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A THEORETICAL COMPARISON BETWEEN INNER PRODUCTS IN THE
SHIFT-INVERT ARNOLDI METHOD AND THE SPECTRAL
TRANSFORMATION LANCZOS METHOD *

KARL MEERBERGEN

Abstract. The spectral transformation Lanczos method and the shift-invert Arnoldi method are probably the
most popular methods for the solution of linear generalized eigenvalue problems originating from engineering appli-
cations, including structural and acoustic analyses and fluid dynamics. The orthogonalization of the Krylov vectors
requires inner products. Often, one employs the standard inner product, but in many engineering applications one
uses the inner product using the mass matrix. In this paper, we make a theoretical comparison between these inner
products in the framework of the shift-invert Arnoldi method. The conclusion is that when the square-root of the
condition number of the mass matrix is small, the convergence behavior does not strongly depend on the choice of
inner product. The theory is illustrated by numerical examples arising from structural and acoustic analyses. The
theory is extended to the discretized Navier-Stokes equations.
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1. Introduction. This paper is concerned with the solution of generalized eigenvalue
problems of the form

(1.1) Az = \Bz, A, B e R"", z#0,

whereA may be symmetric or non-symmetric, aldis symmetric positive (semi) definite,
by the spectral transformation Lanczos method [6, 18] and the shift-invert Arnoldi method
[17]. Applications include the modal analysis of structures without damping, which leads to

(1.2) Ku=w>Mu,

whereK andM are symmetric matrices and often positive definite [9]. Typically, the number
of wanted eigenmodes for representing the structural properties for low and mid frequencies
ranges from a few tens to a few thousands. The modal extraction of acoustic finite element
models also leads to a problem of the form (1.2). The required number of eigenmodes is often
small, since the modes are usually employed for a low frequency analysis. For the (Navier)
Stokes problem, we have
(+)
p )
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whereM is symmetric positive definite, is of full rank andK is symmetric (Stokes [14])

or nonsymmetric (Navier-Stokes). This eigenvalue problem arises in the determination of
the stability of a steady state solution. Here only the rightmost eigenvalue is wanted [14, 3].
This paper concentrates on the solution of (1.2), but (1.3) will also be touched on. In both
applications,M is a discretization of the continuous identity operator, i.e., the continuous

inner product(z, y) is replaced by the discrete’ My. As a result, the condition number

of M is usually small. We study this specific case. The theory is illustrated by numerical

examples arising from real applications.
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One approach to the solution of generalized eigenvalue problems is the shift-invert
Arnoldi method [17, 20, 15]. Instead of solving (1.1) directly, one solves the shifted and
inverted problem

(1.4) (A—0oB) 'Bxr =6x

by the Arnoldi method. The scalar is called the shift, which explains the name ‘shift-
invert’. If (9,z) is an eigenpair ofA — ¢B) !B, then(c + 01, z) is an eigenpair of

Ax = ABz. This relation demonstrates thsis can be computed fromis. Without loss of
generality, we assume a shift= 0 is used. In generald—' B is a nonsymmetric matrix,

even whend and B are symmetric, and this is the reason why the Arnoldi method is used.
However, whend is symmetric andB is symmetric positive definited ! B is self-adjoint

with respect to théB-inner product. This implies that the Lanczos methadbe used, when

the B-inner product:” By is employed instead of the standard inner proddaj. This idea

was proposed by Ericsson [5] and Nour-Omid, Parlett, Ericsson and Jensen [18]. A block
version was proposed by Grimes, Lewis and Simon [10]. In the case vthé&gositive
semi-definite, which, e.g. arises in applications of the form (1.3) Bks=mi-inner product

can be used in the Lanczos method or the Arnoldi method. This is suggested by Ericsson [5],
Nour-Omid, Parlett, Ericsson and Jensen [18], and Meerbergen and Spence [16] and applied
to linearized and discretized Navier-Stokes equations by Lehoucq and Scott [12].

In this paper, we show by both analysis and numerical examples that if the square root
of the condition number of the mass matifikis small, the choice of inner product does
not influence the convergence speed. The choice of inner product should be based on other
criteria than rate of convergence. We illustrate this for two classes of applications. ken
symmetric, the use of thB-inner product reduces the Arnoldi method to the Lanczos method.
The Lanczos method has two advantages over the Arnoldi method. First, the eigenvalues have
quadratic error bounds and their convergence is well understood [19, 20]. Second, the cost
per iteration consists of the action éf * B on a vector and the orthogonalization of the new
iteration vector against the previous ones. The cost for the construction of the Krylov basis
is smaller than for the Arnoldi method, since only the last two basis vectors are used in the
orthogonalization process. The Arnoldi method uses all vectors. The Lanczos method uses
the B-inner product which can be quite expensive compared to the standard inner product.
The overall orthogonalization cost, however, can be much smaller than for the Arnoldi method
with standard inner product, when the number of iteration vectors is large. This is often the
case for a structural analysis for low and mid frequencies since a large number of eigenmodes
is wanted. The use of the standard inner product instead oBtivner product may be
preferred wherd is nonsymmetric and the Arnoldi method needs to be used anyway, so full
orthogonalization against all previous basis vectors cannot be avoided. Lehoucq and Scott
[12] demonstrate for discretized Navier-Stokes applications thaBttmmer products more
expensive than the standard inner product, but leads to a more reliable Arnoldi method.

A side effect of the use aB-orthogonalization is that the approximate eigenvectors are
B-orthogonal, whe is symmetric. This is very natural since the exact eigenvectors cor-
responding to different eigenvaluase B-orthogonal. In finite element applications, it is
assumed that the computed eigenmodes satisfy this property. This is automatically satisfied
by the Lanczos method witB-orthogonalization, but not by the Arnoldi method.

The plan of this paper is as follows. §&, a theoretical comparison between standard and
B orthogonalization is established. §8, we present an easy way of obtainiBeprthogonal
eigenvectors from the Arnoldi method whenis symmetric. In§4, we illustrate the theory
by numerical examples. Section 5 generalizes the ideas otm the Navier-Stokes prob-
lem. Finally, we summarize the main conclusiongén We assume computations in exact
arithmetic.
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2. Arelation between standard andB-orthogonalization. In this section, a theoreti-
cal study of the Arnoldi method with standard orthogonalization Brarthogonalization is
established for the eigenvalue problem (1.2). The goal is to relate the residual norms as well
as the Hessenberg matrix (which is tridiagonal for the Lanczos method) and the computed
eigenvalues for both types of inner product. The analysis assumes exact arithmetic.

First, in §2.1, some preliminaries and notation are presented. Se§ariputs both
types of orthogonalization into a single theoretical framework: we present the algorithm and
some properties. The relation between standardiymher products in the Arnoldi method
will be formulated and derived i§2.3.

2.1. Notation and preliminaries. This section is devoted to some notation and matrix
properties. In general, we use the Euclidean norm for vectors and matrices, denptd by
or|| - ||]. The matrix Frobenius norm is denoted Py || 7. Let x(C) denote the condition
number of the matrixC.

First, sinceB is a positive definite matrix, there existsc R"*" such thatB = LT L.

LEMMA 2.1.Conside, W € R™*. LetVTV = I, WTBW = I and let the columns
of V span the same space as the column&/of Then there is arb such thatl’ = W S.
Moreoverx(S) = k(W) < \/k(B).

Proof. It is clear that there is af such thaty’ = WS. HenceV" BV = STS and
WIw = §-TS-1 Since||V] = 1, we have||S||? = ||[VTBV] < ||BJ|, and since
WTBW = (LW)T(LW) = I, we have||S~1||? = |[WTW| = [(LW)TB~Y(LW)| <
||IB~1]|. This completes the prodi

We will compare two algorithms that differ primarily in their choice of inner product or
norm. We will use the notatiotr, y) to stand for a generic inner product, suchzds; or
2T By. The notation is also generalized to matri¢es= [v;, ..., vy] andW = [wy, ..., w],
as follows :

(V,z) = [(vj,2)]}_, € R*

(W, V) = [(wi, o)), 1) € RPF
Since(-, -) is an inner product, it follows thatV' S,V Z) = ST(W, V) Z.

The B norm of a vector is defined byl|z||g = V2T Bz. The B norm of a matrixC is
defined byi|C||5 = ||LC/||», whereB = LT L. Obviously, for two matricesy € R™** and
W e R™, we have[VT BW|| < ||[V||5||W||5.

For a matrixC, the Krylov spaceC, (C, v,) of orderk with starting vectow, is defined
by

Ki(C,v1) = span{vy, Cvy, C?vy,...,C* Lo} .

We assume that all Krylov spaces of orddnave dimensiort. In practice, a space is repre-
sented by a basis. The following lemma gives a relation between two different bases.

LEMMA 2.2. Let Vi, W, € R™ ¥ be such that the first columns ofi, and the firstj
columns ofi¥;, form two bases fofC; (C, v, ) for j = 1, .., k. Then there is a full rank upper
triangular matrix S, € R*** such thaf/j, = W} S.

The following lemma shows the uniqueness of a normalized Krylov basis.

LeEmMMA 2.3 (Implicit Q Theorem)([8, Theorem 7.4.2]) Let the firgtcolumns o#/;, and
Wi, € R™** form two bases fokC; (C,v;) for j = 1,...,k and(Vi, Vi) = I = (W, Wy).
Thenvi = w;0; with 0; = x1lfori = 1,..., k.
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2.2. A general (theoretical) framework for Krylov methods. The Arnoldi and Lanc-
zos methods for the solution of (1.2) are Krylov subspace methods, i.e., the eigenvalues and
eigenvectors are computed from the projectiomof B on a Krylov space. The following
algorithm covers both methods. Recall thaty) denotes the inner product, e.g. the standard
inner product{z, y) = =Ty or the B-inner productz, y) = z” By.

ALGORITHM 1. General framework for the Lanczos and Arnoldi methods.

0. Givenuv; with {vy,v) = 1.
1.Forj=1tokdo
1.1. Formp; = A~'Bu;.
1.2. Compute the Gram Schmidt coefficiehts = (v;,p;),i =1,...,j.
1.3. Update]j =pj— 22:1 Uihij.
1.4. Compute norm; 1 ; = (g;,q;)"/%.
1.5. Normalize w1 = q;/hjt1,;-
2. LetH, = [hij]éfj)lz"?)l’l) € R"1*¥ whereh;; = 0 whenevei > j + 1.
Let H}, be the firstt rows of H,.
LetV, = [’Ul, - ,’Uk].
3. Compute eigenpair®, z) of Hy,, with z € R*, by the QR method.
4. Compute the ‘Ritz’ vectar = V,z € R".
5. Compute the residual normn= hk+17k|e{z|.

Step 1.1 is performed by a matrix vector multiplication withand the solution of a linear
system withA. The solution of the linear system is usually performed by a direct method,
since one can take advantage of the fact thateeds to be factored only once. Moreover,
direct methods usually give a solution with a small backward error. This is required for
the Arnoldi method to find the eigenpairs of (1.1) [15]. Steps 1.1 to 1.5 compute a basis
Vi1 = [v1, - - ., vg41] Of the Krylov space

Kry1(A7'B,v;) = span{v;, A" Buy,..., (A7 B)*uv, }

normalized such tha.;1, Vi+1) = I. The normalization is performed by Gram-Schmidt
orthogonalization. For reasons of numerical stability, practical implementations use reorthog-
onalization [4] in the Arnoldi method and modified Gram-Schmidt with partial reorthogonal-
ization in the Lanczos method [10]. The Gram-Schmidt coefficients are collected in the upper
Hessenberg matri¥/ . Note thatd, is ak + 1 by k£ matrix. We denote thé x k£ upper
submatrix ofH ;, by Hy,. By the elimination ofp; andg; from Steps 1.1 to 1.5, it follows that

(2.18.) AilBVk = Vk+1ﬂk
(2.1b) =VpH + Uk—i—lhk-i-l,ke{ .

This is the well known recurrence relation for the Arnoldi and Lanczos methods. Usually,
k < n, so thatH;, has much smaller dimensions thdrand B. In Steps 3-4, an eigenpair
(6, z) is computed by the Galerkin projection df 1 B on Ky, i.e.,z € K; and the residual

r = A~ Bz — #x is orthogonal to the Krylov space :

(2.2) x=Vez with Hpz=20z.

The#'s are the eigenvalues @f;, and are called ‘Ritz’ values and thés are the correspond-
ing ‘Ritz’ vectors. They form an approximate eigenpairdof' B. Recall thatH}, is an upper
Hessenberg matrix, so the eigenpditsz) are efficiently computed by the QR method [8,
§7.5]. The residuat = A~! Bz — #z also follows from (2.1b) :

(2.3) r=A"'Bx—0x = kath,ke;‘gz
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and the induced norm is very cheaply computed as
(2.4) p = {r, r>1/2 = hk+17k|e{z| .

This explains Step 5 in the algorithm. The residual norm is a measure of the accuracy of the
eigenvalues. (See eigenvalue perturbation theory, e.g., [20, Ch. Ill] and [1, Ch. 2].) In the
following, we also use a block formulation of the recurrence relation for the ‘Ritz’ vectors.
Let X; = [z1,...,%] = Vi Z; andD; = diag(b.,...,6;) represent < k Ritz pairs and

Ry = [r1,...,r] the corresponding residual terms of the form (2.3). Then it follows that

(2.5) A_IBXZ = X;D; + Ry, R; = hk+17kvk+1e{Zl .

In the rest of this paper, we use the following notation to distinguish between the standard
and B-orthogonalization. For standard orthogonalization, the Krylov vectors are denoted by
Vi+1 and the Hessenberg matrixig,. They satisfy

AT'BV, = Vi Hy,, Hy =V, A™'BV:, V5 Vin=1I.

For B-orthogonalization, the Krylov vectors are denotedtyy, ; and the Hessenberg matrix
by T',.. They satisfy

AT'BWy, =Wy Ty, T, =W/l BAT'BW,, W/ BWi=1I.

Itis clear that ifA is symmetric, the Hessenberg matfix = VkTBA—lBVk is symmetric,
hence tridiagonal.

2.3. Comparison between both orthogonalization schemedn this section, a rela-
tionship between standard arittorthogonalization is established. Clearly, the computed
Krylov spaces are the same, but the projections differ and this may lead to different eigen-
value approximations. The theoretical result in this section uses Lemma 2.2, which makes the
link between two Krylov bases by use of an upper triangular matrix. First, in Theorem 2.4,
we relatehy1 , andt,41 , andH;, andT}, and in Theorem 2.5, we relate the eigenvalues of
Ty, ande.

THEOREM2.4. Letv; = w, /||w,||. Then there is a matris, € R***, such that

(26) Tk — Skask—l +E
IEll2 < hggr k(W)

_ trit,k
K(Wigr)™H < ﬁllk < E(Wet1)

and
Iﬁl(sk),h}(WkJrl) S Iﬁ:(B) .
Proof. Recall thatV}, and H, satisfy the Arnoldi recurrence relation (2.1a). Let
Sk+1 € R¥T1F1 pe the upper triangular Cholesky factorigf, | BVj.11, i.e.,
VkTHBVkH = SlcT+1Sk+1 :

As a consequenc®y1 SE+11 forms aB-orthogonal Arnoldi basis for the Krylov space. Since

Krylov bases are unique (see Lemma 2B),., = Vk+15k_ﬁ1- (Eventually, the columns
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Sk+1 must be multiplied by-1, seed; in Lemma 2.3.) The Arnoldi relation (2.1a) can be
rewritten as

AT B(ViSE!) = (Vi Sl (Sk Hy S,
where S;, is thek x k principle submatrix ofSy;. Consequentlyl’, = Sk+1ﬁk5k_1.

Decompose
[l |5

T
i1 ket

Sk S

1
Sk+1H,,S, _{ 0 Skiik+1

T
L = tk+1ﬁe€{ ] '
Then, we have
Ty = Sy HLS; ' + E
where
(2.7) E = hk+1,ks,;}cseg
and

—1
bhr 1,k = Pkt k Skt k415, -

The proof now follows from Lemma 2.10

This theorem says that when the square root of the condition numigisogmall, the
residual terms are of the same order. It also saysfhas$ a rank-one update df;, of the
order ofhp41 .

The following theorem establishes a relationship between eigenpdifsafd Hy .

THEOREM 2.5. Let (#,V,,z) be a ‘Ritz’ pair of the Arnoldi method and legtbe the
corresponding residual norm. Assume that= w; /||w:||. Then there exists an eigenvalue
n of T, such that

10 —nl < K(Yi)&(Wii1)p,

whereYy, is the matrix whose columns contain the eigenvectog, of
Proof. From (2.6) and the fact th&f; 2 = 6z, we have

SkaZ — TkSkZ = —ESkZ
TkSkZ - GSkZ = ESkZ .

With y = Sy.z/||Skz|| andp = hy11,|el z|, it follows from (2.7) ancel Sy, = sy el that

it ilsg g lllslllef Sk

Ty — Byl <
15e2]
hnilislleTz]  Jls] .
’ = h ez
S [5pe errelen 2|
(2.8) < K(Skr1)p = 6(We1)p -

Following the Bauer-Fike Theorem [20, Theorem 3.6], it follows fhahas an eigenvalug
for which

In =61 < k(Yi)l|Try — Oyll ,
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from which the proof follows[

The eigenvalues off;, can similarly be related to the eigenvaluesiaf When A is
symmetric, so ig}. Thereforex(Y}) = 1, and the error bound becomes sharper. The most
important conclusion is that the ‘Ritz’ values with a small residual nprare almost the
same for both the standard and fBenner products.

3. Computation of B-orthogonal eigenvectors in the Arnoldi method. When theB-
inner product is used andl and B are symmetric, the tridiagonal matry, is symmetric, so
T, has an orthogonal set of eigenvecteysj = 1,..., k. Therefore, the Ritz vectoid’; z;,
j=1,...,kform aB-orthogonal set ok vectors.

When the standard inner product is used, the ‘Ritz’ vectors are not necesBarily
orthogonal. The following theorem shows the dependence oBtlmethogonality on the
separation between the eigenvalues and on the norms of the residuals.

THEOREM3.1. Let(8;,2;), j = 1,...,1 < k be 'Ritz’ pairs andr; the corresponding
residuals computed by the Arnoldi method with the standard inner product. Theh,<or
i,j <1, we have

ol Bx;|  _ lrills/llzslls + lIrills/llills
lzillBllzjlls ~ |6; — 6] ’
provided tha®); # 6;.
Proof. Denote byD; the diagonal matrix containingy, .. ., 8;, and let the columns of
X, be the corresponding Ritz vectors. By multiplying (2.5) on the lef&yB, we have

(3.1) X'BA7'BX; = XBX,D; + X BR, .
Since the left-hand side is symmetric,
(3.2) X!"BX,D, + X! BR, = D, X' BX, + R} BX;
and, so

X!'BX,D, - D/X'BX, = R BX, - X BR, .

The(i, j) element of this matrix leads to the result of the theorgm.

This theorem shows that eigenvectors corresponding to different distinct eigenvalues are
almostB-orthogonal, but the eigenvectors corresponding to clustered eigenvalues can lose
B-orthogonality. So, an additionél-orthogonalization of the eigenvectors is desirable.

In the following, we use the notations of (2.5), i.®; denotes the diagonal matrix con-
taining! < k Ritz valuesfy, ..., 0, and the columns oX; denote the corresponding Ritz
vectors. The most robust way to obtdiirorthogonal Ritz vectors, is to compute tie
orthogonal projection oft ~! B onto the range o; and compute new eigenpairs from this
projection. This is established as follows. L%tbe the upper triangular Cholesky factor of
XI'BX, = ST'S;. Then, withY; = X;S; !, we haveY,” BY; = I. A Ritz pair obtained by
B-orthogonalization is of the forrfy, y = Y;z) with (7, z) satisfying

(3.3) Y,"BA7'BY;z = nz.

This additional projection leads to quadratic error bounds for the eigenvalues. (See e.g. the
Kato-Temple theorem [20, Theorem 3.8].) The matrix on the left-hand side of (3.3) can be
computed explicitly, but can as well easily be computed without the actigTéfby the use

of (3.1):

(3.4) V'BA™'BY; = S\D;S;" + V" BR, S "
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Box car interior exhaust pipe

(by courtesy of Bosal)

FIG. 4.1.Meshes for the three eigenvalue problem§4n

In practice, we could compute, z) from
(3.5) (SiDS; + V" BRS M)z = 62

instead of (3.3).

However, there is an alternative to performing an additional projection. The columns of
Y; can be taken as thB-orthogonal ‘Ritz’ vectors. From the following theorem, it follows
that if the residual norms of;,z;) for j = 1,...,l are small and/x(B) is small, the
residuals for(é;,Ye;) for j = 1,...,1 are also small. Of course, the ‘Ritz’ values do not
satisfy a quadratic error bound.

THEOREM 3.2. Recall the definition oD; and X; from Eq. (2.5). LetS; be the upper
triangular Cholesky factor ok BX; and letY; = X,Sl‘l. Then

|A=*BY; — YViDi||g < (VI + 1)V/K(B)||Ri]| -

Proof. From (3.4), we have
V'BA'BY; =S, DS, '+ E

with E = V;' BR;S;*. SinceS; is upper triangular, an®, diagonal,S;D;S; ! = D; + U
whereU is strictly upper triangular. Note thé‘ﬁDle1 + Eissymmetricand so i§ + E :
U+ E=UT+ ET. Thisimplies
U-UT=F-FET
20U < 2(1El%
and so|U]ls < ||E||r < VI||E||2- From (2.5), we have
AT'BY, - YD, =Y(SiDiS; " — D)) + RS,
=YiU + R;S;”!
AT BY; = YiDil|s < ||Ul2 + VK(B)|| il
< (VI+D)VE(B)|| Rl
from which the proof followsl

4. Numerical examples.All examples have been generated using SYSNOISE, a soft-
ware tool for vibro-acoustic simulation [22]. The matricésnd B arise from acoustic and
structural finite element models and are symmetric. We present results for the following
problems.
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PrROBLEM 1. The first application concerns the structural modal analysis of a square box
with Young modulu2. - 10*Pa, Poisson coefficiefit3 and volume density800 kg/m?.

The thickness of the material is01m. One of the six faces of the box is fixed. For the finite
element analysis, we used 150 shell elements. This analysis leads to an eigenvalue problem
(1.2). For this problem4 = K andB = M. The dimension of the problemis= 852 and

k(B) ~ 1.20 - 10%. We used a shift = —10 in the shift-invert transformation of (1.4).

PROBLEM 2. The acoustic modal analysis of a Volvo 480 3D car interior discretized with
744 cubic elements and 68 pentaedral finite elements leads to a problem of the form (1.2) with
K positive semi-definite. The fluid has volume dengit§25 kg/m? and sound has a speed
of 340 m/s (air). For this problemd = K andB = M. The dimension of the problem is
n = 1176 and/k(B) ~ 21.2. We used a shift = —10 in the shift-invert transformation of
(1.4).

PrROBLEM 3. This concerns the coupling of a structural and an acoustic problem. We
consider a square box afm?* with Young modulus. - 10'*Pa, Poisson coefficiefit3 and
volume density7800 kg/m?. The thickness of the material (501 m. One of the six faces
of the box is fixed. The box is filled with air (speed of sousdd m/s and volume density
1.29kg/m?). The box is discretized by94 shell elements, which represents the structural
model. The acoustic behavior of the fluid is modeled by a boundary element mesh of
guadrangular elements. The matrixs the structural stiffness matrix, whi is the sum of
the structural mass matrix and the added mass matrix coming from the acoustic model. The
dimension of the problem is = 1692 and+/x(B) ~ 1.2 - 103. A shift ¢ = 0 was used.

PrROBLEM 4. The acoustic modal analysis of a Jaguar X100MS exhaust pipe discretized
with 39254 cubic finite elements leads to a problem of the form (1.2) Withositive semi-
definite. The fluid has volume density225kg/m? and the sound has a speed#d m/s (air).

The dimension of the problem is = 46966 and+/x(B) = 42.8. For this problemA = K
andB = M. The shifto is chosen such that the 11 dominant eigenvalugsiof ¢B) ' B
correspond to the eigenfrequencies betweéand200Hz.

4.1. lllustration for Theorem 3.1. We compare the Ritz values ¢ + 10B) !B
for Problems 1 and 2 and their residual norms aftet 10 Arnoldi/Lanczos steps, started
with a random initial vector. Theorem 3.1 states that the Ritz values obtaine- by
orthogonalization and standard orthogonalization lie within a distange4f(B) where
p is the residual norm (2.4). For Problem 1, we haye , = 3.8375 - 1077, tg11 =
4.1245 - 10~% andk(Wy41) = 24.755 and for Problem 2, we have, 1, = 4.1966 - 1077,
thr1e = 3.2867 - 1077 andk(Wy11) = 2.7. These values are consistent with Theorem 2.4.
The matching significant digits of the respective Ritz values and the residual norms are shown
in Tables 4.1 and 4.2, except for the multiple eigenvalueé {6, ...,60,) for Problem 1,
which is not displayed. Ritz values that do not share any digits are not shown. All Ritz values
satisfy Theorem 2.5.

4.2. lllustration of the B-orthogonalization of the ‘Ritz’ vectors. When Ritz vec-
tors are computed by Arnoldi’'s method with standard orthogonalization, they arB-not
orthogonal. We could perform an explié®orthogonal projection by solving (3.5). Instead,
we use the columns af as Ritz vectors, as suggested® We illustrate Theorem 3.2, which
states that the columns bf are sufficiently accurate Ritz vectors. Theare unchanged. The
results reported come from the Arnoldi computations fighil. The ‘Ritz’ vectors before
and afterB-orthogonalization are denoted by andy; respectively. Tables 4.3 and 4.4 show
the explicitly computed residual norms before and aBevrthogonalization. (Note that the

p§-2) in Tables 4.3 and 4.4 corresponds well to theén Tables 4.1 and 4.2 respectively. The
difference is thap; is computed from (2.4) am)§.2) is the explicitly computed residual norm.)
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TABLE 4.1
Matching the eigenvalues &f;, and T}, after 10 steps for Problem 1. The valyg is defined by (2.4).

J (r,y) =2"y (z,y) =2"By
0, pj pj
5 5.941.10~% 7.107° 4.107°
6  3.98875.107% 5.108 4.10~8
7 1-10-% 9.10—7 6-10~7
8 8107 21077 2-10~7
9 2-10~7 3-10~7
10 1-10~7 2-1078
TABLE 4.2

Matching the eigenvalues &f;, andTj, after 10 steps for Problem 2. The valyg is defined by (2.4).

j (z,y) =27y (z,y) = 2" By
0; pj pj
1 9.999999999494110~2 0. 0.
2 6.260362-10 6 2.10-13 2:10-13
3 2.20810°¢ 2-10°° 2:10~°
4 1.810-%  2.10-7 2.10~7
5 1.364.10-6  3.10~8 3.10-8
6 810~7 21077 31077
7 6-107 3-1077 2-1077
8 2:10°7 1-10°7 11077
9 7-10~8 8108
10 2.10-8 2.10-8

The results are consistent with Theorem 3.2. In Table,cé%, ~ 10~%, which is much larger
thanpff). This is possible sincg, is a linear combination ofy, . .., z4 andple) depends on
1Ral = pf? ~ 107°.

4.3. lllustration for the implicitly restarted Arnoldi/Lanczos methods. In practical
calculations, if small residual norms need to be obtained for the desired eigenvalues, the
Krylov subspaces often become very large. In the literature, some remedies against the
growth of this subspace are proposed. One idea is to restart the Krylov method with a new
poleo in (1.4), as suggested in [10, 7]. In this paper, we use the implicitly restarted Lanczos
and Arnoldi methods with exact shifts [21, 11]. Roughly speaking, the implicitly restarted
Arnoldi method is mathematically equivalent to the following scheme.
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TABLE 4.3
Residual norms for Problem 1 before and aff¢orthogonalization. We denoh%z) = [|(A+10B)~'Bz; —

B —
0,z andp$®) = ||(A + 10B)~" By; — 0,1, |15

J Pj Pj

1 310° 5.10°°
2  6107° 81077
3 21078 2.10°°
4 9107 21076
5 7107 1.1077
6 51078 1.1077
7 91077 3107
8 2107 81077
9 21077 3.10°°
10 11077 4.10°%

TABLE 4.4
Residual norms for Problem 2 before and aff¢orthogonalization. We denop?) = ||(A+10B)~!Bz; —

0;z;]| andp’®) = ||(A + 10B) "' By; — 0,y;|15.

(2) (B)
J P P

1 6-10~17 4.10°17
2 4.10713  4.10~13
3 6-10~° 5-10~9
4 3-10°8 3-1078
5 1-10~7 1-1077
6

7

8

9

1

2:1077 21077
2:10°7 21077
1-1077 11077
6-107%  1.1077
0 210% 9108

ALGORITHM 2. (implicitly) restarted Arnoldi method

0. Given is an initial vectoo; .
1. Iterate :

1.1. FormVi4, andH, by k steps of Arnoldi.

1.2. Compute ‘Ritz’ pairgf, z) and residual norrp.

1.3. Get a new initial vectar; = V2.

Until p < TOL|6]
The implicitly restarted Arnoldi method is an efficient and reliable implementation of this
algorithm. For the problems that are solved in this paper, the new initial vectsra linear
combination of the wanted ‘Ritz’ vectors, so that ‘unwanted’ eigenvalues do not show up in
following iterations. (For a precise definition and practical algorithms, see [21, 11].) In gen-
eral, the implicitly restarted Arnoldi and Lanczos methods do not have the same subspaces
after two iterations, since the ‘Ritz’ vectors are different and so is the linear combination.
This can lead to different subspaces and therefore to different rates of convergence. The nu-
merical results are obtained using the ARPACK routidsasupd (Lanczos) andinaupd
(Arnoldi) [13]. Note that ARPACK uses the Arnoldi process, i.e., full (re)orthogonalization,
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TABLE 4.5
Comparison between implicitly restarted Lancze$ By) and Arnoldi ¢ y) for Problem 3

(z,y) linear solves  matrix vector iterations time

products withB (sec.)
2T By 46 136 4 150.
Ty 46 65 4 117.
TABLE 4.6

Comparison between implicitly restarted Lancze$ By) and Arnoldi ¢ y) for Problem 4

(z,y) linearsolves  matrix vector iterations time

products withB (sec.)
2T By 27 75 2 705
Ty 26 37 2 685

for symmetric problems, rather than the more efficient Lanczos process with partial reorthog-
onalization. This implies that timings reductions are possible for the results of the Lanczos
method withB-orthogonalization. The matri® was represented by a compressed sparse row
matrix storage format, which allows for efficient storage and matrix vector products. The lin-
ear system solvers where solved by a block skyline (or profile) solver. All computations were
carried out within the SYSNOISE [22] environment on an HP PA 7100 C110 workstation.

Table 4.5 contains the numerical results for Problem 3. ZThesigenmodes near-
est0 are required. The Implicitly Restarted Arnoldi/Lanczos methods were run with the
same initial vector, Krylov subspace dimensibn= 30, and relative residual tolerance
ToL = 107°. The number of iterations are equal for both methods. The Lanczos method
with B-orthogonalization is more expensive due to the additional matrix vector products in
the reorthogonalization of thB-orthogonalization. For the Arnoldi method with standard
orthogonalization, the number of matrix vector products whtlis equal to the number of
solves withA — o B plus the number needed for tlizorthogonalization of the Ritz vectors
(§3).

Table 4.6 contains the numerical results for Problem 4. The eigenfrequencies between
0 and250Hz are sought. The implicitly restarted Arnoldi/Lanczos methods were run with
the same initial vector, Krylov subspace dimenstor- 21, and relative residual tolerance
ToL = 10~°. A matrix vector product byB is cheap compared to a back transformation. The
conclusions are very similar to Problem 3, but the differences between the CPU times are less
pronounced.

5. Extension to (Navier) Stokes problemsRecall the (Navier) Stokes problem (1.3).
For this problemp is typically positive semi-definite. The use of tBesemiinner productin
the Lanczos method was suggested by Ericsson [5], Nour-Omid, Parlett, Ericsson and Jensen
[5]. The use of this semi-inner product was justified by Ericsson [5] and Meerbergen and
Spence [16]. Moreover, it ‘purifies’ the Ritz values from possible contamination arising from
the singularity ofB. For the details, see [5, 18, 16]. Cliffe, Garratt, Golding and Spence [2]
suggested the use of the matrix

I 0 . M 0
P_{O 0} instead of [0 0}

in the inner product. Thi®-inner product has the same ‘purification’ property asih@ner
product (see [16, Theorem 2] wifif = I). Thus, an alternative to the Arnoldi method with
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B-orthogonalization is the Arnoldi method wi#-orthogonalization. In fact, the situation is
very similar to acoustic and structural eigenvalue problems. Indeed, decompose

Uk+1 Uk+1 :|
Vis1 = and Wittt = | &
k+1 Qk+1 k+1 QkJrl
and normalizeVy4; such thatV,l \PViyy = UL Upn = I and Wiy, such that

WL BWiy1 = UL MUy = I. Consequently, Theorem 2.4 is still valid with the only
difference thak(B) should be replaced by(M), Vi1 by Uiy1 andWy i by Uy 1.

6. Conclusions and final remarks. In this paper, we established a theoretical compar-
ison between standard orthogonalization &hdrthogonalization for the solution of eigen-
value problems, for which the square root of the condition number of the mass matrix is
small. This is often the case in acoustic and structural eigenvalue problems and for the dis-
cretized (Navier) Stokes equations. Roughly speaking, the orthogonalization seems to play a
minor role in the convergence of the eigenvectors in the Krylov space. The theoretical results
are extended to the Navier-Stokes problem as well, where the Arnoldi methodvedmi-
orthogonalization and the Arnoldi method withsemi-orthogonalization behave similarly.

Following the theory and our numerical experiments the type of inner product should not
be chosen on the basis of rates of convergence. The decision should be based on cost per itera-
tion, or reliability. For example, it follows from the numerical results for Problem 4 that there
is no advantage in performance for the Arnoldi method with standard orthogonalization with
respect to the Lanczos method withorthogonalization, though the inner product is more
expensive for the Lanczos method. Moreover, when the number of iteration vectors is high,
it is expected that the Gram-Schmidt process with reorthogonalization becomes prohibitive,
so that the Lanczos method becomes much cheaper than the Arnoldi method. We also no-
ticed that the Lanczos method wifB-orthogonalization is more reliable than the Arnoldi
method with standard orthogonalization: sometimes, sought-after eigenvalues are missed by
the Arnoldi method. For Navier-Stokes applications, where the Arnoldi method should be
used anyway sincd is nonsymmetric, the use of ti&inner product rather than thg-inner
product may lead to a more efficient code. Lehoucq and Scott [12] report th&-itteer
product seems to be more reliable than the standard inner product. They do not report results
for the P-inner product.
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