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A BLOCK RAYLEIGH QUOTIENT ITERATION WITH LOCAL QUADRATIC
CONVERGENCE *

JEAN-LUC FATTEBERT'

Abstract. We present an iterative method, based on a block generalization of the Rayleigh Quotient Iteration
method, to search for thelowest eigenpairs of the generalized matrix eigenvalue problem= \Bu. We prove
its local quadratic convergence wh&t ! A is symmetric. The benefits of this method are the well-conditioned
linear systems produced and the ability to treat multiple or nearly degenerate eigenvalues.
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1. Introduction. Many scientific applications require the solution of a generalized eigen-
value problem

Au = ABu,

whereA andB are realV x N sparse matrices, arélis positive definite. A well-known ex-
ample is the electronic structure calculation of molecules or solids. In the context of density
functional theory, some recent developments in the numerical schenagsifotio electronic
structure calculation methods have been obtained by describing the electronic wave functions
in finite dimensional vector spaces of larger and larger dimension, or more recently by the
use of finite difference schemes on tridimensional grids. In this field, a discretized stationary
Schiddinger-like eigenvalue problem (the Kohn-Sham equations) has to be solved. Typically,
we are interested in the lowest one hundred eigenpairs from matrices of order largéthan
Due to the diagonal dominance of the matrices, Davidson’s method and the preconditioned
Lanczos method [2, 3, 15] are very popular in this field. Other methods based on the simulta-
neous Rayleigh-Quotient minimization methods [12] or subspace preconditioning algorithms
[1] are also very common, sometimes in combination with conjugate gradient techniques [5].

These approaches require only a very approximate resolution of linear systems (by con-
jugate gradient for instance) or the solution of very simple linear systems (typically diagonal).
But the resolution of large linear systems is improving because of ever more powerful com-
puters and sophisticated algorithms such as the multigrid method. As a result, iterative eigen-
solvers requiring an accurate resolution of numerous linear systems have to be considered
from a new point of view. New preconditioners can be investigated for classical methods,
or direct implementation of methods based on the inverse iteration algorithm can be used. If
sufficiently accurate linear solvers are available, subspace iterative methods based on inverse
iteration can be implemented without expanding the dimension of the search subspace at each
step.

In this article, we present an iterative eigensolver based on a block generalization of the
Rayleigh Quotient Iteration (RQI) method [13] and prove its local quadratic convergence. We
consider matricest and B such thatB—! A is symmetric (for instancel symmetric,B the
identity matrix) with eigenvalues; < A» < ... < A\, < App1 < ... < Ay € R. We look
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for the subspace
p
fo =) Ker(B'A&NI),
j=1

that is, the subspace spanned by the eigenvectors associated to the lowest eigenvalues of
B~ A. To prove the local convergence of the algorithm, the main assumptions will be on the
starting trial subspace.

The algorithm concerned here is described in Section 2 and a small numerical example is
provided to illustrate its convergence rate. In Section 3, technical results are derived concern-
ing the subspaces spanned by the Ritz elements obtained by the Rayleigh-Ritz procedure.
These results will be used in Section 4 where a precise description of the algorithm and a
proof of its local quadratic convergence are presented. Concluding remarks are presented in
Section 5. Some technical lemmas and proofs are given in the Appendix. A variant of the
method was first applied to the electronic structure calculations in [7]. More details on its
application in this field can be found in [6, 8].

Notations and general assumptioriBaroughout this paper we consider the sp&%e
with the usual scalar produ¢t,y) = Y| z;y; and the induced nortjz|| = (z,z)'/2,

z,y € RN. To the setM x of the real matricedV x N we associate the spectral norm

M| = max [|[Mz]
zERN ||z||=1

for M € My. We denote by the identity matrix.
The orthogonal complement of a subsp¥ice RY is denoted by+. If V =
Sparfuvy,..., vy}, we denoteV/V = Spa{ M, ..., Mv,} for M € My.

Letz € RN,V andWV be two subspaces @¥. According to Kato [10], we define the
distance fronx to V by

(1.1) 0(z,V) = min ||z vl

and the distance froti to W by

(1.2) oV, W)= max d(v,W).

veY,|lvl|=1

For an intervall of R and a matrix(/ € My, symmetric, with eigenvaluegg < Ay <
... < A, we define the subspace Bf¥

(1.3) Em(T) = Ker(M &X\I).
NET

2. The Block Rayleigh Quotient Iteration method.

2.1. The algorithm. The algorithm we address here contains two main parts. In the
first part, for a given subspace whose dimension is the number of searched eigenpairs, we
compute approximate eigenvectors applying the Rayleigh-Ritz procedure (Step 2 of Algo-
rithm 2.1). In the second part, this subspace is updated by computing corrections for each
of these trial eigenvectors using a generalization of the RQI method (Steps 3-5 of Algorithm
2.1). A general outline of the Block Rayleigh Quotient Iteration method (BRQI) algorithm is
as follows:
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ALGORITHM 2.1.BRQI

1. Let the tolerance and an initial N x p matrix W° = (w?,...,w)) be given. Let
k=0.

2. Let X be arealp x p matrix andU* = (uf,...,uk) = WFX, be such that
UETU* = T andU*TB~1AU* = A whereA is a real diagonalp x p matrix whose
diagonal elements are ordered hy( < ... < A,,). Check for convergence by testing the
condition

|AU* &BU*A|| < e.

3. Forj =1,...,p, letm; andn; be given integers such that < m; < j and
0 < n; < p<&j. Define the subspace

U]]'c = (u;'cfmja te 7’U’Ij+nj)

(of dimensiorl + m; + n; > 1) and Ieth be the orthogonal projector onto the subspace
(BUK)™.
4. For j =1,...,p, compute the correctiog; such that

(2.1) Qj(AeA;;B)(uf +2;) =0

andz] BUF = 0.
5. SetWk+! = (uy + z1,...,up + zp). Incrementc by 1 and go to step 2).

At Step 3, the parameters; andn;; are integers chosen such tiit(A <A ;; B) ‘ —
is well-conditioned. For instance, select

m; = max Jj i, n; = max 1)
{ilAj;—Ai<a} {ilAii—Aj5<a}
for a given real constant > 0. It is easy to see that, in the caBe= Identity, this would
ensure that

14 (A4 @A)z = min(a, s &4)llall, Ve € (UF)*

at convergence of the algorithm. We will be more precise on this pok#.ih
It is easy to see that in the particular casg = n; = 0, the vectoruf + z; (Step

2.1) is equal (in exact arithmetic), once properly normalized, to the veif‘fdf updated by a

classical RQl iteration [7] (we have in faxz:,fﬁrl = fy(u;?+zj),fy € R). Inthis particular case,

the equation defining the correctien is the same as the one used in the Jacobi-Davidson
method [16]. Ifmax(m;,n;) > 0, z; is restricted to be in a smaller subspace—meaning
that we do not to corremf in some directions considered before—and the arguments used
to prove the convergence of the Jacobi-Davidson method or classical RQI are no longer valid.
Nevertheless, because those directions are included in the suti3pédogrovidedm; < j

andn; < p < j), convergence can still be attained (as it will be shown in Section 4) by
the “mixing” of the updated trial eigenvectors in the Rayleigh-Ritz procedure. Moreover, an
appropriate choice of the coefficienis; andn; leads to well-conditioned linear problems

at Step 4 of the algorithm, even for multiple or nearly degenerate eigenvalues. A related
algorithm can be found in [9] where the purpose is to build a multigrid eigensolver. Also, the
method is designed to get well-conditioned linear systems adapted to a multigrid resolution
in the inverse iteration steps.
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For small systems, the pseudo-inverse of the m&}ikd <A ;; B)Q,; can be computed
and applied to=Q; (4 < A;;B)u® to find z; at Step 4. However wheA and B are large
sparse matrices, the application of the composed opegaiot < A;; B) on a vector is not
expensive and iterative linear solvers are more appropriate to solve (2.1). In addition to the
well conditioned linear systems, the iterative resolution is also made easier by the fact that
we just look for a small correctios; that we can approximate by zero at the first iteration.

As presented here, the algorithm BRQI require building and diagonalizing the matrix
WkTB=1 AW* which is assumed to be symmetric. Nevertheless, in practical applications,
the inversion ofB can be avoided, replacing Step 2 of Algorithm 2.1 with the resolution of
the generalized eigenvalue problem

WETAWEX = W TBWE XA

(seetb).

The algorithm BRQI requires a relatively good starting trial subspace (as in the RQI
method). If this subspace is not accurate enough, it may converge to another eigenspace
corresponding to larger eigenvalues. But BRQI has proved to be efficient for electronic struc-
ture calculations. In this case, due to the nonlinearity of the operator, a series of eigenvalue
problems has to be solved (one at each step of a fixed point algorithm for an operator that is
slightly modified between two steps). Here the solutions of the eigenvalue problem at a given
step provide good approximations to start the calculation at the next step.

Compared to the Jacobi-Davidson algorithm [16], where the same kind of projected in-
verse iteration equations are used, the method described here requires a more precise resolu-
tion of better conditioned linear systems, but does not require generating search subspaces of
larger dimension than the number of eigenpairs we look for.

2.2. Example. Let us consider the symmetric eigenvalue problem

Au = Au,
where
Y1 Y5 0
A= Yo Y1 Yo | € Moy
0 Yo 1
is defined by
X1 X 0 X, 0 O
Yi = X2 X1 X2 € Mg, Y2 - 0 X2 0 € Mg
0 X X3 0 0 X
and
6 <1 0 &1 0 0
X = &1 6 sl , Xo = 0 <1 0
0 &1 6 0 0 <1

(The matrixA4 is obtained for a finite difference discretization of the Laplacian with Dirichlet
boundary conditions in 3D.) The first eigenvaluesiofre\; = 6 ©3v/2, Xy = X3 = \y =

6 <:>2\/§, AdM=X=Ar=Xg=Xg=Aip=6 <:>\/§ We apply the algorithm BRQ| (Wlth

B = I) to find the four smallest eigenvalues Af At Step 3 of the algorithm BRQI, we use
a subspacéf}c of dimensionl for j = 1 (containing the vector of indek only) and3 for
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j = 2,3, 4 (containing the vectors of indic@s3, 4). The trial eigenvectors at Stép= 0 are

chosen to be the exact ones plus a random error of small amplitude. The numerical results in
Figure 2.1 show the distance from the trial subspace to the exact one (as defined in (1.2)), and
the errors on the eigenvalues as a function of the number of iterations. The method’s quadratic
convergence rate can be observed— note that the errors on the eigenvalues are already within
the 15 decimals working precision after the third step.
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FIG. 2.1.Distance between the trial subspace and the exact one and errors on the eigenvalues as a function of
the iteration number for the example §#.2.

3. Some properties of the Ritz elementsin this section, we review the Rayleigh-Ritz
algorithm. Then we derive some results on the eigenvectors approximations obtained by this
procedure, and on the invariant subspaces approximations spanned by these vectors. These
results will be useful in Section 4.

Let:

S € My be a symmetric matrix,

AL <A < <A < Apy1 <o < Ay € R Dbe the eigenvalues df,

Eo = le Ker(S @)\ZI),

I1, be the orthogonal projector onfg,

W c RN be a subspace of dimensipn approximation ofSy, given by W =
Spadw,...,w,}, where the vectors;, j = 1,...,p are orthonormalized,

P be the orthogonal projector oni,

o W = (wy,...,wp) € Mnxp.

3.1. Rayleigh-Ritz procedure. We define the Rayleigh-Ritz procedure (see [13] for
example) by the following algorithm:
ALGORITHM 3.1 (Rayleigh-Ritz).
(i) Compute the x p symmetric matrixd = WTSW.
(i) Compute the orthonormalized eigenvectoys € RP and thep eigenvalue¥; €
R, solutions ofHg; = g;6;,j =1,...,p.
(i) Compute the Ritz vectors); = Wg;,j =1...,p.
REMARK 3.1. The Ritz element®;,y;),j = 1,...,p, constructed in Algorithm 3.1,
are independent of the chosen orthonormalized bésis}’_, of W. The vectorsy; are
orthonormalized and give a basis fg¥. Moreover, they satisfy the property

(31) P(S@gj)yj =0, 7=1,...,p.
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Using this remark with Lemmas A.1 and A.2, we easily prove the following result:
LEMMA 3.2.Letr; = (S &46;)y; forj =1,...,p. Then, we have

51l < 46(Eo, WIISII1y;ll-
With respect to the Ritz values, we have the following lemma (see [13]):
LEMMA 3.3. There exists an injective application
g:{1,....,p} = {1,...,N}
such that
(3.2) 10; x| < T &P)SPIl, j=1,....p.
Moreover, the right hand-side of (3.2) satisfies the following lemma:
LEMMA 3.4.

(T & P)SP|| < 4y/pé(Eo, WIISII-

Proof. We have

(I &P)SP|

sup  ||(I ©P)SPv|
VERN ||v]|=1

p
= sup  [[T&P)SY nyll

T[ERP,HﬂHzl j=1

D
< sup Y nlllI&P)Syl,
neR?,|Inll=1 ;-4

wheren; denotes the componenbf n. By property (3.1), we obtain

p
IIP)SPI<  sup > |n;llISy; <85u;ll-

neRP, [Inll=1=
Applying Lemma 3.2 gives
p
3.3) (I &P)SP| < sup D ;] | 46(E0, W)IISII.
neR?,|Inll=1=

Using the Cauchy-Schwarz inequality, we also have

1/2
(3.4) > Il < Vb (Z nf-) = Vp.
Jj=1

j=1

The desired result follows by (3.3) and (3.8).
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The next results will requiré(&y, W) to be small enough. In the following we will
assume that:
ASSUMPTION3.5.

Apt1 SAp

6(Ep, W) < —/———.
Eo. W) <=5 /3181

PrRoOPOSITION3.6. If Assumption 3.5 holds, then

A < 85 < 5+ 4YBO(E, WIS

Proof. The first inequality follows by the Courant-Fischer Theorem. To prove the second

one, we use Lemma 3.3 applied to

W(t) = Spar{wi (t), ..., wy(t)},
wherew; (t) = Hw; + t(l ©Mw;,j =1,...,p,0 <t < 1.

SUPPOSET (1) = (wi (1), .., wy(t) € My, H(t) = W(t)TSW(t), andfy (¢) <
02(t) < ... < 6,(t), be the eigenvalues df (t). Let

v = 4y/pd(E0, WIIS]|-

Lemma A.7 gived (W (t), &) < 0(W, &), 0 <t < 1. From Lemmas 3.3 and 3.4, it follows
that there existg distinct indicesj’ such that

(35) |0j(t)<:>)\j/|gy, j=1...,p, 0<t<1.
By Assumption 3.5, we havg, + v < A\,41 <v. From (3.5) we thus obtain
(36) aj(t)¢()‘p+V7Ap+l<:>V), j:]-,"'ap, Ogtgl

Fort = 0, we are allowed to choogé = j (becauséV(0) = &). By the continuity o®; (t)
as a function ot, (3.6) gives, using a proof by contradiction,

0,(t) <X\p+v, j=1,....,p, 0<t<Ll

For0 < t < 1, thep indicesj’ have to be chosen ifil,...,p}. Using again a proof by
contradiction, we clearly see that we can chogse j and we thus have

0j<:>)\j§1/
int=1.0

3.2. Distances between invariant subspaceset0 < 6 < A,1 <A, be a given real
constant. Foj = 1,.. ., p, using (1.3), we define the subspace

(3.7) & = Es([\; <0, \; +0)).

Clearly, we haveg; C &. LetIl; denote the orthogonal projector orfipand leto(S) be
the spectrum of. Let A > 0 be such that, fof =1, ..., p,

(3.8) N &I &A )\ 6 Na(S) =10,
(3.9) Aj+0,X+d+A)Na(S)=0.
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Let
(3.10) 5=6+ %
and define
(3.11) W; = 5PS|W([9j ©0,6; +3)).

Let P; denote the orthogonal projector ontg;.

To present the main results of this section, let us first make the following sufficient as-
sumption:

ASSUMPTION3.7.

AN
5(Ep W) < —2
(&0 W) < 51131

REMARK 3.2. Equation (3.9) forj = p implies in particular thatA < Ap41 < A,. It
follows that if the assumption above is true, Assumption 3.5 will also be true.
PrROPOSITION3.8. If Assumption 3.7 is true, we have:

dim(W;) =dim(;), j=1,...,p.

The proof of this proposition, relating the dimensions of the exact and approximate invariant
subspaces; andW;, is given in Appendix B.1.

In [14], an upper bound is given for the angléii, u) between an eigenvectarof the
matrix S, associated with a simple eigenvaldgand its approximatio.. We have the
following inequality:

(S =Nl

sin (i, u) < 12
’ ellal

wheree denotes the distance betwegn= (i, Si)/(i, %) and the remaining part of the
spectrum ofS, that is,e = min;{|\; |, \; # A}. This result has been generalized by
Knyazev[11] to invariant subspaces of dimension larger than 1. According to [11] (theorem
4.3) and using the notations introduced in this section, we have:

PROPOSITION3.9. Letj be a giveninteged < j < p. If

(3.12) d= inf |7 &N >0, R=P&P;,
1760(RSR|ImR)
then
A I &P)SP|?
3.13 I P < 1+”(~— I &P)IL|°.
(3.13) II( I 1P < (d o0y II( )L |

Applying this proposition gives the following theorem:
THEOREM 3.10.If Assumption 3.7 holds, then

(314) (S(Ej,Wj) SQJ(E],W),] = 1,...,p.

This is the main result of the section. Theorem 3.10 means that if the trial subgpace
is good enough, the subspadés C W,j = 1,...,p, spanned by the Ritz vectors, will be
good approximations of the invariant subspa€gedts proof is given in Appendix B.2.
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4. Properties of the algorithm. In this section we present the BRQI algorithm and
prove its local quadratic convergence rate. We first show a property of coercivity for the
operator which appears in the generalized inverse iteration equaj}.(Then we derive
some properties of the eigenvectors’ corrections obtained in solving these equai@)s (
Finally we detail the algorithm and give a convergence theofdn3).

Assume that we havegadimensional subspadé®’ C RV, that is, a good approximation
of &. Let P denote the orthogonal projector onte.

4.1. Coercivity of the inverse iteration operator. Let j be given,1 < j < p,§ > 0 be
agivenreal constantang € R, Ay < pj < A\p41. Let:
o W= EPB—1A| ([ &6, p; + 6)),
e Pj, the orthogovrvmal projector ond;,
e ();, the orthogonal projector ont@W;)+.
ASSUMPTION4.1. We assume that there is a constarnt- 0 and an invariant subspace
of B7'4, &; C &, such that:

(4.1) Ep-14([pj ©a,puj+al) C&;
(4.2) dim(&;) = dim(W;).
Let
(4.3) v = Inf I 0B,
3 2
(4.4) K= ;relg I &nB~,

andlI; denote the orthogonal projector orép
REMARK 4.1.If the matrixB is symmetric positive definite, we easily see thaty < 1
and0 < k < 1.
We begin with a Lemma that will be useful.
LEMMA 4.2. LetA € R,c > 0,5 € My symmetricZ C R an interval,z € £5(7).
Then:
(i) FZ C [N e, A+, then||(S ©A])z|| < ¢lz]|.
(i) FZINn(A&se,X+c¢) =0, then||(S <AD)z|| > ¢||z]|.
In Step 4 of the algorithm 2.1, we have to solve the linear system
(45) G]’ = Qj (A <:>'UIJ.B)‘(BW]-)J—
whereG; : (BW;)*+ — (BW;)1. This operator has the following property:
PropPosITION4. 3. If Assumption 4.1 holds, then there exists strictly positive constants
e andC, depending only o3, a: and A, 1 <A1, such that iy (€5, W;) < ¢, then

1Gjzll > Cllzll, Yo € (BW))*.

This proposition is easy to prove whéhis the identity matrix. In Appendix B.3, we give
the (rather technical) proof in the general case.

4.2. The generalized inverse iterationLet (§;,u;) € R x RN, j = 1,...,p, denote
the Ritz elements for the symmetric matiix ! 4 in the subspac®y (see§3.1). As in§3.2,
we choose andA € R,0 < 6 < Apy1 ©Ap, 0 < A < A\pyq1 &, such that
(4.6) (\j &6 A\ <0)Na(B™1A) =0,

4.7 A +6,X +d+A)Na(B 1A) =0,
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for j = 1,...,p, wheres(B~! A) denotes the spectrum &' A. Moreover, we impose
here

(4.8) 0< A <26

In the following, we define:

(49) gJ :gB_lA([AJ <:>67AJ+5])7 ] = 17,p7

(4.10) d=0+ %

(4.11) W, = 5PB,1A| (10; 0,0, +3), ji=1,...,p.
w

Let P; denote the orthogonal projector oitg;, and(); denote the orthogonal projector onto
(BW;)*.
In order to apply the results of Section 3.2, we will assumedt&, V) satisfies:
ASSUMPTION4.4.
A

< ——m—F———.
)= TG pTE A

Under Assumption 4.4, and using Remark 3.2, Proposition 3.6 gives

- A
10; &Aj| < 4VpS(E BT A< 1, G =1,...,p.

By (4.8), we thus have

BNl <s i=1o
that implies
(4.12) Ep-14(16; ©6/2,6; +6/2]) C Eg-14([N; ©6,; +0]) = &
forj=1,...,p.

By (4.12) and Proposition 3.8, Assumption 4.1 holdgjf = #; anda = §/2. In
particular it gives

In this context, using Theorem 3.10 gives
6(Ej, Wy) < 20(E5, W) < 25(E0, V).

We then rewrite Proposition 4.3 as follows.
PROPOSITION4.5. Suppose that Assumption 4.4 holds. Then there exist strictly positive
constantg, andC. depending only o3, § and Ap+1 <A1, such that, iH(E,, W) < e,

1Qj(A€0;B)x| > Ce|lz||, Vo € (BW))*.
This proposition ensures that we can defigec (BW;)*, j = 1,...,p, as the only
solution of the linear problem

(4.14) QJ(A <:>9jB)(’LLj + Zj) =0,
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providedd(&y, W) is sufficiently small. Equation (4.14) is a generalization of a RQl iteration
(see§2.1) whose purpose is to improve the approximatigrof the j* eigenvector by the
correctionz;. The following proposition gives a few propertiesgfandu; + z;.

PROPOSITION4.6. Letl < j < p. Suppose that Assumption 4.4 holds and that
d(&0, W) < €. for the constant. of Proposition 4.5. Then, fot; solution of (4.14),

(4.15) 5]l < 27C7 B3 (€0, W),
(4.16) (I T0)(u; + 2)l| < o (5(&0, W),
where

(4.17) T =2||B|||B~*Al},

(4.18) g=1BIBI+1,

(4.19) o= %H” (1+C'pr),

andC. is the same constant as in Proposition 4.5.

This theorem is a key elementin proving the local quadratic convergence of the algorithm
BRQI. It shows that the updated approximatians+ z;,j = 1,...,p have only a second
order component orthogonal &, after having been corrected by a first order compongnt

Proof. In this proof, we will regularly use Lemma A.1 and the fact thaf|| = 1.

We decompose; = ILu; + (I <1I1;)u;. Then

(4.20) 1Q;(A <0;B)uj|| <[|Q;(A <8;B)IL;uyl|
+11Q;(A ©8;B)(I &11;)u;.

Note that(A <6; B)II;u; € BE;, and so we obtain by Lemma A.5,

(4.21) 1Q;(A =8;B)u;l| < (||All + 61| Bl) 6(BE;, BWj)
< (1Al +16; I BID 1B~ HIIBIS(E5, Wy)-

On the other hand, because
(I I0)u;|| = (I <IL;) Pyu;|| < 6(W5, E5),
it follows by Lemma A.2 and (4.13) that

(4.22) 1Q;(A <8;B)(I <1;)u;l| < (|A]l +16;1B])) 6(W, ;)
= ([[A[l + 16;1[1B1)) (€5, W;)-

By (4.20)—(4.22), we have

(4.23)  [1Q;(A «0;Byu;ll < (1A + 16;1BID) (IB7HIIBI + 1) 6(£5, W)
<2BIIIB= A (BB + 1) 6(£5, W)

Applying Theorem 3.10 gives

1Q;(A ©8;B)u;|| < 4IBIIIB~A|| (IB7HIIBII +1) 6(5, W)
< ABlIIB~ A (IB7HIIBI + 1) (&0, W)

Sincez; is solution of the equation

QJ(A <:>9JB)ZJ = @QJ(A <:>0jB)Uj,
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we obtain the inequality (4.15) by using Proposition 4.5.
To prove the second inequality, we first defi(’B—lA @aj)* as the restriction of the
operator (B~' A <40;) to &£, invariant subspace aB~'A. There exists an inverse of

(B7'A <40;),, denoted B~'A (:»9]-):1, whose norm is bounded [8/5 (see Eq. (4.12)
and Lemma 4.2). Using the fact thatis solution of (4.14), we obtain

(I=1L) (uj + 25)
= (B'Ae6;) " (BT Aw0;), (I &11))(u; + z;)
= (B A s8] (I 1) (B~ As6;) (u;+2)
= (B7'As4;), (I I)B1(Q; + (I ©Q;)) (A &8;B) (u; + 2;)
= (B7'A66;)] (I &1)B (I £Q;) (A &6,B) (uj + z)).

Consequently
(I &11;)(u; + 2;)]
(4.24) = || (B 'A6;) " (I10,)B I &Q;) (A8,B) (u; + z)|
< %II(I &I;)B (I =Q )| (| (A &8;B) ujl| + || (A ©6;B) ) .

From the definition of I Q;), B~'(I ©Q;)z € W; Vz € RV, it follows that
4.25) (I &I)B~ (I Q)| < oW, EHIBTHI = d(&, Wil B7|I-
Moreover, given the Ritz paif;,«;), Lemma 3.2 implies

1 (A 0;B) u;ll < |BIIIl (B~ A ©6;) ujll
(4.26) < [|B]148(&, W)IB~ Al
= 27’(5(80, W)

Using (4.15), we also have
(4.27) 1 (A8;B) 2 < (2IBII|B~All) ll2]l < 2C7B7%5(E0, W).

Now it follows by (4.24)—(4.27), and Theorem 3.10, that inequality (4.16) halds.
PROPOSITION4.7. Supposing that Assumption 4.4 holds and #{&, W) < e. for the
constantk, given in Proposition 4.5, let

Wnret = Spaf{uir + z1,...,Up + Zp}

for z; solution of Equation (4.14), = 1, ..., p. Then there exist constards > 0 andy < 1,
independent oV, such that iy (£y, W) < ¢, then

(4.28) dim(Wme™) = dim(W),
(4.29) (€0, W) < 0(8(E0, W),
(430) 6(507 Wnew) S X(S(EO, W),

wherep = 2, /po, for o defined by (4.19).
The proof of this proposition, based on Proposition 4.6, is given in Appendix B.4.
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4.3. A convergence theoremUsing the subspace notations and the mathematical tools
developed in the previous sections, the algorithm BRQI describg2l.incan be written as:
ALGORITHM 4.8. BRQI
1. LetW® c R" be a given subspace of dimensjariLetk = 0.
2. Build the pairs(8;,u;),j = 1,...,p by the Rayleigh-Ritz procedure (Algorithm
3.1) for the matrixB=' A in W = Wk,
3. Forj =1,...,p, define the subspac#s; according to (4.11) fowy = W*.
4. Forj =1,...,p, computer; solution of Eq. (4.14).
5. LetWk+! = Spafu; + 21,...,u, + 2, }. Increment by 1 and go to step 2).
For this algorithm, we have the following local convergence result:
THEOREM4.9. There exist constants > 0, o, x < 1, Cyp > 0 such that, it (£,, W°) <
€0, Algorithm 4.8 is well defined and the following properties holdiet 0,1,2,. . .,

(4.31) dimW*) = p,

(4.32) 5(E0, WEHY) < 0 (8(E0, WH))?,

(4.33) 8(E0, WHHT) < X6 (&0, W),

(4.34) 10; ©X;| < Cod(Eo, W), 5 =1,...,p.

Moreover, the algorithm converges, that is:

lim 6(&, W) = 0.
k—o00

Proof. Relations (4.31), (4.32), (4.33) follow by Proposition 4.7. The inequality (4.34)
follows by Proposition 3.6 fo€y = 4,/p||B~ ' A||. O

5. Concluding remarks. A straightforward implementation of Algorithm 4.8 is not al-
ways obvious or even adequate for large-scale eigenvalue problems. First, Step 2 implies the
use of the matrix3—! A, hence the need to solve numerous linear systems with the niatrix
This can be done efficiently if the matri& is very well conditioned (common in practical
applications) or can be efficiently factored. But replacing the Rayleigh-Ritz procedure at Step
2 by a Petrov-Galerkin approach usiidV as test (or left) subspace insteadWf is often
easier and less expensive, leading to a generalized eigenvalue problem of dimefsgien
§2.1)

Hgj =0;Gyg;.

This approach (that we call Block Galerkin Inverse Iteration - BGII [4]) can work quite well
in practice. But since her6 ' H is not symmetric in general and can generate complex
eigenvalued);, the proof of convergence presented in this paper is no longer valid—and
probably much more difficult to establish in this case.

On the other hand, Algorithm 4.8 depends, by (4.11), on the quantitjoreover, the
assumptions ol (&y, W) can be difficult to satisfy in practice, depending on the value of
A that has to satisfy (4.8), (4.6) and (4.7). In practicecan be quite small depending on
the spectrum o3~ 4 and the choice of. This remains an issue, even if we replacey
coefficientséj‘ and(S;F depending on and define

& = Epially 07N + 0715 = L.

An appropriate choice of;” and(S;F, j =1,...,pwould then allow to replace Assumption
4.4 by a less restricting one.
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In practice, we choose a coefficiehtso that the linear systems are well-defined but
also so that projector§; are not expensive to apply. This approach, in combination with
the Petrov-Galerkin version of the algorithm, has given good results for quantum physics
problems [4, 6, 7, 8]. This approach should also work well on other eigenvalue problems.

Appendix A. Some relations between subspaces &f" .

In this appendix, we give some technical lemmas concerning the properties,of),
the distance from one subspageo another subspad®’ (see (1.2)). Their proofs are not
difficult to establish or are given in references.

LEMMA A.1. LetV and)V be two subspaces @", P and Q being the associated
orthogonal projectors. Then, we have

(A.1) sV, W) =l «Q)P||.

LEMMA A.2. LetV and W be two subspaces @ of the same dimensio®, and Q
the associated orthogonal projectors. Then, we have
(A.2) SV, W) = 6(W,V) = |IP &Q|.

Moreover, if[|P Q|| < 1, thenP|W defines a bijection betweéfy andV .

Proof. See [10]0
LEMMA A.3. LetV and)V be two subspaces &, V' andW* be their orthogonal
complement iR™N. Then

SWE W) =sw, V).

Proof. See [10]0

LEMMA A.4. Let A € My be aregular matrix)’ be a subspace @t"v. Then, we have
(A.3) 0(V,AV) < min ||I &nA|.

neR

LEMMA A.5. Let A € My be a regular matrix)’ and )V be two subspaces & of
the same dimension. Then, we have
(A4) S(AV, AW) <5V, W)|IAIlIJATH].

LEMMA A.6. Let A € My be a symmetric, positive definite matrixbe a subspace of
RN. Then, we have
(A.5) AVt = (A7)t

LEMMA A.7. LetV andW = Spaqwy,...,w,} be two subspaces &" of dimension
p, P be the orthogonal projector ontd. We assumé&(V, V) < 1. Let

W(t) = Spa{ Pw; + t(I & P)ws,..., Pw, + t(I &P)w,}.

Then the dimension 0¥ (¢) is p andd(W(¢),V) < (W, V), 0 <t < 1.
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Appendix B. Some proofs.

B.1. Proof of Proposition 3.8. Proof. Let j be a given integed, < j < p. By Proposi-
tion 3.6, we have

N <0 <N +4yps(Eo,W)IS|l, i=1,...,p.

Using Assumption 3.7 yields

A
)\ZSQlS)\l-FZ, 1=1,...,p.

Let k be such thah, € [\; <46, \; + 6]. We then have

- A A A
0j@6:0j@6@5<>\j@5<:>—<>\k§0k§>\k+—

4 4
A A A .
S)\j-i-(s-i-z S9j+5+Z<9j+5+5:0j+5.
We thus have
(B.1) Ok € (8; <96,0; +9).

Letk be suchthad, €  (©00,\; &6 ©A]. Itfollows that
akSAkJr%g)\j@é@AJr%
:Aﬂ:}&@% <>\j<:>6<:>§ §0j©6@% =0, ©90.
We thus have
(B.2) O ¢ [0; <0,6; + 0]

Letk < pbesuchthad, € [A\; + + A, 00). It follows that

~ A A
0j+6§>\j+z+5+5<>\j+6+AS>\kS0k-
We thus have
(B.3) O ¢ [0; <0,6; + 0]

Relations (3.8), (3.9), (B.1), (B.2) and (B.3) imply then
0i€[9j<:>g;0j+g]<:>)\i€[/\j<:>5;/\j+5]; 1=1,...,p.

We conclude by noting that difi;) (respectively dini;)) is equal to the number of eigen-
values (according to their multiplicities) dﬁ‘S|W (respectivelyS) in [0; <4, 0; + 0] (respec-
tively [A\; <4, \; +0]).0
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B.2. Proof of Theorem 3.10.Proof. Let us first compute the terfid <§)? in equation
(3.13). By using (3.11), we obtain

(B.4) (d0)? >min((|8; &6 ©A/26);| ©06)%,(10; + 0 + AJ2 &) <06)?).
Proposition 3.6 and Assumption 3.7 yield
0<8; &) < A/4

We thus have

0 0 AN/20 <0
and

0i+0+A/2&X >0.
The inequality (B.4) thus yields

(d ©0)? > min((€; + A2+ X%, (0; SN + A)2)?)
> min((A/4)%,(A/2)%) = (A]4)? > 0.

Since (3.12) holds, we can apply Proposition 3.9. Since by Lemma 3.4 and Assumption 3.7,
(I P)SP|| < A/4,

we obtain

(B.5) I(I &P < 2| &P)IL|>.

By Lemma A.1, we have

(B.6) (I &P)IL;[| = 6(E;, W)
and
(B.7) (I ©P)I;|| = 6(&;, W).

The relations (B.6) and (B.7), used with (B.5), and Proposition 3.8, complete the [proof.

B.3. Proof of Proposition 4.3. Proof. Letz € (BW;)*, » = G;z. Sincer = Q;,
we have, using Lemma A.1,

IMyz|l = [M;Q;xll < 8((BW;)*, &) llzll-

By Lemmas A.3, A.4, using (4.2),(4.3), and the triangle inequality for the distafce
between subspaces of the same dimension, we get

(B.8) Iz ]| < 6(E5, BWj)llzll < (6(E5, W5) + 6(W;, BW;)) |||
< (0085, Wj) + inf [ITenB)l|=ll = (€5, W;) +)ll=l)
while the reverse triangle inequality yields

(B.9) (I <)z > [lz]| <|ILz|l > (1 <0(E;, Wi) )|zl
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On the other hand, we have
z=Qj(AeuB)r = Qj(Aeu;B)I 11; + 1)z = Qjy1 + Qjy2,

with y; = (A &u;B)(I ©1I;)z andy, = (A < p;B)ILz. Still using the reverse triangle
inequality, we thus obtain

(B.10) 121l > 1Qju1 [l ©11Q;v-l-

We note thay, € BE;, which leads, by Lemmas A.1 and A.5, to

(B.11) 1Qjy2ll < 6(BEj, BWj)llyal < 8(€;, WHIIBIIIBl[lyal]-
Moreover, we have,

2]l = [1(A ©p; B) || = || B(B™' A &p))La|
<|IBIlII(B™' A & ;).

Sincelljz € & andA; < pj < Apy1, we obtain

(B.12) lly2ll < 1Bl max(Ap1 <y, pj < A0) [T
< 1Bl[(Ap+1 @A) ([T z].

From (B.8), (B.11), (B.12), it follows
(B.13)  [lQsu2ll < S(ELWHIBTHINBI Apr1 &A1) (S(E;, Wi) + 7).
Concerningy;, we have
(B.14) 1Qjv1ll = Iyl S 1T ©Q;5)y1l-
We also have
y1 = B(B ' A &puj)(I &10;)z € BE;,
which implies
(B.15) (I £Q))yill < 8(BE, (BW)H)llyll-
By Lemmas A.3 and A.6,
§(BEF, (BW;)™h)

I
>

(B~*&)*, (BW;)*") = 8(BW;, B7'E))
§(BWj, BE;) + 8(BE;, B™'E;))

IN

< 5(Wj:5j)||B||||B1”)"‘732%”[@7732”)

—

S5, EQIBINIBTI + ) ;

thus,

(B.16) 1T Q) < (k+ 30V, ENIIBINBT DIyl
Moreover, by (4.1) and Lemma 4.2, we have

1l = 1B(B™' A ;) (I 11|
> [[BTHTHI(BT A epy) (I &11)a]|
> [|B7H " all(I I0)z]).
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Hence, by (B.9), we get
(B.17) Iyl > 1B7HI ™ a1 ©6(E5, Wy) &)llz]l.
From (B.14), (B.16), and (B.17), we obtain, @pV;, £;) sufficiently small,
(B.18) 1Qy1ll > (1 &k &sW;, EHIBIIBT DIyl
> (L ek edW;, ENIBINBT)
NBHI a1 ©6(E5, Wy) @)zl

Finally, from (B.10), (B.13) and (B.18), we get, f6(\V;, £;) sufficiently small,
(B.19) Izl > ( (L &k ©dWy, ENIBIIBTIDIBT T all ©4(E;, W) )

S3(ELWHIBTHIIBIP Apr1 &) (E(E;, Wy) + 7).
Now (4.2) implies that’; andW/; have same dimension and€;, W;) = §(W;, ;). Propo-
sition 4.3 is thus a direct consequence of (B.1ID).

B.4. Proof of Proposition 4.7. Proof. Letn € RP, be a vector of components, j =
1,...,p, such that|n|| = 1. Assuming that the vectots;, j = 1, ..., p, are orthonormal, we
have

p

p p
(B.20) 1> iy + 2l > |l me” adl Zmzjll

j=1

2 1 & max IIZJIIZIW
j=1

Using the Cauchy-Schwarz inequality, we have

1/2
(B.21) >l < /b (Z n?) = b
j=1 j=1

By Proposition 4.6, fo6 (&, W) sufficiently small, we can assunie;|| < (2,/p)~". By
(B.20), we thus have

(B.22) ||ZnJ (uj +2)ll 2 15— \/__—

Jj=1 \/_
Since (B.22) is true for all normalizede RP, we obtain thatthe vectots+z;,j =1,...,p
are linearly independent and (4.28) holds.
On the other hand, we have

[l
(B.23) SOV £y = max WL STV
vewnew o]
(I 320 i (uy + 25
= max D
neRe flnll=1 || 3252 my(uy + 25)]
By (B.21), we have
p
(B.24) |(1 <1I) Z (uj +25)ll < jax (I ©I)(u; + 2; ||Z|77J

< max [ M), +2)llVp.

Jj=1,....p
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From (B.22), (B.23), and (B.24), it follows

(B.25) SOV, £) < 2yp max |[(I I (w; + 2)]|

sesesP

By Proposition 4.6, we have
(B.26) (T ST (uj + 2)]| < (I &) (u; + 25l < o (5(E, W)

Relation (4.29) comes from (B.25), (B.26), and, using (4.28), comes §i@w*c* &) =
0(E, W),
Finally, (4.30) is a consequence of (4.29).
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