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EXPERIENCES WITH NEGATIVE NORM LEAST–SQUARE METHODS FOR
THE NAVIER–STOKES EQUATIONS ∗

P. BOCHEV†

Abstract. This paper is concerned with the implementation and numerical study of a discrete negative norm
least-squares method for the Navier-Stokes equations proposed in [2] and [3]. The main focus of the paper is on the
algorithmic development and computational analysis of this method, including design of efficient preconditioners,
numerical estimates of convergence rates, etc. Our experiments indicate that the negative norm method yields results
that are in agreement with the theoretical error estimates of [3] and compare favorably with the benchmark studies
of [11].
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1. Introduction. In this paper we examine algorithmic and computational issues re-
lated to a negative norm least-squares method for the numerical solution of the stationary,
incompressible Navier-Stokes equations. In the recent years methods of least-squares type
for fluid flow problems have been receiving increasing attention; see e.g., [1]-[9], [15], [16],
[17], and [18] among others. This interest is largely caused by the attractive analytic and
computational features of least-squares methods that are not present in other discretization
schemes, such as mixed Galerkin methods. Most of these features stem from the fact that
weak variational problems in least-squares methods represent necessary minimum conditions
for problem-dependent functionals which are defined by summing up residual norms of the
differential equations. The guiding principle in the choice of the norms is to obtainnorm-
equivalentfunctionals. Then, corresponding weak problems are in general coercive and their
discretization leads to symmetric and positive definite algebraic systems. Specifically, in the
context of the Navier-Stokes equations application of least-squares variational principles of-
fers the following advantages:

• methods are not subject to the inf-sup (LBB) stability condition; see [12] and [14];
• used in conjunction with Newton linearization least-squares lead to symmetric, pos-

itive definite linear systems, at least in a neighborhood of the solution;
• essential boundary conditions can be enforced in a weak, variational sense.

As a result,
• a single approximating space can be used for both the velocity and the pressure

leading to simplified and more efficient algorithmic design;
• solution of the linearized problems can be accomplished by robust and efficient iter-

ative methods without assembling the discretization matrix;
• approximating spaces are not subject to the essential boundary conditions.

However, without a thorough examination of the settings for the least-squares method many
of these advantages may be lost or utilized incompletely. For example, a least-squares method
based on the primitive variable Navier-Stokes equations may require conforming discretiza-
tions by continuously differentiable finite element spaces, i.e., it will be impractical. Further-
more, if the least-squares functional is not norm-equivalent then resulting methods may fail
to be optimally accurate.
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In this paper we consider a method, developed and analyzed in [2]-[3], that combines
decomposition of the Navier-Stokes equations into a first-order system with the use of nega-
tive Sobolev space norms in the least-squares functional. The first feature allows us to define
a method that can be implemented using standard finite element spaces. Indeed, most of the
recent research in least-squares methods has focused on settings that involve such decom-
positions; see, e.g., [1], [2], [3], [4], [16], and [17]. The second feature leads to a norm
equivalent functional that is meaningful for less regular solutions than anL2-functional as-
sociated with the same system. The use of negative norms to measure equation residuals has
been, perhaps, first considered by Glowinski et al. in [13]. However, the method of [13] casts
the Navier-Stokes problem into the framework of an optimal control problem, whereas here
we consider a bona-fide least-squares minimization principle. In that context the first use of
negative norms is due to Bramble et al. [7].

In the next section we introduce the relevant notation. Then in§2 we state the first-order
velocity-fluxNavier-Stokes system that will be used to define the least-squares method. The
method and a necessarily brief account of the theoretical results established in [2]-[3] are
presented in§3. The core of the paper is contained in§§4-5. Section 4 discusses implementa-
tion of the negative norm method, while in§5 we present computational study of this method
and compare it with two otherL2 least-squares methods for the velocity-flux Navier-Stokes
equations.

1.1. Notation. In what followsΩ will denote an open, bounded region inRI 2 having a
Lipschitz continuous boundary. Throughout the paper vectors will be denoted by bold face
letters, e.g.,u and tensors by underlined bold face capitals, e.g.,U. In what follows∇
will denote the gradient operator and∇t the divergence operator. For tensor variables∇tU
will denote a vector whose components are the divergencies of the corresponding columns in
U. With C we denote a positive constant whose meaning and value changes with context.
We recall the standard Sobolev spacesHs(Ω) with corresponding inner products denoted
by (·, ·)s,Ω and norms by‖·‖s,Ω. Sobolev spaces for vectors and tensors will be denoted by
Hs(Ω) andH̃

s
(Ω), respectively. Often we will use the spaceH1

0 (Ω) consisting of allH1(Ω)
functions that vanish on the boundary and the spaceL2

0(Ω) consisting of all square integrable
functions with zero mean with respect toΩ. The dual ofH1

0 (Ω) will be denoted byH−1(Ω).
For this space we introduce the following norm

|φ|−1 = sup
ψ∈H1

0 (Ω)

(φ, ψ)
|ψ|1

,(1.1)

where

|ψ|1 = ‖∇ψ‖0
is the usual seminorm onH1(Ω).

We letTh denote a regular triangulation of the domainΩ into finite elements. The pa-
rameterh is associated with the size of the finite elements, which can be either triangles or
rectangles. For finite element spaces defined on triangles we use the standard notationPk,
i.e.,Pk is the space of all continuous, overΩ, piecewise polynomial functionsuh such that
in each triangleuh is a polynomial of degreek. Similarly,Qk will be used to denote finite
element spaces defined with respect to a triangulation ofΩ into rectangles. In that case, on
each rectangleuh is a polynomial function whose degree in each coordinate direction does
not exceedk.

We recall that the spacesPk andQk have the following property, see, e.g., [10], for
k ≥ 1, given a functionu ∈ Hk+1(Ω), there exists an elementwh in Pk (orQk) such that

‖u− wh‖r ≤ Chk+1−r‖u‖k+1, r = 0, 1 ,(1.2)
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where the constantC is independent ofh.

2. The first-order system. We consider the steady state incompressible Navier-Stokes
equations given by

−ν4u + (∇ut)tu +∇p = f in Ω(2.1)

∇tu = 0 in Ω,(2.2)

along with the velocity boundary condition

u = 0 onΓ .(2.3)

In (2.1)-(2.2)u, p andf denote velocity, pressure and given body force, respectively, andν
is the inverse of the Reynolds number. The system (2.1)-(2.2) is customarily considered with
the zero-mean pressure constraint given by∫

Ω

pdΩ = 0.(2.4)

To effect the first-order transformation of (2.1)-(2.2) we introduce the velocity flux variable

U = ∇ut ,(2.5)

which is a tensor with entriesUij = ∂uj/∂xi, 1 ≤ i, j ≤ n. Then,

(∇tU)t =4u

and

(∇ut)tu = Ut u .

As a result, the Navier-Stokes equations (2.1)-(2.2) can be replaced by the first-order system

−(∇tU)t + λUtu +∇p = f in Ω(2.6)

∇tu = 0 in Ω(2.7)

U−∇ut = 0 in Ω,(2.8)

along with (2.3) and (2.4). In the new system, momentum equation (2.6) is weighted by
λ = 1/ν which is convenient for the analysis; see [3]. For simplicity, rescaled pressure and
body force are denoted again by the same symbols. In view of (2.5) and (2.2) the system
(2.6)-(2.8) can be augmented by two additional equations and a boundary condition, given by

∇(trU) = 0 in Ω,(2.9)

∇×U = 0 in Ω,(2.10)

and

n×U = 0 onΓ ,(2.11)

respectively.



ETNA
Kent State University 
etna@mcs.kent.edu

P. Bochev 47

3. Negative norm least-squares methods.In this section we outline the least-squares
method developed in [2]-[3] and state the error estimates established in [3]. We recall that
the choice of least-squares functionals is guided by two main objectives. First, the resulting
method should be practical in the sense that it can be implemented using standard finite
element spaces such asPk andQk. Second, the method should be optimal in the sense that
approximations converge at the rate of the best approximation out of the finite element space,
provided the exact solution is smooth enough.

The first objective can be easily met by using first-order systems to define least-squares
functionals. Indeed, since equations (2.6)-(2.8) involve only first-order derivatives, the func-
tional

J(U,u, p) = ‖ − (∇tU)t + λUtu− f +∇p‖20
+ ‖∇tu‖20 + ‖U−∇ut‖20 ,(3.1)

defined by summing up theL2-norms of equation residuals leads to a practical method. How-
ever, the second objective requires the least-squares functional to be norm equivalent. To
define such a functional one first has to determine function spaces for the data and the solu-
tion U = (U,u, p) in which the Stokes problem, associated with (2.6)-(2.8) is well-posed.
Then, each equation residual in (2.6)-(2.8) has to be measured in the corresponding data space
norm. This guarantees that the functional with zero data and a linearized convective term will
be equivalent to a norm on the solution space, provided that the Navier-Stokes equations have
a nonsingular solution; see [2]. In particular, we have that (see [9]) the first-order Stokes
problem is well-posed in the spaces

X = L̃
2
(Ω)× H1

0(Ω)× L2
0(Ω)(3.2)

and

Y = H−1(Ω)× L2(Ω)× L̃
2
(Ω) ,(3.3)

for the solution and the data, respectively, and that the a priori estimate relevant to the least-
squares method is given by

‖U‖0 + ‖u‖1 + ‖p‖0 ≤ C
(
| − (∇tU)t +∇p|−1 + ‖∇tu‖0 + ‖U−∇ut‖0

)
.(3.4)

As a result, a norm equivalent functional for (2.6)-(2.8) is given by

J(U,u, p) = | − (∇tU)t +∇p+ λUtu− f |2−1

+‖∇tu‖20 + ‖U−∇ut‖20 .(3.5)

Estimate (3.4) also indicates that functional (3.1) is not coercive in the norm in which it is
continuous, i.e., it is not equivalent to a norm on a product ofH1 spaces. In [9] it has been
shown that anL2-functional that isH1-norm equivalent can be defined using the augmented
velocity flux system (2.6)-(2.8), and (2.9)-(2.11):

J(U,u, p) = ‖ − (∇tU)t + λUtu− f +∇p‖20
+ ‖∇tu‖20 + ‖U−∇ut‖20 + ‖∇(trU)‖20 + ‖∇ ×U‖20 .(3.6)

Analysis of finite element methods based on (3.6) can be found in [2]. Although the focus of
this paper is on a different type of least-squares functionals we shall use (3.1) and (3.6) in§5
to compare and contrast performance of various least-squares methods.

A necessary condition for minimization of (3.5) over the spaceX is given by the follow-
ing nonlinear variational problem:
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seek(U,u, p) ∈ X such that

B((U,u, p), (V,v, p))
≡
(
−(∇tU)t +∇p+ λUtu− f ,−(∇tV)t + λ

(
Utv + Vtu

)
+∇q

)
−1

+
(
∇tu,∇tv

)
0

+
(
U−∇ut,V −∇vt

)
0

= 0(3.7)

for all (V,v, q) ∈ X.

Formally, one can define a least-squares method based on (3.5) by choosing a finite element
subspaceXh of X and restricting the variational problem (3.7) toXh; see [2]. Such a method
is, however, only of theoretical interest. Indeed, because the negative norm is not computable,
forming the algebraic problem that corresponds to a discretization of (3.7) over the spaceXh

is not feasible. In the next section we introduce a discrete negative norm counterpart of (3.5)
which results in a practical least-squares method.

3.1. The discrete negative norm method.To define the discrete negative norm we
follow an approach similar to the one suggested by Bramble et al. in [7]. Consider the
Dirichlet problem

−4u = f in Ω, u = 0 onΓ .(3.8)

LetXh ⊂ H1(Ω) denote a finite element space and letSh denote a finite element solution
operator for (3.8), i.e.,

Shf = uh ∈ Xh ∩H1
0 (Ω) for f ∈ H−1(Ω) if and only if uh solves the

problem:seekuh ∈ Xh ∩H1
0 (Ω) such that∫

Ω

∇uh · ∇vhdx =
∫

Ω

fvhdx, ∀vh ∈ Xh ∩H1
0 (Ω) .(3.9)

It can be shown (see [7]) that

(Shf, f) = sup
φh∈Xh∩H1

0 (Ω)

(f, φh)2

|φh|21
.(3.10)

Since the right hand side in (3.10) is restriction of (1.1) toXh, it follows that

|f |2−1,h = (Shf, f), ∀f ∈ H−1(Ω) .(3.11)

defines a computable semi-norm onH−1(Ω), associated with a semi-definite inner product
given by (f, g)−1,h = (Shf, g)0 = (f, Shg)0. However, the cost of computingSh may
still be prohibitive. Thus, following [7],Sh is further replaced by a symmetric and positive
semidefinite operatorBh, defined onL2. This operator is assumed to be spectrally equivalent
to Sh in the sense that

C0(Shφ, φ)0 ≤ (Bhφ, φ)0 ≤ C1(Shφ, φ)0 .(3.12)

The main consideration in the choice ofBh is computational cost. The cost of computing
Bhφ must be significantly lower than the cost of computingShφ. OnceBh is chosen it is
easy to see that

|f |2−h = (Bhf, f)(3.13)
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defines a computablesemi-norm, equivalent to (3.11). Then, a computable discrete negative
normcan be defined (see [7]) by adding to (3.13) anL2-term weighted byh2:

‖φ‖2−h = (S̃hφ, φ)0 , where S̃h = αh2I +Bh .(3.14)

The inner product associated with (3.14) is given by

(φ, ξ)−h = (S̃hφ, ξ)0 .(3.15)

Norm (3.14) is equivalent to (1.1) in the sense that

1
C
|u|−1 ≤ ‖u‖−h ≤ C (h‖u‖0 + |u|−1)(3.16)

for all u ∈ L2(Ω). Without the termh2I, the lower bound in (3.16) does not hold, i.e., this
equivalence relation is not valid for thesemi-norm(3.13). The additional weightα can be
used to tune up the performance of the method and its choice will be discussed later.

Using (3.14) we introduce the following counterpart of (3.5):

J−h(Uh,uh, ph) =

‖ − (∇tUh)t +∇ph + λUt
huh − f‖2−h + ‖∇tuh‖20 + ‖Uh −∇uth‖20 .

(3.17)

We note that residuals of equations (2.9) and (2.10) can be added to (3.17) yielding anaug-
mentednegative norm functional given by

J−h(Uh,uh, ph) =

‖ − (∇tUh)t +∇ph + λUt
huh − f‖2−h + ‖∇tuh‖20 + ‖Uh −∇uth‖20

+‖∇(trU)‖20 + ‖∇×U‖20 .
(3.18)

This functional has not been analyzed in [3] and will not be discussed here.
Let Xh denote a finite element subspace ofX, whereX is given by (3.2). Then the

least-squares principle for (3.17) is:
seekUh = (Uh,uh, ph) ∈ Xh such that

J−h(Uh,uh, ph) ≤ J−h(Vh,vh, qh) ∀Vh = (Vh,vh, qh) ∈ Xh .(3.19)

It is not difficult to see that the Euler-Lagrange equation for the principle (3.19) constitutes a
variational problem of the form

seekUh = (Uh,uh, ph) ∈ Xh such that

B−h(Uh,Vh) = 0 ∀Vh ∈ Xh ,(3.20)

where

B−h(Uh,Vh) =(
−(∇tUh)t +∇ph + λUt

huh − f ,−(∇tVh)t +∇qh + λ
(
Ut
hvh + Vt

huh
))
−h

+(∇tuh,∇tvh)0 + (Uh −∇uth,Vh −∇vth)0 .

Properties of approximations defined by (3.20) are summarized in the following theorem,
proof of which can be found in [3].
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THEOREM 3.1. Assume that{(λ, (U(λ),u(λ), p(λ))) |λ ∈ Λ} is a regular branch of
solutions of the Navier-Stokes equations, such that

Λ 3 λ 7→ U(λ) = (U(λ),u(λ), p(λ))

is a continuous map fromΛ to W = H̃
1
(Ω)× [H2(Ω)∩H1

0(Ω)]× [H1(Ω)∩L2
0(Ω)]. Assume

also that for anyU ∈W, there existsUh ∈ Xh such that

‖U − Uh‖X ≤ Ch‖U‖W .

Then, there existα > 0, h1 > 0 and Ũh(λ) = (Ũh(λ), ũh(λ), p̃h(λ)) ∈ C0(Λ,Xh) such
that, for all h ≤ h1, {(λ, Ũh(λ)), λ ∈ Λ} is a regular branch of solutions of (3.20) that is
unique in the ball

Sα = {Vh ∈ Xh | ‖U(λ)− Vh‖X ≤ α}, ∀λ ∈ Λ .

Furthermore,

‖Ũh(λ)−U(λ)‖0 + ‖ũh(λ) − u(λ)‖1 + ‖p̃h(λ) − p(λ)‖0
≤ Ch

(
‖U(λ)‖1 + ‖u(λ)‖2 + ‖p(λ)‖1

)
.

(3.21)

4. Implementation. There are several issues that must be addressed in the algorithmic
development of the negative norm least-squares method described in§3.1. First, one must
choose a finite element spaceXh for the discretization of (3.20). Second, onceXh is chosen,
(3.20) yields a nonlinear algebraic system that must be solved in an iterative manner. Third,
the use of norm (3.14) requires evaluation of the operatorBh. Lastly, the use of this norm
also has impact on the design of solvers for the nonlinear algebraic system. In what follows
we discuss these implementation issues starting with the choice of the discretization space
Xh.

Because the least-squares method is not subject to stability conditions, such as the inf-
sup condition, the choice ofXh is only guided by the desired approximation properties. In
particular, here we employ the bilinear spaceQ1 for the approximation of all variables, i.e.,

Xh = [Q1]n
2 × [Q1 ∩H1

0 (Ω)]n × [Q1 ∩ L2
0(Ω)],

wheren denotes the space dimension. We will use{φih}Ni=1 to denote a nodal basis of the
finite element spaceQ1, and{Vih}Mi=1 to denote a nodal basis for the spaceXh. Although
components of eachVih can be expressed in terms of the nodal basis forQ1, we use the no-
tationVih = (Vi

h,v
i
h, q

i
h) to distinguish the basis components for the different variables. For

simplicity we agree to denote a finite element functionuh ∈ Q1 and the set of nodal values
of this function with the same symbol. Thus, depending on the context,Uh = (Uh,uh, ph)
will be identified either with a finite element function inXh, or with a block vector whose
blocks are the coefficients of the individual functions inUh. We also recall the inequality

h2 1
C
‖uh‖2l2 ≤

∫
Ω

[uh(x)]2dΩ ≤ h2C‖uh‖2l2 ,(4.1)

where‖ · ‖l2 denotes the Euclidean norm inRI n, that is valid for alluh ∈ Q1.
For the solution of the nonlinear system (3.20) we consider Newton’s method. To define

Newton’s method, let us formally write this problem as

F−h(λ,Uh) = 0 .(4.2)
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Let U0
h = (U0

h,u
0
h, p

0
h) denote an initial guess for Newton’s method. Then, the sequence of

Newton iteratesUkh = (Uk
h,u

k
h, p

k
h), k ≥ 1, is generated recursively by solving the linear

systems

DUF−h(λ,Uk−1
h )∆Ukh = −F−h(λ,Ukh ) ,(4.3)

and updatingUk−1
h by ∆Ukh :

Ukh = Uk−1
h + ∆Ukh .

If the hypotheses of Theorem 3.1 hold, then it is not difficult to see that Newton’s method
will have a nontrivial attraction ball, i.e., one can guarantee that the linear system (4.3) has
a unique solution. Indeed, let us assume that{(λ, (U(λ),u(λ), p(λ))) |λ ∈ Λ} is a regular
branch of solutions to (2.6)-(2.8), (2.3) that is being approximated by solving (3.20). Then,
according to Theorem 3.1 the former problem will have a regular branch of discrete solutions
{(λ, (Ũh(λ), ũh(λ), p̃h(λ))) |λ ∈ Λ} that is unique in the ballSα. It follows then, that the
Jacobian matrixDUF−h(λ, ·) is nonsingular in a nontrivial neighborhood ofŨh(λ). As a re-
sult, the attraction ball of Newton’s method is nontrivial and the matrixDUF−h(λ,Uk−1

h ) is
guaranteed to be nonsingular, provided thatUk−1

h is close enough tõUh(λ). Moreover, since
DUF−h(λ, ·) is exactly the Hessian of (3.5), it follows that the matrixDUF−h(λ,Uk−1

h ) is
necessarily symmetric and positive definite in a neighborhood ofŨh(λ). Owing to the use of
negative inner products this matrix is also dense. As a result, assembly ofDUF−h(λ,Uk−1

h )
is not feasible in practice, i.e., the system (4.3) must be solved by an assembly-free method.
Consequently, symmetry and positive definiteness ofDUF−h(λ,Uk−1

h ) are essential for prac-
tical implementation of the negative norm method since they allow one to solve (4.3) by robust
iterative methods. In particular, for the solution of (4.3) here we consider a preconditioned
conjugate gradient method implemented without assembly ofDUF−h(λ,Uk−1

h ), even at the
element level. The two critical steps at each iteration of this method are computation of the
matrix-vector product ofDUF−h(λ,Uk−1

h ) and the conjugate direction vector, and compu-
tation of the action of the preconditioner. We discuss first evaluation of the matrix-vector
product; the choice of the preconditioner and its application are considered later. To this end
let Uh andVh denote arbitrary functions inXh (resp. their coefficient vectors). Then

(Vh)t ·DUF−h(λ,Uk−1
h ) · Uh = DB−h[Uk−1

h ](Uh,Vh),(4.4)

where the bilinear formDB−h[Uk−1
h ](Uh,Vh) is given by

DB−h[Uk−1
h ](Uh,Vh)

=
(
−(∇tUk−1

h )t +∇pk−1
h + λ(Uk−1

h )tuk−1
h − f ,

λ
(
Ut
hvh + (Vh)tuh

))
−h

+
(
−(∇tUh)t +∇ph + λ

(
(Uk−1

h )tuh + Ut
hu

k−1
h

)
,

−(∇tVh)t +∇qh + λ
(

(Uk−1
h )tvh + (Vh)tuk−1

h

))
−h

+(∇tuh,∇tvh)0 + (Uh −∇uth,Vh −∇(vh)t)0.

(4.5)

As a result, components of the matrix-vector productDUF−h(λ,Uk−1
h ) ·Uh can be computed

according to the formula

[DUF−h(λ,Uk−1
h ) · Uh]i = DB−h[Uk−1

h ](Uh,Vih), i = 1, . . . ,M.
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In order to evaluate (4.5) it is necessary to compute several discrete negative inner products
(·, ·)−h. These inner products are computed according to (3.15), i.e., this process involves
application of the operatorBh. Recall thatBh must be spectrally equivalent toSh. This can
be accomplished by choosingBh to be a preconditioner forSh; see [7]. Although in most
casesBh can be identified with a suitable symmetric matrix, here we prefer to considerBh

as a black-box type algorithm for the Poisson equation. For example,Bh can be defined in
terms of several multigrid V-cycles for (3.9), see [7], or more generally, by any approximation
scheme for this problem. With these assumptions evaluation of, e.g., the first term in (4.5)
can be accomplished as follows. First, using (3.15), we have that(

−(∇tUk−1
h )t +∇pk−1

h + λ(Uk−1
h )tuk−1

h − f , λ
(
Ut
hv

i
h + (Vi

h)tuh
))
−h

=
(

(αh2I +Bh)
(
−(∇tUk−1

h )t +∇pk−1
h + λ(Uk−1

h )tuk−1
h − f

)
,

λ
(
Ut
hv

i
h + (Vi

h)tuh
))

0

= αh2
(
−(∇tUk−1

h )t +∇pk−1
h + λ(Uk−1

h )tuk−1
h − f , λ

(
Ut
hv

i
h + (Vi

h)tuh
))

0

+
(
Bhg, λ

(
Ut
hv

i
h + (Vi

h)tuh
))

0
,

where

g = −(∇tUk−1
h )t +∇pk−1

h + λ(Uk−1
h )tuk−1

h − f .

All terms involvingαh2 are essentially weightedL2-inner products which can be computed
in a standard manner. To compute the remaining termsBh must be applied tog. For this
purpose we considerg as a source term for (3.9) and form the vectors

(g1, φ
i
h)0 and (g2, φ

i
h)0, i = 1, . . . , N .

where{φih}Ni=1 is a nodal basis forQ1 ∩ H1
0 (Ω). These vectors are the data for the black-

box evaluator ofBh which returns the nodal coefficients of a finite element functiongh
representingBhg. Thus,(

Bhg, λ
(
Ut
hv

i
h + (Vi

h)tuh
))

0
=
(
gh, λ

(
Ut
hv

i
h + (Vi

h)tuh
))

0
.

The right-hand side above is anL2 inner product which can now be computed in a standard
manner. Evaluation of all other terms involvingBh is identical.

Let us now discuss the choice of a preconditioner for the conjugate gradient method.
Here we follow an approach suggested in [7]. Recall that, as a consequence of Theorem
3.1, the formDB−h[Uk−1

h ](·, ·) is coercive and continuous onXh, provided thatUk−1
h is

sufficiently close to a nonsingular solution of the Navier-Stokes equations. As a result,

1
C

(
‖Vh‖20 + ‖vh‖21 + ‖ph‖20

)
≤ DB−h[Uk−1

h ](Vh,Vh)

≤ C
(
‖Vh‖20 + ‖vh‖21 + ‖ph‖20

)(4.6)

for all Vh ∈ Xh. LetG andD denote matrices with entries given byGij = (φih, φ
j
h)0 and

Dij = (∇φih,∇φ
j
h)0, respectively. We introduce a block diagonal matrixGn2 with n2 blocks

given byG, and a block diagonal matrixDn with n blocks given byD. Consider then the
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block matrix

A =

 Gn2 0 0
0 Dn 0
0 0 G

 .

From (4.4) it follows that

(Vh)t ·DUF−h(λ,Uk−1
h ) · Vh = DB−h[Uk−1

h ](Vh,Vh) .

Combined with (4.6) this identity yields the bounds

1
C

(Vh)t ·A · Vh ≤ (Vh)t ·DUF−h(λ,Uk−1
h ) · Vh ≤ C(Vh)t · A · Vh ,

i.e., the matrixA is spectrally equivalent toDUF−h(λ,Uk−1
h ). To define the preconditioner

for the conjugate gradient method note that (4.1) implies spectral equivalence ofG and the
matrixh2I. Definitions ofD andBh also imply thatD̃ = Bh

−1
is spectrally equivalent to

D. As a result, the matrix

Ã =

 h2In2 0 0
0 D̃n 0
0 0 h2I

 .(4.7)

is spectrally equivalent toDUF−h(λ,Uk−1
h ), and can be used to precondition the conjugate

gradient method. To apply this preconditioner we need again the black-box algorithm forBh.
Indeed, given a vectorVh = (Vh,vh, qh), application ofÃ to Vh involves solution of (3.9)
with the velocity componentvh serving as a source term. Thus, we first form the data vectors

g1 = (v1
h, φ

i
h)0 and g2 = (v1

h, φ
i
h)0, i = 1, . . . , N

and then apply the algorithm forBh.

5. Numerical results. In this section we report numerical experiments with the negative
norm least-squares method implemented as outlined in§4. For all experiments we takeΩ to
be the unit square. We consider two examples of planar flows. The first example is an artifi-
cial planar flow, that is we begin with a known smooth velocity and pressure fields and then
compute the data by evaluating the first-order system (2.6)-(2.8) at these fields. Results for
this example are presented in§5.1. The second example involves the fictitious lid driven cav-
ity (or driven cavity) flow. This flow is a popular test example which is well-documented in
many benchmark studies; see, e.g., [11], [15]-[18]. Results for this example are given in§5.2.
Lastly, in §5.3 the negative norm method is compared with two other least-squares methods
for the velocity-flux equations based on theL2-functionals (3.1) and (3.6), respectively.

5.1. Numerical results: smooth solution.For all examples in this section we consider
an exact solution given by

u =
(
exp(x) cos(y) + sin(y),− exp(x) sin(x) + (1− x3)

)t
,

U = ∇ut,

p = sin(y) cos(x) + xy2 − 1
6
− sin(1)(1− cos(1)) .

(5.1)
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TABLE 5.1
Convergence rates of the negative norm method forα = 0.2 and varying tolerances in the computation ofBh

∆−1 tolerance 10−1 10−2 10−3 10−4 10−5 BA
Variable L2-error rate

u -0.614 0.370 1.861 1.869 1.869 -
U -0.717 -0.052 1.535 1.586 1.587 1.000
p -1.261 -0.066 1.559 1.580 1.584 1.000

Variable H1-error rate

u -0.632 0.791 1.014 1.016 1.016 1.000
U -1.110 -0.349 0.652 0.665 0.666 -
p -1.439 -0.622 0.677 0.707 0.708 -

TABLE 5.2
Convergence rates of the negative norm method with a fixed tolerance forBh and varyingα

Error L2-error rate H1-error rate

α 0 0.2 1 BA 0 0.2 1 BA

u 1.850 1.869 1.873 - 1.018 1.016 1.015 1.000
U 1.559 1.587 1.605 1.000 0.585 0.666 0.701 -
p 1.219 1.584 1.584 1.000 0.134 0.708 0.686 -

Since this exact solution is a fictitious flow which does not depend onRe, all computa-
tions are carried withRe = 1. Owing to the use ofQ1 elements in the implementation, the
expected asymptotic rate of convergence for the negative norm method isO(h), i.e., forh
small enough we expect that

‖U−Uh‖0 + ‖u− uh‖1 + ‖p− ph‖0 ≤ Ch .(5.2)

Note that in (5.2) theO(h) convergence rate for the velocity approximation is asserted in the
norm ofH1(Ω), whereas for the velocity flux and the pressure variables this rate is asserted
in the norm ofL2(Ω). As a result, (5.2) is optimal when the velocity flux and the pressure are
approximated by finite element spaces of one degree less than the spaces used for the velocity
approximation. Here, we have chosenQ1 elements for all variables solely for simplicity of
the implementation.

Our first goal is to investigate how the choice ofBh andα in (3.14) affects validity of
(5.2). Theoretically, this estimate should hold as long as the operatorBh remains spectrally
equivalent toSh (condition (3.12)), andα is positive (otherwise (3.14) reduces to the semi-
norm (3.13)). To asses the importance of (3.12) we fixα = 0.2 and compute numerical
rates of convergence for varying operatorsBh. (This choice ofα will become evident be-
low.) For this purpose,Bh is evaluated using an iterative Poisson solver defined on the space
Q1 ∩ H1

0 (Ω). The different choices forBh are obtained by varying the relative tolerance
for this solver. A large tolerance corresponds to an operatorBh that does not satisfy (3.12)
well, whereas tighter tolerances yield operatorsBh that are spectrally equivalent toSh. Next,
we consider how (5.2) is affected by the choice ofα. For this purpose the tolerance of the
Poisson solver forBh is fixed equal to10−5, and computations are carried withα = 0 and
α = 1. For all cases, convergence rates are estimated by computing approximate solutions
on uniform grids with 17x17 and 33x33 grid lines respectively. Corresponding results are
summarized in Tables 5.1-5.2. These tables contain results for both the rates asserted by es-
timate (5.2), as well as for rates that are not included in this estimate. The former are given
in bold face symbols, with the column BA containing the expected rates (5.2). From the data
in Table 5.1 we can conclude that the spectral equivalence condition (3.12) is critical for the
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FIG. 5.1.Dependence of preconditioned conjugate gradient iterations onα

performance of the negative norm method. The first two columns in this table demonstrate a
complete loss of convergence whenBh fails to satisfy (3.12), whereas the last three columns
show that onceBh becomes spectrally equivalent toSh, then approximations converge ac-
cording to (5.2). We note that the individualL2-rates forU andp are better thanO(h) which,
most likely, is caused by the use of equal order approximation spaces for all variables. Ta-
ble 5.2, on the other hand, suggests that the choice ofα is less important for the validity of
asymptotic convergence rates in (5.2). Whenα = 0, the only significant drop occurs in the
asymptotic rate for theH1-norm error of the pressure. However, this error is not included in
(5.2) and, as a result, the total error‖U−Uh‖0 + ‖u− uh‖1 + ‖p− ph‖0 still converges at
a rate ofO(h).

Next we consider the importance ofBh andα for the overall performance of the pre-
conditioned conjugate gradient method used to solve the discrete equations. Sinceα appears
in the definition of the negative norm (3.14) its choice affects the properties of the algebraic
system corresponding to the discrete variational problem.Bh, on the other hand, appears
in both the negative norm (3.14) and the preconditioner (4.7). However, here we are only
interested in the effect ofBh upon the preconditioner. Thus, in what follows we assume that
Bh in (3.14) is fixed and useBhp to denote the operator employed in (4.7).

To determine the importance ofα for the conjugate gradient method we fix the tolerances
for Bh andBhp equal to10−5. Then we compare the number of preconditioned conjugate
gradient iterations needed to achieve the same relative error tolerance in the solution of the
linear system for values ofα between 0 and 1. Corresponding results for 9x9, 17x17 and
33x33 uniform grids are summarized in Figure 5.1. From these plots we can conclude that
unlessα > 0, performance of the conjugate gradient method degrades significantly. Indeed,
for all three gridsα = 0 results in the highest number of iterations (101, 133 and 174,
respectively), while taking even a small positiveα, e.g.,α = 0.05 helps to reduce the number
of iterations more than twice. Even more importantly, whenα = 0 we see that the number
of iterations grows as the number of grid lines increases, i.e., convergence of the conjugate
gradient method is not independent ofh. This behavior can be explained by noting that



ETNA
Kent State University 
etna@mcs.kent.edu

56 Experiences with negative norm least–square methods

TABLE 5.3
Number of conjugate gradient iterations with different preconditioners;α = 0.2 and10−5 tolerance forBh

Grid size
Preconditioner 5x5 9x9 17x17 33x33

none 122 220 419 759
Jacobi 37 52 102 185
(4.7) 44 48 52 53

TABLE 5.4
Number of preconditioned conjugate gradient iterations for different choices ofBhp

∆−1 tolerance
Grid 0.5 0.1 0.001 0.0001 0.00001
9× 9 137 49 48 48 48

17× 17 258 56 52 52 52

settingα = 0 in (3.17) yields a least-squares functional defined using the seminorm (3.13)
for which the lower bound in (3.16) does not hold. From Fig. 5.1 it also appears thatα >
0.2 is sufficient to assure convergence of the conjugate gradient method which is virtually
independent ofh, with the fastest convergence occurring in the range0.25 ≤ α ≤ 0.30.
Thus, one can infer the existence of an optimal value forα. This value appears to depend
mildly on the grid parameterh, e.g., for 9x9 grids it is given byα ≈ 0.2 whereas for 33x33
grids it is given byα ≈ 0.3. The ability of (4.7) to provide convergence independent ofh for
these values ofα is also illustrated by the data in Table 5.3. This table compares the number
of conjugate gradient iterations without preconditioning, using a Jacobi preconditioner, and
using (4.7).

Lastly, to determine how the choice ofBhp affects the preconditioner we fixα = 0.2
and vary the tolerance in the Poisson solver used to computeBh. Corresponding results are
summarized in Table 5.4. The data in this table suggests that preconditioner (4.7) is not very
sensitive with respect to the quality ofBhp and that the overall performance of the conjugate
gradient method depends more critically onα.

5.2. Numerical results: driven cavity flow. The two-dimensional lid driven cavity flow
is often used to test numerical solvers for the Navier-Stokes equations. Although this example
represents a fictitious flow it is well-documented in the literature and there is an abundance of
benchmark results available for comparison. We recall that for the driven cavity flowf = 0
and that the velocity boundary condition is given byu = (1, 0) on the top surface of the
unit square and zero otherwise. For this example we have considered a Reynolds number
of 100 and bilinear spaces defined on uniform triangulations of 17x17, 33x33, and 45x45
finite elements. Our numerical results are presented in Figures 5.2-5.3. Figure 5.2 contains
directional plot of the velocity field and a contour plot of the vorticity, computed using 33x33
finite elements. For the second plot vorticity has been obtained using the computed velocity
flux variable, i.e.,ω = Uh

21 −Uh
12. Plots in Fig. 5.2 appear to be in a good agreement with

similar plots reported in, e.g., [11]. Although the “eyeball” norm comparison with [11] is
satisfactory, in Figure 5.3 we present a more quantitative measure for the performance of the
least-squares method. In this figure velocity profiles through the geometrical center of the
cavity are compared with the benchmark results of [11] computed using a finite difference
scheme with 129x129 nodes. The first component of the velocity, denoted byu, is plotted
along the vertical linex = 0.5, whereas the second component, denoted byv, is plotted along
the horizontal liney = 0.5. We see that theu-velocity is very close to the benchmark data
even for the coarse 17x17 grid, whereas matching the benchmarkv-velocity is problematic for
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FIG. 5.2.Driven Cavity flow at Re=100: velocity field and vorticity contours

this grid size. However, increasing the grid size to 33x33 and then to 45x45 yields significant
improvement in thev-velocity profile.

In §5.1 we saw that choosingα = 0 leads to reducedH1-rates for the pressure approxi-
mation. In the present setting we found that the most affected variable is again the pressure.
Specifically,α = 0 leads to highly oscillatory pressure approximations. On the other hand,
even a small positiveα is sufficient to eliminate the oscillations. These observations are il-
lustrated in Fig. 5.4 which shows contour lines of pressure approximations computed with
α = 0 andα = 0.01.

5.3. Comparison withL2 velocity flux methods. In this section we compare the neg-
ative norm method with the twoL2 least-squares methods based on (3.1) and (3.6), respec-
tively. For all three methods we consider implementation usingQ1 finite element spaces.
As a result, for smooth solutions, the asymptotic rate of convergence for the negative norm
method is given again by (5.2), whereas for the augmentedL2 method (3.6) the corresponding
estimate reads

‖U−Uh‖1 + ‖u− uh‖1 + ‖p− ph‖1 ≤ Ch;(5.3)

see [2]. Since functional (3.1) is not norm-equivalent, no theoretical error estimates are avail-
able for this least-squares method. Note that in contrast to (5.2), estimate (5.3) asserts optimal
convergence in the norm ofH1 for all variables. We recall that this is a consequence of the
H1-norm equivalence of (3.6). Therefore, a fair comparison between (3.17) and (3.6) is
hardly possible. For example, (5.3) is optimal when all unknowns are approximated by equal
order finite element spaces, as is the case here, whereas (5.2) is optimal when the velocity
field is approximated by spaces of one degree higher than used forU andp. Similarly, (5.2)

is valid as long asU ∈ H̃
1
(Ω), p ∈ H1(Ω) andu ∈ H2(Ω), whereas (5.3) requires all com-

ponents to be at least inH2(Ω). Thus, results of this section should not be viewed as a direct
juxtaposition of the two methods but rather as a suggestion for the most appropriate scope of
each method.
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FIG. 5.3. Velocity profiles: negative norm least-squares for 17x17 (short dashes), 33x33 (long dashes) and
45x45 (solid line) bilinear elements vs. benchmark results of [11] (dots)

TABLE 5.5
Convergence rates for theH−1 method andL2 least-squares methods (3.6) and (3.1).

L2 error rates H1 error rates
Method negative (3.6) (3.1) negative (3.6) (3.1)

u 1.869 1.921 0.944 1.016 1.002 0.918
U 1.587 1.776 0.881 0.666 1.091 0.594
p 1.584 1.741 0.706 0.708 1.530 0.531

5.3.1. Smooth solutions.For the negative norm method we consider the rates obtained
whenα = 0.2 and the tolerance forBh is set to10−5; see Table 5.1. Asymptotic conver-
gence rates for theL2-methods are estimated using approximate solutions computed on a
pair of uniform grids with 17x17 and 33x33 grid lines, respectively. Corresponding results
are summarized in Table 5.4. Like in Tables 5.1-5.2, bold face in this table is used to denote
asymptotic rates for the error components which are included in (5.2) and (5.3). The asymp-
totic rates of (3.6) in Table 5.5 are in excellent agreement with (5.3) and are higher than the
H1-norm rates of the negative norm method. There is less difference in theL2-norm rates
of these methods, but the augmentedL2-method still has better convergence. In contrast, the
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FIG. 5.4.Pressure contours forRe = 100 and 33x33 elements.α = 0.01 (top) andα = 0 (bottom)

method (3.1) consistently yields suboptimal convergence rates. In theL2-norm of the error
these rates are of approximately one order less than the rates for (3.6). In theH1-norm of the
error (3.1) converges at half the rate of (3.6). Although theH1-norm rates for (3.1) are closer
to the rates of the negative norm method, in theL2-norm the former converges twice as fast
as (3.1).

The data in Table 5.5 leads to the unambiguous conclusion that for smooth solutions the
augmentedL2-method ranks first, while the method (3.1) offers the worst performance. The
main cause for this dismal performance of (3.1) is in the lack of norm-equivalence of the
underlying least-squares functional. These results are consistent with numerical experiments
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FIG. 5.5.Velocity profiles for the Driven Cavity flow: negative norm method (dashed lines) vs. theL2 method
(3.6) (solid lines).

performed using other non-norm equivalent functionals, where suboptimal convergence rates
were also observed; see [6].

From the data in Table 5.5 we can conclude that, although performance of the negative
norm method is not dramatically inferior to that of (3.6), the less complicated and straightfor-
ward implementation of theL2-method makes it more convenient when the exact solution is
smooth enough. As we shall see in the next section, the real advantage of the negative norm
method is revealed when solutions of the Navier-Stokes equations are not sufficiently regular.

5.3.2. Driven cavity flow. Discontinuity of the boundary data in the driven cavity flow
leads to velocity fields that are not sufficiently regular for the least-squares method (3.6).
Indeed, analysis of this method requires that minimization is carried over the space

X = {(U,u, p) ∈ H̃
1
(Ω)× H1

0(Ω)×H1(Ω) ∩ L2
0(Ω)

∣∣∣u = 0 ,n×U = 0 onΓ} ;

see [2]. In view of the definition (2.5) it follows that components of the velocity field should
be at least inH2(Ω), which is not the case with the driven cavity flow. The lack of regu-
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FIG. 5.6.Driven cavity flow at Re=100: negative norm method vs. theL2-method (3.6).

larity in the solution leads to poor performance of the method (3.6) for this problem. This
can be seen from the plots presented in Fig. 5.5. Here we compare velocity profiles through
the center of the cavity computed by (3.6) (solid lines) and the negative norm method (3.17)
(dashed lines), with the benchmark results of [11], using 17x17 bilinear elements. Although
(3.6) yields reasonable approximation for theu−velocity, it significantly underestimates the
v−velocity component. These results suggest that the negative norm method has an advan-
tage over theL2-method for problems with less regular solutions. Similar conclusions can
be drawn from the results presented in Fig. 5.6. This figure contains velocity fields and vor-
ticity contours computed by the negative norm method (3.17) and theL2-method (3.6) using
33x33 bilinear elements. Plots in Fig. 6.6 clearly indicate a qualitative difference between
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these two methods, moreover, approximations computed by (3.6) do not compare well with
the benchmark [11].
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