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RESTARTING TECHNIQUES FOR THE (JACOBI-)DAVIDSON SYMMETRIC
EIGENVALUE METHODS �

ANDREAS STATHOPOULOSy AND YOUSEF SAADz

Abstract. The (Jacobi-)Davidson method, which is a popular preconditioned extension to the Arnoldi method
for solving large eigenvalue problems, is often used with restarting. This has significant performance shortcomings,
since important components of the invariant subspace may be discarded. One way of saving more information at
restart is through “thick” restarting, a technique that involves keeping more Ritz vectors than needed. This technique
and especially its dynamic version have proved very efficient for symmetric cases. A different restarting strategy
for the Davidson method has been proposed in [14], motivated by the similarity between the spaces built by the
Davidson and Conjugate Gradient methods. For the latter method, a three term recurrence implicitly maintains all
required information.

In this paper, we consider the effects of preconditioning on the dynamic thick restarting strategy, and we analyze
both theoretically and experimentally the strategy based on Conjugate Gradient. Our analysis shows that, in some
sense, the two schemes are complementary, and that their combination provides an even more powerful technique.
We also describe a way to implement this scheme without additional orthogonalizations or matrix multiplications.

Key words. Davidson, Jacobi-Davidson, Lanczos, Conjugate Gradient methods, eigenvalue, implicit restarting,
deflation, preconditioning.
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1. Introduction. Many scientific and engineering applications require the solution of
large, sparse, symmetric eigenvalue problems,Au = �u, for a few of the lowest or highest
(extreme) eigenvalues and eigenvectors (eigenpairs). The Lanczos method and its equiva-
lent in the non-symmetric case, the Arnoldi method, have been used traditionally to solve
these problems [18]. However, as the matrix size increases, clustering of the eigenvalues
deteriorates the performance of these methods, and because the inverse ofA cannot be com-
puted directly, preconditioning becomes necessary to compensate for the loss of efficiency
and robustness of iterative methods. The Davidson method and its generalization, the Jacobi-
Davidson method [5, 13, 3, 20], are popular extensions to the Arnoldi method. Instead of
extracting the eigenvectors from a generated Krylov space, these methods gradually build a
different space by incorporating into the existing basis the approximate solution of a correc-
tion equation. Procedurally, the two methods are similar to the FGMRES method [19], and in
this sense, we refer to the approximate solution of the correction equation as preconditioning.

Despite the benefits of preconditioning, for many hard problems the (Jacobi-)Davidson
method may still require a large number of steps. Because the vector iterates must be saved
for extracting the eigenvectors, the storage requirements are overwhelming. The problem
is actually aggravated in the symmetric case, where the better theoretical framework and
software has led researchers to consider matrices of huge size that allow only a few vectors to
be stored. Even in the non-preconditioned Lanczos method where a three-term recurrence is
known, orthogonality problems and spurious solutions prevent the application of the method
for a large number of steps. For these reasons, many restarting variants of the Lanczos and
(Jacobi-)Davidson methods are used in practice [4, 17, 21, 1, 7].

For the Lanczos method, the requirement of maintaining the tridiagonal matrix neces-
sitates restarting the iteration with only one vector that is chosen as a linear combination of
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the most recent Ritz vectors. This has significant performance shortcomings, since important
components of the invariant subspace may be discarded, and the Rayleigh-Ritz procedure
cannot minimize over the whole Krylov subspace that had been generated before restart-
ing. An efficient solution to this problem has been given by the Implicitly Restarted Lanczos
method (IRL) [21, 1, 9, 10]. IRL provides an implicit way of applying a polynomial filter dur-
ing restarting and thus removing unwanted spectral information. Implicit restarting provides
also an elegant formulation of most previously proposed restarting schemes. For the (Jacobi-
)Davidson method, restarting does not exhibit similar difficulties, because all the wanted Ritz
vectors can be retained explicitly, and even additional information can be incorporated in the
basis at restart. This latter characteristic proves especially useful to the method presented in
this paper. Recently, it was shown that without preconditioning, and if the Ritz values are
used as shifts in the polynomial filter, the restarted Davidson method builds the same search
space as IRL [24, 12].

To reduce the adverse effects of restarting to the above methods, we can save more infor-
mation at every restart. Recently, we investigated the idea of “thick restarting” [24], which
implements this principle by keeping more Ritz vectors than needed. The question to be
addressed is which, and how many Ritz vectors to retain at restart. For symmetric, non-
preconditioned cases, a dynamic thick restarting scheme that keeps Ritz vectors on both sides
of the spectrum has proved extremely efficient. With preconditioning, although it is still ef-
ficient, a less expensive scheme might provide similar benefits. For the restarted Davidson
method, Murray et al. [14], and Van Lenthe et al. [25] proposed to keep, for each sought
eigenvector, the two corresponding Ritz vectors from two successive iterations, the current
and the previous one. The motivation stems from the observation that the (Jacobi-)Davidson
and the Conjugate Gradient (CG) methods build the same space when solving for the eigen-
vector of a converged eigenvalue. Although this scheme has certain disadvantages, it has the
impressive ability to store most of the required information compactly in one vector.

In this paper we present a theoretical justification for this restarting scheme, we identify
its weaknesses which turn out to be complementary to the thick restarting ones, and we obtain
a new powerful method by combining the two schemes. Moreover, we present an efficient
implementation that does not require any additional orthogonalizations or matrix vector mul-
tiplications with the basis vectors. Finally, this is the only restarting scheme known to the
authors that cannot be implemented with implicit restarting.

After briefly presenting the Davidson method and the dynamic thick restarting scheme
in section 2, we examine the behavior of this scheme with preconditioning. In section 3, we
present Murray’s CG-based restarting scheme and show its potential benefits. Some theoret-
ical results are given in section 4 to justify the characteristics of the CG-based scheme. In
section 5, we confirm the weaknesses hinted by the theory for this scheme through selected
numerical results and we propose a combination with thick restarting. Several numerical ex-
periments demonstrate the effectiveness of the new approach, which is further enhanced by
an efficient implementation outlined at the end of the section. The paper concludes with some
suggestions for incorporating these ideas in eigenvalue software.

2. The Davidson method and thick restarting.

2.1. The Davidson method.Throughout this paper, and unless otherwise stated, we as-
sume that the matrixA is symmetric of orderN , with eigenpairs(�i; ui) of which thel lowest
(or highest) are sought. The Davidson method first appeared as a diagonally preconditioned
version of the Lanczos method for the symmetric eigenproblem. Extensions, to both general
preconditioners and to the nonsymmetric case have been given since [12, 3, 7]. The following
describes the algorithm for the symmetric case, where the maximum basis size ism > l, and
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at every restartp � l Ritz vectors are retained.Ortho denotes any stable orthogonalization
procedure.

ALGORITHM 2.1. Davidson
0. Choose initial unit vectorsVp = fv1; : : : ; vpg
1. For s = 0; 1; : : :
2. wi = Avi; i = 1; : : : ; p� 1
3. Tp�1 = (AVp�1; Vp�1)
4. For j = p; : : : ;m
5. wj = Avj
6. ti;j = (wj ; vi); i = 1; : : : ; j, the last column ofTj
7. Compute some wanted eigenpair, say(�; c) of Tj
8. x(j) = Vjc andr = �x(j) �Ax(j),

the Ritz vector and its residual at the j-th iteration
9. Testkrk for convergence.

If satisfied target a new vector and return to 7
10. SolveM(s;j)� = r; for �
11. vj+1 = Ortho(Vj ; �)
12. Endfor
13. Vp = fxi; thep lowest Ritz vectorsg; l � p < m: Restart
14. Endfor

The preconditioning is performed by solving the equation at step 10, withM(s;j) ap-
proximating(A � �I) in some sense. Originally, Morgan and Scott [13] proposed to solve
approximately with some preconditioner the Generalized Davidson correction equation:

(A� �I) � = r;(2.1)

where� is an approximation to the sought eigenvalue. In [20], Sleijpen et al. show that for
stability, robustness, as well as efficiency, the operatorM(s;j) should have a range orthog-
onal tox (the superscript(j) is implied). The method, called Jacobi-Davidson (JD), solves
approximately the projected correction equation:

(I � xxT )(A � �I)(I � xxT ) � = (I � xxT )(�I �A)x:(2.2)

The projections can be easily applied if an iterative linear solver is used. For preconditioners
that approximateA directly, such as incomplete factorizations and approximate inverses, the
above orthogonality condition is enforced through an equivalent formulation known as Olsen
method. In this paper we use the name “Davidson method” to refer to any of the above
different ways (equation (2.1) or (2.2)) to perform the preconditioning step 10.

2.2. Thick restarting. A Davidson step is more expensive than a Lanczos one, requiring
a solution of a Rayleigh-Ritz problem, computation of a residual, explicit orthogonalization
against all the basis vectors, and additional storage of the vectorswi = Avi for all basis vec-
tors. In return, besides the preconditioning benefits, the algorithm is more flexible and robust
than Lanczos, it can start with any number of initial vectors, and include in the basis any
extra information that is available during the execution. Especially at restart, it can retain any
number of approximate eigenvectors without the need of the implicit restarting framework. In
[24] we called “thick restarting” a technique in iterative methods that restarts with more Ritz
vectors than needed. We showed that in the absence of preconditioning and if exact shifts are
used in the IRL, the IRL and the restarted Davidson methods build the same search space.

Reducing the amount of discarded information at every restart improves the convergence
of iterative methods. On the other hand, when keeping too many vectors, the Davidson pro-
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TABLE 2.1
Comparison of thick (TR(L)) and dynamic thick restarting (Dyn) with original Davidson (TR(5)) on some

symmetric Harwell-Boeing matrices, with diagonal and approximate inverse preconditioners. The number of matrix
vector multiplications is reported, with a maximum of 5000. Five smallest eigenvalues are sought. Residual norm
threshold is10�12 times the Frobenius norm of the matrix. Davidson uses a basis size of 20.

No preconditioning Diagonal preconditioning Approximate Inverse
Matrix TR(5) TR(11) Dyn TR(5) TR(10) Dyn TR(5) TR(12) Dyn
LUND B - - 1347 774 396 349 909 381 338
BCSSTK05 1174 975 612 1322 465 409 358 247 251
BCSSTK16 3962 1333 676 2410 905 663 752 331 317
NOS3 2179 620 458 2096 878 664 524 253 258
NOS5 - 2016 921 2659 1401 819 837 387 354

cess can not effectively build additional basis vectors, and the orthogonalization process be-
comes a bottleneck. In [24] it was shown that if some Ritz vectors are retained, the Lanczos
(non-preconditioned Davidson) process can be approximated gradually by another Lanczos
process on a matrix from which the eigenvectors corresponding to these Ritz vectors have
been deflated. This provided a criterion for choosing which Ritz vectors to keep at restart;
the ones with Ritz values closest to the required eigenvalue, if deflated, increase the gap and
thus the convergence rate to the wanted one. When looking for the smallestl eigenpairs, the
“thick restarting” scheme retainsp > l Ritz pairs and we denote it by TR(p). For symmetric
cases however, convergence depends on the gap ratio of the eigenvalues and therefore the
other end of the spectrum is also of importance [15]. A more general form of thick restarting
keeps the L lowest and R highest Ritz vectors. To choose these two numbers, we proposed a
two sided, dynamic thick restarting technique, that captures the trade-off between better er-
ror reduction through more, non-restarted Lanczos steps, and larger gap ratios from a thicker
restart. Our heuristic minimized the approximate error bound on Ritz values of the Lanczos
process, which is described by a Chebyshev polynomial:

1

C2
m�L�R(1 + 2
i)

� 2e�2(m�L�R)
p

i ;

wherem � L � R Lanczos steps can be taken before a new restart is necessary, and
i =
�i��L+1

�L+1��m�R is the current approximation to the gap ratio of thei�th eigenvalue.
A few representative results using this strategy on matrices from the Harwell-Boeing

collection [6] appear in Table 2.1. For all matrices, we solve for five lowest eigenpairs using
a maximum basis size of 20, and we use the Davidson code that was described in [22] together
with the extensions proposed in [23]. The number of matrix-vector multiplications decreases
significantly when thick restarting of double the number of required eigenpairs is used, and it
improves even further with the dynamic thick restarting scheme.

2.3. Dynamic thick restarting and preconditioning. The heuristic for dynamic thick
restarting relies on the gap ratios, which govern the convergence of the non-preconditioned
Lanczos process. Nevertheless, the dynamic scheme performs equally well when used with
preconditioning. In Table 2.1, diagonal and approximate inverse [2] preconditioning have
been used to demonstrate the effectiveness of the method.

In Table 2.1, we observe that although dynamic is better than one-sided thick restarting,
the improvements diminish with better preconditioners (or easier problems). A closer look at
the vectors retained by the dynamic scheme at every step reveals that a significant percentage
of the Ritz vectors is retained, specifically the ones closest to the required eigenpairs. In
addition, a small (1-3), varying number of highest Ritz pairs is often retained. Thus, it is



ETNA
Kent State University 
etna@mcs.kent.edu

Andreas Stathopoulos and Yousef Saad 167

reasonable that dynamic outperforms one-sided thick restarting, since it retains at least as
much information. On the other hand, by continuously keeping a large number of vectors in
the basis, the dynamic scheme is more expensive on the average because of orthogonalization
and computation of residuals. These operations can become a bottleneck, if the matrix vector
multiplication is cheap. A theoretical explanation of the diminishing difference between thick
and dynamic thick restarting in the presence of preconditioning, can be given by interpreting
a theorem from Meerbergen ([11], Thm 3.2.2) in the following qualitative way.

THEOREM 2.1. Let the preconditioned Davidson operator at some iteration be denoted
by MC = (M � �I)�1(A� �I) for some shift�. Then, for any eigenpair(�i; ui) of A,
there is an eigenpair(�i; wi) of MC , and a constantc, which depends onui;MC and the
isolation of�i from other eigenvalues ofMC , so that the eigenvector error is bounded by:

kui � wik1 � c
j�i � �j

j�i � �j
:

According to the theorem, and provided thatc and1=j�i � �j stay bounded, if� is close
to some eigenvalue ofA, then the corresponding eigenvector ofA is approximated by some
eigenvector ofMC . Even though thewi is not computed explicitly, theMC operator is used
for computing the basis vectors in Davidson. As a result, relatively good approximations are
obtained for the eigenpairs close to the required one (close to value�), while eigenvectors on
the other side of the spectrum are not approximated well by the basis built with this precondi-
tioner. Therefore, the attempts to deflate the high-end of the spectrum by keeping the highest
Ritz vectors are not effective, and this explains the diminishing difference between thick and
dynamic thick restarting.

3. Restarting using the CG recurrence.As mentioned above, dynamic thick restarting
outperforms one-sided TR because it keeps more information at restart, but it increases the
computational expense of every step. The latter can be seen by a simple operation count of
the Davidson algorithm. According to notation of the algorithm, the number of floating point
operations between two successive restarts is:

(m� p+ 1) O(Matvec+Prec) +
mX
j=p

O(j3 + 10jN):

Keepingp close tom, as dynamic thick restarting does, increases the average operations per
matrix-vector multiplication. For a typical case ofm = 20, the dynamic scheme is about
twice as expensive as thep = 10 case. The question is whether the same information can be
saved more compactly, and thus reduce these expenses.

For the symmetric case, the three term recurrence of the Lanczos method is an indica-
tion that there might be a way to avoid orthogonalization of large bases. But even though
orthogonalization is avoided in the Lanczos algorithm, the vectors still need to be stored for
the computation of the Ritz vector at the end of the iteration. The Conjugate Gradient (CG)
method is equivalent to the Lanczos method for solving linear systems of equations. The CG
three term recurrence also achieves an implicit orthogonalization of the basis vectors, but it
yields the solution by storing only three vectors and without repeating any of the information
seen. The reason for storing all vectors only in the Lanczos method is the non-linearity of the
eigenvalue problem, i.e., both the eigenvalue and eigenvector are unknown. However, if the
exact eigenvalue is known, the Ritz vectors can be obtained by the CG process [25, 8].

In [25], Van Lenthe et al. also proposed to use the CG method for finding an eigenvector,
even when the eigenvalue is not known. This is often justified in computational quantum
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chemistry problems, because of the availability of good eigenvalue estimates and the rela-
tively fast convergence of the methods.

Murray et al. [14], suggested a more interesting variant of this idea. They juxtaposed
two methods; the Preconditioned CG (PCG) method using a preconditionerM to solve equa-
tion (2.1), withr = (A � �I)x(0) from the zero iteration of Davidson; and the Davidson
method starting fromx(0) and at every iteration, adding to the basis the preconditioned by
M residual of the same targeted vector (e.g., always the lowest eigenpair). They observed
that afterj iterations, the PCG minimizes theA�norm of the error on a three-vector space,
that is close to the space spanned byfx(j�1); x(j); rg; wherex(j�1); x(j) are successive Ritz
vectors from Davidson iterationsj � 1 andj respectively, andr is the residual ofx(j). They
argued that, were the Davidson method to be restarted at thej-th iteration, it would be bene-
ficial to keep the Ritz vector from the previous iteration (x(j�1)) along with the current one.
In fact, if the above three-vector spaces from CG and Davidson were identical, there would
be no information loss by this restarted Davidson variant —which we call “CG-based”—,
because for symmetric matrices the Rayleigh Ritz and Galerkin processes are equivalent. In
general, the two spaces are not the same but they are close if the Ritz value does not vary
significantly between steps. In the following section we present a theoretical justification of
these arguments. Algorithmically, only two Davidson steps need to be modified to implement
the CG-based restarting.

ALGORITHM 3.1. Davidson changes for CG-based restarting
8.1 xprev = x(j�1), save the Ritz vector from previous iteration
8.2 x(j) = Vjc andr = �x(j) �Ax(j)

13.1 Vp�1 = fxi; thep� 1 lowest Ritz vectorsg; l � p� 1 < m� 1;
13.2 vp = Ortho(Vp�1 ; xprev), orthogonalize and add the previous Ritz vector.

In Figure 3.1, we show a typical convergence history of the residual norm for three differ-
ent restarting strategies. We are interested in the lowest eigenpair of the matrix BCSSTK05
from the Harwell-Boeing collection, and we report the number of matrix vector multipli-
cations for both the diagonally preconditioned and non-preconditioned case. The original
Davidson method restarts every 19 steps by keeping only the wanted Ritz pair, while the CG-
based scheme restarts with two successive Ritz vectors as mentioned above. The dynamic
strategy is applied as described in the previous section.

The convergence behavior is typical in a qualitative sense, since in most of the cases we
have tested, dynamic thick restarting is slightly better than the CG-based scheme without pre-
conditioning. Still, the results are impressive. This simple scheme works as well as dynamic
thick restarting in the non-preconditioned case, and it is far better than the original David-
son method when preconditioning is used. Moreover, because the matrix size is small and it
would be misleading to report times, the figure does not reflect that GD-based restarting is
computationally much cheaper per step than dynamic thick restarting. There are also some
disadvantages with this scheme that will become clear after the following section, and for
which we show that thick restarting is a natural, complementary solution.

4. Theoretical justification. In this section we examine the reasons why the CG-based
restarting works and we try to quantify how well a Ritz pair can be approximated through a
three term recurrence.

To facilitate presentation clarity, we drop the superscript notation, and we use only a
single subscript that denotes the iteration number for any variable, e.g.,xi is the Ritz vector
at thei-th iteration. We also let the Davidson method target only the same eigenpair (not
necessarily an extreme one) until convergence. We assume that the symmetric matrixA has
no multiple, degenerate eigenvalues. We state the following lemma for any matrix, although
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FIG. 3.1. Residual convergence history for one eigenpair ofBCSSTK05, for the three different restarting
schemes.

we subsequently use it only for symmetric matrices.
LEMMA 4.1. Letx0 a unit-norm vector of<N , and�0 = xT0 Ax0. Let�0 = (I �x0x

T
0 )

the projector againstx0, and let also the residual ofx0: r0 = (A � �0I)x0 = �0r0. Then
for everyk > 1:

span(fx0; Ax0; : : : ; A
kx0g) = span(fx0; r0; (�0A�0)r0; : : : ; (�0A�0)

k�1r0g):

Proof. Let Kk = span(fx0; Ax0; : : : ; A
kx0g) denote the Krylov space starting from

x0, andLk = span(fx0; r0; (�0A�0)r0; : : : ; (�0A�0)
k�1r0g): ObviouslyK2 = L2. We

assume thatKi = Li; for all i < k.
Let x 2 Lk. There is!1 2 Lk�1 = Kk�1 and coefficientd1 such that:

x = !1 + d1(�0A�0)
k�1r0 = !1 + �0A�0 !2;(4.1)

where!2 = d1(�0A�0)
k�2r0 2 Lk�1 = Kk�1. Since�0 = I � x0x

T
0 andA!2 2 Kk, we



ETNA
Kent State University 
etna@mcs.kent.edu

170 Restarting techniques for symmetric eigenvalue methods

have:

x = !1 + (I � x0x
T
0 )A(!2 � (xT0 !2)x0)(4.2)

= !1 +A!2 � (xT0 !2)Ax0 � (xT0 A!2)x0 + (xT0 Ax0)(x
T
0 !2)x0(4.3)

2 Kk:(4.4)

Thus,Lk � Kk. If Lk is of full dimension, its dimension isk + 1, the same asKk, and thus
the two spaces must be equal. IfLk is not of full dimension, then it forms a smaller invariant
subspace of dimensioni < k + 1, which is also included inKk. There are alsoLi�1 = Lk
andKi�1 = Kk, and from the inductive hypothesisLk = Kk, which concludes the proof.

The above lemma seems to imply that the Generalized Davidson and the Jacobi-Davidson
methods (equations (2.1) and (2.2)) are equivalent. However, for both methods the space
built by solving the respective correction equation does not includex0, which is a crucial
assumption in the previous lemma. In fact, the following theorem holds only for the Jacobi-
Davidson correction equation. Hereafter, we considerA to be symmetric and we use the
terms Arnoldi and Lanczos interchangeably.

THEOREM 4.2. Letx0 a unit-norm vector of<N , � 2 <, and�0 = xT0 Ax0.
Let(�k; xk) be a Ritz pair obtained afterk steps of the un-preconditioned Davidson (Arnoldi)
method, withx0 as a starting vector.
Let yk = x0 + � be the approximate eigenvector, where� is the correction obtained by
applyingk steps of the Conjugate Gradient method to the correction equation (2.2). Then:

yk = xk , � = �k:

Proof. Because there is no preconditioning, the space built by Davidson is the Krylov
space:span(fx0; Ax0; : : : ; Akx0g). The CG method on equation (2.2), starting with zero
initial guess builds the space:span(f�0r0; (�0A�0r0); : : : ; (�0A�0)k�1r0g). Let V be an
orthonormal basis of this CG space. From Lemma 4.1,fx0; V g is also an orthonormal basis
of the Davidson space.

If we consider the above basis, and normalize the eigenvector so that the coefficient of
x0 is one, the Rayleigh-Ritz procedure applied at thek-th step of the Davidson method solves
the following projected problem:�

xT0 Ax0 xT0 AV
V TAx0 V TAV

��
1
ck

�
= �k

�
1
ck

�
;(4.5)

or equivalently, the following system, which hask solutions(�k; ck), ck 2 <k:

�0 + xT0 AV ck = �k(4.6)

V TAx0 + V TAV ck = �kck:(4.7)

SincexT0 V = 0; we can chooseV as the Lanczos orthogonal vectors generated byx0, and
thus the projected matrix (4.5) becomes tridiagonal. For such matrices it is well known that
�k cannot be also an eigenvalue ofV TAV (unlessV TAx0 = 0), and therefore we can solve
equation (4.7) forck:

ck = �(V TAV � �kI)
�1V TAx0:(4.8)

Considering the basisV for the Galerkin condition of the CG method, and since�0V =
V; andV T�0 = V T , the projected problem solved is:

V T (A� �I)V c0k = V T (�0I �A)x0 ,

(V TAV � �I)c0k = �V TAx0:(4.9)



ETNA
Kent State University 
etna@mcs.kent.edu

Andreas Stathopoulos and Yousef Saad 171

From equations (4.8) and (4.9), if� = �k the two methods produce the same coefficient
vectors and thus same approximate vectors. The converse is also an immediate consequence
of equations (4.7) and (4.9).

In the above theorem,(A � �I) does not have to be positive definite. The only require-
ment is that the Krylov space can be built (no CG breakdown) so that the Galerkin projection
can be applied. If in addition,(A � �I) is positive definite (or semidefinite) then the energy
norm of the error is minimized overV . In general, any Ritz vector can also be obtained from
a CG iteration, or more specifically:

COROLLARY 4.3. If the Ritz value at thek-th step of the Lanczos method is known a
priori, there is a three-term recurrence that yields the corresponding Ritz vector. Only the
last of the vectors involved in the three-term recurrence is a Ritz vector.

A similar observation was made by Saad in his thesis at Grenoble [16]. Therein, he
identifies a three term recurrence leading to a specific Ritz vector, if the corresponding Ritz
value is known. Following our previous notation, the Lanczos process starts from vectorx0
and produces a sequence of tridiagonal matricesTi = tridiag(�i; �i; �i+1), the Ritz vectors
xi, and their corresponding Ritz values�i, i = 0; : : : ; k. Initially, we haveT0 = (�0),
�0 = �0 = xT0 Ax0, and�1 = kr0k. Let alsopi(x) denote the characteristic polynomials of
the matricesTi, and define the polynomials:

qi(x) =
pi(x) � pi(�k)

(x� �k)
; i = 0; : : : ; k:(4.10)

If we setzi = qi(A)x0, with the conventionz�1 = 0, then the following holds:
PROPOSITION4.4.
1. zk is a constant multiple ofxk.
2. The vectorszi; i = 1; : : : k; satisfy the following three-term recurrence:

zi = Vi + (�k � �i) zi�1 � �2i zi�2;

whereVi; �i; �i are the basis vector and matrix coefficients produced by the Lanczos
process.

Proof. For the characteristic polynomial ofTk, we havepk(�k) = 0, and (4.10) becomes
qk(x) = pk(x)=(x � �k). It is well known thatqk(A)x0 = zk is proportional toxk, which
proves the first part.

For the second part, one can use the determinant definition of the characteristic polynomi-
als of the tridiagonal matrices to verify that the polynomials satisfy the following recurrence:

pi(x) = (x� �i)pi�1(x)� �2i pi�2(x); i = 2; : : : ; k:

Using (4.10) and the above recurrence, we obtain the following after some algebraic manip-
ulations:

qi(A)x0 = pi�1(A)x0 + (�k � �i)qi�1(A)x0 � �2i qi�2(A)x0:

Sincepi�1 is the residual polynomial,pi�1(A)x0 = Vi, and the proof follows.
The following table depicts the effect of the three methods, Lanczos (un-preconditioned

Davidson), CG, and the three-term recurrence of proposition 4.4, when started with the same
vectorx0, ending in the same Ritz vectorxk at thek�th step. Intermediate vectors differ in
general. The CG eigenvector approximationsyi, and the recurrence vectorszi are defined in
theorem 4.2 and proposition 4.4 respectively.
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x1 x2 x3 : : : xk�2 xk�1
% &

x0 ! y1 y2 y3 : : : yk�2 yk�1 ! xk:
& %

z1 z2 z3 : : : zk�2 zk�1

From the above we see that when the Ritz value�k is known in advance, the negative
effects of restarting the Davidson or the Lanczos methods can be canceled by a three term
recurrence. However,�k is usually computed during the Lanczos (Davidson) procedure.
An interesting question is whether the three-term CG recurrence still produced an accurate
approximation to the Ritz vector, if an inexact eigenvalue shift is used in equation (2.2). The
following lemma attempts to quantify the distance of the vectorsxk andyk when� 6= �k.

LEMMA 4.5. Let the assumptions and notations of Theorem 4.2 hold, and denote bysi
the eigenvalues of the small matrixS = V TAV , whereV is the basis of CG. Then

kyk � xkk

kykk
�

j�k � �j

mini jsi � �kj
:

Proof. From equations (4.7) and (4.9):V T (A��I)V c0k = �V T r0 = V T (A��kI)V ck,
and since�k is not an eigenvalue ofS, as mentioned in the theorem,

ck = (S � �kI)
�1(S � �I)c0k:

From the definitions ofxk; yk and from the above equation we have:

kyk � xkk = kV (c0k � ck)k = kc0k � ckk

� kI � (S � �kI)
�1(S � �I)kkc0kk �

kc0kk

mini jsi � �kj
j�k � �j:

Finally, notice thatxT0 V = 0, and thuskykk2 = kx0 + V c0kk
2 = kx0k

2 + kV c0kk
2 �

kV c0kk
2 = kc0kk

2. A simple substitution completes the proof.
The lemma implies that when the eigenvalue is almost constant, which usually is the case

near convergence or when convergence is slow, the CG and the Davidson/Lanczos method
compute almost the same Ritz vectors. The problem with the above lemma is the fact that
the denominatormini jsi � �kj could be close to zero or even zero for interior eigenvalues.
However, for the extreme eigenvalues we can guarantee that the denominator is bounded away
from zero, when the Rayleigh quotient of the starting vectorx0 is sufficiently converged. We
state first a lemma that relates the eigenvalue convergence of the lowest eigenvalue with the
convergence of the corresponding eigenvector. Here(�i; ui) denotes theith eigenpair ofA.

LEMMA 4.6. Let x0 a unit-norm vector with Rayleigh quotient�0. Let also the gap
between the first and the second eigenvalue ofA be
 = �2 � �1. Then

sin2 �(x0; u1) <
j�0 � �1j



:

Proof. See [15] Lemma (11-9-2).
LEMMA 4.7.Let the assumptions and notations of Lemma 4.5 hold, and let
 = �2��1.

If the Rayleigh quotient of the initial vectorx0 is close enough to�1, i.e., j�0 � �1j < � for
� < 
=2, then the denominator in Lemma 4.5 is bounded from below so that:

kyk � xkk

kykk
�
j�k � �j


 � 2�
:
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Proof. From the Cauchy interlace theorem we have that�1 � �k � s1, where
s1 is the lowest eigenvalue ofS. Therefore, the denominator of Lemma 4.5 becomes
mini jsi � �kj = s1 � �k. Since�0V = V , the eigenvalues ofS = V TAV are the same
as those ofV T�0A�0V . Again from the Cauchy interlace theorem, the smallest non zero
eigenvalue�1(�0A�0) � �1(V

T�0A�0V ) = s1, and thus

min
i
jsi � �kj � �1(�0A�0)� �k:(4.11)

Let x be a vector of unit norm that satisfiesxT�0A�0x = �1(�0A�0). We can consider
x so thatxTx0 = 0, and thusxT�0A�0x = xTAx. Let x = cu1 + dy be the spectral
decomposition ofx onto the first eigenvector and the rest of the eigenspace, withd2 = 1�c2.
Let x0 = au1 + bu be the spectral decomposition ofx0, with a2 = 1� b2. From Lemma 4.6
we haveb2 < �=
.

FromxT0 x = 0 it follows that0 = ac+ bd(yTu), and thusa2c2 = b2d2(yTu)2 � b2d2.
Usinga2 = 1� b2 andd2 = 1� c2, we can obtainc2 � b2, and the following inequality:

1� c2 > 1� b2 > 1� �=
:(4.12)

Representing the Rayleigh quotient ofx from its spectral decomposition, we get:

xTAx = c2�1 + (1� c2)yTAy = �1 + (1� c2)(yTAy � �1):(4.13)

Sincekyk = 1 andyTu1 = 0, yTAy � �2. From this and inequality (4.12) we have:

�1(�0A�0) = xTAx > �1 + 
 � �:(4.14)

From (4.11) and (4.14), and since�k is a decreasing sequence bounded below by�1, it
follows that:

min
i
jsi � �kj > �1 � �k + 
 � � > 
 � 2�:(4.15)

Note that if� < 
=2 the above is bounded away from zero, and for small� the denominator
is arbitrary close to
.

The lemma can also be extended to interior eigenvalues, provided that all smaller eigen-
values have converged, and that the current basis vectors are orthogonalized against the
converged eigenvectors. In this case, we can safely say that the CG on equation (2.2) and
the Davidson/Lanczos method compute almost the same Ritz vectors. In a sense, restarting
Davidson with the Ritz vector from the previous step attempts to imitate the CG three-term
recurrence.

For example, assume that we need to compute the(�i+1; xi+1) Ritz pair, and that the
un-preconditioned Davidson method is restarted in the traditional way afteri � 1 steps, re-
taining only the current Ritz pair(�i�1; xi�1). One iteration after restarting, the Davidson
method generates(�i; xi) as the next Ritz pair, but after a second iteration the new Ritz pair
differs from (�i+1; xi+1). At this point, the effects of restarting start to show. Consider a
hypothetical CG recurrence that uses the unknown�i+1 to produce the wanted Ritz pair in
i+ 1 steps. If we apply lemma 4.7 to the vectorsyi of this CG process, but consider instead
xi�1 andxi as the endpoints, we get two inequalities:

kyi�1 � xi�1k=kyi�1k �
j�i+1 � �i�1j


 � 2�
;

kyi � xik=kyik �
j�i+1 � �ij


 � 2�
:
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When the Ritz value is almost constant between steps, the Ritz vectorsxi�1 andxi approx-
imate the CG iterates for the still uncomputedi + 1 step. Becausexi+1 is a linear combi-
nation ofyi; yi�1 (which cannot be computed), a good restarting basis for the Davidson is
one consisting of both Ritz vectorsfxi�1; xig. In the case where the matrix is positive defi-
nite or semidefinite, this scheme can be thought of as an attempt to maintain the same space
where the energy norm of the eigenvector error is minimized. Because of lemma 4.1 and
theorem 4.2, the proposed restarting scheme works similarly on the Jacobi-Davidson method
(i.e., the Davidson method with the CG method applied to solve equation (2.2)).

Although we have not given approximation bounds for the vectorszi in proposition 4.4,
one could conceive a restarting scheme where in addition to the Davidson basis vectors, the
zi are also generated to be used in restarting instead of the previous Ritz vector. The problem
with this approach is that thezi do not come for free, as the Ritz vector from the previous
Davidson iteration does. In addition, thezi are not normalized and they depend on a three-
term recurrence, which makes them prone to instabilities. In our preliminary experiments, the
generation of thezi vectors did not help the convergence of the restarted Davidson method.

There are two problems with extending the above theory to the case of preconditioners
that approximateA directly, such as incomplete factorization or approximate inverse. First,
even when the preconditioner stays constant between iterations, the space built is not a Krylov
subspace because the Ritz value in the residual(A��I)x of the correction equation changes.
Therefore, this space cannot be replicated by an appropriate CG or PCG method. Second,
the Jacobi-Davidson equation involves projections in both sides of the matrix, and it is not
obvious how to apply the preconditioned CG method [7].

If we assume that the Ritz value in the residual is kept constant, equal to�, and that the
preconditioner is also constant(M��I)�1, at every Davidson iteration the operator isMC =
(M��I)�1(A��I), and a similar argument as in theorem 4.2 can be made (consider Arnoldi
onMC , and PCG on(A � �I) with (M � �I) as preconditioner). The algorithm described
by these assumptions is the restarted preconditioned Arnoldi method by Meerbergen [11],
which uses the Arnoldi method to compute a Krylov space ofMC . Then, it uses this space
to perform a Rayleigh-Ritz projection withA, and obtain a new�. In the Davidson method,
the latest Ritz estimates are computed at every step and thus it is impractical not to update the
shift. However, in view of lemma 4.5, when the eigenvalue is almost constant between steps,
the above assumptions describe exactly the Davidson procedure. In that case, the operator
can be considered constant and the previous theory applies.

5. Overcoming weaknesses.The results of the previous section provide an explanation
for the experiments in section 3 and the original observations in [14], i.e., CG-based restarting
is justified when looking for an extreme eigenpair. However, the error bound in lemma 4.5
may be large for interior eigenvalues, even when the distance of the shift from the Ritz value
is small. Murray et al. propose to use the Ritz vectors from the previous iteration for all
required eigenvectors. Although in practice this improves convergence, it is not theoretically
justified except for easy problems, and in our experience we never found it to be competitive
with either thick or dynamic thick restarting. To guarantee the benefits of this restarting
strategy for a larger number of eigenpairs, we must target one eigenpair at a time, deflating
(orthogonalizing against) each one that converges. The question that arises is whether the
benefits for the extreme eigenpairs carry over to the interior ones.

Figures 5.1 and 5.2 show the convergence history for each of the four lowest eigenpairs
of the BCSSTK05 matrix, without and with diagonal preconditioning, respectively. In Fig-
ure 5.1 we see that dynamic thick restarting improves the convergence of all four eigenpairs
uniformly. For CG-based restarting, the fast convergence to the first eigenpair postpones con-
vergence to the rest, even though the same restarting scheme is used for all eigenpairs after
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lower ones have converged. The fourth eigenpair is found in as many steps as with the orig-
inal Davidson method, and this trend continues as we move within the spectrum. It is worth
mentioning that the convergence rate (slope of the curve) is similar for all eigenpairs and it
is close to the rate from dynamic thick restarting. The problem is that these rates are not
assumed until an eigenvalue is targeted.

The reasons for this become clear when Figure 5.2 is also taken into account. The
fact that the convergence behavior of un-preconditioned Davidson method using CG-based
restarting resembles the behavior of the Davidson method with some preconditioner is no sur-
prise. The motivation for this restarting scheme stems from the closeness of the iterates of the
Davidson method with the ones from solving the Jacobi-Davidson correction equation (2.2)
with CG. As with preconditioning, the convergence is focused on the targeted eigenvector by
retaining the information needed to produce the following Ritz vector. At the same time, little
or no useful information is kept towards other eigenpairs, causing significant delays to their
convergence and loss of superlinear convergence to the targeted one. When preconditioning
is used for the dynamic thick restarting, the convergence behavior is similar to the CG-based
one. As theorem 2.1 points out, the lower part of the spectrum is better approximated than
the higher end, and dynamic thick restarting performs well mainly because it retains a larger
number of vectors.

5.1. Combining with thick restarting. Evidently the CG-based scheme is powerful for
one extreme eigenpair, but it needs improvement for interior ones. Since its main “drawback”
is that it behaves like preconditioning, we can use it together with one-sided thick restarting.
While the CG-based restarting would provide fast convergence towards the targeted vector,
thick restarting would maintain and build good estimates for the close eigenvectors (see also
the discussion in section 2.3). Thus, we propose to restart the Davidson algorithm with the
following basis:

fx
(j)
1 ; : : : ; x(j)p ; x(j�1)g;

wherex(j)i is thei�th extreme Ritz vector at stepj, andx(j�1) is the Ritz vector from the
previous step for the targeted eigenvector. Typically, the thickness of restarting is set to about
half the maximum number of basis vectors. It is also possible to monitor eigenvalue conver-
gence, and when interior eigenvalues are near convergence, to retain also their corresponding
Ritz vectors from the previous step. In general, if thek lowest eigenvalues have approached
convergence, the Davidson method could be restarted with:

fx
(j)
1 ; : : : ; x(j)p ; x

(j�1)
1 ; : : : ; x

(j�1)
k g:

We should mention that the above restarting scheme cannot be implemented with implicit
restarting because there is no single filtering polynomial that can produce bothx(j�1) and
x(j).

Figures 5.3 and 5.4 demonstrate how the new combination scheme overcomes the afore-
mentioned problems, and converges faster than dynamic thick restarting especially with pre-
conditioning. For the un-preconditioned case, the lowest two eigenpairs are found faster with
the combination scheme than with the dynamic one, but the interior eigenvectors in the dy-
namic case benefit more from the uniform convergence obtained by the Lanczos gradient
(residual of Ritz vectors).

We have performed a series of experiments on matrices from the Harwell-Boeing collec-
tion, of which a summary appears in Table 5.1. For all matrices we look for the lowest five
eigenpairs, we use diagonal and approximate inverse preconditioning, and we allow a max-
imum of 5000 matrix-vector multiplications. For all cases our new scheme is consistently
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FIG. 5.1. Residual convergence curves for four eigenpairs ofBCSSTK05, for the three different restarting
schemes without preconditioning.

better than dynamic thick restarting. Again, since many matrices are of small size we do
not report timings. However, timings would be in strong favor of the new scheme, since on
average it requires fewer vectors present in the basis than dynamic thick restarting.

5.2. An efficient implementation. The addition of the previous Ritz vectorx(j�1) in
the basis is not without expense, because it is not orthogonal to the rest of the Ritz vectors
x
(j)
i . In fact x(j�1)1 (assuming we target the lowest eigenpair) is very close tox

(j)
1 and or-

thogonalization must be performed in a stable way. Moreover, the scheme seems to require
additional storage for keeping the previous Ritz vectors. The Davidson algorithm also needs
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FIG. 5.2. Residual convergence curves for four eigenpairs ofBCSSTK05, for the three different restarting
schemes with diagonal preconditioning.

the vectorswj = Avj , and thus storage forw(j�1) = Ax
(j�1)
1 should be accommodated for.

It is possible that better convergence could be attained if these vectors were used to build a
larger basis. Alternatively, we could perform an additional matrix vector multiplication to
recomputew(j�1) after orthogonalization, but this could prove expensive.

There is a simple, elegant, and inexpensive way to face the above problems, that is not
mentioned in [14]. Instead of keeping large dimension vectors and orthogonalizing these
vectors, we could perform all operations and maintain the extra storage in the coefficient
space. In the notation of the Davidson algorithm in section 2, the Ritz vectorx(j) can be
obtained as a linear combination ofV with coefficient vectorc, x = V c. Thus, instead



ETNA
Kent State University 
etna@mcs.kent.edu

178 Restarting techniques for symmetric eigenvalue methods

10000

100

1

0.01

0.0001

0 100 200 300 400 500 600 700 800

Re
sid

ua
l n

or
m

Non preconditioned, Dynamic Thick Restart

10000

100

1

0.01

0.0001

0 100 200 300 400 500 600 700 800

Re
sid

ua
l n

or
m

Matrix-vector operations

Non Preconditioned, TR(12) and previous Ritz vector

FIG. 5.3.Residual convergence curves for four eigenpairs ofBCSSTK05, for the dynamic and the combina-
tion restarting schemes without preconditioning.

TABLE 5.1
Comparison of dynamic thick restarting (Dyn) with the combination of thick and CG-based restarting

(TR(p)+1) on symmetric Harwell-Boeing matrices, with diagonal and approximate inverse preconditioners. One
Ritz vector from the previous iteration is retained. The number of matrix vector multiplications is reported, with a
maximum of 5000. Five smallest eigenvalues are sought. Davidson uses a basis size of 20.

Diagonal Approximate Inverse
Dyn TR(10)+1 Dyn TR(12)+1

BCSSTK01 124 117 108 91
BCSSTK02 190 172 92 87
NOS4 244 184 91 86
BCSSTK22 721 676 300 277
LUND B 349 298 338 327
BCSSTK05 409 370 251 221
NOS1 - 3071 2923 2162
NOS5 819 614 354 336
494 BUS 3456 2098 411 384
662 BUS 902 680 291 269
685 BUS 763 639 267 245
NOS3 664 519 258 242
BCSSTK10 2808 2245 1076 1056
1138 BUS - 4030 735 655
BCSSTM27 1768 1710 509 502
BCSSTM13 269 263 177 179
BCSSTK21 1141 1062 601 612
BCSSTK16 663 587 317 302
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FIG. 5.4.Residual convergence curves for four eigenpairs ofBCSSTK05, for the dynamic and the combina-
tion restarting schemes with diagonal preconditioning.

of storing the full-dimensionx(j�1) vector, we can store only its coefficients from the last
stepc(j�1). Since in the following step the basis has one additional vector, we setc0 =
[c(j�1)T ; 0]T , andx(j�1) is computed as:

x(j�1) = V c0 = V

2
6664

c
(j�1)
1

...
c
(j�1)
m�1
0

3
7775 :

To orthogonalizex(j�1) with some Ritz vectorxi, or (I � xix
T
i )x

(j�1); we notice that
xi = V ci; x

(j�1) = V c0 and that(I � xix
T
i )x

(j�1) = V (I � cic
T
i )c

0. Therefore, all
orthogonalization can also be performed in the coefficient space, just before we compute
the new restarting basis. Similarly, storingw(s�1) vectors is unnecessary, sincew(s�1) =
Ax(j�1) = AV c0 = Wc0, and bothW andc0 are already stored. Finally, it is easy to show
that the new projection matrixV TAV after restarting has the following convenient format:

H =

2
6664

�1
...

�L
c00TWc00

3
7775 ;



ETNA
Kent State University 
etna@mcs.kent.edu

180 Restarting techniques for symmetric eigenvalue methods

wherec00 is obtained byc0 orthogonality against all coefficient vectors of maintained Ritz
vectors. Therefore, applying the combination of thick and CG-based restarting schemes can
be performed efficiently and without any additional storage. The only expense incurred is
similar to thick restarting with a couple of additional Ritz vectors.

6. Conclusions and suggestions.Restarting eigenvalue iterative methods is often a
cause of significant convergence deterioration. In this paper, we consider the effects of pre-
conditioning on the dynamic thick restarting strategy, which we proposed previously, and we
analyze both theoretically and experimentally an earlier idea based on the Conjugate Gradient
method for restarting with two vectors per required eigenvector.

As a conclusion, dynamic thick restarting is both efficient and robust, but its effectiveness
is reduced with accurate preconditioning. The CG-based scheme works well and it is also
theoretically justified for extreme eigenpairs. For interior ones, as well as for improving
convergence to the extreme ones, it should be combined with one-sided thick restarting. An
efficient implementation is also possible that makes the combination scheme computationally
attractive.

When implementing eigenvalue iterative methods, the kind of problem solved should
dictate the choice of restarting strategy. From our experience, dynamic thick restarting per-
forms best, if there is no preconditioning in the Davidson method, or if many eigenpairs are
needed. This technique demonstrates similar behavior when interfaced to theARPACK soft-
ware [10, 24]. For only one eigenpair or if preconditioning is used, the combination of thick
restarting and the CG-based approach is the method of choice. Because of the requirement
of explicit restarting, this technique can only be implemented with (Jacobi-)Davidson codes.
Finally, the latter scheme is even more attractive when the matrix vector multiplication is
inexpensive.
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