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DIRECTIONAL COARSENING AND SMOOTHING FOR ANISOTROPIC
NAVIER-STOKES PROBLEMS ∗

DIMITRI J. MAVRIPLIS†

Abstract. Unstructured multigrid techniques for relieving the stiffness associated with high-Reynolds num-
ber viscous flow simulations on extremely stretched grids are investigated. One approach consists of employing a
semi-coarsening or directional-coarsening technique, based on the directions of strong coupling within the mesh, in
order to construct more optimal coarse grid levels. An alternate approach is developed which employs directional
implicit smoothing with regular fully coarsened multigrid levels. The directional implicit smoothing is obtained by
constructing implicit lines in the unstructured mesh based on the directions of strong coupling. Both approaches
yield large increases in convergence rates over the traditional explicit full-coarsening multigrid algorithm. However,
maximum benefits are achieved by combining the two approaches in a coupled manner into a single algorithm. An
order of magnitude increase in convergence rate over the traditional explicit full-coarsening algorithm is demon-
strated, and convergence rates for high-Reynolds number viscous flows which are independent of the grid aspect
ratio are obtained.
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1. Introduction. Multigrid methods have proven to be very effective techniques for
accelerating convergence to steady state of both elliptic and hyperbolic problems. For sim-
ple elliptic problems, such as a Poisson equation, convergence rates of 0.1 are achievable,
meaning that for each multigrid cycle, the numerical error can be reduced by one order of
magnitude.

For hyperbolic problems, such as the Euler equations in computational fluid dynam-
ics, the best rate that theoretically can be achieved for a second order discretization is 0.75,
according to the analysis discussed by Mulder [25]. Indeed, many structured as well as un-
structured Euler solvers achieve convergence rates close to 0.75 [2, 16, 26, 27, 35]. However,
for high-Reynolds number viscous flow solutions, multigrid Navier-Stokes solvers generally
result in convergence rates which are an order of magnitude or more slower than those ob-
tained for inviscid flows. The main reason for this breakdown in efficiency of the multigrid
algorithm is the use of highly stretched anisotropic meshes which are required to efficiently
resolve boundary layer and wake regions in viscous flows. Indeed, the higher the Reynolds
number, the more grid stretching is required, and the worse the convergence rate becomes.

The classic multigrid remedy for this problem is to resort to semi-coarsening, or to em-
ploy smoothers which are implicit in the direction normal to the stretching [4]. The idea
of semi-coarsening is to coarsen the mesh only in the direction normal to the grid stretch-
ing, rather than in all coordinate directions simultaneously. This idea was used by Mulder
[24, 25] to overcome the stiffness associated with the grid alignment phenomenon for an up-
wind scheme on non-stretched structured meshes. Since different regions of the flow field
may contain anisotropies in differing directions, a complete sequence of grids, each coars-
ened in a single coordinate direction is generally required. Radespiel and Swanson [28]
employed semi-coarsening to alleviate the stiffness due to stretched meshes for viscous flow
calculations. More recently, Allmaras [1] has shown how the use of preconditioners coupled
with semi-coarsening can help alleviate grid stretching induced stiffness. Pierce and Giles
[27] have demonstrated improved convergence rates for turbulent Navier-Stokes flows using
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diagonal preconditioning coupled with a J-coarsening technique on structured grids, where
the grid is only coarsened in the J-coordinate direction, which is normal to the boundary layer.

Semi-coarsening techniques can be generalized to unstructured meshes as directional
coarsening methods. Graph algorithms can be constructed to remove mesh vertices based on
the local degree and direction of anisotropy in either the grid or the discretized equations.
This is achieved by basing point removal decisions on the values of the discrete stencil coeffi-
cients. This is the basis for algebraic multigrid methods [33], which operate on sparse matri-
ces directly, rather than on geometric meshes. These techniques are more general than those
available for structured meshes, since they can deal with multiple regions of anisotropies in
conflicting directions. They offer the possibility of constructing algorithms which attempt to
generate the “optimal” coarse grid for the problem at hand. Morano et al. [23] have demon-
strated how such techniques can produce almost identical convergence rates for a Poisson
equation on an isotropic cartesian mesh, and a highly stretched unstructured mesh. More re-
cently, Francescatto [7] has demonstrated convergence improvements for the Navier-Stokes
equations using directional coarsening multigrid.

One of the drawbacks of semi- or directional-coarsening techniques is that they result in
coarse grids of higher complexity. While a full-coarsening approach reduces grid complexity
between successively coarser levels by a factor of 4 in 2D, and 8 in 3D, semi-coarsening
techniques only achieve a grid complexity reduction of 2, in both 2D and 3D. This increases
the cost of a multigrid V-cycle, and makes the use of W-cycles impractical. Perhaps more
importantly for unstructured mesh calculations, the amount of memory required to store the
coarse levels is dramatically increased, particularly in 3D. Raw [30] advocates the use of
directional coarsening, but at a fixed coarsening rate of 10 to 1, in order to reduce overheads.
This generally results in the removal of multiple neighboring points in the coarsening process,
and thus requires a stronger smoother than a simple explicit scheme. An alternative to semi-
coarsening is to use a line solver in the direction normal to the grid stretching coupled with a
regular full coarsening multigrid algorithm, at least for structured grid problems [4].

In the following sections, we examine the benefits obtained through the use of directional
coarsening and implicit line solvers, and combine the two approaches to construct an efficient
Reynolds averaged Navier-Stokes solver for very highly stretched meshes.

2. Base Solver .The Reynolds averaged Navier-Stokes equations are discretized by
a finite-volume technique on meshes of mixed triangular and quadrilateral elements. The
governing equations are given in integral form as:

∂

∂t
(uV ) +

∫
∂Ω

(f .n) dS =
∫
∂Ω

(g.n) dS .(2.1)

The solutionu is given by

u =

 ρ
ρuj
E

 ,(2.2)

and the ith components of the convective and viscous flux vectors are, respectively:

fi =

 ρui
ρuiuj + δijp
ui(E + p)

 gi =

 0
τij

ukτik − qi

 ,(2.3)

whereρ is the density,uj , j = 1, 2 represents the x and y velocity components,E is the total
energy, andp is the pressure, which is related to the other variables by the perfect gas law:

p = (γ − 1) (E − 1
2
ρ(u2 + v2)) ,(2.4)
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whereγ is a constant.τij andqi represent the stress tensor and the heat flux vector. In the
thin layer approximation to the Navier-Stokes equations, these terms can be taken as:

τij = µ
∂ui
∂xj

, qi = −κ
∂ pρ
∂xi

,(2.5)

whereµ andκ denote the fluid viscosity and thermal conductivity, respectively. These values
are determined as the sum of the corresponding fluid properties, which are given, and the
turbulence quantities, which are obtained through the solution of an additional turbulence
modeling equation [37]. In the finite volume method, the variablesu are stored at the vertices
of the mesh, V represents the volume of the control volume associated with each vertex, as
depicted in Figure 1, and the flux integrals are taken over the boundary of the control volume,
denoted as∂Ω, with n being the normal vector at the control volume boundary.

The simplest way to compute these flux integrals is to precompute the fluxes at all ver-
tices given theu values, and then integrate an average of the two fluxes on either side of a
control-volume face with the face normal vector. This leads to a central difference scheme
which is unstable unless additional artificial dissipation is employed. An alternative strategy
is to use an upwind scheme. The upwinded fluxes can be constructed at a control-volume
interface using an approximate Riemann solver [32] which computes an upwinded convec-
tive flux vector, given solution valuesuleft anduright on either side of the control-volume
boundary. If these solution values at the control-volume interfaces are taken as the values at
the control-volume centers, a first order accurate scheme is obtained. To ensure second order
accuracy, the interface values are extrapolated from the corresponding vertex values accord-
ing to a Tayor expansion, using a control-volume gradient ofu computed through a Green-
Gauss contour integral about the control volumes. For multigrid calculations, a second-order
discretization is employed for the convective terms on the fine grid, while a first-order dis-
cretization is used on the coarse grid levels.

In the simplified thin-layer form given above, the viscous fluxes are analogous to the
terms of a simple diffusion equation, and are discretized by a finite difference scheme.

A sample mesh is depicted in Figure 2. Isotropic triangular elements are employed in
regions of inviscid flow, and stretched quadrilateral elements are used in the boundary layer
and wake regions. All elements of the grid are handled by a single unifying edge-based
data-structure in the flow solver [19]. Triangular elements could easily be employed in the
boundary layer regions simply by splitting each quadrilateral element into two triangular
elements.

As shown in Figure 1, the resulting control-volumes for quadrilateral elements produce
stencils with strong coupling in the direction normal to the grid stretching and weak coupling
in the direction of stretching. When triangular elements are employed in regions of high
mesh stretching, the stencils are complicated by the presence of diagonal connections, and do
not decouple as simply in the normal and stretching directions as for quadrilateral elements.
Therefore, the use of quadrilateral elements in regions of high mesh stretching is central to
the solution algorithms described in this paper.

The basic time-stepping scheme is a three-stage explicit multistage (Runge-Kutta) scheme
with stage coefficients optimized for high frequency damping properties [43], and a CFL
number of 1.8. Convergence is accelerated by a local block Jacobi preconditioner, which in-
volves inverting a4× 4 matrix for each vertex at each stage [22, 26, 27, 31]. In this approach,
the time step∆ti in the original multi-stage scheme:

u(k)
i = u(0)

i + CFL αk ∆ti ×Ri(u(k−1))(2.6)
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is replaced by the inverse of the point-wise Jacobian[D]i :

u(k)
i = u(0)

i + CFL αk [D]i
−1 ×Ri(u(k−1))(2.7)

whereCFL is theCourant− Friedrichs− Lewy number,αk is the coefficient of thekth

Runge-Kutta stage, andRi represents the discrete residual at vertex i. This approach, which
can either be interpreted as a pre-conditioner, or as a local matrix time-step [41], has been
shown to produce superior convergence rates for upwind schemes. No other techniques such
as enthalpy damping or residual smoothing are employed [9].

The single equation turbulence model of Spalart and Allmaras [37] is utilized to account
for turbulence effects. This equation is discretized and solved in a manner completely analo-
gous to the flow equations, with the exception that the convective terms are only discretized
to first-order accuracy.

3. Directional-Coarsening . In the context of unstructured meshes, there exists various
strategies for implementing multigrid techniques. Two approaches that have been explored
extensively by the author are the method of overset meshes, and the method of control-volume
agglomeration [12, 16, 20, 36]. In the overset-mesh approach, a sequence of fine and coarse
unstructured meshes is constructed either by hand, or in some automated fashion. These
meshes are then employed in the multigrid algorithm, and variables are transferred between
the various meshes of the sequence using linear interpolation. In the agglomeration approach,
coarse levels are constructed by fusing together neighboring fine grid control volumes to form
a smaller number of larger and more complex control volumes on the coarse grid.

While directional coarsening strategies can be employed in both multigrid approaches,
for practical reasons we have chosen to utilize only the overset-mesh multigrid approach for
these preliminary investigations. In fact, the same coarsening algorithm may be used for both
approaches. In the overset-mesh approach, the graph coarsening algorithm is employed to
select a subset of points from the fine grid from which the coarse grid will be formed. Once
the coarse grid points have been determined, they must be triangulated in order to form a
consistent coarse grid.

The coarsening algorithm is based on a weighted graph. Each edge of the mesh is as-
signed a weight which represents the degree of coupling in the discretization. In the true
algebraic multigrid sense, these weights should be formed from the stencil coefficients. How-
ever, since the Navier-Stokes equations represent a system of equations, multiple coefficients
exist for each edge. For simplicity, the edge weights are taken as the inverse of the edge
length. For each fine grid vertex, the average and the maximum weight of all incident edges
are precomputed and stored. This ratio of maximum to average weight is an indication of the
local anisotropy in the mesh at each vertex. The coarsening algorithm begins by choosing an
initial vertex as a coarse grid point or seed point, and attempts to remove neighboring points
by examining the corresponding edge weights. If the ratio of maximum to average weights
at the seed point is greater thanα, (usually taken asα = 4), then only the neighboring vertex
along the edge of maximum weight is removed. Otherwise, (i.e. in isotropic regions) all
neighboring edges are removed. The next seed point is then taken from a priority list which
contains points which are adjacent to points which have previously been deleted.

In the present implementation, the graph-based coarsening algorithm is only employed in
the boundary-layer and wake regions. Once these regions have been coarsened, the remaining
regions of the domain are regridded using a Delaunay advancing-front technique with user
specified resolution. This approach is purely for convenience, since the original mesh is gen-
erated by a two-step procedure, which employs an advancing-layers technique in the regions
of viscous flow, and an advancing-front Delaunay triangulation in regions of inviscid flow
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[17, 18]. The full weighted-graph coarsening algorithm will be implemented in the context of
agglomeration multigrid in future work.

The first test case illustrates the convergence rates achievable for isotropic problems with
the present algorithm. The inviscid transonic flow over a NACA 0012 airfoil is computed at
a Mach number of 0.73 and incidence of 2.31 degrees. The mesh contains 5849 vertices and
consists uniquely of isotropic triangular elements. The convergence history is documented in
Figure 3. A total of 5 multigrid levels were employed, and a residual reduction of 11 orders
of magnitude over 100 multigrid W-cycles was obtained. The overall convergence rate for
this case is 0.77, which is very close to the theoretical limit of 0.75.

The second test case illustrates the stiffness induced by anisotropy. The viscous turbulent
flow over the same geometry at the same conditions with a Reynolds number of 5 million is
computed on the mesh depicted in Figure 1. This mesh contains a total of 4880 points. The
cells on the airfoil surface have a height of 2.e-06 chords, and the maximum cell aspect ratio
in the mesh is 20,000. This type of mesh is required in order to capture the boundary layer
gradients. The computed Mach contours at these conditions are displayed in Figure 4. The
convergence rate is depicted in Figure 5, using 5 multigrid levels which were constructed
using the unweighted or full-coarsening version of the coarsening algorithm, as described
in [20]. The slowdown in convergence over the inviscid test case is dramatic. After an
initial phase of rapid convergence, the residual reduction rate slows down to less than 0.99
per multigrid W-cycle. Figure 5 also depicts the convergence rate of the same algorithm
when a sequence of directionally coarsened grids is employed in the multigrid algorithm.
The improvement is substantial, yielding a residual reduction of 0.91 per multigrid V-cycle.

4. Directional Implicit Smoothers . Although directional coarsening strategies for multi-
grid can achieve large increases in convergence speed, as demonstrated in the previous case,
the coarse grids are more complex than those obtained in the full coarsening strategy. Note
for example in the previous case that a V-cycle was required, since the W-cycle is impractical
in this case. As mentioned previously, the overhead required to store the coarse levels is also
greatly increased in such cases.

An alternative approach is to use a directionally implicit smoother in conjunction with
full coarsening multigrid. For structured grids, an example of a directionally implicit smoother
is a line solver. Line solvers are attractive because they result in block-tridiagonal matrices
which can be solved very efficiently. For unstructured grids, predetermined grid lines do not
exist. However, line solvers can still be employed, provided lines are artificially constructed
in the unstructured grid. Techniques for constructing lines in an unstructured grid have pre-
viously been described in the literature [8, 14]. In those efforts, lines which span the entire
grid were constructed using unweighted graph techniques. In the present context, the role
of the line solver is to relieve the stiffness induced by grid anisotropy. Therefore, lines are
desirable only in regions of strong anisotropy, and in these regions they must propagate along
the direction of strong coupling.

Given these requirements, an algorithm to build lines in an anisotropic mesh can be
constructed using a weighted graph technique, in a manner analogous to the algorithm for
directional coarsening described previously. The edge weights are defined as previously,
and the ratio of maximum to average adjacent edge weight is pre-computed for every mesh
vertex. The vertices are then sorted according to this ratio. The first vertex in this ordered list
is then picked as the starting point for a line. The line is built by adding to the original vertex
the neighboring vertex which is most strongly connected to the current vertex, provided this
vertex does not already belong to a line, and provided the ratio of maximum to minimum
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edge weights for the current vertex is greater thanα, (usingα = 4 in all cases). The line
terminates when no additional vertex can be found. If the originating vertex is not a boundary
point then the procedure must be repeated beginning at the original vertex, and proceeding
with the second strongest connection to this point. When the entire line is completed, a
new line is initiated by proceeding to the next available vertex in the ordered list. Ordering
of the initial vertex list in this manner ensures that lines originate in regions of maximum
anisotropy, and terminate in isotropic regions of the mesh. The algorithm results in a set of
lines of variable length. In isotropic regions, lines containing only one point are obtained,
and the point explicit scheme is recovered.

On vector machines, the block-tridiagonal line solves must be vectorized across the lines.
Because the lines have varying lengths, all lines must be made of similar length by padding
the matrices of the shorter lines with zeros on the off-diagonals and ones on the diagonal
entries, in such a way that zero additional corrections are generated at these locations by
the implicit solver. To minimize the amount of padding required, the lines are sorted into
groups, such that within each group, all lines are close in size to one another. Vectorization
then takes place over the lines within each group. Using groups of size 100, the additional
overhead due to padding is of the order of 10%. An alternative approach would be to replace
the tridiagonal inversion routine with a cyclic reduction algorithm which can be vectorized
directly. This may however result in substantially shorter vector lengths.

In the current approach, the size of the vector groups also determines the amount of mem-
ory required for the line solves, since the tridiagonal matrices are constructed just prior to,
and discarded just after the lines are solved, and all lines are uncoupled. For scalar machines,
lines may be processed individually, and the memory requirements (i.e. additional working
memory required by the implicit solver) are determined by the length of the longest line in
the grid.

The implicit system generated by the set of lines can be viewed as a simplification of
the general Jacobian obtained from a linearization of a backwards Euler time discretization,
where the Jacobian is that obtained from a first-order discretization. For block-diagonal pre-
conditioning, all off-diagonal block entries are deleted, while in the line-implicit method, the
block entries corresponding to the edges which constitute the lines are preserved. The im-
plicit line solver is applied as a preconditioner to the three-stage explicit scheme described
previously. At each stage in the multi-stage scheme, the corrections previously obtained by
multiplying the residual vector by the inverted block-diagonal matrix are replaced by correc-
tions obtained by solving the implicit system of block-tridiagonal matrices generated from
the set of lines. This implementation has the desirable feature that it reduces exactly to the
block-diagonal preconditioned multi-stage scheme when the line length becomes one (i.e. 1
vertex and zero edges), as is the case in isotropic regions of the mesh.

As an example, the viscous flow case of the previous section has been recomputed using
the line-implicit solver with full-coarsening multigrid. The set of lines generated in the mesh
of Figure 1 are depicted in Figure 6. The lines extend through the boundary layer and wake
regions, and have mostly a length of 1 (i.e. 1 vertex and zero edges) in the regions of inviscid
flow where the mesh is isotropic. A total of 5 meshes was employed in the multigrid sequence.
The convergence rate for this algorithm is depicted in Figure 7. The residuals are reduced by
over 4 orders of magnitude in 100 cycles, which corresponds to a residual reduction rate of
0.92 per multigrid W-cycle. This rate is close to that obtained by the point-wise scheme using
directional coarsening. However, the coarse grids are of lower complexity in this case and a
W-cycle has been used.
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5. Combining Directional Coarsening and Smoothing .There are obvious similari-
ties between the directional coarsening algorithm and the technique used to construct lines for
the directional implicit method. These two techniques can be combined, in a coupled manner,
to produce a more robust and efficient overall algorithm. The simplest way to combine these
techniques is to use the pre-conditioned line-implicit smoother with a sequence of direction-
ally coarsened coarse multigrid levels. In order to more closely couple these two techniques,
we use exactly the same criteria for coarsening and for line construction. This ensures that
coarsening will proceed in the same direction and along the lines determined for the implicit
solver.

An example of this combined algorithm is depicted by the convergence plot in Figure 8.
In this case, the combined directional-implicit-coarsening algorithm has been used to solve
the same viscous turbulent flow as described in the previous sections. The fine mesh for this
case is similar to the one displayed in Figure 1, but contains 5828 points, and the mesh cells
near the airfoil boundary have a height of 2.e-07 chord lengths, and the maximum aspect-ratio
cell in the mesh is 200,000. This represents an order of magnitude more anisotropy than the
previous mesh. Even on this extremely stretched grid, the residuals are reduced by over 4
orders of magnitude over 100 cycles, which results in a average convergence rate of 0.92 per
multigrid V-cycle. This rate is comparable to that achieved by either algorithm separately on
the previous case. However, on this more highly stretched grid, neither algorithm alone could
deliver this type of performance.

On the other hand, this case is still plagued by the high coarse grid complexities of the
semi-coarsening approach. However, these two techniques, directional coarsening and direc-
tional implicit smoothing, are two strategies for treating the same problem. In this respect
they are more overlapping in nature than complementary, and one of these techniques may
be relaxed somewhat. We therefore propose to perform directional-coarsening as described
previously, along the direction of the implicit lines, but at a faster coarsening rate of 4:1.
Therefore, rather than remove every second point along the implicit lines, we remove three
points for every preserved coarse grid point along the implicit lines. In isotropic regions, the
coarsening algorithm remains unchanged. This has the effect of generating a sequence of
coarse grids which has roughly the same complexity as that obtained by the full-coarsening
technique. To illustrate this approach, the same case has been recomputed using the line-
implicit smoother and directional coarsening at a 4:1 rate. The convergence rate is compared
with that obtained previously in Figure 8. The average residual reduction rate for this case
is 0.88. The fact that this rate is even faster than that achieved in the previous example is
attributed to the use of W-cycles in the current calculation, which is made possible due to the
low complexity of the coarse grids.

The combined directional implicit-coarsening multigrid algorithm produces convergence
rates which are insensitive to the degree of grid stretching. This is illustrated by computing
the flow over an RAE 2822 airfoil on three different grids of the same streamwise resolution
but with varying normal wall and wake resolution. The first grid contains a normal wall
spacing of10−5 chords, and a total of 12,568 points, while the second grid contains a normal
wall spacing of10−6 chords, and 16,167 points, and the third grid a normal wall spacing
of 10−7 chords, and 19,784 points. The second grid contains what is generally regarded as
suitable normal and streamwise resolution for accurate computation of this type of problem,
while the first and third grids are most likely under-resolved and over-resolved in the direction
normal to the boundary layer, respectively. The second grid is displayed in Figure 9, while
the Mach contours of the solution computed on this grid are displayed in Figure 10. A matrix-
based artificial dissipation discretization [38] is employed for these calculations rather than
the upwind scheme described previously. This discretization delivers similar accuracy as the
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Roe Riemann-solver based upwind scheme, but does not require the use of a limiter, which
may adversely affect convergence for transonic flow cases.

The convergence rates obtained on these three grids are displayed in Figure 11, using
the original explicit full-coarsening multigrid algorithm, and the new directional-implicit-
coarsening multigrid algorithm. The convergence of the original algorithm degrades as the
mesh stretching increases, whereas the convergence of the new algorithm is essentially con-
stant for all three meshes. Considering that these three meshes represent a two order of
magnitude variation in the amount of mesh stretching, the performance of the directional-
implicit-coarsening multigrid algorithm can be qualified as mesh aspect-ratio independent.

6. Conclusions and Further Work . In the above discussion, the cost of the graph
algorithms used to construct the lines and the coarse grid levels is not considered. In all cases,
the cost of this pre-processing is negligible compared to the cost of the multigrid solution
process. The preprocessing requires no more than several seconds of CPU time, while the
multigrid solution requires of the order of one or more hours for the examples described
in this paper. This is despite the fact that the worst case complexity of the pre-processing
graph algorithms isO(NlogN) which is higher than the optimal complexity ofO(N) for the
multigrid algorithm.

The comparisons between various schemes have all been made on a per cycle basis.
While this is useful for determining the relative effectiveness of each technique as a multigrid
smoother, and the degree to which the overall algorithm approaches the hypothetical “opti-
mal” algorithm, it does not convey the relative costs of these various schemes. One of the
reasons direct cpu comparisons have not been made is that the current code is not sufficiently
optimized to provide a fair comparison with the baseline algorithm. Another reason, is that
the technique used for coarse grid construction results in less than optimal coarse grid com-
plexity since the inviscid regions of the flow are actually regridded, rather than coarsened by
point removal. (However, the boundary layer and wake regions exhibit optimal coarsening).

The ultimate goal of this work is to incorporate these techniques into the more practical
agglomeration or algebraic multigrid method described in [20, 21]. The development of an
optimal grid coarsening scheme for agglomeration multigrid is currently under development.
Figure 12 illustrates the first agglomerated level of a stretched unstructured grid, where the
agglomeration has been constrained to proceed along the implicit-lines in the boundary layer
regions, at a rate of 4:1. In the isotropic regions of the mesh, this algorithm reverts to that
developed in [20, 21].

Preliminary results using the agglomeration multigrid strategy provide a comparison of
the original isotropic explicit multigrid scheme with the directional implicit multigrid scheme
based on cpu time, as shown in Figure 13. The explicit multigrid scheme employs a five stage
Runge-Kutta smoother, and a residual smoothing technique for convergence acceleration [9],
while the directional implicit multigrid scheme employs a three-stage Runge-Kutta smoother
with line preconditioning. This represents the empirically attained optimal strategies for both
types of multigrid algorithms. Further efficiencies are obtained in the latter case by inverting
the line Jacobians at the first stage of the Runge-Kutta smoother, and freezing these inverted
Jacobians for the remaining stages. This results in the cost of a directional implicit multigrid
cycle being almost identical to that achieved by the explicit multigrid scheme. The com-
parison based on CPU time in Figure 13 is therefore very similar to the comparisons in the
previous section based on multigrid cycles.
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Although the proposed algorithms in this work have demonstrated convergence rates in-
dependent of the degree of grid stretching, the convergence rates obtained for viscous flows
are still somewhat slower than what may be achieved for simple inviscid flow problems. Ad-
ditional research is required to further reduce these rates consistently for all types of viscous
flow problems. Perhaps the most promising avenue of research is to develop more sophis-
ticated preconditioners in an effort to provide a better multigrid smoother at low additional
cost [13, 40].
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FIG. 2.1.Median control-volumes for stretched quadrilateral and triangular elements

FIG. 2.2.Mixed element grid used for viscous flow calculations about NACA 0012 airfoil; Number of vertices
= 4880
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FIG. 3.1. Multigrid Convergence Rate using Explicit Smoothing and Full-Coarsening for inviscid flow over
NACA 0012 airfoil
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FIG. 3.2.Computed Mach contours for viscous flow over NACA 0012 airfoil
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FIG. 3.3. Comparison of Multigrid Convergence Rate using Explicit Smoothing and Full-Coarsening versus
Explicit Smoothing and Semi-Coarsening for viscous flow over NACA 0012 airfoil
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FIG. 4.1.Implicit lines produced by the current algorithm on the grid of Figure 1
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FIG. 4.2. Comparison of Multigrid Convergence Rate using Explicit Smoothing and Full Coarsening versus
Implicit Line Solver and Full-Coarsening for viscous flow over NACA 0012 airfoil
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FIG. 5.1. Multigrid Convergence Rate using Implicit Line-Solver and Semi-Coarsening for viscous flow over
NACA 0012 airfoil

FIG. 5.2. Unstructured Grid Used for Computation of Transonic Flow Over RAE 2822 Airfoil. Number of
Points = 16167, Wall Resolution =10−6 chords
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FIG. 5.3.Computed Mach Contours on above Grid. Mach = 0.73, Incidence = 2.31 degrees, Re = 6.5 million
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FIG. 5.4. Comparison of original explicit full coarsening multigrid algorithm and new directional-implicit-
coarsening multigrid algorithm on meshes of varying degrees of anisotropy
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FIG. 6.1.Example of Agglomerated Grid Using 4:1 Coarsening along Lines in Boundary-Layer Region

    0  1000  2000  3000  4000

CPU SECONDS (SUN ULTRA 170 Mhz)

 -
14

.0
0

 -
12

.0
0

 -
10

.0
0

  -
8.

00
  -

6.
00

  -
4.

00
  -

2.
00

   
0.

00

L
O

G
 (

E
rr

or
)

REGULAR EXPLICIT MULTIGRID

DIRECTIONAL IMPLICIT MG

FIG. 6.2. Comparison of Explicit Isotropic Agglomeration Multigrid with Directional Implicit Multigrid for
Computation of Transonic Flow on Grid of Figure 9 in terms of CPU Time.


