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WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS ∗

A. BRANDT† AND I. LIVSHITS†

Abstract. Multigrid methods are known for their high efficiency in the solution of definite elliptic problems.
However, difficulties that appear in highly indefinite problems, such as standing wave equations, cause a total loss of
efficiency in the standard multigrid solver. The aim of this paper is to isolate these difficulties, analyze them, suggest
how to deal with them, and then test the suggestions with numerical experiments. The modified multigrid methods
introduced here exhibit the same high convergence rates as usually obtained for definite elliptic problems, for nearly
the same cost. They also yield a very efficient treatment of the radiation boundary conditions.
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1. Introduction. What are the properties of highly indefinite problems that make their
solution by standard multigrid methods inefficient?

First, there is the well-known limitation on the coarsest-grid mesh-size, which should be
sufficiently fine, in fact much finer than the wavelength of the oscillatory solution, to avoid
large phase errors (cf. Sec. 6 below).

To solve these coarsest grid equations one has to apply the slowly converging Kaczmarz
relaxation (or some similar procedure): the faster Gauss-Seidel relaxation causes smooth
components of the error to diverge. As a result, the solution will costO(N3) operations (in
two-dimensional problems), whereN is the number of coarse grid points.

Another basic difficulty is posed by the nonlocal character of theradiation boundary
conditions(RBC) that usually accompany highly indefinite equations, making their discrete
expression extremely costly.

The basic approach which has guided the present work was already stated in Sec. 3.2 of
[2] and in [7]. It is based on the fact that the problematic error components (the ones which
cannot be reduced by the standard multigrid process applied to the Helmholtz equation) can
be factorized by representing it as the product of a certain high-frequency Fourier component
and a smooth envelope function (a ray function). The idea is then to reduce this type of error
by approximating these smooth envelope functions on the coarse grids.

However, a substantial number of important algorithmic aspects still had to be clarified
or invented, especially with regard to the levels of transition between wave and ray represen-
tation (such as the use of rotated coordinates for the ray representation, increasing a number
of ray functions on the finest ray grid, optimal scaling, optimal weighting, etc.).

We started our work with the model one-dimensional Helmholtz equation, with different
types of coefficients: constant, smooth and discontinuous. For this problem we developed an
efficient multigrid solver [6]. In the present paper we describe the next step of our research:
A solver for the two-dimensional Helmholtz equations with constant coefficients. The solver
is developed in theFull Approximation Scheme(FAS) multigrid version, and for full under-
standing the reader is well advised to acquire some familiarity with this version (see, e.g., [1]
or [3]).

The presented approach can clearly be extended to higher-dimensional problems. The
extension to variable coefficients is briefly discussed in Sec. 10. The approach developed
here for obtaining a fast multigrid solver can also be used in a new type of setting where only
geometrical optics (ray tracing) needs to be used throughout a very large problem domain,
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whereas the full, costly wave equations (as well as suitable intermediate levels, introduced
herein) can be restricted to special small subdomains where the pure geometrical optics rep-
resentation breaks down (see Sec. 10).

2. Characteristic Components.For simplicity, our whole discussion is restricted to a
model problem – the scalar two-dimensional standing wave equation (Helmholtz equation)

∆u(x, y) + k2u(x, y) = f(x, y), (x, y) ∈ <2,(2.1)

with constant coefficientk, wheref(x, y) = 0 outside some compact setΩf ⊂ <2.
The purpose is to construct an efficient multigrid solver for discretized standing wave

equations, e.g., with the second-order discretization

uhi−1,j − 2uhi,j + uhi+1,j

h2
+
uhi,j−1 − 2uhi,j + uhi,j+1

h2
+ k2uhi,j = fi,j ,(2.2)

whereui,j ≈ u(ih, jh) andfi,j = f(ih, jh), with the radiation boundary conditions. The
problem is considered in a computational domainΩ, whose exact size will be discussed later,
but it clearly should containΩf .

We focus here on thehighly indefinite problem, meaning that the wavelength2π
k

of
the solutions to the homogeneous equations is much smaller than the diameterd of Ω, i.e.,
dk � 1. Otherwise the problem can already be solved by simpler modifications to the
standard multigrid solver (see [5]).

To develop an efficient solver, we need to satisfy the basic multigrid rule: Each Fourier
error component needs an appropriate grid on which it is treated efficiently. This does not
happen straightforwardly.

Let us first note that any Fourier component of the formei(k1x+k2y), with k2
1 + k2

2 =
k2, satisfies the homogeneous(f ≡ 0) Helmholtz equation (2.1). These components will
be called here theprincipal components, and their frequenciesk = (k1, k2) will be called
principal frequencies. In the plane of frequencies, the circle of principal frequencies will be
called theprincipal circle. To have an efficient discretization for principal components, and
also for components with frequencies close to the principal circle (we call such components
characteristic), we discretized the principal circle, e.g., by a uniformlattice of L lattice
frequencies

kl = (kl1, k
l
2) = (k cos[θ(l − 1) + θ0], k sin[θ(l − 1) + θ0]), l = 1, . . . , L,(2.3)

whereθ = 2π
L

and0 ≤ θ0 < θ (see Sec. 8).
Let us consider a solution of the homogeneous equation (2.1) in the following form

u(x, y) =
∫ 2π

0

Ute
ik(x cos(t)+y sin(t))dt

or, equivalently,

u(x, y) =
L∑
l=1

ûl(x, y)ei(k
l
1x+kl2y),(2.4)

where the functionŝul(x, y) are not uniquely defined but always can be chosen so that they
are a combination of Fourier components with frequencies smaller or comparable tokθ, θ =
π/L. Note, that if we consider (2.4) with a largerL, θ becomes smaller, and the coefficient
functionsûl(x, y) in the expansion (2.4) become smoother.
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With the discretization (2.2) or any other discretization of (2.1), there isnogrid on which
characteristic components can be treated efficiently. On the fine grids, where they are accu-
rately approximated by the discrete equations, they are invisible to any local relaxation since
their errors can have very small residuals. Indeed, the size of such components is not deter-
mined locally, on the scale of the fine mesh-size, but on a much larger scale. On the other
hand, on coarser grids such components cannot be approximated, because the grid does not
resolve their oscillations. (In fact, to approximate such components by (2.2) the mesh-size
h needs to bemuchsmaller than the wavelength2π

k
; to avoid large phase error accumulated

over the domain diameterd hk � O((dk)−1/2) must be satisfied.)
Thus, there is a need for an alternative approach for reducing characteristic error com-

ponents. Ours is based on the fact that the errorv(x, y) that cannot be reduced by a usual
multigrid cycle can be represented, similarly to (2.4), by

v(x, y) =
L∑
l=1

v̂l(x, y)ei(k
l
1x+kl2y),

where, by choosing sufficiently largeL, the v̂l(x, y) are smooth enough to be approximated
on coarse levels.

Turning to optical terminology, we call the functionsûl(x, y) andv̂l(x, y) theray func-
tions, and the equations satisfied by them theray equations. The grids on which the wave
equations and the ray equations are treated are called thewave gridsand theray grids, re-
spectively.

To reduce the error (2.4), in addition to the usual multigrid cycles on wave grids, we use
ray cycles: They include recursive derivation of ray equations on increasingly coarser ray
grids, having increasingly finer lattices (largerL). The equations on each grid are based on
the residuals of the previous ( nextfiner) grid, except that boundary conditions are defined and
interpolated from the nextcoarsergrid. The resulting ray equations are relaxed on each level;
On the coarsest ray level they are solved and the radiation boundary conditions are imposed,
facilitated by the nearly pure ray representation (very smoothv̂l, with largeL) obtained on
sufficiently coarse levels.

3. Ray Levels: Grids and Lattices. Any function on then-th level of the ray cycle
(n = 1, . . . , N) has the representation

un =
Ln∑
l=1

ûnl (x, y)ei(k
l
1x+kl2y),(3.1)

where the(kl1, k
l
2) are given by (2.3) withL = Ln.

For each principal componentei(k1x+k2y), we define a rotated Cartesian coordinate sys-
tem(ξ, η), such that the directionξ is parallel to the vector(k1, k2). In these coordinates, this
principal component is of the formeikξ, i.e.,ξ is its propagation direction. The ray function
ûnl (x, y) will be discretized on a correspondingly rotatedgrid, with mesh-sizehnξ in the prop-
agation direction and mesh-sizehnη in the perpendicular direction. The levels are enumerated
so thatn = N is the level with the coarsest grid (largesthn = (hnξ , h

n
η ) and finest lattice, i.e.,

largestLn).
An advantage of working with the rotated grids is that identical and relatively simple

procedures can be used for different ray functions.
Another, more basic advantage is the possibility of using the most economical ray grids.

The actual mesh and lattice sizes are determined by requiring that at the highest level (n = 1)
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we havehnξ = 2C/k andhnη = C/k andLn = 8, where typically1.25 . C . 2.5. This
implies thathnξ = C(Ln)2/32k andhnη = CLn/8k.

Forn > 1, the size of the lattice and the mesh-sizes are calculated as

Ln =
{

2Ln−1 if n is even,
Ln−1 if n is odd,

hnξ = 2hn−1
ξ ,

hnη =
{

2hn−1
η if n is even,

hn−1
η if n is odd,

or, in terms ofLn,

hnξ =
{
C(Ln)2/64k if n is even,
C(Ln)2/32k if n is odd,

hnη =
CLn

8k
.

When the number of lattice points is increased by factor two, the maximal coarsening of
the mesh-sizes is chosen to satisfyh−2

η = O(h−1
ξ k) (i.e, hξ becomes four times andhη –

two times coarser before the next lattice refinement), hence the two main terms of the ray
equation (see (7) below) will have the same mesh coupling, making the equation “h-elliptic”
(see [3]). This choice of coarsening corresponds to the fact that ray solutionsûnl that we
need are much smoother in the propagation direction than perpendicularly, in a way which is
exactly exploited by havingh2

η ≈ hξ/k. Also, and most important, these mesh-sizes enable
a representation of a given ring of frequencies (specifically: a ring of widthO(h−1

ξ ) around
the principal circle) using aminimal numberof ray components (minimalLn), i.e., using a
maximal distance between lattice points. This type of coarsening is also important for an
effective and accurateseparationof the ray components from each other (see Sec. 4).

The rectangular domain covered by the grid on whichûnl is defined, as well as the grid it-
self, will be denotedΩnl ; it is formed from a basic rectangleΩn = {(x, y) : ‖x| ≤ dn1 /2, |y| ≤
dn2/2} by rotating it 2πl

Ln
radians. At the highest level, the sizesd1

1 andd1
2 are chosen so that

Ω1
l all contain the wave computational domain on levelMr, which will be designated as the

“wave-to-ray switching level”; its exact choice will be discussed in Sec. 4. At each lower
(n > 1) level thedn1 anddn2 are defined so that eachΩnl completely includes the associated
higher-level rectangles (Ωn−1

l/2 if l is even and bothΩn−1
(l−1)/2 andΩn−1

(l+1)/2 if l is odd, where

l ± 1 is taken moduloLn−1), with at least four additional mesh-sizes in each direction.

4. Ray Equations and Separation.In this section our description will be given in terms
of a Correction Scheme(CS) multigrid version which will however change in Sec. 5 below.
This means that at each lower ray leveln, the represented ray functions are designed in turn
to approximate thecorrection needed at the next higher leveln − 1, while the functions
computed on the highest ray level1 are designed to approximate the correction needed for
the solution on the wave levelm = Mr of the “wave multigrid cycle”.

The error component that needs to be reduced on a ray grid has the form

v(x, y) = v̂(x, y)ei(k1x+k2y),(4.1)
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wherev̂(x, y) is smooth. A right-hand-side, that corresponds to each such error component,
can similarly be represented as

r(x, y) = r̂(x, y)ei(k1x+k2y),(4.2)

and it, as we will see, actually approximates correspondingresidualson the next finer level.
Substitution of (4.1) and (4.2) into Eq. (2.1) (withv being the solution andr the right-

hand-side) gives us an equation for the ray functionv̂(x, y).

L̂v̂(x, y) = v̂xx(x, y) + v̂yy(x, y) + 2ik1v̂x(x, y) + 2ik2v̂y(x, y) = r̂(x, y).

In the rotated coordinates it simplifies to

L̂v̂(ξ, η) = v̂ξξ(ξ, η) + v̂ηη(ξ, η) + 2ikv̂ξ(ξ, η) = r̂(ξ, η).(4.3)

The operator̂L will be approximated by the following second-order finite-difference stencil:

L̂h =


1

2hη2
1

2hη2

1
2hξ2 (− 1

hη2 − 2ik
hξ
− 1

2hξ2 ) (− 1
hη2 + 2ik

hξ
− 1

2hξ2 )∗ 1
2hξ2

1
2hη2

1
2hη2

 ,(4.4)

which is centered at the mid-point(ξ, η); for orientation,∗ marks the coefficient at the grid-
point (ξ + hξ/2, η). This discretization has several advantages: First, the symbol of the
operator defined by (4.4) proves to be close to the symbol of the finest-grid discrete wave
operator for the desired characteristic components, i.e, the ray operators (4.4) provide an ex-
cellent approximation to (2.2) within a minimal number of lattice points, meaning a minimal
number of ray functions. Another important property of (4.4), which makes this discretiza-
tion attractive, is that its symbol is bounded away from zero (i.e., it is stable) for all other
components.

The ray equation (4.3) is almost first-order inξ since the term̂vξξ is small compared to
kv̂ξ for any function visible on the grid. Hence, the ray equations (4.4) can almost be solved
by one sweep of a suitable line relaxation, costing only a number of operations proportional
to the number of grid points. Thus, unlike regular multigrid cycles, in the ray cycles (in two
dimensions) there is no need to visit the coarsest possible levels in order to save computa-
tional work — the cost of solving ray equations on any ray grid is comparable to the cost
of one relaxation sweep there. The coarsest ray level is thus mainly determined by other
considerations, discussed later.

One purpose of the ray cycles is to approximate the smooth ray functions that correspond
to those residuals left unreduced after the wave cycle. This approximation can be done if each
ray grid obtainsits ownappropriate part of the residuals, i.e., a residual function of the form
(4.2), wherer̂(x, y) is sufficiently smooth to be well approximated on that grid. Hence,
we need a procedure that for such a wave residual functionr(x, y) in a characteristic ring
calculates smooth (on scalehn) functionsr̂nl (x, y) so that

r(x, y) =
Ln∑
l=1

r̂nl (x, y)enl (x, y), enl (x, y) = ei(k
l
1x+kl2y),

where the(kl1, k
l
2) are defined as in (2.3), withL = Ln. We call such a procedureseparation,

and we first describe it here in general terms.
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A basic tool for the separation is a simple one-dimensional three-point weighting (con-
volution) operatorW = (w0, w1, w0). Consider a one-dimensional functiong(α) on a grid
with a mesh-sizeh having the form

g(α) = a1(α)e−ipα + a2(α) + a3(α)eipα,(4.5)

where theaj(α) are smooth, compared toe±ipα, functions andπ/2 . ph ≤ π. The weight-
ing coefficientsw0 andw1 are chosen so that the result of applying the convolution weighting
operator tog

(Wg)(α) = w0g(α− h) + w1g(α) + w0g(α+ h)

is an approximation to the functiona2(α); Specifically,

Wg ≡ g, if g ≡ const,

Wg ≡ 0, if g(α) = e±ipα.

It is easy to findω0 andω1 that satisfy these conditions.
A two-dimensionalweighting operator can be constructed as a tensor product of two one-

dimensional operators: It approximates the functions which are smooth in both directions and
nearly annihilates some high-frequency components.

More precisely, consider a functiong(ξ, η) which can be represented as

g(ξ, η) =
∑
l

ĝl(ξ, η)ei(p
l
1ξ+p

l
2η),(4.6)

defined in the(ξ, η) coordinate system, where thepl = (pl1, pl2) are some given frequencies,
sufficiently remote from each other, andĝl(ξ, η) are smooth functions. We assume thatg is
defined on a gridΩ0 with mesh-sizeh = (hξ, hη), and our purpose is to approximateĝl on
some gridΩJ with a coarser mesh-size in the(ξl, ηl) coordinate system. We also suppose
that a sequence of grids in the(ξl, ηl) coordinates is given

Ω1 → Ω2 → . . .→ ΩJ ,

where the vector mesh-size ofΩ1 is approximatelyh and the relationΩj−1 → Ωj means that
Ωj coincides withΩj−1 or that it is obtained fromΩj−1 by doubling the mesh-size in at least
one direction. An approximation tôgl is then evaluated as follows:

ĝl ≈W J
J−1(W J−1

J−2 (. . . (W 2
1 (I(ξl,ηl)

(ξ,η) [g(ξ, η)e−i(p
l
1ξ+p

l
2η)])) . . .)),(4.7)

whereI(ξl,ηl)
(ξ,η) is an interpolation operator from gridΩ0 to gridΩ1, and eachW j

j−1 : Ωj−1 →
Ωj is a two-dimensional weighting operator, i.e., a tensor product of two one-dimensional
weighting operators. Each of the latter can be applied in either theξl, or ηl, or one of the two
diagonal directions (diagonal means employing either the left-lower and the right-upper, or
the left-upper and the right-lower diagonally neighboring grid-points).

What are the actual weighting directions we chose in our algorithm? Assume that on the
current fine gridΩj−1, a functiong to which a weighting is applied can be represented as

g(α, β) = gs(α, β) + eipαgh(α, β),
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whereα is eitherξl, ηl or one of the diagonal directions;β is perpendicular toα; gs is a
smooth function ofα on the fine-grid scale and should be represented on the next coarser
grid, while eipαgh(α, β) is a high-frequency function ofα and should not be transferred to
the next coarser grid (because it is either too high-frequency there and aliases with smooth
components, or it “belongs” to another neighboring ray function). If all of the above is true,
the weighting needs to be applied in theα direction.

To construct the CS right-hand-sider̂1
l on thefinestray grid, the residual function on a

wavegrid with mesh-sizeO(k−1) serves asg; the wave level used for this purpose is denoted
Mr. (See details of calculatinĝr1

l in the Appendix A.)
To approximate a right-hand sidêrnl on coarser (n > 1) ray levels for thel-th problem,

g is taken from the next finer(n− 1) ray level: Specifically,

g(ξ, η) = R̂n−1
l/2 , if l is even

and

g(ξ, η) =
[
en−1

(l−1)/2R̂
n−1
(l−1)/2 + en−1

(l+1)/2R̂
n−1
(l+1)/2

]
/enl , if l is odd,

whereR̂n−1
j is the residual function calculated on the(n− 1) level for thej-th ray problem.

(See further details in Sec. 8.)

5. FAS and RBC. The discussion so far has been in terms of the CS multigrid version.
Namely, each level has represented acorrectionto a finer level. However, the need to intro-
duce the radiation boundary conditions (RBC) on the coarsest ray grids, and the need to use
larger domains for coarser levels, imply the use of theFull Approximation Scheme(FAS). As
in previous works (see, e.g., [1] or [3]) the difference between the CS and the FAS is that
instead of thecorrectionvm(x, y) (the function which is eventually interpolated to a finer
(higher) level and corrects its current approximation), the function for which the coarse-grid
equations are directly written isum(x, y) = vm(x, y) + um(x, y), whereum(x, y) repre-
sents some known fixed approximation to thecurrent solution, so thatum(x, y) is actually
the intendedfull solution.

On a wave grid, as in previous works,um is taken to beImm+1(um+1) in regions where
the latter can be defined; hereImm+1 is some fine-to-coarse transfer (injection or averaging)
andum+1 is the current solution on the next finer level. In other regions (outside the domain
whereum+1 is defined)um is taken to be the latest approximationum obtained during the
last “visit” to levelm. In either case, thisum is indeed fixed throughout the current “visit”
to levelm. (By avisit to levelm we mean all the processing on levelm and on lower levels
(coarser grids) which takes place between a switching from levelm + 1 to levelm and the
first following switching back from levelm to levelm+ 1. The purpose of such a visit is the
calculation of the correctionvm.)

On a ray leveln, however, it is more appropriate to take the initial approximation to the
ray functionû

n

l (ξ, η) to be everywhere the value ofûnl (ξ, η) at theprevious visitto this very
level. This ensures that the boundary conditions (which are brought here fromlower levels)
remain satisfied, and it saves us from the need to separate the solution approximation. Thus,
instead of the CS ray correction function̂vnl (ξ, η), the solution function̂unl (ξ, η) actually
calculated and stored onΩnl is the sum

ûnl (ξ, η) = v̂nl (ξ, η) + û
n

l (ξ, η).

Therefore, instead of an equation of the type (4.3), theFAS equations, actually employed in
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the calculations, are

L̂nl û
n
l =

{
r̂nl + L̂nl û

n

l wherever r̂nl can be defined
L̂nl û

n

l elsewhere,
(5.1)

whereL̂nl coincides with thêL of (4.3) upon takingξ andη to be the Cartesian coordinates
of Ωnl ; i.e., ξ is the propagation direction ofenl . As described abovêrnl is defined, by a
local separation procedure, from the next-finer-level residuals. Note that due to using FAS,
an equation for̂unl is well defined also in regions of the coarse grid not covered by the fine
grid (that is, wherêrnl cannot be defined from the fine-grid residuals).

Having calculated a solution̂unl to Eq. (5.1) (see the cycle description below), it is of
course thedifferencêunl − û

n

l which actually represents the correctionv̂nl and which is there-
fore interpolated to the next finer level andadded tothe appropriate ray function(s) on level
(n − 1); except thatat boundariesthe full values of̂unl are directly interpolated and replace
the boundary values of the finer ray function(s). See algorithmic details in Sec. 7 below.

On fine enough wave grids (m ≥Mr), too, the solution near the boundary is interpolated
directly from increasingly coarser grids, eventually from the ray grids. Indeed, near a bound-
ary distant fromΩf the wave solution behaves like a combination of principal components
which are smooth on the scales of the fine wave levels.

On each of the gridsΩNl at the lowest ray level, the RBC are imposed: Each entering
ray is represented on the grid (or divided between the two grids) with the closest propagation
direction, on which its boundary values are indeed very smooth. Note that the components
represented onΩNl may actually have propagation direction deviating by up toθ = O(π/LN )
from the correspondingξ direction (the propagation direction ofeNl ). Hence, if

ΩNl = {(ξ, η) : |ξ| ≤ dN1 , |η| ≤ dN2 }

and

Ωf ⊂ {(ξ, η) : |ξ| ≤ dN1 , |η| ≤ df},

for somedf and fordN1 , d
N
2 , defined as in Sec. 3., and ifdN1 ≥ df + dN2 tan θ, then all the

exiting-onlyrays (rays which do not enter the domain but are created inΩf ) can actually exit
only through the “exit boundary”{(ξ, η) : |ξ| ≤ d1, η = d2}. Hence on all other boundaries
of ΩNl we can impose as boundary conditions the incoming rays (or zero, if no incoming
rays are assumed). No boundary conditions are needed at the exit boundary ofΩNl , since the
discrete equations (4.4) and the order in which we relax them (from entrance to exit) ensure
that information propagation in the negativeξ direction is effectively prohibited.

6. Phase Errors. In the previous sections we mentioned that the finest wave mesh-size
should satisfy a certain condition so that the discrete solution that can be produced by the
solver is an accurate approximation to the differential solution.
The relative error for the wave discretization (2.2) for a componenteik1x+k2y with k2

1 +k2
2 =

k2 is given by

Eh(k1, k2) ≈ k4h2/γ

2πk/d
,

where24 ≤ γ ≤ 48. Therefore, in order to have relative errors smaller thanε throughout the
computational domain, it is required that

dk3h2/(2πγ) < ε.(6.1)
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For fast convergence, the discrete solution in the ray representation needs to have a small
phase error as well, so that it can efficiently approximate the characteristic error left by the
wave grids.

In this context the choice of the lattice frequencies proves to be an important issue. Ob-
viously, the ray operators provide much better approximation to those characteristic compo-
nents which are close to the lattice components, and they are much less accurate for those
farther away. If the same principal frequencies are always picked as the lattice ones, then the
same frequencies always have the worst approximation. An easy way to improve the situation
is thus to vary the set of lattice points. One possibility is to use two sets: regular

kn,rl = k

(
cos((l − 1)θ, sin((l − 1)θ)

)
,(6.2)

and staggered

kn,sl = k

(
cos((l − 1/2)θ), sin((l − 1/2)θ)

)
,(6.3)

where in each casel = 1, . . . Ln andθ = 2π/Ln.
The relative error for the ray discretization (4.4) for a componentei(θξξ+θηη) is thus given by

Êh(θξ, θη) ≈
h2
η

12 θ
4
η +

h2
ξ

24 θ
3
ηk +

h2
ξ

8 θ
2
ξθ

2
η

2πk/d
,

with the choice of the ray parameters given in Sec. 8, whered is the size of the computational
domain. Analysis of the ray phase error shows then that in order to have ray relative errors to
be smaller thanε, the numberLN of lattice points on the coarsest ray gridN , should satisfy
the following condition:

kd

5(LN)2β4
< ε,(6.4)

whereβ is equal to either1 or 2 depending on whether only regular or both regular and
staggered lattices are employed at that level.
A heuristic explanation of the choice ofβ follows: The maximal relative error appears when
(θξ+k, θη) is a principal component which is maximally distant from the lattice points where
the ray operator indeed provides an excellent approximation to the wave finest grid operator.
The values of(θξ, θη) can be thus estimated as

θξ ≈ kθ2/2, θη ≈ kθ,

whereθ = π/LN . If not one but two different sets of lattice points are employed, then the
worst approximation that could be provided by using two ray cycles will show up not for the
same “distant” component (since the most “distant” component of the first ray cycle becomes
a lattice one of the next ray cycle) but rather for a “middle” component withθ = π/2LN

which has an “average” approximation in both types of the ray cycles.
If both (6.1) and (6.4) are satisfied withR = 1/ε then the ray approximation is good

enough to provide an average convergence rateR per ray cycle for all characteristic compo-
nents.

If, however, the finest wave mesh-size does not satisfy (6.1) withε = 1/R, in order to
provide the fast convergence of the algorithm, the ray operator should be modified by adding
some additional terms so that it approximates the finest discrete wave operator, rather than
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the differential one. This addition is shown to be important in various numerical experiments,
although it has been omitted in those reported below, since the accuracyε there is sufficiently
small. To derive the correction terms, one has to calculate the First Differential Approxi-
mation (FDA) to the discrete operator (2.4) applied to the wave function in the ray form
v(x, y) = v̂(x, y)ei(k1x+k2y):

FDA(Lhv(x, y)) = ei(k1x+k2y)((Lr + h2Lc)v̂),

with Lr v̂ = ∆v̂+2ik1v̂x+2ik2v̂y (the ray differential operator (4.3) in the(x, y) coordinate
system) and

Lcv̂ =
(k4

1 + k4
2)

12
v̂− i

3
(k3

1 v̂x+k3
2 v̂y)−1

2
(k2

1 v̂xx+k2
2 v̂yy)+

i

3
(k1v̂xxx+k2v̂yyy)+

1
12

(v̂xxxx+v̂yyyy).

Hereh is the finest wave mesh-size, and(k1, k2) is the lattice frequency for which the ray
equations are written. The modified ray operator in the(x, y) coordinates is thenLr + h2Lc.

7. Wave Cycle. The outer part of the algorithm is a regular FAS Vwave cycle, host-
ing two ray cyclesat a certain stage. To describe it, the wave grids (levels) are numbered
1, 2, . . . ,M , where 1 is the coarsest grid, with uniform mesh-sizeh1 (usually in the range
5k−1 . h1 . 10k−1), and each subsequent grid has the uniform mesh-sizehm = hm−1/2.
Grid M is the target level, where the target equations (2.2) are given, withh = hM . The
grids are all aligned (coarser grid lines are obtained by taking every other line of the next
finer level). The domain covered by gridΩm is {(x, y) : |x| ≤ am, |y| ≤ am}, where
aM = d/2, andam = am+1 + Kmhm, i.e., each coarser gridm is widened byKm mesh-
seizes in each direction. (In our model algorithm we putKm = 4 if m ≥ Mr, andKm = 0
otherwise).

On each wave levelm, FAS equations are given by (2.2), withu = um, h = hm and
with a right-hand-sidefm given by

fmi,j =

 fi,j if m = M,
rmi,j + (Lmum)i,j if m <M, and rmi,j can be defined,

(Lmum)i,j if m <M, and rmi,j cannot be defined,

whererm = Imm+1(fm+1 − Lm+1ũm+1), which can be defined only at points interior to
Ωm+1; Imm+1 is an adjoint interpolation operator from the finer levelm+ 1 to levelm; ũm+1

is the latest solution approximation on levelm+ 1, Lm andLm+1 are the wave operators of
type (2.2) on levelsm andm + 1, respectively, andum is some fixed approximation to the
solution on levelm, whose choice has been discussed in Sec. 5.

The V cycle has two subsequent parts, or “legs”. In the first leg the algorithm proceeds
sequentially from the finest wave level(m = M) to the coarsest one(m = 1). On each
level m, several relaxation sweeps are performed, then (ifm > 1) the residuals and the
approximate solution are transferred to the next coarser grid to define its right-hand side
(fm−1).

In the second leg of the V cycle the algorithm proceeds sequentially from the coarsest
level (m = 1) to the finest(m = M). On each levelm several relaxation sweeps are
performed, then in the particular case thatm = M0 two ray cycles(see Sec. 8) are performed,
and then the correction to the solution is interpolated to the interior points of the next finer
grid, i.e.,

um+1 = ũm+1 + Im+1
m (um − um).(7.1)
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HereIm+1
m is an interpolation operator and̃um+1 is the former latest approximation to the

solution on levelm+ 1 (formed just before the visit to levelm and used in calculatingrm, as
part of definingfm). On the fine levels(m ≥Mr) the valueson the boundaryare interpolated
directly as

um+1 = Im+1
m (um).(7.2)

On coarse wave grids (m < Mr), the boundary conditions are injected from the finer
grids in the fine-to-coarse leg of the wave cycle, and no boundary corrections are introduced
by these levels in the coarse-to-fine leg of the cycle (i.e.,um+1 = ũm+1 on the boundary).

Let us carefully follow the behavior of different error components through this multigrid
cycle on the wave grids (excluding the ray cycles). For the majority of components, on the
grids withkh . 1, the relaxation properties for (2.2) are similar to those for definite elliptic
operators, which means an efficient reduction of high-frequency components. The smoothing
factors (i.e., the convergence factors per sweep for the high-frequency components on each
scale) are presented in Table 1. One can see that on the levels withkh . 1 andkh & 4, the
smoothing factors of the Gauss-Seidel relaxation are quite high, and only a few relaxation
sweeps on each level suffice to reduce high-frequency components by an order of magnitude.
However, the fast convergence is not always desirable, since it might be damaging when
obtained forerroneous components, i.e., those which have large relative errors on the relaxed
grids.

kh 0.125 0.5 1.0 1.25 1.5 2.0 3.0 4.0 6.0 8.0
µ1 0.50 0.52 0.65 0.80 div div 0.66 0.20 0.07 0.04
µ2 0.80 0.82 0.92 0.98 1.02 1.04 0.93 0.40 0.13 0.07

Table 1. Hereµ1 andµ2 are the smoothing factors for Gauss-Seidel and Kaczmarz relaxations, re-
spectively, in lexicographic ordering on different grids. The precise meaning of the “divergence” that
appears forkh ≈ 2 is given in Table 3.

A Fourier componentei(ω1x+ω2y) is erroneously approximated on the gridh if its relative
errorEh(ω1, ω2) satisfies

Eh(ω1, ω2) > 1.(7.3)

For equations (2.2) erroneous components happen to be close to the principal circle, i.e., their
frequencies satisfy √

ω1
2 + ω2

2 = k(1 + δ), |δ| � 1.

The symbol of (2.1) forei(ω1x+ω2y) is given by−ω2 +k2, while the symbol of the difference
operator (2.2) isk2 + 2h−2(cos(ω1h) + cos(ω2h) − 2). Hence, the relative error for such a
component is

Eh(ω1, ω2) =
∣∣∣∣2h−2(cos(ω1h) + cos(ω2h)− 2) + ω2

−ω2 + k2

∣∣∣∣.
For any frequency component(ω1, ω2) which satisfies (7.3) holds

k(1− δ−) ≤
√
ω1

2 + ω2
2 ≤ k(1 + δ+)(7.4)

with δ− andδ+ presented in Table 2.
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kh 0.25 0.5 1.0 1.25 1.5 2.0 3.0 4.0
δ+ .003 .011 .05 .08 .13 any any any
δ− .003 .01 .04 .06 .07 .11 .16 .21

Table 2. Limits of poorly approximated components. On the grids withkh ≥ 5 all components have
a small relative error – characteristic components are too oscillatory to be visible there. Relaxation
on such grids is not damaging for those components. By “any”, we mean thatall components with√
ω1

2 + ω2
2 > k which are visible on the grid have a bad approximation there.

In Table 3 the amplification factors of Gauss-Seidel and Kaczmarz relaxation for com-
ponents in the range (7.4) are shown. It is clear from the Table that on grids withkh ≤ 0.5,
the influence of the Gauss-Seidel relaxation on the erroneous components is negligible, and
therefore it can be applied without significant damage; by Table 1, 3–4 sweeps would suffice
to reduce high-frequency components on these grids.

kh 0.25 0.5 1.0 1.25 1.5 2.0 3.0 4.0
µ0 1.04 1.14 2.00 div div div 1.00 1.00
µ1 0.99 0.99 0.96 0.90 0.71 div 0.00 0.00
µ2 1.00 0.99 0.99 0.97 0.90 0.20 0.05 0.01

Table 3. Hereµ0 is the maximal divergence factor over all components per Gauss-Seidel relaxation
sweep;µ1 areµ2 are the strongest (i.e., the smallest) convergence factors in the range (7.4) for a Gauss-
Seidel and a Kaczmarz relaxation sweep, respectively. Forkh ≈ 2, the Gauss-Seidel relaxation has
a bad divergence, since the “diagonal” coefficient of (2.2) becomes very small, compared to the other
coefficients.

Actually, on a sufficiently fine grids (withkh . 0.125), the fast red-black Gauss-Seidel,
with the smoothing factor.25, can be applied. However, its use on the coarser levels is not
advisable, since its divergence qualities are even stronger than the ones of the lexicographic
Gauss-Seidel (µ0 in Table 2).

When h is close to1/k, the Gauss-Seidel divergence becomes too strong for some
smooth components. Hence, we choose to use the slower but always converging Kaczmarz
relaxation on such grids. Relaxation on all levels withh . 1/k would then provide an effi-
cient reduction of all error componentsei(ω1x+ω2y) in the range√

ω1
2 + ω2

2 ≥
πk

α?
, 1 . α? . 2.(7.5)

On levels with1/k < h < 5/k, both Gauss-Seidel and Kaczmarz relaxation schemes
strongly change components (7.4), introducing their erroneous approximations. Therefore,
any relaxation on these grids should be avoided.

On a level with mesh-sizeh ≥ 5/k, no characteristic components are visible, and the
convergence factor for the Gauss-Seidel relaxation there is very good (small) forall error
components which are represented there, i.e., the ones with√

ω1
2 + ω2

2 ≤
πk

β?
, 5 . β? . 10.(7.6)

Indeed, such a level can be chosen as the coarsest wave level, since one Gauss-Seidel re-
laxation sweep on it sufficiently convergesall visible components, including those smooth
components which are also visible on much coarser levels.

In the next Table we specify the number and the type of relaxation sweeps actually ap-
plied on the wave levels in the experiments reported below. As one can see, many Kaczmarz
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sweeps are applied on the level withkh = 1 in order to reduce the width of the characteristic
ring. An alternative here is to employ one additionalray level, finer than the finest used by
our current algorithm, and, by this, approximate a wider range of characteristic components.
We found it simpler to use the wave approach. The number of sweeps is bounded, i.e., it does
not depend on the size of the domain. Also, this level is much coarser than the finest wave
grid, so the cost of even 30 sweeps is small.

kh 1/16 1/8 1/4 1/2 1 2 4 8
N 2 2 4 4 30 0 0 2

Type G-S(r-b) G-S(r-b) G-S(l) G-S(l) K(l) none none G-S(l)

Table 4. Hereh is the wave mesh-size,N is the number of relaxation sweeps applied on gridh, and
“Type” stands for the type of relaxation: “G-S” meaning Gauss-Seidel and “K” – Kaczmarz relaxations;
“l” and “r-b” in parenthesis stands for the relaxation ordering: lexicographic or red-black, respectively.

In the numerical experiments reported below we have usedcubicinterpolation operators.
Applying instead linear interpolation leads to a mild drop in the convergence rates, but still
provides a good multigrid efficiency. However, it is advisable to use the higher-order (cubic)
interpolation at least on relatively coarse grids where it is inexpensive.

From (7.5) and (7.6) we see that the characteristic componentsei(ω1x+ω2y) which cannot
efficiently be reduced on the wave grids lie roughly in the range

πk

β?
≤
√
ω2

1 + ω2
2 ≤

πk

α?
.(7.7)

These are the components that should be reduced by the ray cycles, discussed next.

8. Ray Cycles.The residuals for the ray cycles are calculated not directly on the “wave-
to-ray switching” levelMr, (khMr ≈ (1, 1)) but on a sufficiently fine wave grid (levelM0

with khM0 � (1, 1)), so that they still yield accurate approximation to the target (finest) wave
equation. That level (M0) should be fine enough to yield with the discretization (2.2) a good
point-wise approximation to the characteristic error components. In practice the residuals
of that wave level are transferred, when they are needed, through intermediate levels (by
applying full-weighting operators) to the wave levelMr, where the ray separation starts (see
Sec. 4).

The ray cycle can be regarded as a modified V cycle. As a usual V cycle it consists of two
legs and employs several grids (levels)1, 2, . . .N , whereN is the coarsest and1 is the finest
level. On the finest ray levelL1 ray problems are represented: Each ray probleml is defined
in the appropriate rotated coordinates(ξ, η) (ξ being in propagation direction ofe1

l ) on a grid
with mesh-sizeh1 = (h1

ξ, h
1
η), with 2.5k−1 ≤ h1

ξ ≤ 5k−1 and1.25k−1 ≤ h1
η ≤ 2.5k−1.

There isnoneed to choose the finest ray grid to be finer than that, since on this scale all
characteristic components which concerns in the ray cycles still have an accurate resolution.

The coarsening of the ray grids is performed according to the smoothness of the ray
functions, needed to be represent on these grids. Each coarser gridn then has mesh-sizes
hnξ = 2hn−1

ξ and

hnη =
{

2hn−1
η if n is even,

hn−1
η if n is odd,

and the number of ray problems represented there is equal to

Ln =
{

2Ln−1 if n is even,
Ln−1 if n is odd.
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In the first leg of the ray cycle (i.e., when the algorithm proceeds sequentially from finer
to coarser grids) several relaxation sweeps (two Kaczmarz sweeps in our model algorithm)
are done on each ray level, except for the coarsest one.

Following relaxation, a switch is made to a coarser level, and the following transfers
are made. Ifn is even, meaning that the number of ray functions remains the same on the
coarser grid, the residual transfer is done as in a regular V-cycle with coarsening only in the
propagation direction (no separation is applied). Otherwise, the next coarser level employs
twice as many ray functions; half of them correspond to the same principal lattice components
that already appeared on the coarser lattice (corresponding to thefiner ray level), and another
half are represented only on the finer lattice (coarserray level). Ifn − 1 andn are the finer
and the coarser levels, correspondingly, then the coarse-grid residualsr̂n are evaluated by the
following two formulae:

r̂n2l+1 = Wn
n−1R

n−1
l ,(8.1)

r̂n2l = Wn
n−1[en−1

l I2l
2l−1(Rn−1

l ) + en−1
l+1 I

2l
2l+1(Rn−1

l+1 )]/en2l,(8.2)

whereWn
n−1 is a successive combination of simple weighting separation operators, con-

structed as described in Sec. 4. and in the Appendix A, that acts from the grid on leveln− 1
to the grid on leveln; Rn−1

j are the ray residuals, calculated on the ray leveln− 1; andI2l
2l±1

are interpolation operators (cubic, in our experiments) which transfer the residuals from the
grid in coordinates(ξnl±1, η

n
l±1) to the grid with the same mesh-sizes(hn−1

ξ , hn−1
η ) but in the

coordinates which coincide with(ξn2l, η
n
2l). Finally, the FAS right-hand-side is calculated as

in (5.1).
On the coarsest ray levelall ray problems represented there are solved almost directly,

by one sweep of line relaxation (see Sec. 4) which includes imposing the RBC as described
in Sec. 5.

In the second leg of the ray cycle (which means proceeding from coarser to finer levels),
the correction̂vnl ,

v̂nl = (ûnl − û
n

l ),(8.3)

calculated on a coarse ray gridn (ûnl being the current approximation and̂u
n

l – the initial
one), is interpolated to the next finer grid to improve the interior values of one or two finer
ray functions. Namely, ifn is odd

ûn−1
l = ˜̂u

n−1

l + In−1
n v̂nl ,(8.4)

and, ifn is even

ûn−1
l = ˜̂u

n−1

l + In−1
n v̂n2l + [en2l−1I

n−1
n (v̂n2l−1) + en2l+1I

n−1
n (v̂n2l+1)]/(2en−1

l )(8.5)

where2l ± 1 is taken moduloLn; In−1
n is an interpolation operator toΩn−1

l from Ωn2l or

from Ωn2l−1 or fromΩn2l+1 as needed; and̂̃u
n−1

l is the former approximate solution onΩn−1
l

(the latest approximation there, from which the residualsRn−1
l were calculated in forming

(8.1)–(8.2)). On the boundaries of the fine domains not the correction (8.3), but rather the
coarse-grid solutionŝunl themselves, using procedures similar to (8.4)–(8.5), directly replace
the former boundary values.
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Forn = 1, the corrections to the ray functions serve to improve the interior values of the
wave functionum,

um = ũm +
Ln∑
l=1

Iml,n(v̂nl )enl ,(8.6)

while on the boundaries ofΩm the values ofum are given by

um =
Ln∑
l=1

Iml,n(ûnl )enl ,(8.7)

wherem = Mr andIml,n is an interpolation (cubic, in our experiments) operator from the ray
grid Ωnl (defined in the proper rotated coordinate system) to the wave gridΩm (defined in the
(x, y) coordinate system) and̃um is the approximation on the wave levelMr just before the
ray cycle (i.e., the approximation from which the finest ray residualsr̂1

l are calculated). Then
the algorithm proceeds (with several relaxation sweeps on each wave level) to the wave level
m = M0 as described in (7.1)–(7.2).

No relaxation can be performed in the second leg of the ray cycle, since the ray coarse-
grid correction is distributed between the fine-grid ray functions not according to the weights
of residuals obtained from them, but with equal weights. Hence, after the coarse-grid correc-
tion the right-hand-side and the approximate solutions on the finer grids are not compatible.

Each wave cycle employs two ray cycles. The residuals for the first ray cycle are calcu-
lated when the second leg of the wave cycle reaches the wave levelM0; then these residuals
are transferred to the levelMr, etc. After the first ray cycle has accomplished its work, the
algorithm returns back to the wave representation, proceeding from the wave levelMr to the
finer wave levels, as described in Sec. 7, and reaches the wave levelM0, where the wave
residuals for the second ray cycle are calculated and transferred back to the levelMr.

In our algorithm, on the finest ray level (withn = 1 andLn = 8) we use two sets of
lattice points: Regular

k1,r
l = k

(
cos((l − 1)

π

4
), sin((l − 1)

π

4
)
)
,

and staggered

k1,s
l = k

(
cos((l − 1)

π

4
− π

8
), sin((l − 1)

π

4
− π

8
)
)
,

where in each casel = 1, . . . 8.
At lower ray levels (n > 1), if there are some, however, only regular sets (withθ0 = 0 in

(2.3)) are used in both cycles.
Let us now estimate what are the values ofkd for which the algorithm still can employ

only one ray level. The values ofL andR in (6.4) we are interested in areL = 8 and
R =

√
16, meaningR2 = 16 as a convergence factor for two ray cycles. (16 is the smooth-

ing factor of two red-black Gauss-Seidel relaxation sweeps, performed on the finest wave
level. We, indeed, would like to see the same factor for all error components, including the
characteristic ones treated by the ray cycles.) The following estimates can be obtained:

kd . 1280,(8.8)

if two types of the lattices (regularandstaggered) are employed, and

kd . 80,(8.9)

if only one lattice type is used in the algorithm.
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9. Numerical Results. The model problem chosen for tests of the wave-ray multigrid
algorithm is

∆u(x, y) + k2u(x, y) = f(x, y), (x, y) ∈ <2,(9.1)

wheref is randomly defined if
√
x2 + y2 < R0, or otherwise it is set to zero .

The computational work is measured inwork units– the unit being the number of arith-
metic operations required in the relaxation of the equations (2.2) on the finest wave grid. One
cycle of the algorithm can be shown to cost about 7 work units (about 4 of them on the finest
grid), invested in relaxation (2 sweeps on the finest level), residual calculation, separation,
and interpolation.

We have tested the algorithm described above for different parameters of the model prob-
lem and of the algorithm itself.

Since we are interested in showing an efficient solver for the highly indefinite problems,
in our experiments we always choose the wave numberk and the computational domain
diameterd so that

kd� 1.(9.2)

The results of computations for different values ofd with fixed k = 1 andR0 = 5 are
presented in Table 5. The algorithm employs one ray level with 8 lattice points, alternating
using the regular lattice and the staggered one (see Sec. 8).

kd C2 C3 C4 C5 C6 C7 C8 C9
10 1.8e-02 5.4e-04 2.0e-05 9.2e-07 4.8e-08 2.6e-09 1.5e-10 8.7e-12
20 7.0e-03 2.1e-04 8.7e-06 4.4e-07 2.4e-08 1.3e-09 7.5e-11 4.4e-12
40 3.7e-03 1.2e-04 4.7e-06 2.3e-07 1.2e-08 6.9e-10 4.0e-11 2.3e-12
80 2.1e-03 8.5e-05 3.7e-06 1.6e-07 7.6e-09 3.8e-10 2.1e-11 1.2e-12
160 1.2e-03 8.2e-05 5.5e-06 3.2e-07 1.7e-08 9.1e-10 5.0e-11 3.1e-12

Table 5. This Table shows theL2 norm of the residual function, calculated on the finest wave grid
before each cycle. The results are calculated for (9.1) withk = 1 andR0 = 5 for different sizes of
the computational domaind. C# stands for the number of the cycle before which the residual norm is
calculated. The finest wave level (M = 8) has a mesh-sizeh8 = 0.0625, the residuals for the ray cycle
are calculated on levelM0 = 6, whose mesh-size ish6 = 0.25; the separation process starts on level
Mr = 4 with mesh-sizeh4 = 1.0. The number and the type of relaxation sweeps on the wave levels is
specified in Table 4.

Clearly, the algorithm exhibits excellent convergence even for large values ofkd, and
this is indeed achieved by a relatively cheap procedure.

In Table 6 we present the results for the algorithm which employs one ray level and uses
only a regularlattice for both ray cycles, and the results for the algorithm that employstwo
ray levels at each ray cycle (with two types of lattices being used on the first ray level, but not
on the second) and compare them with the results from the previous Table.

kd = 10 kd = 20 kd = 40 kd = 80 kd = 160
Rm 18.0 17.8 17.7 19.3 18.0
Rr 17.7 11.9 6.7 5.7 3.1
Rt 17.8 18.6 13.3 11.5 11.0

Table 6.Rm is the asymptotic convergence factor per cycle for theL2 norm of the residual function for
(9.1)performed by the algorithms that employs one ray level and uses both regular and staggered lattice
(L = 8 andβ = 2 in (6.4));Rr is the asymptotic convergence factor performed by the algorithms that



ETNA
Kent State University 
etna@mcs.kent.edu

178 Wave-Ray multigrid method

employs only a regular lattice (L = 8 andβ = 1); Rt is the asymptotic convergence factor performed
by the “two-ray levels” algorithm (L = 16 andβ = 1).

The algorithm which uses only one lattice type (Rr) slows down when the value ofkd
is roughly close to the estimate (8.8), and the slowdown inRt can similarly be explained by
(6.4). We expectRm to slow down whenkd exceeds the estimate (8.9).

In the previous Tables we presented the results for a fixed value ofk. Table 7 shows how
changes ink influence the performance when for all values ofk we run the wave-ray cycle
with the same parameters as chosen above fork = 1.

k = 0.66 k = 0.7 k = 0.8 k = 1.0 k = 1.2 k = 1.3 k = 1.33
R 17.5 18.7 18.7 17.7 18.9 14.0 11.9

Table 7. HereR is the asymptotic convergence factor per cycle for theL2 norm of the residual function
for (9.1) performed by the algorithms that employs one ray level and uses both regular and staggered
lattice for different values of the wave numberk. Parameters of the algorithm are as in Table 5,d = 40.

We see that the algorithm shows a good convergence anywhere in the range.66 . k .
1.33. The convergence factor decreases fork outside this range. This can easily be corrected
just by choosing different algorithmic parameters, so that they again satisfy in terms ofkh
the relations which hold in the above model algorithm fork ∈ [.66, 1.33]. For example, for
k ∈ [1.33, 2.66] all the wave-to-ray transfer mesh-sizes (those ofM0,Mr andΩn) should be
chosen twice finer than fork ∈ [0.66, 1.33], and fork ∈ [.33, .66] – twice coarser, etc. We
emphasize that with a proper scaling this algorithm works equally well foranyvalue ofk.

10. Remarks and Future Work. In the work presented here, we have developed a
multigrid wave-ray algorithm for solving two-dimensional standing wave equations. Our
solvers exhibit high efficiency, permit a natural introduction of radiation boundary conditions,
eliminate constraints on the size of the domains considered and the mesh-size of the grids,
and use fast relaxation schemes on the finest, i.e., the most expensive, levels.

The present article has focused on the fast convergence of the multigrid cycles, not on the
accuracyof the obtained solution. A series of experiments has shown thatO(h2) accuracy is
indeed achieved, provided each of the coarse-level (wave and ray) domains is large enough –
its diameter increasing as the finest mesh-sizeh decreases. The rate of the needed increase
is mild, however, keeping the total number of grid points on all levels stillO(h−2). Detailed
derivation of the required domain sizes, together with numerical results of accuracy and of
corresponding FMG algorithms, will be given elsewhere.

The method developed here needs to be and can be extended in a number of ways. The
extension tothree dimensionsis relatively straightforward, although the circular lattices of
the present work will have to be replaced by spherical ones, requiring a tessellation of the
unit sphere.

Also relatively simple is the introduction of boundary conditions for the wave equations,
such as Dirichlet or Neumann or mixed, along some given curves (or surfaces), in addition to
the exterior RBC. This will imply certain relations between the various ray functions of a ray
level along such boundaries, corresponding to the reflection relations in geometrical optics.

The extension to the case ofvariable coefficientk = k(x, y) is more complicated. It has
been studied in [6] for the one-dimensional case, but the higher dimensional algorithms are
substantially different, as amply shown by the present article. In casek(x, y) variesslowly
(meaning that its changes over a distance of one wavelength are small compared to itself),
there should be no difficulty in applying the separation and other local procedures. On each
ray level of the algorithm, each of theL grids will correspond not to a fixed lattice point, but
to a fixed solution of the eikonal equation, the grid directionξ following the continuously car-
rying propagation direction. In case ofabruptchanges ink(x, y), relations between different
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rays, corresponding to reflection and refraction will necessarily enter.
A different case is that of asmall-scale disturbance, i.e., a small region, comparable in

diameter to the wavelength, over which eitherk(x, y) or the direction of the normal to the
boundary or to a curve of discontinuity ink significantly changes. Such a region, together
with a several-wavelength neighborhood around it, should be well resolved by a grid, on
which the wave equation is discretized. Due to its small size, the fast multigrid solver does
not need on that region by itself a ray-level acceleration, hence the precise ray discretization
there is immaterial. In the neighborhood, however, the ray discretization is crucial: it would
supply on one hand the rays entering into the region, and on the other obtain from it the
exiting rays. This can be achieved provided the FAS cycle includes, at least on exit regions,
a separation process not only for the residuals but also for the solution, i.e., theû

n

l are built
there not as in Sec. 6 above, but by separatingûn+1

l (or by separating the wave solutionuMr ,
in casen = 1). Thus, in such a situation, these are the wave levels that would mediate the
relation between incoming and outgoing rays.

This procedure can be regarded as a numerical extension of the WKB method, providing
a general tool for calculating diffraction effects only around arbitrary obstacles and other
disturbances. Typically, most of the problem domain will be treated bygeometrical optics,
i.e., very coarseray levels, with finer discretization reaching into wave levels being introduced
around regions of small-scale disturbances, where geometrical optics by itself would break
down.

11. Appendix A. Here we present a more detailed description of the separation process
used in our model algorithm to approximate the ray residual functionsr̂1

l , l = 1, . . . , 8, on
the finest ray level1 with mesh-size(4/k0, 2/k0), wherek0 = 2j, andj ∈ Z is chosen so
thatk = k/k0 ∈ [0.66, 1.33].

The separation starts with the wave functionr, defined on the wave levelMr with mesh-
size(1/k0, 1/k0) as follows

r = IMr

Mr+1[. . . [IM0−1
M0

RM0 ] . . .],

whereIj−1
j , j = M0, . . . ,Mr + 1 are full-weighting operators;RM0 = fM0 − LM0uM0

is the wave residual function;uM0 is the current solution approximation;fM0 is the FAS
right-hand-side andLM0 is the operator (2.2) on the wave levelm = M0. This function is
than interpolated to the rotated coordinates(ξ, η) and multiplied bye−ikξ , giving as a result
the functionr0(ξ, η).

The first separation operatorW0 is applied tor0(ξ, η). W0 is a tensor product of two
perpendicular “diagonal” one-dimensional weighting operators with the frequency parameter
(see Sec. 4) taken equal to 2. The resulting functionr1(ξ, η), defined on the grid with mesh-
size(hξ, hη) = (2/k0, 2/k0), is given by

r1(ξ, η) = min(1, k)× [W0(r0(ξ, η)].

The next separation operatorW1, applied tor1(ξ, η) is a tensor product of a weighting
operator in theξ direction defined by the frequency parametermax(1, k), and a weighting
operator in theη direction defined by the frequency parameter.85 max(1, k).

The resulting functionr2(ξ, η) is defined on the grid with mesh-size(4/k0, 2/k0) and is
given by

r2(ξ, η) = W1(r1(ξ, η)).

Finally, a weighting operator in theη direction defined by the frequency parameter.75 max(1, k
2
)

is applied tor2, yielding the target function̂r(ξ, η) on the same grid with(hξ, hη) = (4/k0, 2/k0).
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12. Appendix B. The numerical results shown in Table 5 where obtained by applying
the algorithm briefly described below in the form of a flowchart. We hope that this flowchart
will help the reader to go through some computational details. The algorithm employs eight
wave and one ray (with eight ray functions) levels.
Wave–Ray Cycle

First Leg of Wave Cycle: from finest levelM = 8 (h8 = 0.0625)
to coarsest level 1 (h1 = 8)
Second Leg of Wave Cycle: from level 1 to levelM0 = 6 (h6 = 0.25)
(No changes of boundary values)
On levelm = M0 calculate wave residualsrm = fm − Lmum
Transferrm by full-weighting procedure to levelMr = 4 (h4 = 1.0):

for (m = M0 − 1;m ≥Mr;m = m− 1) rm = FullWeighting(rm+1)
Employ Ray Cycle with Regular Lattice Set withrMr as input
and corrected solution approximationuMr as output.
Second Leg of Wave Cycle: from levelMr to levelM0

(On boundaries:um = Imm−1u
m−1,m = M0 + 1, . . .Mr)

On levelm = M0 calculate wave residualsrm = fm − Lm
Transferrm by full-weighting procedure to levelMr = 4

for (m = M0 − 1;m ≥Mr;m = m− 1) rm = FullWeighting(rm+1)
Employ Ray Cycle with Staggered Lattice Set withrMr as input
and corrected solution approximationuMr as output.
Second Leg of Wave Cycle: from levelMr to levelM
(On boundaries:um = Imm−1u

m−1,m = Mr + 1, . . .M )
End of Wave Ray Cycle
Ray Cycle

for (l = 1; l ≤ 8; l = l + 1) do
Interpolate input residualr defined in (x,y) coordinates on grid
with mesh(1, 1) to grid in (ξl, ηl) coordinates with mesh(1, 1) and
”divide” it by l-th lattice Fourier componentel: r0 = (I(ξl,ηl)

(x,y) r)/el
Residual separation:

From grid with mesh(1, 1) to grid with mesh (2,2)r1 = W0(r0)
From grid with mesh(2, 2) to grid with mesh (4,2)r2 = W1(r1)
From grid with mesh(4, 2) to grid with mesh (4,2)̂rl = W2(r2)

On level with mesh-size(4, 2):
Use previous values of̂ul as initial approximation̂ul
Calculate FAS right-hand-sidêfl = r̂l + L̂ûl
Introduce RBC and make one line relaxation, resultingûl
Calculate correction̂ul − ûl and interpolate it to grid in(x, y) coor-
dinates with mesh(1, 1), resultingδl
Correct interior values of wave approximate solutionu: u = u+ elδl

end for
(Boundary values ofu: u =

∑
ûle

l)
End Ray Cycle
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