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CONVERGENCE ANALYSIS OF AN INEXACT TRUNCATED RQ-ITERATION �

CHAO YANGy

Abstract. The Truncated RQ-iteration (TRQ) can be used to calculate interior or clustered eigenvalues of a
large sparse and/or structured matrixA. This method requires solving a sequence of linear equations. When these
equations can be solved accurately by a direct solver, the convergence of each eigenvalue is quadratic in general and
cubic if A is hermitian. An important question is whether the TRQ iteration will still converge if these equations
are approximately solved by a preconditioned iterative solver. If it does converge, how fast is the convergence rate?
In this paper, we analyze the convergence of an inexact TRQ iteration in which linear systems are solved iteratively
with some error. We show that under some appropriate conditions, the convergence rate of the inexact TRQ is at
least linear with a small convergence factor.
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1. Introduction. In this paper, we are concerned with solving

Ax = �x;

whereA 2 C n�n is large sparse or structured. By that, we mean the matrixA has very
few nonzero elements, or it has a special structure that allowsy  Ax to be implemented
efficiently in much less thann2 floating point operations (FLOPS). (An example of this is the
discrete Fourier transform matrix.) We are particularly interested in finding several interior
or clustered eigenvalues ofA. This problem is often solved by applying the Arnoldi [1] or
Lanczos [3] method to(A��I)�1, where� is a target shift. This technique is usually referred
to asshift and invert. In a shifted and inverted Arnoldi or Lanczos iteration, one must solve
a sequence of linear equations accurately in order to capture all desired eigenvalues. Loss of
accuracy in solving shift-invert equations of the form

(A� �I)w = v

may result in the corruption of the Krylov subspace from which eigenvalue and eigenvector
approximations are drawn.

The recently proposed Truncated RQ-iteration (TRQ) [8] provides an alternative for cal-
culating the interior or clustered eigenvalues. The TRQ iteration also solves a sequence of
linear systems of the form(A � �I)w = v. However, numerical examples shown in [8]
have indicated that the solution accuracy of these linear equations can be relaxed. Rapid
convergence has been observed when these equations are solved approximately by a precon-
ditioned iterative solver. In the following, we will use the terminexact TRQto refer to the
TRQ iteration in which the linear equations are solved approximately.

In this paper, we analyze the convergence of the inexact TRQ iteration and show that
under some appropriate conditions, the inexact TRQ iteration converges linearly with a small
convergence factor. Moreover, the analysis recovers the quadratic (or cubic ifA is Hermitian)
convergence of the TRQ when the linear systems are solved exactly.

The organization of the paper is as follows. In Section 2, we review the TRQ iteration.
The inexact TRQ iteration is introduced in Section 3. The linear convergence of the inexact

�Received January 27, 1998. Accepted for publication July 1, 1998. Recommended by R. Lehoucq.
yDepartment of Computational and Applied Mathematics, Rice University, Houston, TX 77005-1892,

(chao@caam.rice.edu ). This work was supported in part by NSF cooperative agreement CCR-9120008, and
by ARPA contract number DAAL03-91-C-0047 (administered by the U.S. Army Research Office).

40



ETNA
Kent State University 
etna@mcs.kent.edu

C. Yang 41

Algorithm 1 : Implicitly ShiftedRQ-iteration

Input : (A; V;H) with AV = V H , V HV = I , andH is upper
Hessenberg.

Output : (V;H) such thatAV = V H; V HV = I andH is upper triangular.

1. for j = 1; 2; 3; ::: until converged,
1.1. Select a shift� �j ;
1.2. FactorH � �I = RQ;
1.3.H  QHQH ; V  V QH ;

2. end;

FIG. 2.1.Implicitly Shifted RQ-iteration.

TRQ is proved in Section 4. Some numerical examples are shown in Section 5 to confirm the
convergence analysis.

2. The Truncated RQ-iteration. Before introducing the TRQ iteration, let us examine
the full RQ-iteration. The RQ-iteration is similar to the familiar QR algorithm. It begins with
a Hessenberg reduction

AV = V H;(2.1)

whereV HV = I andH is upper Hessenberg. This reduction is followed by the actions
described in Figure 2.1, which eventually drivesH into an upper triangular form with eigen-
values exposed on the diagonal. If we letV+ = V QH , H+ = QHQH , v+1 = V+e1 and
v1 = V e1, it is easy to verify that in a single RQ iterate

(A� �I)v+1 = v1�1;1;

where�1;1 = eT1 Re1. This implies that the first columnV+ is what one would have obtained
by applying one step of inverse iteration tov1 with the shift�. This property is preserved
in all subsequent RQ iterates. Thus, one would expect very rapid convergence of leading
columns ofV to an invariant subspace ofA.

In the large scale setting it is generally impossible to carry out the full iteration involving
n � n orthogonal similarity transformations. It would be desirable to truncate this update
procedure afterk steps to maintain and update only the leading portion of the factorizations
occurring in this sequence. A truncated Hessenberg reduction can be produced by an Arnoldi
iteration which yields

AVk = VkHk + fke
T
k ; V

H
k Vk = Ik ; and V H

k fk = 0:(2.2)

The matrixVk 2 C n�k can be viewed as the leadingk columns of theV 2 C n�n that
appears in the full Hessenberg reduction (2.1), andHk can be viewed thek � k leading
principle submatrix ofH .

To carry out the lastk steps of the RQ update within the truncated Hessenberg reduction,
one must find out the consequence of the firstn � k steps of the full RQ factorization. In
particular, one must determine the(k + 1)-st column of bothV ~Q andH ~Q, where

~Q =

�
Ik 0

0 Q̂

�
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is the product of Given’s rotations used to drive the lower(n� k)� (n� k) portion ofH to
an upper triangular form. The determination of these intermediate vectors leads to solving a
set of equations to be defined below.

To be precise, let us partitionV = (Vk; V̂ ) whereVk denotes the leadingk columns of
V (produced by an Arnoldi iteration,) and let

H =

�
Hk M

�ke1e
T
k Ĥ

�

be partitioned conformally so that

A(Vk ; V̂ ) = (Vk ; V̂ )

�
Hk M

�ke1e
T
k Ĥ

�
:(2.3)

Let � be some given shift. In a full RQ-iteration, we would begin factoringH � �I from
right to left using Givens method, say, to obtain

H � �I =
�
Hk � �Ik M̂

�ke1e
T
k R̂

��
Ik 0

0 Q̂

�

whereĤ � �I = R̂Q̂ andM̂ =MQ̂. Postmultiplying (2.3) by

�
Ik 0

0 Q̂

�
yields

(A� �I)(Vk ; V̂ Q̂H) = (Vk ; V̂ )

�
Hk � �Ik M̂

�ke1e
T
k R̂

�
:(2.4)

Note that in a truncated RQ-iteration, we do not haveM̂ , Ĥ , or V̂ . However, at this point, all
one needs to know in order to complete the RQ factorization are the first columns ofV̂ Q̂, M̂
andR̂.

If these vectors can be computed without forming and applyingQ̂, then a truncated
version of the RQ-iteration is possible. To determine these vectors, let us examine the first
k + 1 columns of (2.4). Letv = V̂ e1, v+ = V̂ Q̂He1, h = M̂e1, and� = eT1 R̂e1. It follows
from (2.4) that

(A� �I)(Vk ; v+) = (Vk ; v)

�
Hk � �Ik h
�ke

T
k �

�
:(2.5)

Note that the vectorv is the normalizedfk produced by the Arnoldi iteration. From (2.5), it
follows thatv+ must satisfy

(A� �I)v+ = Vkh+ v�;(2.6)

with V H
k v+ = 0 andkv+k = 1 since the columns of(Vk ; v+) must be orthonormal.

These conditions may be expressed succinctly through theTRQ equation
�
A� �I Vk
V H
k 0

��
v+
�h

�
=

�
v�
0

�
; kv+k = 1:(2.7)

Note that the unknowns in (2.7) arev+, h and�. The conditionsV H
k v+ = 0 andkv+k = 1

allow one to solve �
A� �I Vk
V H
k 0

��
w
z

�
=

�
v
0

�
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first for any 6= 0. The vectorv+ can be computed by simply normalizingw. Once we have
v+, premultiplying (2.6) withVk andv yields

h = V H
k (A� �I)v+ and � = vH (A� �I)v+:

The existence and uniqueness of the solution to the TRQ equation is carefully established
in [8]. Using the additional property (2.2), we can further simplify the TRQ equation (2.7) to
devise a solution scheme that avoids a block Gaussian elimination. It is shown in [8] that the
TRQ equation can be solved as follows:

1. w  (I � VkV H
k )(A� �I)�1(Vks), for some appropriates;

2. v+  w=kwk;
3. h V H

k Av+; � vH(A� �I)v+;
Once the TRQ equation is solved, the RQ update can be applied to (2.5) to finish a

complete cycle. The TRQ algorithm is shown in Figure 2.2. We refer the interested reader to
[8] for many implementation details.

Algorithm 2 : (TRQ) Truncated RQ-iteration

Input : (A; Vk ; Hk; fk) with AVk = VkHk + fke
T
k ; V

H
k Vk = I ,Hk

is upper Hessenberg.
Output : (Vk; Hk) such thatAVk = VkHk; V

H
k Vk = I andHk is upper

triangular.

1. Put�k = kfkk and putv = fk=�k;
2. for j = 1; 2; 3; ::: until converged,

2.1. Select a shift� �j ;

2.2. Solve

�
A� �I Vk
V H
k 0

��
v+
�h

�
=

�
v�
0

�
with kv+k = 1;

2.3. Factor

�
Hk � �Ik h
�ke

T
k �

�
=

�
Rk r
0 �

��
Qk q
�eTk 

�
;

2.4.Vk  VkQ
H
k + v+q

H ;
2.5.�k  �eTkRkek; v  vk�� + v+�;
2.6.Hk  QkRk + �Ik ;

3. end;

FIG. 2.2.The TruncatedRQ-iteration.

3. The Inexact TRQ Iteration. If the cost of factoringA � �I is moderate, the TRQ
iteration provides a clean and efficient way of obtaining accurate approximations to interior
or clustered eigenvalues. Otherwise, we must resort to other means to solve the TRQ equa-
tion (2.7). A preconditioned iterative solver is a natural candidate. In the following, we
will present an algorithm based on the idea of incorporating an iterative solver in the TRQ
iteration, and analyze the convergence of this method.

We shall ask the question of whether the TRQ iteration will still provide accurate eigen-
value approximations if the accuracy of the solution to the TRQ equation is relaxed. If con-
vergence does occur in this inexact scheme, how fast can it be? To address these questions,
let us first examine the consequence of replacing the exact solution,v+, of (2.7) with some
approximation~v+.
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The vector~v+ can be computed by applying an iterative solver to

(A� �I)w = Vks;(3.1)

for somes 6= 0, followed by

~v+  (I � VkV H
k )w; ~v+  ~v+

k~v+k :(3.2)

The orthogonalization and normalization guarantee that

V H
k ~v+ = 0 and k~v+k = 1

are satisfied. To continue the TRQ iteration, we shall computeh and� such that

(A� �I)~v+ = Vkh+ v�(3.3)

holds. However, the following lemma indicates that it is generally difficult to find a perfect
match for (3.3).

LEMMA 3.1. Suppose we solve(3.1)by a Krylov subspace method with a zero starting
vector and no preconditioner to obtain an approximationw. If ~v+ � (I � VkV H

k )w 6= 0,
then

(A� �I)~v+ 62 spanfVk; vg:
Proof. Recall thatVk andv are generated by an Arnoldi process. Thus, if we letv1 be

the first column ofVk, then

Vk = spanfv1; Av1; A2v1; :::; A
k�1v1g and v 2 spanfv1; Av1; A2v1; :::; A

kv1g:
It follows that

Vks = p(A)v1;(3.4)

for some polynomialp(�) of degree at mostk � 1. Applying a Krylov subspace solver to
(3.1) yields an approximate solution

w = q(A)Vks;

whereq(�) is another polynomial associated with the Krylov linear solver. It follows from
(3.4) thatw = q(A)p(A)v1. If we put (�) = q(�)p(�), it follows from our assumption
that the degree of (�) must be at leastk for otherwise (A)v1 2 spanfVkg, and~v+ =
(I � VkV H

k )w = 0. Now, letz = V H
k (A � �I)w. SinceVk spans ak dimensional Krylov

subspace associated withA andv1, the vectorVkz can be expressed as

Vkz = r(A)v1;

for some polynomialr(�) of degree at mostk � 1. Hence, if we let� = k(I � VkV H
k )wk,

then

(A� �I)~v+ = (A� �I)(I � VkV H
k )w=�

= (A� �I)
�
w � Vkz

�
=�

= (A� �I)
�
 (A)v1 � r(A)v1

�
=�

= �(A)v1;
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where�(�) = (���)
�
 (�)� r(�)

�
=�, a polynomial of degree of at leastk+1. Therefore,

we conclude that

~v+ 62 spanfv1; Av1; :::; Akv1g = spanfVk; vg:

Consequently, the best one can hope for from (3.3) is a weak solution(~h; ~�) derived from

V H
k

�
(A� �I)~v+ � Vk~h� v~�

�
= 0(3.5)

vH
�
(A� �I)~v+ � Vk~h� v~�

�
= 0(3.6)

or equivalently,

~h = V H
k A~v+; and ~� = vH (A� �I)~v+:

Due to the error remaining in (3.3), the truncated Hessenberg reduction (2.5) is now
inexact. We can express this inexact reduction by

(A� �I)(Vk ; ~v+) = (Vk ; v)

�
Hk � �Ik ~h
�ke

T
k ~�

�
+ zeTk+1;(3.7)

wherez is the residual error defined as

z � (A� �I)~v+ � (Vk ; v)

�
~h
~�

�
:

Recall from (3.5) and (3.6) thatV H
k z = 0 andvHz = 0. If we now proceed by applying a

sequence of Given’s rotations from the right to (3.7) to annihilate the sub-diagonal elements
of �

Hk � �Ik ~h
�ke

T
k ~�

�
;

the residual error will be mixed into all columns ofVk. Consequently, the updated basis
vectors are no longer valid Arnoldi vectors. However, as we will show in the next section, the
first columnv+1 of this updated basis satisfies

(A� �I)v+1 = �11v1 + z�;(3.8)

where� is a product of sines associated with the aforementioned Given’s rotations. This
observation reveals that an approximate inverse iteration remains in this inexact TRQ update.
The error associated with this inverse iteration is likely to be considerably smaller thankzk
due to the factor�. Therefore, a simple remedy for correcting the contaminated Arnoldi basis
is to recompute an Arnoldi factorization from the very first column of the updatedVk. An
algorithm based on the above discussion is given in Figure 3.1.

Although this algorithm is similar to an explicitly restarted Arnoldi iteration with the
starting vector generated from solving

(A� �I)w = v1

iteratively, it offers the additional advantage of error damping which is absent in the latter
approach. Therefore, it is likely to be more effective than a simple explicit restart. We will
illustrate this point in Section 5.2 with a numerical example.
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Algorithm 3 : (ITRQ) Inexact TRQ-iteration

Input : (A; Vk ; Hk; fk) with AVk = VkHk + fke
T
k ; V

H
k Vk = I ,

Hk is upper Hessenberg.
Output : (Vk ; Hk) such thatAVk = VkHk; V

H
k Vk = I andHk is

upper triangular.

1. Put�k = kfkk and putv = fk=�k;
2. for j = 1; 2; 3; ::: until convergence,

2.1. Select a shift� �j ;
2.2. Solve(I � VkV H

k )(A� �I)(I � VkV H
k )w = v approximately;

2.3.w  (I � VkV H
k )w, v+  w=kwk;

2.4.h V H
k Av+; � vH(A� �I)v+ ;

2.5. Factor

�
Hk � �Ik h
�ke

T
k �

�
=

�
Rk r
0 �

��
Qk q
�eTk 

�
;

2.6. v1  VkQ
H
k e1 + v+q

He1;
2.7. (Hk,Vk,v,�k) Arnoldi(A,v1);

3. end;

FIG. 3.1.Inexact TRQ iteration.

4. Convergence Analysis.This section focuses on analyzing the convergence of this
inexact TRQ scheme. In particular, we are interested in understanding the tradeoff between
the accuracy of the solution to the TRQ equation and the rate of convergence of each eigenpair
in TRQ. For a simple case in which Rayleigh quotient shifts are used throughout the TRQ
iteration, we establish the local linear convergence of the first Arnoldi basis vector to an
eigenvector ofA. The convergence factor depends onk�zk, the magnitude of the damped
residual error in (3.7), and the “gap” between two consecutive eigenvalues sought.

To begin the analysis, let us assume that an inexact Hessenberg reduction (3.7) has been
obtained, andk � 1 rotationsQH

1 ,QH
2 ,...,QH

k�1, each of the form

QH
i =

0
BB@

Ik�i 0
i �i
��i i

0 Ii�1

1
CCA ; �2i + 2i = 1(4.1)

have been applied to (3.7) from the right to annihilate the sub-diagonal elements of
�
Hk � �Ik ~h
�ke

T
k ~�

�
:

The first two columns of the new matrix equation satisfy

(A� �I)(v1; ~v2) = (v1; v2)

�
0 �
� �

�
+ (0; z�̂);(4.2)

where~v2 = (Vk ; ~v+)Q
H
1 Q

H
2 � � �QH

k�1e2, �̂ = �1�2 � � ��k�1 and� = k(A � �I)v1k. Now,
let

� =
p
�2 + �2; �k =

�

�
; and k =

�

�
:
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Applying

�
k �k
��k k

�
to (4.2) from the right yields

(A� �I)(v+1 ; ~v+2 ) = (v1; v2)

� ��k� k�
0 �

�
+ (��k�̂z; k�̂z);(4.3)

wherev+1 = kv1 � �k~v2 and~v+2 = �kv1 + k~v2.
We will analyze the convergence of the inexact TRQ iteration by examining the norm of

r+ = (A� �+I)v+1 , where�+ = (v+1 )
HAv+1 . We define the damped residual error� as

� = k�̂zk:(4.4)

Note that

j�̂j = j�1�2 � � ��k�1j < 1:

This is because each�i is a sine used to construct the Given’s rotation in (4.1).
The following theorem asserts that if the inexact TRQ is converging to an isolated eigen-

value ofA, r+ must satisfykr+k �  (�; �)krk, where (�; �) is uniformly bounded if� is
sufficiently close to an isolated eigenvalue ofA, and if� is not too large.

THEOREM 4.1. Let r = (A � �I)v1 andr+ = (A � �+)v+1 , wherev1 andv+1 are as
defined in(4.3), and�, �+ are Rayleigh quotients ofAwith respect tov1 andv+1 respectively.
If eachA� �I is nonsingular, and� is convergent to a simple eigenvalue ofA, then

kr+k �  (�; �)krk;(4.5)

where the magnitude of the function depends on� and the size of the damped error�
defined in(4.4). LetV � (Vk; V̂n�k) be unitary, whereVk consists of Arnoldi basis vectors
generated by Step2.7 in Algorithm3. RepartitionV asV = (v1; V̂n�1), and let

C = V̂ H
n�1AVn�1; and � = k(C � �I)�1k�1:

If � < �, then

j (�; �)j � j��j
�2 � �2 +

j�j�
�2 � �2 +

�p
�2 � �2 ;(4.6)

where� = k(A� �)v1k and� = vH1 Av2. Furthermore, if� < �=
p
2, then

j (�; �)j < 1

holds asymptotically.
Proof. For clarity, we drop the subscripts of�k andk in the following. Note that

r+ = (A� �+I)v+1
= (A� �I)v+1 + (�� �+)v+1
= (���)v1 + (�� �+)v+1 + (�z�̂)�:(4.7)

The last step of the above derivation used the relation

(A� �I)v+1 = v1(��k�)� �̂�kz;
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which appeared in the first column of (4.3). The distance between�+ and�may be estimated
as follows:

�+ � � = (v+1 )
HAv+1 � �

= (v+1 )
H(A� �I)v+1

= (v+1 )
H(���v1 � z�̂�)

= (v1 + �~v2)
H(���v1 � z�̂�)

= ��� � �2�̂~vH2 z:(4.8)

The last equality follows from the fact thatvH1 z = 0 andvH1 ~v2 = 0.
We will transformr+ to V Hr+ before checking its norm. (SinceV HV = I , kr+k =

kV Hr+k.) Recall thatV = (v1; V̂n�1). Putp = V̂ H
n�1~v2 andẑ = V̂ H

n�1z. We will need the
following formulae to simplify the expression forV Hr+:

V Hv+1 = V H(v1 � �~v2) =
�


��p

�
; and V Hz =

�
0
ẑ

�
:

SinceV H
k z = 0 andvHz = 0, the firstk components of̂z are zeros. Clearly,kẑk = kzk.

Now, it follows from (4.7) and (4.8) that

V Hr+ = V H(A� �+I)v+1
= (���)V Hv1 + (�� �+)V Hv+1 � (�̂�)V Hz

= (���)e1 +
�
�� + �2(~vH2 z)�̂

��

��p

�
� �

�
0
ẑ�̂

�

= (���)
�

1� 2
�p

�
+ �2(~vH2 z)�̂

�

��p

�
� �

�
0
ẑ�̂

�

= (���)
�

�2

�p

�
+ �2(~vH2 z)�̂

�

��p

�
� �

�
0
ẑ�̂

�
:

It is easy to verify thatkpk = 1 sincep = V̂ H
n�1~v2, V̂ H

n�1V̂n�1 = In�1 and~vH2 ~v2 = 1. Thus,

kr+k = kV Hr+k = k(���)
�

�2

�p

�
+ �2(~vH2 z)�̂

�

��p

�
� �

�
0
ẑ�̂

�
k

� �2j�j+ �2kz�̂k+ �kz�̂k(4.9)

= �2j�j+ �2� + ��:(4.10)

Recall that� is generated to annihilate the sub-diagonal element of
�

0 �
� �

�
;

which appears in (4.2). Now, since

j�j = j�jp
�2 + �2

� j �
�
j and j�j = krk;

we conclude that

kr+k �  (�; z)krk;
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where

 (�; z) =
j��j
�2

+
j�j�
�2

+
�

j�j :

Clearly, the factor (�; z) can be bounded uniformly if� is not too large, and ifj�j
can be bounded away from zero. Of course, one would not know the size of� until k � 1
rotationsQ1; Q2; :::; Qk�1 have been applied. The following arguments provide ana prior
lower bound forj�j. It asserts thatj�j can be bounded from below if� is sufficiently small.

Recall from (4.3) that

(A� �I)v+1 = v1(���) + (��z�̂):

This is equivalent to

V H(A� �I)V V Hv+1 = V Hv1(���) � �
�

0
ẑ�̂

�
;

or �
0 hH

�e1 C � �I
��


��p

�
=

� ���
���̂ẑ

�
;

whereh = vH1 AV̂n�1. It follows that

hHp = �; and(4.11)

�e1 � (C � �I)p = ��̂ẑ:(4.12)

SinceeT1 ẑ = 0, it follows from (4.12) that

(C � �I)p =
�

�
�̂�z

�
;

where�z denotes the vector consisting of the lastn� 2 components ofz. The assumption that
� is convergent to a simple eigenvalue ofA ensures thatC � �I is nonsingular. Thus

p = (C � �I)�1
�

�
�̂�z

�
:

Recall thatp = V̂n�1~v2 has unit length. Therefore,

1 = kpk � k(C � �I)�1k
p
�2 + �̂2kzk2:

or,

1

k(C � �I)�1k �
p
�2 + �2:(4.13)

Clearly, to establish a lower bound on�, one must prevent� from getting too large.
Let � = 1=k(C � �)�1k. It follows from the assumption that� < � and equation (4.13)

that

�2 � �2 � �2; or j�j �
p
�2 � �2:
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Consequently, we have

 (�; z) � j��j
�2 � �2 +

j�j�
�2 � �2 +

�p
�2 � �2 :(4.14)

As � becomes sufficiently close to the desired eigenvalue, we may ignore the effect of
the first two terms of (4.14), and focus on the dominating third term. It is easy to verify that
if

� <
�p
2
;

j (�; z)j can be strictly bounded by 1. Monotonic convergence can be expected in this case.

Remark 1. Note that the above convergence analysis is a local analysis. A global conver-
gence analysis can be substantially more complicated, and is beyond the scope of this paper.

Remark 2. The above analysis is valid when the TRQ equation is solved exactly. One
recovers the quadratic (or cubic ifA is Hermitian) convergence rate of the Rayleigh quotient
iteration. To see this, we replace equations (4.7) and (4.8) with

r+ = (���)v1;
�+ � � = ���:

and conclude from (4.10) that

kr+k = kV Hr+k = �2j�j:

Since� = �=(�2 + �2) and� = krk,

kr+k = j�jp
�2 + �2

krk2 �
������
����krk2:(4.15)

It follows from (4.12) that�e1 = (C��I)p. Thusj�j is bounded below by1=k(C��I)�1k,
and quadratic convergence follows from (4.15). WhenA is Hermitian, j�j = jhHpj �
khkkpk = j�j = krk, and the cubic convergence rate follows.

Remark 3. We should point out that the bound given by (4.14) is not tight. This is a conse-
quence of using the triangular inequality in (4.9). Thus in practice, the requirement� � �
may be relaxed.

Remark 4. For Hermitian problems,� is approximately the gap between the eigenvalue to
which the inexact TRQ is converging to and the eigenvalue nearest to it. This quantity can
often be estimated by examiningj�� �̂j, where�̂ is the eigenvalue ofHk that is nearest to�.

5. Numerical Examples. In this section, we will demonstrate the convergence of the
inexact TRQ by numerical examples. All computations shown in this section are performed in
MATLAB 5.1 on a SUN-Ultra2. Two iterative solvers MINRES [4] and GMRES [7] are used
in the following examples. Both solvers construct approximate solutions to a linear system
from a Krylov subspace. The MINRES algorithm is mainly used for solving symmetric
indefinite systems. Since it can be implemented by a short recurrence, only a few vectors need
to be stored. Ak-step GMRES algorithm requires an orthogonal basis of ak-dimensional
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Krylov subspace to be saved. To reduced the storage cost, the GMRES algorithm is often
restarted using the approximate solution obtained in the previous run as a starting guess.
We will use the notationGMRES(k,m) to denote ak-step GMRES with a maximum ofm
restarts. We set the convergence tolerance in both solvers to be10�8. We will also use
ITRQ(k,m) to denote an inexact TRQ iteration in whichk eigenpairs are to be computed
and am-step Arnoldi factorization is maintained.

5.1. Example 1 - Linear Convergence.The validity of the analysis presented in Sec-
tion 4 is verified by a simple numerical example here. We choose the familiar100 � 100
tridiagonal matrix with 2 on the diagonal and�1 on the sup- and sub-diagonal as the test
matrix. The gap between the first two smallest eigenvalues is� = 2:9� 10�3. To show the
local convergence rate, we choose the starting vectorv0 of the initial Arnoldi factorization to
be

v0 = z1 + 0:01 � r;
wherez1 is the eigenvector corresponding to the smallest eigenvalue (�1) of A, andr is a
normally distributed random vector. We applyGMRES(10,5) to (3.1) to obtain the vector
~v+ used in (3.3). The residual error associated with the equation (3.3) and the first sub-
diagonal element�1 of the tridiagonal matrix are displayed in Table 5.1. The(1; 1)-entry of
the matrix, denoted by�1, is also listed there. As ITRQ converges, we expect to see�1 ! �1,
v1 ! z1, and�1 = kAv1 � �1v1k ! 0.

iter. �1 kzk �1

1 3:0244� 10�3 - 7:8� 10�3

2 9:6750� 10�4 1:9� 10�3 7:3� 10�5

3 9:6742� 10�4 2:5� 10�3 3:2� 10�6

4 9:6744� 10�4 5:7� 10�4 1:5� 10�7

5 9:6744� 10�4 1:6� 10�3 6:7� 10�9

6 9:6744� 10�4 9:2� 10�4 3:2� 10�10

7 9:6744� 10�4 1:3� 10�3 1:6� 10�11

TABLE 5.1
The convergence of inexact TRQ.

We observe from Column 4 that�1 decreases monotonically in a linear fashion. This is
in agreement with the theory developed in Section 4 since the damped residual error of (3.3)
(Column 2 of Table 5.1 is less than the distance between the first two eigenvalues ofA.)

5.2. Example 2 - Compute several eigenvalues.The following example illustrates that
one can use the inexact TRQ iteration to compute more than one eigenpair. We also demon-
strate that ITRQ is superior to the seemingly equivalentinverse iteration with Wielandt de-
flation [8] (INVWD.) The matrix used in the example corresponds to a discretized linear
operator used in the stability analysis of the Brusselator wave model (BWM) [2]. Eigenval-
ues with the largest real parts are of interest. They help to determine the existence of stable
periodic solutions to the Brusselator wave equation as a parameter varies. The dimension of
the matrix is200� 200. The 32 rightmost eigenvalues are plotted in Figure 5.1. We place the
target shift at� = 1:0, and useITRQ(4,5) to find 4 eigenvalues closest to�. The equation
(3.1) is solved byGMRES(10,5) . The residual norm of each approximate eigenpair is plot-
ted against FLOPS in Figure 5.2. We marked residual norm at each iteration with a circle, and
link these circles with solid (for ITRQ) or dotted lines (for INVWD) to show the convergence
history of both methods.
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FIG. 5.1.The 32 rightmost eigenvalues of a200� 200 BWM matrix.
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FIG. 5.2.The convergence history of ITRQ and INVWD.

It appears that the convergence of four approximate eigenpairs occurs sequentially, i.e.,
the residual of thej+1st Ritz pair does not show significant decrease until thej-th eigenpair
has been found. Since we have shown in Section 4 that an approximate inverse iteration
occurs in the inexact TRQ iteration, it will be interesting to compare the performance of
ITRQ with an accelerated inverse iteration combined with Schur-Wielandt deflation [6, pp.
117]. The INVWD algorithm computes one eigenpair at a time by an approximate inverse
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iteration in which the linear system(A� �I)w = v is solved by an iterative method. Instead
of continuing the inverse iteration with

v  w

kwk ; � =
vHAv

vHv
;

we compute an Arnoldi factorization usingw as the starting vector, and choose(�; v) from
the Ritz pairs associated with this factorization. This approach can also be viewed as a se-
quence of restarted Arnoldi iterations in which the starting vector is repeatedly enhanced by
an approximation inverse iteration. Once some eigenpairs have converged, we may apply
Schur-Wielandt deflation to expose the subsequent eigenpairs. We will refer the interested
reader to [8] for the detail of this algorithm. Unlike ITRQ, there is no error damping in
INVWD. The equation(A � �I)w = v must be solved rather accurately to guarantee the
convergence of the inverse iteration. In this example, we useGMRES(20,5) . To make a
fair comparison, we use a5-step Arnoldi factorization to accelerate the inverse iteration. We
observe from Figure 5.2 that, the residual curve corresponding to INVWD (dotted curve)
zig-zags around 1.0 and never shows significant decrease.

5.3. Example 3 - The Effect of Preconditioning.The previous two examples were
presented merely to illustrate that it is possible to combine an iterative solver with the TRQ
iteration. We should point out that in practice both problems can be solved with an exact
TRQ or a shifted and inverted Arnoldi iteration because matrices involved in both examples
can be efficiently factored.

As we mentioned before, the inexact TRQ is ideal for problems in which matrix factor-
ization is prohibitively expensive. The following example carries this characteristic. We will
show that, with the help of a good preconditioner, the speed of convergence of ITRQ can be
drastically improved. The matrixA 2 R256�256 used here arises from reactive scattering
calculation [5]. Its sparsity pattern is shown in Figure 5.3. Although the matrix itself has
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50

100

150

200

250

FIG. 5.3.The sparsity pattern of the reactive scattering matrix.

only 6% non-zeros, a sparse factorization tends to fill up the entire matrix with non-zeros
regardless of the reordering scheme used.
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In this application, eigenvalues near zero are of interest. For clarity, we only show the
convergence of the first eigenvalue. The convergence pattern for other eigenvalues is similar
to this one. The solid curve in Figure 5.4 corresponds to the residual norm of the Ritz pair
obtained from running a preconditionedITRQ(4,5).

The equation (3.1) is solved by MINRES with a convergence tolerance of10�8. A max-
imum of 100 steps are allowed in MINRES. If MINRES does not converge in 100 steps, the
approximation generated at the 100th iteration is used to continue the inexact TRQ calcula-
tion. The preconditioner we used here is a matrix consisting of the dense diagonal blocks of
the original matrix.

Without a preconditioner,ITRQ(4,5) (the dash-dotted curve) performs well at the be-
ginning of the iteration whenA � �I is relatively well conditioned. The convergence slows
down as the desired Ritz value gets close to the smallest eigenvalue. Even with the effect of
damping, the residual error remained in (3.8) is not small enough to produce a qualitatively
good starting vector for a subsequent Arnoldi factorization. With a good preconditioner, one
can reduce the residual norm of (3.8) to a level which, combined with the TRQ damping,
satisfies the conditions given in Theorem 4.1.

We also plotted, in Figure 5.4, the residual of the Ritz approximation obtained from an
implicitly restarted Lanczos calculation,IRL(1,29) (the dotted curve) for comparison. (We
use the notationIRL(k,m) to represent an IRL calculation in which the number of desired
eigenvalue isk and the number of shifts applied during each restart ism.) We observe that
IRL converges at a much slower rate in comparison with the preconditioned ITRQ.
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FIG. 5.4.Comparison of (preconditioned) ITRQ with IRL.

6. Conclusion. We have analyzed the convergence of an inexact TRQ iteration, and
showed that under some appropriate assumptions, the inexact TRQ iteration converges lin-
early with a small convergence factor. Our numerical examples confirmed our convergence
analysis, and indicated the importance of constructing a good preconditioner for the iterative
solver used in solving the TRQ equation.
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