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SADDLE POINT PRECONDITIONERS FOR WEAK-CONSTRAINT 4D-VAR∗

JEMIMA M. TABEART† AND JOHN W. PEARSON‡

Abstract. Data assimilation algorithms combine information from observations and prior model information
to obtain the most likely state of a dynamical system. The linearised weak-constraint four-dimensional variational
assimilation problem can be reformulated as a saddle point problem, which admits more scope for preconditioners
than the primal form. In this paper we design new terms that can be used within existing preconditioners, such as
block diagonal and constraint-type preconditioners. Our novel preconditioning approaches (i) incorporate model
information and (ii) are designed to target correlated observation error covariance matrices. To our knowledge, (i) has
not been considered previously for data assimilation problems. We develop a theory demonstrating the effectiveness
of the new preconditioners within Krylov subspace methods. Linear and non-linear numerical experiments reveal that
our new approach leads to faster convergence than existing state-of-the-art preconditioners for a broader range of
problems than indicated by the theory alone. We present a range of numerical experiments performed in serial.
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1. Introduction. Data assimilation has seen substantial interest in fields such as numeri-
cal weather prediction [6, 32], ecology [30, 31], and hydrology [7, 44] in recent decades. The
variational data assimilation problem can be written mathematically as follows: For a given
time window [t0, tN ], let xti ∈ Rs be the true state of a dynamical system of interest at time ti,
where s is the number of state variables. Data assimilation algorithms combine observations of
a dynamical system yi ∈ Rpi at times ti with prior information from a model, xb ∈ Rs, to find
xi ∈ Rs, the most likely state of the system at time ti. The prior or background state is valid
at initial time t0 and can be written as an approximation of the true state via xb = xt0 + εb. We
assume that the background errors satisfy εb ∼ N (0,B), where B ∈ Rs×s is a background
error covariance matrix. In order to compare observations made at different locations or of
different variables than those in the state vector xi, we define a possibly non-linear observation
operatorHi : Rs → Rpi that maps from the state variable space to the observation space at
time ti. Observations at time ti are written as yi = Hi[xti] + εi ∈ Rpi , for i = 0, 1, . . . , N ,
where the observation error satisfies εi ∼ N (0,Ri) and Ri ∈ Rpi×pi are observation error
covariance matrices.

In weak-constraint four-dimensional variational data assimilation (4D-Var) the state xi−1

at time ti−1 is propagated to the next observation time ti using an imperfect forecast model
Mi to obtain xi =Mi(xi−1)+εmi . The model error at each time is given by εmi ∼ N (0,Qi),
where Qi ∈ Rs×s is the model error covariance matrix at time ti. It is typically assumed that
the error covariance matrices are mutually uncorrelated across different types and different
observation times. The analysis, or most likely state x0 at time t0, minimises the weak-
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constraint 4D-Var objective function given by

J(x0,x1, . . . ,xN ) = (x0 − xb)
>B−1(x0 − xb)

+

N∑
i=0

(yi −Hi[xi])>R−1
i (yi −Hi[xi])

+

N∑
i=1

(xi −Mi(xi−1))>Q−1
i (xi −Mi(xi−1)).

(1.1)

Weak-constraint 4D-Var is used in numerical weather prediction (NWP) to estimate
the initial condition for a weather forecast [42, 43]. Practical implementations of (1.1) pose
mathematical and computational challenges. Firstly, the dimension of the problem can be large:
in NWP [6] the dimension of the state can be of order 109, and the number of observations
can be of order 106. This application is also time critical, so the time that can be allocated
to the data assimilation procedure is very limited in operational situations. Computational
efficiency is therefore vital, and designing techniques to ensure fast convergence of the
minimisation of the objective function has been an ongoing area of research interest; see for
instance [5, 9, 13, 21].

The weak-constraint objective function (1.1) is typically solved via an incremental ap-
proach, where a small number of non-linear outer loops and a larger number of linearised
inner loops are solved [16, 17]. Standard Krylov subspace solvers can then be applied for
the inner loops. An alternative approach involves solving the linearised inner loop using a
saddle point formulation [8, 13, 15, 18], which admits a richer choice of preconditioning
structures compared to the primal form. Prior work has developed specific preconditioners for
the saddle point data assimilation problem [13, 15], typically focusing on approximations to
the term containing information about the linearised model. Block diagonal preconditioners
are appealing due to the potential to apply the MINRES algorithm and develop guaranteed
theoretical insight about the convergence rates based on the eigenvalues of the preconditioned
system, although inexact constraint preconditioners with GMRES have been found to yield
better performance in data assimilation settings for a variety of problems [14, 15].

Recent research on the primal form of the variational data assimilation problem has
revealed that the observation error covariance matrices Ri play an important role in deter-
mining the convergence of iterative methods [38, 40]. In the last decades, researchers have
increasingly made use of observing systems that have correlated observation error covariance
matrices [37, 45]. Previous saddle point preconditioners typically applied the exact inverses
of Ri [15, 18], which is known to be computationally infeasible for many satellite observing
systems [39, 45]. It is therefore expected that new terms within saddle point preconditioners
which incorporate correlated information from Ri and are inexpensive to apply could be
beneficial in terms of convergence for many observing systems. In what follows, we therefore
consider preconditioners for the observation error covariance matrix that explicitly allow for
full correlation matrices.

In this paper, we consider novel terms within existing preconditioning structures for the
saddle point framework, with particular focus on the correlated observation error setting. To
our knowledge, our preconditioners account explicitly for model information within the model
term for the first time. We begin in Section 2 by introducing the saddle point formulation of
the weak-constraint 4D-Var data assimilation problem and presenting existing state-of-the-art
preconditioners for the saddle point setting. In Section 3 we prove bounds for the eigenvalues
of a block diagonal preconditioned system in terms of constituent matrices of the saddle
point problem. In Sections 4 and 5 we then analyse the effect of applying existing and new
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preconditioners for the model term and observation error covariance term, respectively. In
Section 6 we present our numerical framework for the experimental results in Section 7. For
both the non-linear Lorenz 96 problem and the linear heat equation problem, we find that our
new preconditioners result in a reduced iteration count compared to block diagonal and inexact
constraint preconditioners in a variety of settings in the presence of correlated observation
errors. Although the theoretical guarantees only apply to the block diagonal preconditioner, the
qualitative behaviour is similar for the inexact constraint preconditioner with large reductions
in iterations and matrix-vector products. Finally, in Section 8 we present our conclusions.

2. Background.

2.1. Data assimilation. In this section we introduce the saddle point formulation of the
weak-constraint four-dimensional variational (4D-Var) data assimilation problem (1.1). Given
a time window [t0, tN ] split into N subwindows, we wish to find the state x ∈ Rs at time t0
that is closest in a weighted norm sense both to the observations throughout the time window
and to prior information at the initial time propagated by a model. The incremental primal
formulation updates x

(l+1)
0 = x

(l)
0 + δx(l) by solving an objective function via a series of

inner and outer loops to find a sequence of increments to the background state xb = x
(0)
0 .

In the inner loop a linearised problem is solved, typically using iterative solvers such as the
Conjugate Gradient method [23], and the outer loop is used to update linearisations of model
and observation operators.

For each outer loop l, the inner loop minimises a quadratic objective function to find
δx(l) ∈ R(N+1)s, where δx(l) = x(l+1) − x(l). Writing δx = (δx>0 , δx>1 , . . . , δx>N )>, the
full non-linear observation operatorHi (similarly, the model operatorMi) is linearised around
the current best guess x

(l)
i to obtain the linearised operator H

(l)
i (respectively M

(l)
i ). The

updated initial guess δx
(l)
0 is propagated forward between the observation times by M

(l)
i to

obtain δx
(l)
i+1 = M

(l)
i+1δx

(l)
i . We note that the time between the observations is likely to consist

of multiple numerical model time-steps, hence M
(l)
i often corresponds to the composition of

many discretised models for a single observation time-step.
Alternatively, the quadratic objective function in the inner loop may be replaced with a

saddle point system. Following the notation of [18, Eq. (3.17)], we substitute the linearised
objective function with the following saddle point system:

(2.1)

D 0 L
0 R H

L> H> 0

δηδν
δx

 =

b
d
0

 .
In this paper we focus on new preconditioners for the saddle point coefficient matrix:

(2.2) A =

D 0 L
0 R H

L> H> 0

 ∈ R(N+1)(2s+p)×(N+1)(2s+p),

where D, R, H are the following block diagonal matrices:

D = blkdiag (B,Q1,Q2, . . . ,QN ) ∈ R(N+1)s×(N+1)s,

R = blkdiag (R0,R1,R2, . . . ,RN ) ∈ R(N+1)p×(N+1)p,

H = blkdiag
(
H

(l)
0 ,H

(l)
1 ,H

(l)
2 , . . . ,H

(l)
N

)
∈ R(N+1)p×(N+1)s,
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with the ith diagonal block in each case being the relevant matrix for time ti−1. Here, the
MATLAB-style notation ‘blkdiag’ is used to describe a block diagonal matrix in terms of its
block diagonal entries.

The matrix L ∈ R(N+1)s×(N+1)s contains the linearised model information that evolves
x0 between the N observation times, or subwindows, written as

(2.3) L =


I

−M
(l)
1 I

−M
(l)
2 I

. . . . . .
−M

(l)
N I

 ,

where I denotes the identity matrix. As we consider preconditioners for the inner loop only,
for the remainder of the paper we drop the superscripts that denote the outer loop iteration and
simply use Hi and Mi.

As the saddle point system is indefinite, methods such as the Conjugate Gradient algorithm
cannot be used. Depending on the choice of preconditioner, MINRES [28] or GMRES [35] are
examples of viable algorithms for solving linear systems of the form (2.1). We note that one
challenge of the saddle point formulation is that a monotonic decrease of the objective cost is
no longer guaranteed [15]. This can be challenging in operational settings where a very limited
number of iterations are performed. In this paper we design new preconditioners and study
their numerical performance when iterative methods are permitted to reach convergence. The
goal is the design of sufficiently effective and efficient preconditioners to allow convergence
of MINRES- or GMRES-approaches in an operational setting.

Numerical methods for saddle point systems are well-studied in the optimisation literature
(see [1] for a comprehensive survey). In order to devise suitable approximations of such
systems, as in the forthcoming section, one powerful approach is to approximate the ‘leading’
(1, 1)-block of the matrix, along with its Schur complement [25, 27]. For saddle point problems
arising from data assimilation, not only does the (1, 1)-block often have a complex structure,
but the constraint block contains the evolution of the model terms forward/backward in
time, leading to a Schur complement which is very difficult to approximate cheaply [13].
Therefore, approximating the constraint block cheaply is an important consideration for a
good preconditioner of the matrix (2.2). The work presented here therefore attempts to
combine suitable approximations for the (1, 1)-block, the constraint block, and hence the
Schur complement.

2.2. Preconditioners for saddle point systems from data assimilation. We now intro-
duce some preconditioners that have been applied to the saddle point formulation of the data
assimilation problem described above. We start by considering two classes of preconditioner,
the block diagonal preconditioner and the inexact constraint preconditioner. Although the
standard constraint approach [2, 3] would include Ĥ, an approximation of H, the use of
Ĥ = 0 is popular in the data assimilation setting where it is commonly called the ‘inexact’
constraint preconditioner [13, 14, 15]. In this paper we use the same forms that are considered
in [15], which are given by

(2.4) PD =

D̂ 0 0

0 R̂ 0

0 0 Ŝ

 , PI =

D 0 L̂

0 R̂ 0

L̂> 0 0

 ,
where D̂ and R̂ are approximations of D and R which are easier to apply than the original
matrices, and L̂ is an efficient approximation of L. The exact (negative) Schur complement is
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given by

S = L>D−1L + H>R−1H,

which we may approximate by Ŝ. For instance, one may drop the second term and take an
approximation L̂ of L, which is a Schur complement approximation of the form L̂>D−1L̂.

One attraction of the block diagonal preconditioner is that one may guarantee a fixed
convergence rate based on the eigenvalues of the preconditioned system P−1

D A. In Section 3
we present bounds for the eigenvalues of the preconditioned system for the block diagonal
preconditioner. The inexact constraint preconditioner has been found to yield improved
convergence for both toy- and operational-scale data assimilation problems, compared to the
block diagonal preconditioner for the same choices of L̂ and R̂ [13, 14, 15]. However, it is
difficult to develop any theoretical results apart from the unrealistic setting where L̂ = L,
Ĥ = H, R̂ = R [13].

In this paper we consider new preconditioners L̂ and R̂ for the model and observation
error terms. We now present choices of L̂ and R̂ that have been studied before. Applying the
exact choice of L−1 in a preconditioner can be prohibitively expensive as it requires serial
products of model terms and their adjoints [13]. Evaluations of the model acting on a vector
can dominate the computational cost of data assimilation algorithms, so reducing the total
number of matrix-vector products of the form Miv or M>

i v is an important consideration
when designing new preconditioners. A common choice of preconditioner for L replaces all
of the sub-diagonal terms Mi with 0 [15, 18]. We shall denote this choice of preconditioner
as L0 and note that L0 is the (N + 1)s× (N + 1)s identity matrix, hence so is its inverse.

Another choice of preconditioner that was considered in [13, 15] is given by

LI =


I
−I I

−I I
. . . . . .

−I I

 ,

where the sub-diagonal blocks are replaced with the negative s× s identity matrix. This was
found to perform well experimentally when used in the inexact constraint preconditioner for a
two-layer quasi-geostrophic model [13]. However, it does not include any model information,
and may not be expected to perform well for all problems. In Section 4 we introduce a new
preconditioner that incorporates model information.

Within the outer-inner loop structure of the weak-constraint solver, information from
previous outer loops can be used to cheaply update the preconditioners in subsequent loops.
This has been found to be computationally beneficial [12]. Such approaches could be combined
with the method considered in this paper and are expected to provide value. However, we
consider preconditioners for the first outer loop, where there is no additional information, and
hence developing computationally feasible stand-alone preconditioners is crucial.

In most prior work the exact observation error covariance matrix has been used in pre-
conditioners. This is due to the fact that the cost of applying R−1 is assumed not to be
prohibitive due to the inherent block diagonal structure of R. However, the rising use of more
complex correlation structures (such as inter-channel observation errors, see [45]) means that
applying R−1 exactly is not always affordable and may be a computational bottleneck. One
option is to apply a computationally cheap approximation of R within the preconditioner,
such as the diagonal of R. However, this is typically an inaccurate approximation which can
significantly delay convergence. In this paper we consider new classes of preconditioners for
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the observation error covariance term which we expect to improve convergence in the presence
of correlated observation error.

3. Bounds for the eigenvalues of the block diagonal preconditioner. For a symmetric
positive definite block diagonal preconditioner of the form PD, it is possible to describe the
convergence of the preconditioned MINRES algorithm by analysing the eigenvalues of the
preconditioned system P−1

D A (see, e.g., [11, Chapter 4]). In the data assimilation setting,
PD is symmetric positive definite, as all proposed approximations D̂, R̂ as well as the Schur
complement approximation Ŝ are themselves defined to be symmetric positive definite. We
note that for the preconditioned GMRES algorithm, spectral information is insufficient to
describe convergence (see [19], for instance). Therefore the theoretical bounds presented in
Sections 3–5 are informative strictly for the block diagonal preconditioner, with experiments
for the inexact constraint preconditioner PI being presented in Section 7 for numerical
comparison.

The matrices A and PD defined in (2.2) and (2.4) can be written as

(3.1) A =

[
Φ Ψ>

Ψ 0

]
, PD =

[
Φ̂ 0

0 Ŝ

]
,

where

Φ =

[
D 0
0 R

]
, Ψ =

[
L> H>

]
,

and with Φ̂ and Ŝ approximations of Φ and the (negative) Schur complement S = ΨΦ−1Ψ>.
We now denote

S̃ = L>D−1L, Ŝ = L̂>D−1L̂,

and D̂, R̂, L̂ are approximations of D, R, L. For the forthcoming theory, we suppose that D,
D̂, R, R̂, S, S̃, Ŝ are symmetric positive definite, with

λ(D̂−1D) ∈ [λD,ΛD], λ(R̂−1R) ∈ [λR,ΛR],

λ(S̃−1S) ∈ [λS,ΛS], λ
(

(L̂>L̂)−1(L>L)
)
∈ [λL,ΛL],

where λ(·) denotes the eigenvalues of a matrix. We may then prove the following result:
THEOREM 3.1. With the definitions as stated above, the eigenvalues of P−1

D A are real
and satisfy

λ(P−1
D A) ∈

λΦ −
√
λ2

Φ + 4ΛΦΛSΛLκ(D)

2
,

ΛΦ −
√

Λ2
Φ + 4λΦλSλL

κ(D)

2


∪ [λΦ,ΛΦ] ∪

λΦ +
√
λ2

Φ + 4λΦλSλL

κ(D)

2
,

ΛΦ +
√

Λ2
Φ + 4ΛΦΛSΛLκ(D)

2

 ,
where λΦ = min{λD, λR}, ΛΦ = max{ΛD,ΛR}, and κ(·) denotes the condition number
of a matrix.
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Proof. Applying well-known results (see [34, p. 2906], [33, Theorem 4.2.1]), we have

λ ∈

[
δ −
√
δ2 + 4∆Φ

2
,

∆−
√

∆2 + 4δφ

2

]
∪ [δ,∆]

∪

[
δ +

√
δ2 + 4δφ

2
,

∆ +
√

∆2 + 4∆Φ

2

]
,

(3.2)

where δ, φ denote the minimum eigenvalues of Φ̂
−1

Φ, Ŝ−1S for a general block diagonal
saddle point preconditioner (3.1), and ∆, Φ represent the corresponding maximum eigenvalues.

Clearly, for this problem δ = λΦ and ∆ = ΛΦ. It remains to analyse the minimum and
maximum eigenvalues of the preconditioned Schur complement, which we note is within the
range of the Rayleigh quotient (for v 6= 0):

(3.3)
v>Sv

v>Ŝv
=

v>Sv

v>S̃v
· v
>S̃v

v>Ŝv
=

v>Sv

v>S̃v
· v
>L>D−1Lv

v>L>Lv
· v
>L>Lv

v>L̂>L̂v
· v>L̂>L̂v

v>L̂>D−1L̂v
.

Observing that

v>Sv

v>S̃v
∈ [λS,ΛS],

v>L>D−1Lv

v>L>Lv
=

y>y

y>Dy
∈
[

1

ΛD
,

1

λD

]
,

v>L>Lv

v>L̂>L̂v
∈ [λL,ΛL],

v>L̂>L̂v

v>L̂>D−1L̂v
=

z>Dz

z>z
∈ [λD,ΛD],

where y = D−1/2Lv 6= 0, z = D−1/2L̂v 6= 0, we may write

v>Sv

v>Ŝv
∈
[
λSλLλD

ΛD
,

ΛSΛLΛD

λD

]
=

[
λSλL

κ(D)
,ΛSΛLκ(D)

]
.

Therefore, it holds that φ ≥ λSλL

κ(D) and Φ ≤ ΛSΛLκ(D). Substituting the bounds for δ, ∆, φ,
Φ into (3.2) then gives the result.

REMARK 3.2. Theorem 3.1 is an extension of known results, for example [34, p. 2906]
and [33, Theorem 4.2.1], and in particular an application of this methodology to saddle point
systems arising from weak-constraint 4D-Var. We highlight that eigenvalue results of this
form are important because they lead to concrete convergence properties of MINRES. As
in [11, Theorem 4.14], if λ(P−1

D A) ∈ [−µ1,−µ2] ∪ [µ3, µ4], with µ1, µ2, µ3, µ4 > 0 such
that µ1 − µ2 = µ4 − µ3, then after 2` iterations of MINRES:

‖r(2`)‖P−1
D
≤ 2

(√
µ1µ4 −

√
µ2µ3√

µ1µ4 +
√
µ2µ3

)`
‖r(0)‖P−1

D
,

where r(·) denotes the residual vector at a given iteration. Note that both the positive or negative
intervals for the eigenvalues of P−1

D A can always be stretched such that µ1 − µ2 = µ4 − µ3

holds, so this result holds without loss of generality. This allows one to ascertain the con-
vergence behaviour of MINRES when we apply approximations of L>L, R (as well as D),
including those discussed in Sections 4 and 5.

REMARK 3.3. Due to the way the Rayleigh quotient is factored in (3.3), Theorem 3.1
gives a potentially very weak bound when D is ill-conditioned. We find the main features that
affect the quality of the preconditioner, as predicted by the result, are the approximations of
D and R, the effect of dropping the second term of the Schur complement, and the quality
of the approximation of L>L (characterised by the eigenvalues of L̂−>L>LL̂−1). The latter
quantity is the subject of the forthcoming analysis.
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4. Approximations L̂. Theorem 3.1 suggests that the eigenvalues of the preconditioned
system are influenced by the quality of the approximation of L>L by L̂>L̂ in the block
diagonal preconditioner. In this section we consider existing and new choices of L̂ and
analyse the eigenvalues and structure of L̂−>L>LL̂−1, which is similar to (L̂>L̂)−1(L>L).
The first choice of L̂, L0, has previously been used for saddle point preconditioners for
the data assimilation problem [15, 18]. We also propose LM , a new class of parallelisable
preconditioners that depends on a user-defined parameter and incorporates model information.

4.1. A new preconditioner LM and the eigenvalues of L−>M L>LL−1
M . We begin

by defining our proposed preconditioner LM that incorporates model information explicitly.
For a user chosen parameter 1 ≤ k ≤ N + 1, every kth block sub-diagonal of LM (i.e.,
Mk,M2k,M3k, . . . ) is set equal to 0. The other entries of LM correspond to those of L.
Formally we write this as in the definition below.

DEFINITION 1. Let k ∈ N, and let LM = LM (k) ∈ R(N+1)s×(N+1)s be a block matrix
made up of s× s blocks. For i, j = 1, . . . , N + 1, we define

the (i, j)th block of LM =


I if i = j,

−Mj if i = j + 1 and j is not divisible by k,
0 otherwise.

Similarly we can write the inverse of LM as follows, using straightforward linear algebra:
LEMMA 4.1. Let k ∈ N, and let LM = LM (k) ∈ R(N+1)s×(N+1)s be a block matrix

made up of s× s blocks. For i, j = 1, . . . , N + 1, we may evaluate that

the (i, j)th block of L−1
M =


I if i = j,∏i−j
m=1 Mi−m if 1 ≤ i− j ≤ (i− 1) mod(k),

0 otherwise.

We note that L−1
M is lower triangular, and both the number of non-zero blocks of L−1

M

and the number of terms in each of the products of L−1
M are controlled by the parameter k.

Note that L defined in (2.3) satisfies L = LM (N + 1) according to this notation. To further
justify the effectiveness of this approximation, we now study the eigenvalues of L−>M L>LL−1

M

theoretically. We begin by stating the structure of L−>M L>LL−1
M in terms of the linearised

model matrices Mi, using straightforward linear algebra.
LEMMA 4.2. We can write L−>M L>LL−1

M = I + A(M), where the block entries of
A(M) ∈ R(N+1)s×(N+1)s are defined as follows: For n = 1, . . . ,

⌊
N
k

⌋
,

[A(M)]i,j =


(
∏nk
t=i M

>
t )(
∏nk
q=j Mnk−q+j) for (n− 1)k + 1 ≤ i, j ≤ nk,

−
∏nk
t=j Mnk−t+j for i = nk + 1, (n− 1)k + 1 ≤ j ≤ nk,

−
∏nk
t=i M

>
t for j = nk + 1, (n− 1)k + 1 ≤ i ≤ nk,

0 otherwise,

where [A(M)]i,j denotes the (i, j)th block of A(M).

We now briefly describe the structure of A(M). The matrix is made up of
⌊
N
k

⌋
over-

lapping diagonal blocks, where the size of each block is (k + 1)s × (k + 1)s. Each block
‘overlaps’ at the (nk + 1, nk + 1)st block of A(M), meaning that the maximum number of
non-zero blocks in any row or column is given by 2k+ 1. We use this structure to demonstrate
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that our new preconditioner LM yields a number of unit eigenvalues for the preconditioned
term L−>M L>LL−1

M .
PROPOSITION 1. Let L be defined as in (2.3) and LM be as in Lemma 4.2. For

2 ≤ k ≤ N + 1, L−>M L>LL−1
M has at least rs unit eigenvalues, with r = N + 1− 2

⌊
N
k

⌋
.

Proof. From Lemma 4.2 we can construct eigenvectors corresponding to the zero eigenval-
ues of A(M), which will yield unit eigenvalues of L−>M L>LL−1

M . Let et define the canonical
vector taking the unit value in position t and zero elsewhere. Observe that A(M) is a block
diagonal matrix with a (N − k

⌊
N
k

⌋
)s× (N − k

⌊
N
k

⌋
)s zero block in the final position. We

can construct (N − k
⌊
N
k

⌋
)s linearly independent eigenvectors corresponding to the zero

eigenvalue for this block using et for t = (k
⌊
N
k

⌋
)s+ 1, . . . , Ns.

For each value of n in Lemma 4.2 we obtain (k − 2)s eigenvectors corresponding to a
zero eigenvalue of the form

(0, . . . ,0,v>t ,−(Mrvt)
>,0, . . . ,0)>,

for rs + 1 ≤ t ≤ (r + 1)s and nk + 2 ≤ r ≤ (n + 1)k − 1. Therefore, these contribute
(k − 2)s

⌊
N
k

⌋
linearly independent eigenvectors corresponding to the zero eigenvalue across

the whole matrix. From the first block in the matrix we obtain additional s linearly indepen-
dent eigenvectors corresponding to the zero eigenvalue via (v>t ,−(M1vt)

>,0, . . . ,0)>, for
t = 1, . . . , s.

Combining the above reasoning, we obtain rs unit eigenvalues of L−>M L>LL−1
M as

required, where

r = 1 + (k − 2)

⌊
N

k

⌋
+N − k

⌊
N

k

⌋
= N + 1− 2

⌊
N

k

⌋
.

We see that r does not decrease as k increases, i.e., incorporating information from more
timesteps will generally lead to a larger number of unit eigenvalues of the preconditioned
model term. Increasing the number of observation times N will broadly lead to an increase in
the number of unit eigenvalues of L−>M L>LL−1

M , but this behaviour is non-monotonic.
If we introduce assumptions on the spectral radii of the model operator terms, then we

can obtain explicit bounds for the eigenvalues of L−>M L>LL−1
M .

PROPOSITION 2. If ‖MiM
>
i ‖2 ≤ 1, for all i, then the eigenvalues of L−>M L>LL−1

M can
be bounded above by k + 1 + 2

√
k.

Proof. We bound the eigenvalues of A(M) by splitting the matrix into three sub-matrices
A(M) = A1 + A2 + A3, where A1,A2,A3 are symmetric and will be defined explicitly in
what follows. As all matrices being considered are symmetric, by using [4, Fact 5.12.2] we
can bound the maximum eigenvalue of A(M) above by

λmax(A(M)) ≤ λmax(A1) + λmax(A2) + λmax(A3).

Let A1 be a block diagonal matrix with blocks of size nk × nk and entries defined by

the (i, j)th block of A1 =

{
the (i, j)th block of A(M) for (n− 1)k + 1 ≤ i, j ≤ nk,
0 otherwise.

Each ks× ks block has rank s, as the first (k − 1)s rows are multiples of the final s× s rows.
Substitution yields the eigenvalue problemM>

nk

nk∑
t=(n−1)k+1

(
nk∏
p=t

Mnk−p+t

)(
nk−1∏
q=t

M>
q

)v = µv.
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We apply [24, Theorem 1.3.20], which states that exchanging the order of matrix multiplication
for two compatible matrices has no effect on the non-zero eigenvalues of the product, so we
instead consider  nk∑

t=(n−1)k+1

(
nk∏
p=t

Mnk−p+t

)(
nk∏
q=t

M>
q

) v̄ = µv̄.

We can separate the contribution of each individual term by applying [4, Fact 5.12.2] to obtain

µ ≤ λmax

 nk∑
t=(n−1)k+1

(
nk∏
p=t

Mnk−p+t

)(
nk∏
q=t

M>
q

)
≤

nk∑
t=(n−1)k+1

nk∏
p=t

‖MpM
>
p ‖2 ≤

nk∑
t=(n−1)k+1

1 = k.

The maximum eigenvalue of each block is bounded above by k, and hence λmax(A1) ≤ k.
Without loss of generality, assume that

⌊
N
k

⌋
is odd. For n = 1, 3, 5, . . . , 2

⌊
N
2k

⌋
+ 1, we

define A2 by a block diagonal matrix with blocks of size (k + 1)s × (k + 1)s and entries
given by

[A2]i,j =


the (i, j)th block of A(M) for i = nk + 1, (n− 1)k + 1 ≤ j ≤ nk,
the (i, j)th block of A(M) for j = nk + 1, (n− 1)k + 1 ≤ i ≤ nk,
0 otherwise.

The (k + 1)s× (k + 1)s blocks have rank 2s with non-zero eigenvalues that solve nk∑
t=(n−1)k+1

(
nk∏
p=t

Mnk−p+t

)(
nk∏
q=t

M>
q

)v = µ2v.

By the same argument as above we can bound µ2 ≤ k. Hence, λmax(A2) ≤
√
k.

For n = 2, 4, 6, . . . , 2
⌊
N
2k

⌋
, the matrix A3 is a block diagonal matrix with blocks of size

(k + 1)s× (k + 1)s and entries given by

[A3]i,j =


the (i, j)th block of A(M) for i = nk + 1, (n− 1)k + 1 ≤ j ≤ nk − 1,

the (i, j)th block of A(M) for j = nk + 1, (n− 1)k + 1 ≤ i ≤ nk − 1,

0 otherwise.

All blocks have the same structure as the blocks of A2 and hence have eigenvalues bounded
above by

√
k.

The largest eigenvalue of A(M) is therefore bounded by λmax(A(M)) ≤ k + 2
√
k. By

adding the identity matrix, we obtain the upper bound for the eigenvalues in the proposition
statement.

REMARK 4.3. For smaller values of N , A3 is not involved. We can therefore apply a
similar argument with A = A1 + A2 to obtain the tighter bounds

λ(L−>M L>LL−1
M ) ≤ 1 + k +

√
k, if k ≤ N < 2k, i.e., if

⌊
N

k

⌋
= 1.

REMARK 4.4. A similar approach is not illustrative when examining a lower bound for
the eigenvalues as this would yield negative bounds, whereas all eigenvalues of L−>M L>LL−1

M

are clearly greater than zero by construction.
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5. Approximations R̂i. Theorem 3.1 suggests that the eigenvalues of the preconditioned
system are also influenced by the quality of the approximation of R by R̂ in the block diagonal
preconditioner. In this section we consider four choices of R̂i, each of which we apply
blockwise to Ri. Similarly to the preconditioners for L, we consider an existing choice of
preconditioner that is diagonal and three new choices of preconditioner that include correlation
information. We expect the new preconditioners to be beneficial for highly correlated obser-
vation error covariance matrices. Correlated observation errors are currently implemented
operationally at a number of numerical weather prediction centres for hyperspectral satellite
instruments (see, e.g., [41, 45]) and Doppler Radar Winds (DRW) (e.g., [36]). Hyperspectral
instruments have a block covariance structure with a number of highly correlated off-diagonal
entries, and DRW error statistics are spatially correlated. We focus on the observation error
covariance matrix in this section, as efficient approximations for this term have previously
been overlooked. In the following we describe the approaches in terms of R without loss of
generality, as the methods can also be applied to approximate the blocks of D.

REMARK 5.1. We note that R has a block diagonal structure. Each of the preconditioners
in this section is applied blockwise, yielding a block diagonal R̂ with at least N + 1 blocks.
The two preconditioners presented in Section 5.1 further increase the sparsity of R̂.

5.1. Choices of R̂i that increase sparsity. Many previous studies of the saddle point
data assimilation formulation assume that R is diagonal or easy to invert [12, 15]. For those
instruments with uncorrelated or diagonally dominant observation error covariance matrices,
it is likely that a diagonal approximation R̂ will be sufficient. However, for more complicated
structures, it is unlikely that the exact inverse of R can be applied efficiently in terms of
storage or computation. The approaches we present here are designed to perform well in terms
of effectiveness and efficiency for correlation structures that are currently used operationally.

The first two choices of R̂i considered in this section allow for additional sparsification
of the observation error component of the preconditioners. The first preconditioner, denoted
Rdiag , takes the diagonal of the original observation error covariance matrix Ri. This is often
a first approximation of Ri or its inverse for simple covariance structures. This choice of R̂i

is cheap to apply and extremely sparse but is expected to perform poorly if there is significant
off-diagonal correlation structure.

The second sparsifying choice of R̂i, denoted Rblock in Algorithm 3 in Appendix A,
is designed to exploit the existing block structure in Ri. In applications, Ri itself often
has a block structure with the strength of the off-diagonal correlations varying, e.g., for
different instruments or measurement types (see, e.g., [45]). The idea of Rblock is to retain
the sub/super-diagonal blocks of Ri with the largest norm. Neglecting off-diagonal blocks
of Ri with smaller norm ensures that Rblock is decoupled into a block diagonal matrix. Let
Ri ∈ Rpi×pi be a covariance matrix with an associated vector pvec ∈ Rpn that specifies
the size of the ‘blocks’ such that

∑pn
k=1 pveck = pi. Algorithm 3 returns a block covariance

matrix Rblock where only off-diagonal blocks with a scaled Frobenius norm larger than a
user-defined tolerance tol are retained. In order to maximise computational efficiency, only
the norms of the blocks on the first super-diagonal are computed. If two (or more) adjacent
blocks are retained, then information from higher level super-diagonals is also included. This
does not change the overall block structure of the new preconditioner but allows for the
inclusion of more information from Ri. This will not lead to a large increase in the cost of
applying its inverse, and we deem that retaining the additional correlation information is likely
to be beneficial for the preconditioner.
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5.2. Preconditioning methods motivated by reconditioning. The next two choices
of R̂i are motivated by reconditioning methods [39]. These are commonly used in data
assimilation implementations to mitigate the issues associated with ill-conditioned sample
covariance matrices [45]. These methods do not increase the sparsity of R̂i compared to Ri

but can be applied to non-block matrices, such as the spatially varying error covariances used
for Doppler Radar Winds. In this application we consider the use of such methods to develop
new terms in the preconditioner only.

Algorithm 1: Ridge regression method.
Inputs: Matrix Ri, target condition number κmax.
Define γ = λmax(Ri)−λmin(Ri)κmax

κmax−1 .
Set RRR = Ri + γI.

Algorithm 2: Minimum eigenvalue method.

Inputs: Matrix Ri = VΛV>, target condition number κmax.
Set λmax(RME) = λmax(Ri).
Define T = λmax(Ri)

κmax
> λmin(Ri).

Set the remaining eigenvalues of RME via

λk(RME) =

{
λk(Ri) if λk(Ri) > T,

T if λk(Ri) ≤ T.

Construct the reconditioned matrix via RME = VΛMEV>, where ΛME is a
diagonal matrix with diagonal entries given by λk(RME).

Algorithms 1 and 2 define parameter-dependent preconditioners. Typically in the re-
conditioning setting, γ and T are selected such that reconditioned matrices have condition
number κmax. However, in the preconditioning approach we select γ and T directly, with
larger parameter values yielding smaller condition numbers of R̂i.

Algorithms 1 and 2 can be used to construct preconditioners for Ri that retain much of
the structure of the original matrix but are better conditioned. Additionally, we can prove how
the eigenvalues of the preconditioned term that appears in Theorem 3.1 change as we vary γ
and T , respectively. The following results determine the spectra of the preconditioned terms
R−1
RRRi and R−1

MERi for any choice of the parameters γ and T .
PROPOSITION 3. Let λk(Ri) denote the eigenvalues of Ri. The eigenvalues of R−1

RRRi

are given by

λk(R−1
RRRi) =

λk(Ri)

λk(Ri) + γ
.

Proof. Let Ri = VΛV>, with Λ = diag(λk), be the eigendecomposition of Ri. Then

RRR = V(Λ + γI)V>,

and hence

R−1
RRRi = V

(
diag

(
λk

λk + γ

))
V>.
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We note that for any value of γ, 0 < λ(R−1
RRRi) < 1. For small values of γ, all

eigenvalues are closer to 1, and as γ increases, more eigenvalues move towards zero.
PROPOSITION 4. The eigenvalues of R−1

MERi are given by

λk(R−1
MERi) =

{
1 if λk > T,
λk

T < 1 if λk ≤ T.

Proof. Let Ri = VΛV>, with Λ = diag(λk), be the eigendecomposition of Ri. Then

RME = VΛMEV>,

where ΛME is a diagonal matrix with diagonal entries given by max{T, λk(Ri)}. Hence,

R−1
MERi = V

(
diag

(
λk

max{T, λk}

))
V>,

which has eigenvalues corresponding to the expression in the theorem statement.
All of the eigenvalues of R−1

MERi lie in the range (0, 1]. For small values of T , most
of the eigenvalues are units, with a few smaller than 1. As T increases, a larger number of
eigenvalues become strictly smaller than 1.

Therefore, both choices of preconditioner maintain the ordering of the eigenvalues and
yield eigenvalues of the preconditioned matrix lying between 0 and 1. For both approaches,
increasing the parameter leads to larger differences between the eigenvalues of the precondi-
tioned matrix and 1. Smaller parameter values may yield choices of R̂ that are themselves
ill-conditioned and hence expensive to evaluate as part of a preconditioner. Therefore, there is
a balance to be struck when choosing a parameter value to avoid poor conditioning of either
the preconditioner R̂ or the preconditioned term R̂−1R. A natural question is therefore how
to select appropriate parameter values and how to implement this automatically. Heuristics
for automated parameter selection are discussed in Section 6 for our numerical experiments,
but it is likely that some initial investigation would be necessary to identify suitable meth-
ods for specific problems of interest. In Section 7 we compare the performance of the four
approximations Rdiag , Rblock, RRR, and RME , applied blockwise to each block Ri of R.

6. Numerical framework. In this section we introduce the numerical framework for the
experiments presented in Section 7. We begin in Section 6.1 by defining the parameters for the
data assimilation problem. The same data assimilation framework is used for all experiments.
In Section 6.2 we discuss implementation aspects relating to the preconditioners. We note
that all results are computed using MATLAB version 2019b on a machine with a 1.8GHz Intel
quad-core i7 processor with 15GB RAM on an Ubuntu 20.04.2 LTS operating system.

6.1. Data assimilation parameters. We now describe the data assimilation problem that
is studied in Section 7. The size of the state space s is determined by the spatial discretisation
s = 1

∆x . For each choice of s, we fix the observation operator Hi ∈ Rp×s to be the same for
all observation times ti. We usually choose p = s

2 , and observations of alternate state variables
are smoothed equally over 5 adjacent state variables, with entries either being 0 or 1

5 . The full
observation operator H is then assembled by taking H = IN+1 ⊗Hi, where ⊗ denotes the
Kronecker product.
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We assume that the model error Qi is the same at each observation time, i.e., Qi ≡ Q,
for i = 1, . . . , N . Although this is a simplified choice of model error, we note that treating Qi

is not the focus of this work. More complicated formulations could be taken into account for
operational problems, and the preconditioning approaches for R discussed in Section 5 can
also be applied to the blocks of Q. Both B and Q are created using the same routine, based
on a SOAR correlation matrix [46]. This routine constructs spatial local correlations whilst
ensuring that the matrix has high sparsity. Both B and Q are s× s circulant matrices fully
defined by a single row and symmetrised. The number of non-zero entries in each row is fixed
irrespective of the value of s. The non-zero entries are computed using a modified SOAR
function following the procedure in [22]:

(6.1) ci = σ

(
1 +

2| sin
(
iθ
2

)
|

L
exp

(
−

2| sin( iθ2 )|
L

))
, θ =

π

maxval
,

where L is the correlation lengthscale (0.6 for B, 0.5 for Q), maxval determines the number
of non-zero entries (100 for B, 120 for Q), and σ is the amplitude of the correlation function
(0.4 for B, 0.2 for Q). To ensure positive definiteness of the function, if the smallest eigenvalue
of the full matrix is negative, a constant δ = |λmin(B)|+ ψ is added to the diagonal, where ψ
is a random number in (0, 0.5]. We then assemble D by taking the first block diagonal entry
to be B and the remaining block diagonal entries to be N copies of Q.

The spatial structure for B and Q introduced above is similar to numerical frameworks
that have been considered previously for weak-constraint data assimilation experiments [8, 10].
However, we note that for realistic data assimilation systems, the true structure of Qi is not
well known. Improved understanding of model error covariance matrices and their estimation
in preconditioners is of research interest but will not be considered here. For our experiments
we apply the ridge regression preconditioner to B and Q given by Algorithm 1, for the
parameter γ = 0.01 to obtain BRR and QRR. We apply D̂−1 using the incomplete Cholesky
factors of BRR and QRR, respectively, computed with the MATLAB function ichol with
zero-fill, i.e., using the same sparsity structure as B and Q.

Many experiments that account for correlated observation error covariance matrices use
spatial correlations and circulant matrix structures (similar to those we are using for B,Q).
However, in NWP error correlations often arise from hyperspectral satellite-based instruments
which have interchannel uncertainty structures (see for instance [37, 45]) that appear as block
structures within a matrix. Therefore, for these experiments we construct a matrix with
block structure, designed to replicate many of the properties of realistic interchannel error
correlations.

To construct Ri ∈ Rp×p we define two vectors: pvec ∈ Rplen such that
p =

∑plen
k=1 pveck, which gives the size of the blocks, and pcorr ∈ Rplen(plen−1)/2,

which gives the multiplication factor for each off-diagonal block (note that if pcorrk = 0,
then the corresponding off-diagonal block is uncorrelated). Diagonal blocks are correlated
and constructed as the Hadamard product of a sparse random matrix and a sparse SOAR
matrix (using the same approach as for B and Q above). Off-diagonal blocks are sparse
random matrices with entries in [0,pcorrk). The matrix Ri is assembled by adding the
diagonal blocks and the upper half of the matrix and then symmetrising. This also increases
the weight of the diagonal blocks. A similar approach to that used for B and Q is applied
to guarantee that Ri is positive definite, where if the minimum eigenvalue of Ri is less than
zero, it is increased to a small positive value. This value is fixed at 0.41 in order to control
the conditioning of Ri and ensure that the condition numbers of D and R are comparable.
We assemble R by taking R = IN+1 ⊗Ri, where ⊗ denotes the Kronecker product, and
the choice of Ri ∈ Rp×p is fixed for a given data assimilation problem. This method of
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TABLE 6.1
Summary of experimental design for Section 7. The modified SOAR function is described in (6.1), the block

method to construct Ri is described in Section 6.1, as is the direct observation structure of H. The final column
shows the ratio of observations to state variables at each observation time.

Experiment Model D Ri H p/s

A Lorenz 96 Modified SOAR Block Direct observations 0.5
B Heat equation Modified SOAR Block Direct observations 0.25/0.5

TABLE 6.2
Minimum and maximum eigenvalues of the preconditioned Ri for different choices of R̂i computed using the

eigs function in MATLAB.

Ri R−1
diagRi R−1

blockRi R−1
RRRi R−1

MERi

p λmin λmax λmin λmax λmin λmax λmin λmax λmin

125 0.4100 108.63 0.0131 2.7466 0.6779 1.3221 0.2908 1.0000 0.2602
250 0.4100 200.55 0.0077 3.3466 0.7886 1.2114 0.2908 1.0000 0.6021
500 0.4100 312.05 0.0061 4.4236 0.8889 1.1110 0.2908 1.0000 0.1129

1250 0.4100 540.99 0.0044 5.5440 0.9335 1.0665 0.2908 1.0000 0.1077
2500 0.4100 650.67 0.0055 6.0254 0.7556 1.2444 0.2908 1.0000 0.1302
5000 0.4100 706.94 0.0057 6.8106 0.6058 1.3941 0.2908 1.0000 0.1725

construction ensures that we have adequate sparsity for high-dimensional experiments, that Ri

is positive definite with significant correlations, and that it is well-conditioned. In practice, R
may be very ill-conditioned compared to D, in which case we expect selecting a good choice
of R̂ would be even more vital to ensure fast convergence. The combination of model and
data assimilation parameters used in our experiments is summarised in Table 6.1.

Finally, we wish to apply the reconditioning-inspired preconditioner to Ri in an online
way. One way to do this is to use the small eigenvalues of Ri to select γ and T . For
the ridge regression approach, we run the method such that γ is fixed. For the minimum
eigenvalue method, we compute the smallest two eigenvalue-eigenvector pairs and set the
threshold equal to the second smallest, meaning only a single eigenvalue is changed. The
small eigenvalues are computed using eigs(R,2,’sr’) in MATLAB. For both approaches
we use information from Ri, but computing a small number of eigenvalues ensures that this
is computationally efficient. Finally, for all correlated choices of R̂i, we apply R̂−1

i using
the incomplete Cholesky factors computed with the MATLAB function ichol with the same
sparsity structure as Ri. For RME this means that the reconditioning method is applied as a
low-rank update to the Cholesky factors via the Woodbury identity, as this is more efficient in
terms of storage.

Table 6.2 shows the extreme eigenvalues of R̂−1
i Ri for each of the preconditioners

discussed in Section 5. We recall that the maximum eigenvalue of R−1
MERi is 1 by definition.

We fix the smallest eigenvalue of Ri, λmin(Ri) = 0.41, to ensure that Ri is well-conditioned.
We see that the maximum eigenvalue of Ri increases with p. Eigenvalues are more extreme
for R−1

diagRi than for any other preconditioned matrix. Including correlation information is
beneficial in terms of the extreme eigenvalues. As the parameter choice for RRR depends on
the smallest eigenvalue of Ri (which is fixed), the bounds for the minimum and maximum
eigenvalues of R−1

RRRi do not change with increasing p. The block approach clusters both
the minimum and the maximum eigenvalues of R−1

blockRi at either side of 1, whereas the
reconditioning approaches lead to a maximum eigenvalue of the preconditioned matrix which
is very close or equal to 1. For the approach used here, where T is set to the second smallest
eigenvalue of Ri, all eigenvalues bar the smallest of R−1

MERi are equal to 1.
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6.2. Aspects of numerical linear algebra implementation. In this section we briefly
discuss some of the numerical linear algebra aspects of our implementation to run the numerical
experiments in Section 7.

We take advantage of the specific matrix structures in (2.2) and store only the non-
zero blocks of the matrix, i.e., Ri ∈ Rp×p, B,Qi ∈ Rs×s, and Hi ∈ Rp×s. Each of
these (relatively) small matrices is stored as a sparse matrix. We also precompute and store
R̂i ∈ Rp×p prior to the iteration of the Krylov subspace method.

We compute the matrix-vector products Av and the preconditioner solves P−1
D v and

P−1
I v via the action of a matrix on a vector rather than building the full matrices. We now

describe this process briefly. Note first that

Av = A

v1

v2

v3

 :=

c1

c2

c3

 =

 Dv1 + Lv3

Rv2 + Hv3

L>v1 + H>v2

 .
We compute c1, c2, c3 separately by looping over the N + 1 blocks of D, R, and H. The
action of L and L> on a vector is applied via a function. We note that for each evaluation of
the matrix-vector product we require one evaluation each of L> and L.

To apply the inverse of the block diagonal preconditioner to a vector, we have that

P−1
D v =

D̂−1 0 0

0 R̂−1 0

0 0 Ŝ−1


v1

v2

v3

 =

 D̂−1v1

R̂−1v2

L̂−1DL̂−>v3

 .
We see that each application of P−1

D to a vector requires one evaluation each with D̂−1, R̂−1,
L̂−1, and L̂−>. To apply D̂−1 and R̂−1, we loop over the N + 1 blocks of the matrices, and
for L̂−1 and L̂−>, we loop over the k blocks of the relevant sub-matrices. Now,

P−1
I v =

 0 0 L̂−>

0 R̂−1 0

L̂−1 0 −Ŝ−1


v1

v2

v3

 =


c1︷ ︸︸ ︷

L̂−>v3

R̂−1v2

L̂−1(v1 −Dc1)

 .

By computing the first component of P−1
I v, c1, prior to the final component, we can apply the

inexact constraint preconditioner with the same dominant costs-per-iteration as an application
of the block diagonal preconditioner. This saves the cost of a second application of L̂−>. An
additional advantage of the inexact constraint preconditioner is that it does not require the
application of D̂−1 to a vector and hence may result in significant computational savings for
challenging choices of D.

We note that all of the experiments in Section 7 run the Krylov subspace methods to
convergence to a relative tolerance of 10−6. This is in contrast to most operational data
assimilation implementations, where a small number of fixed iterations are applied. Due to the
inclusion of the Lagrange multipliers in the residual of the saddle point formulation, we no
longer have monotonic decrease of the objective cost. Running our experiments to convergence
ensures a fair comparison between each preconditioner. We leave the investigation of the
non-monotonicity for each preconditioner to future work.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SADDLE POINT PRECONDITIONERS FOR WC4D-VAR 213

TABLE 7.1
Experiment A: (Top:) Bounds for the negative and positive eigenvalues from Theorem 3.1 for s = 500, N = 5,

k = 3 with parameters from Experiment A in Table 6.1; (Bottom:) Extreme negative and positive eigenvalues for this
problem computed using the eigs function in MATLAB.

L̂ R̂ λmin(P−1
D A) max(λ(P−1

D A) < 0) min(λ(P−1
D A) > 0) λmax(P−1

D A)

LM Rblock −15.3994 −0.1233 0.7886 16.4061
LM RRR −14.2002 −0.0574 0.2908 14.8536
LM R −13.8536 −0.1773 1.0000 14.8536
L0 R −12.2360 −0.0551 1.0000 13.2360
LM Rblock −3.5516 −0.1773 0.8295 4.5535
LM RRR −2.5351 −0.1773 0.3878 3.2438
LM R −3.6119 −0.1773 1.0000 4.6119
L0 R −2.0415 −0.0551 1.0000 3.0415

7. Numerical experiments. In this section we present numerical experiments for the two
problems described in Section 6. We use the MINRES implementation of [29] for the block
diagonal preconditioner, with a residual-based convergence criterion in the 2-norm. For the
inexact constraint preconditioner we use the GMRES implementation of [20] with no restarts
and a convergence criterion given by the relative residual in the 2-norm. We use a tolerance of
10−6 for both problems of interest. We note that all of our experiments converge within the
maximum number of iterations allowed (1000).

7.1. Lorenz 96 model. The main problem of interest concerns the Lorenz 96 model [26],
a non-linear problem that is often considered as a test problem for data assimilation applications
(see for example [8, 18] for use within the saddle point formulation for data assimilation). The
Lorenz 96 model consists of s coupled ordinary differential equations which are discrete in
space and continuous in time. For notation purposes, we set ∆x = 1

s . For i = 1, . . . , s,

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + 8,

where we have periodic boundary conditions (so x−1 = xs−1, x0 = xs, xs+1 = x1). The
choice of the forcing constant F = 8 induces chaotic behaviour and is typical for data
assimilation applications. We use the numerical implementation of [10], where the model is
integrated in time with a fourth-order Runge–Kutta scheme. For all experiments we consider
N = 15 subwindows. We consider ∆t = 10−4 for all the experiments, although similar
results were obtained for other values of ∆t and are not presented here.

As we are interested in assessing the performance of preconditioners within the linearised
inner loops, we consider a single outer loop of the weak-constraint formulation. The Lorenz
96 example can be considered as a study of how well the proposed preconditioners perform in
a realistic setting where the linearised model operators Mi differ in each subwindow. We note
that the setting of Proposition 1 holds, and hence using LM guarantees that L−>M L>LL−1

M

possesses a number of unit eigenvalues depending on the choice of k. However, we cannot
bound the maximum eigenvalue of L−>M L>LL−1

M using the theory of Section 4 since the
assumptions of Proposition 2 are not satisfied, as λmax(M>

15M15) > 1 for all choices of ∆x
that were studied.

Table 7.1 shows the values of the bounds from Theorem 3.1 (top four rows) and the
computed eigenvalues (bottom four rows) when using PD with LM (3) and a number of
choices for R̂ introduced in Section 5. We note that these experiments consider D = I,
as the condition number of D appears in all terms in the bound. In the more realistic case
where B,Qi 6= I, we expect the bounds given by Theorem 3.1 to be much weaker. We note
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FIG. 7.1. Experiment A: Number of iterations required for convergence of MINRES for different choices of R̂
within the block diagonal preconditioner PD (left) and GMRES with the inexact constraint preconditioner PI (right)
for the Lorenz 96 problem, with increasing k. The dimension of the problem is given by A ∈ R100,000×100,000.
The dashed line shows the results for k = 1, i.e., LM = I = L0. We note that k = 16 corresponds to LM ≡ L.
Legend entries correspond to different choices of R̂ as described in Section 5.

TABLE 7.2
Experiment A: Total number of matrix-vector products with component matrices for PD for increasing k for

Rdiag (left) and Rblock (right).

k Ri Di D̂−1
i Mi/M

>
i Ri R−1

block Di D̂−1
i Mi/M

>
i

1 22496 44992 22496 42180 10704 10704 21408 10704 20070
2 18368 36736 18368 34440 8240 8240 16480 8240 15450
3 16688 33376 16688 47978 7536 7536 15072 7536 21666
4 13168 26336 13168 41150 6624 6624 13248 6624 20700
7 11776 23552 11776 41216 6080 6080 12160 6080 21280

10 9520 19040 9520 34510 4816 4816 9632 4816 17458
16 3520 7040 3520 12760 1376 1376 2752 1376 4988

that even with this choice of D, the bounds provide pessimistic estimates of the eigenvalues.
However, the qualitative behaviour of the bounds is similar to that of the computed eigenvalues
for different choices of R̂ and LM . The eigenvalues of smallest absolute value are mainly
affected by the choice of LM (for the negative eigenvalue with smallest magnitude) or R̂ (for
the smallest positive eigenvalue). This is not true for the bounds in the case of the negative
eigenvalue with smallest magnitude. The computed eigenvalues of largest magnitude and
the corresponding bounds are affected by changes to both LM and R̂, but these changes are
rather small in all cases. As the largest magnitude computed eigenvalues are small for this
problem (all less than five), the improvements to the small magnitude eigenvalues with LM
and correlated choices of R̂ are likely to have the most significant influence on the convergence
of the iterative methods.

We now study the performance of the proposed choices of preconditioners for the Lorenz
96 problem (Experiment A in Table 6.1). The left panel of Figure 7.1 shows how the number
of iterations required for convergence changes with the choice of L̂ and R̂ within PD as k
increases. Including some model information in L̂ leads to a reduction in iterations compared
to k = 1 for all choices of R̂. For k < 5 including more model information leads to faster
convergence. However, for k ≥ 5 the change in iterations is non monotonic. Including
correlation information in R̂ results in large improvements to convergence. We note that
the lines corresponding to the correlated choices of R̂ (Rblock, RRR, and RME) lie almost
directly on top of the line for R. Indeed, if using Rdiag, we require k ≥ 8 to obtain fewer
iterations than using L0 with an improved choice of R̂. There is very little difference in
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TABLE 7.3
Experiment A: Total number of matrix-vector products with component matrices for PI for increasing k for

Rdiag (left) and Rblock (right).

k Ri Di Mi/M
>
i Ri R−1

block Di Mi/M
>
i

1 8624 17248 16170 3344 3344 6688 6270
2 7088 14176 13290 2704 2704 5408 5070
3 6304 12608 18124 2400 2400 4800 6900
4 6064 12128 18950 2336 2336 4672 7300
7 5264 10528 18424 2000 2000 4000 7000
10 5040 10080 18270 1904 1904 3808 6902
16 4384 8768 15892 1648 1648 3296 5974

performance between the correlated choices of R̂. For all choices of R̂, the smallest number
of iterations occurs when using k = N + 1, i.e., the exact choice of L. Table 7.2 shows
the number of matrix-vector products required to reach convergence for the block diagonal
preconditioner using Rdiag and Rblock. Results using RRR and RME are similar to those
with Rblock. The number of matrix-vector products with Di, D̂−1

i , and Mi is reduced when
using Rblock compared to Rdiag . For some choices of k, the total number of evaluations with
Ri and R−1

block is slightly larger than in the Rdiag case. Increasing k broadly decreases the
number of matrix-vector products with the error covariance matrices and their inverses. For
some choices of k > 1, more evaluations of Mi and M>

i are required than when using L0.
However, this increase is small compared to the decrease in the other components.

The right panel of Figure 7.1 shows how the number of iterations required for convergence
changes with the choice of L̂ and R̂ within PI as k increases. We see a clear benefit of
including model information in terms of a reduction in iterations. Increasing k leads to a
reduction in the number of iterations required for convergence when using LM for all choices
of R̂, unlike when using PD. The benefit of using an improved estimate of R̂ is even more
stark, with any choice of correlated R̂ and L0 leading to fewer iterations than Rdiag even
when using L̂ ≡ L. Again, the lines for the correlated choices of R̂ (Rblock, RRR, and RME)
lie almost directly on top of the line for R. Table 7.3 shows the total number of matrix-vector
products required to reach convergence for the inexact constraint preconditioner for Rdiag

and Rblock. Results using RRR and RME are similar to those with Rblock. In this case, using
Rblock leads to a large reduction in the number of matrix-vector products for all components.
Increasing k can lead to increases in the number of model matrix-vector evaluations but
generally leads to a decrease in the total number of matrix-vector products.

Table 7.4 shows the performance of the block diagonal preconditioner and the inexact
constraint preconditioner, respectively, for a higher-dimensional problem when using Rblock,
RRR, and R itself to approximate R within the preconditioner. Similarly to the smaller-
dimensional problem considered in Figure 7.1, using LM leads to improved convergence in
terms of iterations compared to L0. The different choices of R̂ lead to comparable iteration
numbers, and we recall that Rblock has additional sparsity structure. Increasing k leads to
a slight reduction in the number of iterations, but increases the computational cost of each
iteration. For this problem, choosing k = 3 or 4 allows decreased iteration counts compared to
L0, without too many more matrix-vector products with Mi. Iteration counts are much smaller
for the inexact constraint preconditioner than the block diagonal preconditioner. Overall,
using our new preconditioners LM and correlated choices of R̂ result in fewer iterations and
matrix-vector products compared to those obtained when using L0 or Rdiag for the Lorenz 96
problem.
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TABLE 7.4
Experiment A: Number of iterations required for convergence of MINRES with the block diagonal preconditioner

PD (left) and GMRES with PI (right) applied to the Lorenz 96 problem, using Rblock , RRR, R in combination
with L0, LM (k = 3, 4, 5). Here, A ∈ R1,600,000×1,600,000.

Rblock RRR R Rblock RRR R

L0 759 822 822 359 275 275
LM , k = 3 433 466 467 244 205 205
LM , k = 4 348 335 336 228 200 200
LM , k = 5 367 354 355 206 182 182

7.2. Heat equation with Dirichlet boundary conditions. The second problem of inter-
est that we consider here is the one-dimensional heat equation

(7.1)
∂u

∂t
= α

∂2u

∂x2

with homogeneous Dirichlet boundary conditions. We discretise (7.1) using the forward Euler
method in time and second-order centred differences in space. This means we can write the
model evolution in matrix form for a single time model step as ut+∆t = M∆tu

t, where M∆t

denotes the application of a single model time-step of length ∆t to the heat equation with
Dirichlet boundary conditions; this is given by

M∆t =



0 0 0 0 · · · 0
0 1− 2r r 0 · · · 0

0 r 1− 2r
. . .

...

0 0
. . . . . . r 0

...
... r 1− 2r 0

0 0 · · · 0 0 0


,

where r = α∆t
(∆x)2 . The case of non-homogeneous boundary conditions would follow similarly,

by applying a source term to the model evolution equation. For the numerical experiments
presented here we fix α = 1 and vary spatial and temporal resolutions together, setting the
ratio r = ∆t

(∆x)2 = 0.4 for all experiments.
One advantage of the heat equation test problem is the ability to consider how our

new preconditioners scale with the problem size. We now consider the best-performing
preconditioners for a high-dimensional example, namely the inexact constraint preconditioner
for Rblock,RRR, and R. Experiment B studies the behaviour of the inexact constraint
preconditioner for high-dimensional problems. In particular, for ∆x = 2×10−5, the dimension
of the full saddle point problem is 750, 000 × 750, 000 for s = 2p. In Figure 7.2 we only
consider the inexact constraint preconditioner and the three best choices of R̂. We find that
even for a high-dimensional problem the number of iterations is small, with only a modest
difference between the results for Rblock and R (as well as RRR). Similarly to the lower-
dimensional case, using LM requires fewer iterations than using L0. Figure 7.2 also considers
two observation networks. We see that using a larger number of observations requires a larger
number of iterations to reach convergence, which coincides with the findings of [8] for the
unpreconditioned case. However, the qualitative behaviour across the different choices of L̂
and R̂ is the same for both observation networks.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SADDLE POINT PRECONDITIONERS FOR WC4D-VAR 217

FIG. 7.2. Experiment B: Number of iterations required for convergence using L0 (left) and LM (right) for
different choices of R̂ within the inexact constraint preconditioner PI for the heat equation, for large choices of s.
Two observation ratios are shown: p = s

2
(dashed line) and p = s

4
(solid line). The dimension of the problem ranges

from A ∈ R150,000×150,000 (right) to A ∈ R750,000×750,000 (left) for p = s
2

, and A ∈ R135,000×135,000

(right) to A ∈ R675,000×675,000 (left) for p = s
4

. Legend entries correspond to different choices of R̂ as described
in Section 5.

8. Conclusions. We proposed new preconditioners for the saddle point formulation of
the weak-constraint 4D-Var data assimilation problem in the presence of correlated observation
errors. Our approach for approximating the model term L̂ incorporated model information for
the first time. We also proposed a range of approaches that permit inclusion of computationally
efficient correlation information within the observation error covariance term R̂. In summary:

• We developed new bounds for the eigenvalues of the preconditioned saddle point
system in the case of a block diagonal preconditioner.

• We investigated how the constituent terms within the bounds behave for existing and
proposed choices of L̂ and R̂. Including model information via LM yields many
repeated unit eigenvalues of L−>M L>LL−1

M . Our new approaches yield eigenvalues
of this matrix that are frequently bounded above by moderate numbers.

• We considered two numerical examples: the Lorenz 96 problem and the heat equation.
Including model information via LM reduced the iterations for both problems.

The use of preconditioners that account for correlated observation information led to a
significant reduction in the iterations for all experiments. For many problems where R is very
ill-conditioned, we would expect the improvements in performance to be even higher than
in the experiments presented here. We find that including additional model information in
LM leads to reduced iterations but increases the computational expense of each iteration. We
therefore suggest that selecting k = 3 or k = 4 represents a sensible trade-off. Future work for
this problem includes developing efficient approximations of D, multi-core implementations
of our new preconditioners, and experiments within a full-scale operational NWP system.

Acknowledgements. We thank Adam El-Said for his code for the Lorenz 96 weak-
constraint 4D-Var assimilation problem. We gratefully acknowledge funding from the En-
gineering and Physical Sciences Research Council (EPSRC) grant EP/S027785/1 and the
London Mathematical Society Research in Pairs scheme.

Appendix A. Block preconditioner for R̂.
In Algorithm 3, we state the algorithm used to apply the block preconditioner Rblock for

R as described in Section 5.1.
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Algorithm 3: Block preconditioner for R̂.
Inputs: Ri, pvec = vector of block sizes, tol = tolerance for retaining blocks,
maxsize = maximum size permitted on a single processor, numproc = number
of available processors.

Compute p = sum(pvec), pn = |pvec|.
Define pst = starting index for each new block.
Initialise Rblock = Ri.
for j = 1:pn-1

Compute scaled Frobenius norm of super-diagonal blocks via
normvec(j) = 1/sqrt(pvec(j)*pvec(j+1))*
norm(R(pst(j):pst(j+1)-1,pst(j+1):pst(j+2)-1),‘fro’).

end
Retain blocks where normvec(j) >= tol:
for j = 1:pn-1

if normvec(j) < tol
Set Rblock(pst(j+1):p,1:pst(j+1)-1) = 0.
Set Rblock(1:pst(j+1)-1,pst(j+1):p) = 0.

end
end
if size of largest block > maxsize

Split largest block into two components.
end
if number of distinct blocks > numproc

Combine two smallest adjacent blocks in Rblock.
elseif number of distinct blocks < numproc− 2

Split largest block of Rblock into two components.
end
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