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ON THE CONVERGENCE OF A
NEW RAYLEIGH QUOTIENT METHOD WITH
APPLICATIONS TO LARGE EIGENPROBLEMS �

D. P. OLEARYy AND G. W. STEWARTz

Abstract. In this paper we propose a variant of the Rayleigh quotient method to compute an eigenvalue and cor-
responding eigenvectors of a matrix. It is based on the observation that eigenvectors of a matrix with eigenvalue zero
are also singular vectors corresponding to zero singular values. Instead of computing eigenvector approximations by
the inverse power method, we take them to be the singular vectors corresponding to the smallest singular value of the
shifted matrix. If these singular vectors are computed exactly the method is quadratically convergent. However, ex-
act singular vectors are not required for convergence, and the resulting method combined with Golub–Kahan–Krylov
bidiagonalization looks promising for enhancement/refinement methods for large eigenvalue problems.
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1. Introduction. The starting point for the algorithm analyzed in this paper is the fol-
lowing variant of the Rayleigh quotient method. LetA be of ordern, and let� be a simple
eigenvalue ofA with right and left eigenvectorsx andyH. Let ~v and ~wH be approximations
to x andyH, and let� be an approximation to�. Then new approximationŝv, ŵH, and�̂ are
generated as follows:

1: v̂ = (A� �I)�1~v
2: ŵH = ~wH(A� �I)�1

3: �̂ = ŵHAv̂=ŵHv̂:
(1.1)

This procedure can, of course be iterated. The quantity�̂ is called the generalized Rayleigh
quotient ofA at v̂ and ŵH. Ostrowski [6] showed that under weak conditions onv̂ and
ŵH the shift� converges cubically to� provided that the initial shift is sufficiently near�.
There are two reasons for the fast convergence. First, steps 1 and 2 in (1.1) improve earlier
approximations to the right and left eigenvectors. Second, this improvement is magnified by
the generalized Rayleigh quotient, which is more accurate than an ordinary Rayleigh quotient
formed from a single vector.

In this paper we will be concerned with a variant of this method in which the approxi-
mations~v and ~wH are determined in a different way. We begin by noting that if� = � then
A��I has a zero singular value, with right and left singular vectorsx andyH. Consequently,
if � is near�, the right and left singular vectorsv andw corresponding to the smallest singular
value� of A� �I should approximatex andyH. (We will make this statement more precise
in Theorem 5.1.) For brevity we will call these singular vectors the inferior singular vectors
of A � �I . In practice, we do not compute the inferior singular vectors exactly but instead
approximate them. This suggests the following procedure, which can also be iterated.

1: Let ~v and ~wH be approximations to the right and left
inferior singular vectors ofA� �I ,

2: �̂ = ~wHA~v= ~wH~v
(1.2)
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Because we do not improve on previous vectors in step one, the scheme is slower than (1.1).
But, as we will show, it converges quadratically if the singular vectors are exact, and otherwise
it can still be fast. We will call the method the singular vector Rayleigh quotient (SVRQ)
method.1

At first glance the SVRQ method does not seem to have much to recommend it. It is
more difficult to compute singular vectors than to solve linear systems, and consequently a
SVRQ step (1.2) requires more work than a step of the original algorithm (1.1). And as we
have noted, the new method is slower. Nonetheless, the method may be useful in finding
eigenpairs of large matrices.

Specifically, over the past decade new algorithms have been developed to solve large
eigenvalue problems by building up approximations to the eigenspaces of eigenvalues lying
in a neighborhood of the complex plane. These algorithms (e.g., see [5, 7, 1]) generally begin
with subspacesV andW . The spaceV approximates a right eigenspace ofA (the spaceW
usually does not approximate a corresponding left eigenspace). In an enhancement step, the
spacesV andW are expanded in such a way as to improve the approximations they contain.
Since storage considerations limit the dimensions of the spaces, enhancement is followed by
a refinement step in which unwanted vectors are purged from the spaces.

The enhancement step generally requires the solution of equations involvingA � �I ,
where� is a shift chosen during the refinement step.2 If A is large, these systems cannot
be solved directly, and iterative methods such as GMRES must be employed. Unfortunately,
these iterative methods are computationally expensive and consume valuable storage. More-
over, although potentially useful information is generated in the course of the iteration, it is
not easy to fold it into the algorithm. Consequently, the information is usually discarded and
only the approximate solution is retained.

If we regard steps 1 and 2 in the algorithm (1.1) as enhancement steps, and step 3 as a
refinement step (the analogies are not at all far-fetched), then the advantage of the new al-
gorithm (1.2) becomes evident. It is true that (1.2) replaces the iterative solution of a large
nonsymmetric system with the iterative determination of inferior singular vectors. But there
are effective, well-understood Krylov sequence methods for the singular value decomposi-
tion. In the present application the Golub–Kahan–Lanczos (GKL) bidiagonalization method
is a natural.3 This method generates two sequences of orthogonal vectors spanning Krylov
subspaces defined by

v̂; [(A� �I)H(A� �I)]v̂; [(A� �I)H(A� �I)]2v̂; : : :

(A� �I)v̂; (A� �I)[(A � �I)H(A� �I)]v̂; (A� �I)[(A � �I)H(A� �I)]2v̂; : : : :

The vectors in the first sequence contain approximations to the right singular vectors, while
the vectors in the second contain approximations to the left singular vectors, which makes
them natural candidates to add toV andW . Moreover, since the singular subspaces also
contain approximations to eigenvectors corresponding to eigenvalues near� (see Theorem
5.1), the refinement step will benefit from the fact that we have approximations to both right
and left eigenspaces.

The above observations are speculative, and it will be a major undertaking to bring them
to fruition. However, the results will depend on the properties of the SVRQ method (1.2),

1In a different context Jia has exploited the connection between singular vectors and eigenvectors with small
eigenvalues to generate certain “refined Ritz vectors” [3, 4].

2The Jacobi–Davidson method works with a projected version ofA� �I.
3We use the appellation Golub–Kahan–Lanczos bidiagonalization to stress the fact that the method is based on

Krylov sequences and to distinguish it from the Golub–Kahan reduction to bidiagonal form by orthogonal transfor-
mations. Actually both methods are due to Golub and Kahan [2].
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and there is no point in proceeding if the method does not perform effectively. In this paper,
therefore, we give a convergence analysis of the SVRQ method. To anticipate our results,
we will show that if the singular vectors are computed exactly, then the method converges
quadratically whenever the initial value of� is sufficiently near� and that the size of the con-
vergence region is controlled by the condition numbers of� andx. If the singular vectors are
only approximated, then we give conditions under which convergence rate can be maintained.

This paper is organized as follows. In the next section we introduce a decomposition
associated with a simple eigenvalue and establish a result on the accuracy of generalized
Rayleigh quotients. Inx3 we study the convergence of algorithm (1.2). In the final section
we discuss the results and draw conclusions. Implicit in the analysis is a relation between the
inferior singular vector of a matrix and an eigenvector corresponding to a small eigenvalue.
This relation generalizes to clusters of small singular values, and in an appendix we present
the generalization. Throughout this paperk � k denotes the Euclidean vector norm and the
subordinate spectral matrix norm.

2. Accuracy of generalized Rayleigh quotients.In this subsection we introduce a de-
composition associated with a simple eigenvalue and use it to assess the accuracy of the
generalized Rayleigh quotient in algorithm (1.2). First the decomposition.

THEOREM 2.1. Let A be of ordern. Let � be a simple eigenvalue ofA with right
eigenvectorx normalized so thatkxk = 1 and left eigenvectoryH normalized so thatyHx =
1. Then there aren� (n� 1) matricesX andY with Y orthonormal such that

�
yH

Y H

�
(x X) =

�
1 0
0 I

�

and �
yH

Y H

�
A(x X) =

�
� 0
0 L

�
;

where

L = Y HAX = Y HAY:

Moreover

kxk = kY H
k = 1 and kyHk = kXk � �:(2.1)

For a proof see [8]. The theorem states that the eigenvalue� can be uncoupled from
the rest ofA by a similarity transformation and that the transformation has certain special
properties, which we will use in the sequel. Note that there are block versions of this theorem
in whichx andyH are replaced by matrices spanning left and right eigenspaces ofA (see [9,
xV.1]).

The number�, which is never less than one, will appear as a factor in our bounds, and
it is worth while to attach a meaning to it. In fact,� in (2.1) is a condition number for the
eigenvalue� [9, xIV.2.2]. Specifically, for sufficiently smallE there is a unique eigenvalue~�
of A+E such that

~� = �+ yHEx+O(kEk2):

It follows on taking norms that

j~�� �j � �kEk+O(kEk2):
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In other words� plays the traditional role of a condition number by bounding the effects on
the eigenvalue� of errors inA.

We now consider the accuracy of the generalized Rayleigh quotient~wHA~v= ~wH~v. We
begin with the observation that in the notation of Theorem 2.1 any vector~v can be expressed
in the form
x+Xg, where
 = yH~v andg = Y H~v. Likewise ~wH = �yH + hHY H, where
� = ~wHx andhH = ~wHX . These expansions allow us to state the following theorem.

THEOREM 2.2. In the notation of Theorem 2.1, let

~v = 
x+Xg and ~wH = �yH + hHY H:

If ~wH~v 6= 0, then

~wHA~v

~wH~v
=


��+ hHLg


� + hHg
:(2.2)

Moreover, if1� khk � �kgk > 0, then
���� ~w

HA~v

~wH~v
� �

���� � 2�kAkkhkkgk

1� khk � �kgk
:(2.3)

Proof. The expression (2.2) follows immediately from the relations in Theorem 2.1.
To establish (2.3), use (2.2) to write

~wHA~v

~wH~v
� � =

hHLg � �hHg


� + hHg
:(2.4)

Now an upper bound on the numerator of (2.4) is

jhHLg � �hHgj � (j�j+ kLk)kgkkhk � 2kAkkgkkhk;(2.5)

the last inequality following from (2.1) and the fact thatL = Y HAY .
We must now determine a lower bound on the denominator of (2.4). We begin by deter-

mining lower bounds on
 and�. Since~v = 
x+Xg andk~vk = 1, we must have

1 = ~vH~v = j
j2 + 2Re(�
xHXg) + kXgk2

(rememberkxk = 1). But
��j
j2 + 2Re(�
xHXg) + kXgk2

�� � (j
j+ kXkkgk)2 = (
 + �kgk)2:

Hence we must have

j
j � 1� �kgk:

Proceeding analogously, we find that

j�j � ��1(1� khk):

It now follows that a lower bound for the absolute value of the denominator of (2.4) is

j
jj�j � kgkkhk � ��1(1� �kgk)(1� khk)� kgkkhk = ��1(1� khk � �kgk):(2.6)

The inequality (2.3) now follows on dividing (2.5) by (2.6).
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3. Convergence of the SVRQ iteration.In this section we will consider the conver-
gence of the SVRQ iteration. A single step of algorithm (1.2) ideally consists of computing
the right and left inferior singular vectorsv andwH of A � �I and then computing the
Rayleigh quotient̂� = wHAv=wHv to give a new shift. In practice, though, we do not com-
pute the singular vectors exactly. Instead we obtain~v = v + �v and ~wH = wH + �Hw , where
v andw are the inferior singular vectors and�v and�Hw are the unknown errors. To study the
convergence rate of algorithm (1.2), we study the relation betweenj�̂ � �j andj� � �j. From
(2.3) it is seen that the crux of the matter is to derive expressions for the vectorsg andhH.

We begin by writing the singular value decomposition ofA� �I in the form
�
WH

wH

�
(A� �I)(V v) =

�
� 0
0 �

�
:

Here(V v) and(W w) are unitary. The quantity� is the inferior singular value ofA� �I ,
andv andwH are the right and left inferior singular vectors. Although we do not indicate it
explicitly, the components of this decomposition are functions of� .

We will need a lower bound on the smallest singular value of�. Since� is simple, this
singular value is nonzero when� = �. Hence it is bounded below by a positive constant
when� is restricted to a sufficiently small neighborhood of�. Thus we can let

� =

�
a positive lower bound for the smallest singular value of
� in some neighborhood of�.

We now turn to boundingg = Y H~v. We begin by expandingx in terms of the right
singular vectors:

x = (vHx)v + V V Hx:(3.1)

Multiplying this relation byY H and using the relationY Hx = 0, we find after a little manip-
ulation that

g = Y H~v = Y Hv + Y H�v = �
Y HV V Hx

vHx
+ Y H�v:(3.2)

The next step is to derive an expression forV Hx. To do this we first exploit the eigende-
composition ofA and then the singular value decomposition, as in Theorem 5.1. Specifically,
we have

(A� �I)x = (�� �)x:

Multiplying this expression byWH and using the relationWH(A � �I) = �V H we get
�V Hx = (�� �)WHx or

V Hx = (�� �)��1WHx:(3.3)

We can now derive a bound ong. Taking norms in(3:3), we get

kV Hxk �
�

�
;(3.4)

where we have set

� = j�� � j:
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Since (3.1) is a decomposition ofx into orthogonal components andkxk = 1, it follows that

jvHxj �
p
1� (�=�)2:

Hence from (3.2)

kgk �
�=�p

1� (�=�)2
+ kY H�vk �

�=�p
1� (�=�)2

+ k�vk:

The derivation of a bound forhH = wHX is similar, and we only reproduce the result:

khHk �
��=�p

1� (�=�)2
+ �k�Hwk:

The additional factor� comes from the fact that we work with the eigenvectoryH and the
matrixX , whose norms are�, instead of working withx andY , whose norms are one.

If we now substitute these bounds in (2.3) we obtain after some manipulations the fol-
lowing theorem.

THEOREM 3.1. In the notation of algorithm(1.2) and Theorem2.1, if � = j� � � j is
sufficiently small, there is a a constant� such that

�̂ � j�� �̂ j � C
�
(�=�)2 + (�=�)(k�vk+ k�wk) + k�vkk�wk

�
;(3.5)

where

C =
2�2kAkp

1� (�=�)2 � �
�
2(�=�) + k�vk+ k�wk

� :(3.6)

4. Discussion. In most applications, the quantities�(�)=�, �k�vk, and�k�wk will be
reasonably small, so that the “constant”C will be essentially2�2kAk.

The inequality (3.5) shows that if�v = �w = 0 then the iteration is locally quadratically
convergent. If�v and�w are nonzero, we can maintain the local quadratic convergence by
computing~v and ~w to an accuracy ofO(�). If we compute~v and ~w to fixed accuracy, then the
iteration cannot converge, but the limiting accuracy is theproductk�vkk�wk. Thus ifC and
� are near one, computation of the vectors to an accuracy of10�8 should give eigenvalues of
accuracy10�16.

The bound suggests that we can obtain satisfactory convergence when the error of one of
the vectors~v or ~w is actually growing. Suppose, for example we compute~v to full accuracy,
say10�16, but compute~w by the formula~w = (A � �I)~v=k(A � �I)~vk. Initially, ~w will
be reasonably accurate. But as� ! �, the inferior singular value ofA � �I will approach
zero and~w will be computed with increasing cancellation. (In fact, ifkAk = 1, the relative
accuracy of~w will be about10�16=�min, where�min is the smallest singular value ofA��I .)
However, the bound (3.5) suggests that convergence will continue untilCk�wk=� � 1. In
fact, the following example shows that the convergence in this case can be quite fast.

EXAMPLE 4.1. A matrixA of standard normal deviates was generated and normalized
to one. One of its eigenvalues

� = �0:35815874795571
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was chosen and the iteration described above was performed from a starting value of�0 =
1:3�. The following table lists the smallest singular value ofA� �k�1I andj�k � �k j.

k �min j�k � �kj
1 8:6864e�02 4:4909e�03
2 3:4432e�03 1:3098e�05
3 1:0013e�05 1:1433e�10
4 8:7395e�11 5:5511e�17

Although the accuracy of~wk deteriorates as�k ! �, the deterioration does not prevent
essentially quadratic convergence until the fourth iteration–after which� approximates� to
working accuracy.

We have established the local superlinear convergence of the SVRQ iteration to a simple
eigenvalue, as long as the approximate singular vectors are accurate enough. In this case, the
vectors~v still converge tox, and we have an upper bound on the sine of the angle between~v
andx, namely

kgk �
�=�p

1� (�=�)2
+ k�vk:

The bound (3.5) depends on� and�. We have already seen that� is the condition number
of the eigenvalue�. The quantity� is related to the condition of the eigenvectors. For it can
be shown that when� = �

��1 = k��1k � k(L� �I)�1k:

The quantityk(L� �I)�1k�1 is writtensep(�; L), and its reciprocal governs the sensitivity
of the eigenvectors corresponding to� [9, xV.2].

If � is a nondefective multiple eigenvalue ofA, thenA � �I has a zero singular value
of multiplicity at least two. It this case,� must have a zero singular value, and our analysis
fails because the required positive lower bound� does not exist. The common sense of this
situation is that perturbations ofA � �I may cause the right and left singular vectors to
move independently in subspaces of dimension at least two. This raises the possibility of
generating orthogonal right and left inferior vectors, for which the Rayleigh quotient does
not exist.4 Fortunately, this problem should not affect our intended application to subspace
methods for large eigenvalue problems, provided the subspacesV andW mentioned in the
introduction are large enough to accommodate the multiplicity of the eigenvalue.

5. Appendix: Singular subspaces and eigenspaces.In the derivation of the bound
(3.5) we used the fact that if a simple eigenvalue of a matrix is small then its eigenvector
must approximate the inferior singular vector of a matrix. This fact can be generalized to
eigenspaces and singular spaces.

THEOREM 5.1. LetA be of ordern. LetX 2 C
n�p have orthonormal columns and

satisfy

AX = XE;(5.1)

whereE = XHAX . LetA have the singular value decomposition�
WH

1

WH

2

�
A(V1 V2) =

�
�1 0
0 �2

�
;

4Except for the case of HermitianA, the generalized Rayleigh quotient algorithm (1.1) has an analogous prob-
lem.
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where�1 is nonsingular of orderp and the singular values are in descending order. If we
denote by�(V1; X) the diagonal matrix of canonical angles between the column spaces of
V2 andX , then

k sin�(V2; X)k �
kEk

�p
:(5.2)

Proof. The sines of the canonical angles betweenX andV2 are the singular values of
V H

1
X (see [9,xI.5.2]). Multiplying (5.1) byWH

1
and using the fact thatWH

1
A = �1V

H

1
, we

find that

WH

1
XE = WH

1
AX = �1V

H

1
X:

The inequality (5.2) now follows on multiplying by��1
1

and taking norms.

A related result holds in which the spectral norm in(5:2) is replaced by the Frobenius
norm. In plain words, the theorem says that if an invariant subspace ofA has a small spectrum
and the rest of the spectrum is well behaved in the sense that�p is larger thankEk, then as
E approaches zero the invariant subspace and the corresponding singular subspace approach
one another.
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