which is much larger

than�(2)4 . This is possible sincey4 is a linear combination ofx1; : : : ; x4 and�(B)
4 depends on

kR4k � �
(2)
1 � 10�5.

4.3. Illustration for the implicitly restarted Arnoldi/Lanczos methods. In practical
calculations, if small residual norms need to be obtained for the desired eigenvalues, the
Krylov subspaces often become very large. In the literature, some remedies against the
growth of this subspace are proposed. One idea is to restart the Krylov method with a new
pole� in (1.4), as suggested in [10, 7]. In this paper, we use the implicitly restarted Lanczos
and Arnoldi methods with exact shifts [21, 11]. Roughly speaking, the implicitly restarted
Arnoldi method is mathematically equivalent to the following scheme.
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TABLE 4.3
Residual norms for Problem 1 before and afterB-orthogonalization. We denote�(2)j = k(A+10B)�1Bxj�

�jxjk and�(B)
j

= k(A+ 10B)�1Byj � �jyjkB .

j �
(2)
j �

(B)
j

1 3�10�5 5�10�6
2 6�10�9 8�10�7
3 2�10�8 2�10�6
4 9�10�9 2�10�6
5 7�10�9 1�10�7
6 5�10�8 1�10�7
7 9�10�7 3�10�6
8 2�10�7 8�10�7
9 2�10�7 3�10�6
10 1�10�7 4�10�8

TABLE 4.4
Residual norms for Problem 2 before and afterB-orthogonalization. We denote�(2)j = k(A+10B)�1Bxj�

�jxjk and�(B)
j = k(A+ 10B)�1Byj � �jyjkB .

j �
(2)
j �

(B)
j

1 6�10�17 4�10�17
2 4�10�13 4�10�13
3 6�10�9 5�10�9
4 3�10�8 3�10�8
5 1�10�7 1�10�7
6 2�10�7 2�10�7
7 2�10�7 2�10�7
8 1�10�7 1�10�7
9 6�10�8 1�10�7
10 2�10�8 9�10�8

ALGORITHM 2. (implicitly) restarted Arnoldi method
0. Given is an initial vectorv1.
1. Iterate :

1.1. FormVk+1 andHk by k steps of Arnoldi.
1.2. Compute ‘Ritz’ pairs(�; x) and residual norm�.
1.3. Get a new initial vectorv1 = Vkz.
Until � � TOLj�j

The implicitly restarted Arnoldi method is an efficient and reliable implementation of this
algorithm. For the problems that are solved in this paper, the new initial vectorv1 is a linear
combination of the wanted ‘Ritz’ vectors, so that ‘unwanted’ eigenvalues do not show up in
following iterations. (For a precise definition and practical algorithms, see [21, 11].) In gen-
eral, the implicitly restarted Arnoldi and Lanczos methods do not have the same subspaces
after two iterations, since the ‘Ritz’ vectors are different and so is the linear combination.
This can lead to different subspaces and therefore to different rates of convergence. The nu-
merical results are obtained using the ARPACK routinesdsaupd (Lanczos) anddnaupd
(Arnoldi) [13]. Note that ARPACK uses the Arnoldi process, i.e., full (re)orthogonalization,
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TABLE 4.5
Comparison between implicitly restarted Lanczos (xTBy) and Arnoldi (xT y) for Problem 3

hx; yi linear solves matrix vector iterations time
products withB (sec.)

xTBy 46 136 4 150:
xT y 46 65 4 117:

TABLE 4.6
Comparison between implicitly restarted Lanczos (xTBy) and Arnoldi (xT y) for Problem 4

hx; yi linear solves matrix vector iterations time
products withB (sec.)

xTBy 27 75 2 705
xT y 26 37 2 685

for symmetric problems, rather than the more efficient Lanczos process with partial reorthog-
onalization. This implies that timings reductions are possible for the results of the Lanczos
method withB-orthogonalization. The matrixB was represented by a compressed sparse row
matrix storage format, which allows for efficient storage and matrix vector products. The lin-
ear system solvers where solved by a block skyline (or profile) solver. All computations were
carried out within the SYSNOISE [22] environment on an HP PA 7100 C110 workstation.

Table 4.5 contains the numerical results for Problem 3. The20 eigenmodes near-
est 0 are required. The Implicitly Restarted Arnoldi/Lanczos methods were run with the
same initial vector, Krylov subspace dimensionk = 30, and relative residual tolerance
TOL = 10�5. The number of iterations are equal for both methods. The Lanczos method
with B-orthogonalization is more expensive due to the additional matrix vector products in
the reorthogonalization of theB-orthogonalization. For the Arnoldi method with standard
orthogonalization, the number of matrix vector products withB is equal to the number of
solves withA � �B plus the number needed for theB-orthogonalization of the Ritz vectors
(x3).

Table 4.6 contains the numerical results for Problem 4. The eigenfrequencies between
0 and250Hz are sought. The implicitly restarted Arnoldi/Lanczos methods were run with
the same initial vector, Krylov subspace dimensionk = 21, and relative residual tolerance
TOL = 10�5. A matrix vector product byB is cheap compared to a back transformation. The
conclusions are very similar to Problem 3, but the differences between the CPU times are less
pronounced.

5. Extension to (Navier) Stokes problems.Recall the (Navier) Stokes problem (1.3).
For this problem,B is typically positive semi-definite. The use of theB-semi-inner product in
the Lanczos method was suggested by Ericsson [5], Nour-Omid, Parlett, Ericsson and Jensen
[5]. The use of this semi-inner product was justified by Ericsson [5] and Meerbergen and
Spence [16]. Moreover, it ‘purifies’ the Ritz values from possible contamination arising from
the singularity ofB. For the details, see [5, 18, 16]. Cliffe, Garratt, Golding and Spence [2]
suggested the use of the matrix

P =

�
I 0
0 0

�
instead of

�
M 0
0 0

�

in the inner product. ThisP -inner product has the same ‘purification’ property as theB-inner
product (see [16, Theorem 2] withM = I). Thus, an alternative to the Arnoldi method with
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B-orthogonalization is the Arnoldi method withP -orthogonalization. In fact, the situation is
very similar to acoustic and structural eigenvalue problems. Indeed, decompose

Vk+1 =

�
Uk+1

Qk+1

�
and Wk+1 =

�
~Uk+1

~Qk+1

�

and normalizeVk+1 such thatV T
k+1PVk+1 = UT

k+1Uk+1 = I and Wk+1 such that
W T

k+1BWk+1 = ~UT
k+1M

~Uk+1 = I . Consequently, Theorem 2.4 is still valid with the only
difference that�(B) should be replaced by�(M), Vk+1 byUk+1 andWk+1 by ~Uk+1.

6. Conclusions and final remarks. In this paper, we established a theoretical compar-
ison between standard orthogonalization andB-orthogonalization for the solution of eigen-
value problems, for which the square root of the condition number of the mass matrix is
small. This is often the case in acoustic and structural eigenvalue problems and for the dis-
cretized (Navier) Stokes equations. Roughly speaking, the orthogonalization seems to play a
minor role in the convergence of the eigenvectors in the Krylov space. The theoretical results
are extended to the Navier-Stokes problem as well, where the Arnoldi method withB-semi-
orthogonalization and the Arnoldi method withP -semi-orthogonalization behave similarly.

Following the theory and our numerical experiments the type of inner product should not
be chosen on the basis of rates of convergence. The decision should be based on cost per itera-
tion, or reliability. For example, it follows from the numerical results for Problem 4 that there
is no advantage in performance for the Arnoldi method with standard orthogonalization with
respect to the Lanczos method withB-orthogonalization, though the inner product is more
expensive for the Lanczos method. Moreover, when the number of iteration vectors is high,
it is expected that the Gram-Schmidt process with reorthogonalization becomes prohibitive,
so that the Lanczos method becomes much cheaper than the Arnoldi method. We also no-
ticed that the Lanczos method withB-orthogonalization is more reliable than the Arnoldi
method with standard orthogonalization: sometimes, sought-after eigenvalues are missed by
the Arnoldi method. For Navier-Stokes applications, where the Arnoldi method should be
used anyway sinceA is nonsymmetric, the use of theP -inner product rather than theB-inner
product may lead to a more efficient code. Lehoucq and Scott [12] report that theB-inner
product seems to be more reliable than the standard inner product. They do not report results
for theP -inner product.
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