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MULTIGRID ALGORITHM WITH CONDITIONAL COARSENING FOR THE
NON-ALIGNED SONIC FLOW ∗

BORIS DISKIN†

Abstract. A multigrid approach using conditional coarsening in constructing solvers for non-elliptic equations
on a rectangular grid is presented. Such an approach permits the achievement of a full multigrid efficiency even
in the case where the equation characteristics do not align with the grid. The 2D sonic-flow equation linearized
over a constant velocity field has been chosen as the model problem. An efficientFMG solver for the problem is
demonstrated.
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1. Introduction. Full-multigrid algorithms have proved to be the most efficient solvers
for discretized elliptic problems. They solve a general elliptic system of discretized partial
differential equations in just severalminimal work units, where a minimal work unit is defined
as the number of computer operations required for thesimplestdiscretization of the problem
on the target grid. This efficiency was rigorously proved for uniformly elliptic systems [5],
[4]. In recent years an extensive activity has been directed at applying the same techniques
to non-elliptic problems. However, these attempts have met with more limited success. Al-
though such multigrid solvers proved to be much more efficient than comparable single-grid
ones, thetextbook multigrid efficiency— obtaining a solution in just a few minimal work
units — has not been attained.

Indeed, many reported solvers require hundreds of minimal work units. Others, like
various solvers based on ILU decomposition, being efficient in 2D, cannot be extended to
3D without loosing most of their efficiency. The important issue of applicability for massive
parallel processing is not frequently taken into account.

A substantial preliminary step in constructing an efficient solver for a complicated prob-
lem is to detect different factors contributing to the increased amount of work and then to
attack them, each one in separation from others. One of the basic difficulties inherent in non-
elliptic problems is the treatment of non-alignment. This problem arises when the differential
equation characteristics do not precisely coincide with grid directions.

1.1. Poor coarse-grid approximation. In the presence of non-alignment the standard
multigrid cycle with full coarsening (the meshsizes are doubled in all the directions in passing
from fine to coarse grid) suffers from poor coarse-grid approximation for somesmoothfine-
grid error components. As a consequence the FMG algorithm employing such a cycle loses
its efficiency. This trouble has been realized and treated for convection-diffusion problem
(see [1]) for high-Reynolds incompressible entering flows (see [7]) and for sonic flows (see
[9]).

A simple explanation for the problem can be given in the case when all the characteristics
of the differential equation emanate from the boundary. In that case the quality of the coarse-
grid correction is defined by how well certain cross-characteristic oscillations are advected
on the coarse grid from the inflow boundary into the domain.

Any discretization of a non-aligned non-elliptic (or weakly elliptic) problem unavoid-
ably introduces some cross-characteristic numerical viscosity which is absent in the original
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differential problem. This viscosity determines the “penetration distance” of incoming os-
cillations. The magnitude of the viscosity is usually proportional to some power of the grid
meshsize and therefore differs from grid to grid. In the case of full coarsening the coarse-grid
cross-characteristic viscosity is much larger than that of the fine grid, which causes increased
decay and phase shifting of the cross-characteristic oscillations on the coarse grid.

The idea suggested in [9] to overcome this trouble is to usesemi-coarseningtogether
with introducing a well-balancedexplicit numerical viscosityon coarse grids to control the
penetration of incoming cross-characteristic oscillations. The subject of the present research
is to modify the algorithm of [9], making it somewhat cheaper and to exhibit another strategy
for treating problems with variable couplings.

1.2. Sonic flow equation.Thesonic flow equationwe have chosen (similar to [9]) to be
our model problem is the semi-elliptic equation

4̃Φ = f,(1.1)

where4̃Φ is the Laplacian on a lower dimensional manifold. We call such a manifolda
characteristic manifold.

We study the phenomenon of non-alignment in the 2D constant coefficient case where
the characteristic manifold is a straight line (a characteristic line). Although relatively sim-
ple, the problem nevertheless contains one of the main difficulties appearing in flows not
consistently aligned with the discretization grid. The approach we borrow from [9] is to use
a fixed Cartesian coordinate system independent of the characteristic plane. We choose thex
axis to bethe reference axis. Thus each characteristic line is uniquely defined by a point on
it and its inclination to the reference axis. We restrict ourselves to characteristic lines whose
inclinations are less than or equal toπ/4 (45o), in other words to lines that can be written as
αx+ βy = δ, where|β| ≤ |α|. Otherwise the role of the axes should be interchanged.

1.3. Discretization. The principles of discretizing semi-elliptic equations were formu-
lated in [9]. Briefly, they contain the following two stages:

1) Development of anh-elliptic discretization(see§2.1 in [3] or [2]) on a characteristic
manifold. The auxiliary grid is defined by means of theghost pointsplaced at the intersections
of the manifold with vertical grid lines. This lower-dimensional discrete operator is called the
low-dimensional prototype.

2) In the real dimension one should consider thelow-dimensional prototypelocally at
each grid point. The discretization is obtained by replacing values at the ghost points with
values linearly interpolated from the neighboring genuine grid points placed on the same
vertical grid line, together with the addition of several compensating points on the vertical grid
line going through the point where the discrete operator is being defined. This discretization
is h-elliptic in the full dimension.

Such a discretization possesses numerical viscosity because of the non-alignment and the
resulting interpolation. We will call it theinherent numerical viscosity, to distinguish it from
theexplicit numerical viscosityintroduced below. Quantitatively, the inherent numerical vis-
cosity is defined as the coefficient of the pure cross-characteristic derivative arising in thefirst
differential approximation(FDA) to the discrete operator (see [13]), the cross-characteristic
direction being defined as the direction perpendicular to the characteristic manifold.

Following [9] we introduce some useful notation. A function defined on the space under
consideration will be referred to as acharacteristic componentif it is a very smooth function
on the characteristic manifold. The termhigh-frequency characteristic componentwill refer
to a characteristic component that is highly-oscillating in thecross-characteristicdirection.
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Similarly the termsmooth characteristic componentwill denote a characteristic component
that is smooth in thecross-characteristicdirection (but not as smooth as in any of the charac-
teristic directions).

Previous studies on several types of non-elliptic equations (see [1], [7] and [9]) have
shown that the basic trouble in constructing an efficient multigrid solver is the poor approx-
imation of smooth characteristic components on coarse grids. The reason is the increased
coarse-grid inherent numerical viscosity appearing in cycles with full coarsening. A general
way to overcome this trouble would be to usesemi-coarsening, with meshsizes being doubled
only in the reference directions. When applied in its pure form, semi-coarsening also results
in some difficulties, since the inherent numerical viscosity of the semi-coarsened grid will be
much less than that of the fine grid. But we can supply the operator on the semi-coarsened
grid with an additional term (explicit numerical viscosity term) so that the total viscosity on
the semi-coarsened grid is the same as on the fine grid.

The three- or even four-level version of such a cycle, with two pointwise relaxations on
each level and appropriate inter-grid transfers, can already be used to solve efficiently the
model problems discretized on a uniform target grid. However, the implementation of a cycle
with more levels raises a new difficulty.

1.4. Strong cross-characteristic coupling.The inherent numerical viscosity in our al-
gorithm arises from the vertical interpolation to the ghost points. To obtain the same total
viscosity, we introduce an explicit numerical viscosity on the coarse grids by adding a term
which is a discrete approximation to a vertical derivative of suitable order.

The multigrid theory of h-elliptic discrete operators (see [3], [1]) shows that a point-
wise relaxation can reduce only the error components that oscillate in the strong-coupling
directions. A simple coupling analysis of the discretization used below shows that thetarget-
grid discrete-operator direction of stronger coupling approximately coincides with the char-
acteristic manifold. Thus a target-grid pointwise relaxation can reduce efficiently the non-
characteristic error components and also some of the high-frequency characteristic compo-
nents of the error. That is all we need from the relaxation since the smooth characteristic
components (and most of the high-frequency characteristic components) are well reduced on
the nextsemi-coarsenedgrids. However, successive semi-coarsening implies a fast decrease
in the inherent numerical viscosityon the coarse grids and hence a fast increase in the weight
of the compensating explicit numerical viscosity in the coarse-grid discrete operator. Thus
the direction of the strongest coupling after several semi-coarsening steps tends to be ver-
tical; hence any pointwise relaxation on such coarse grids will not reduce efficiently some
non-characteristiccomponents of the error.

One can perform a simple coupling analysis to distinguish two directions: the first is the
characteristic direction and the second is the viscosity action direction (vertical direction in
our case). When the “viscous” coupling dominates over the “characteristic” one the approach
above loses its efficiency. The way suggested in [9] to overcome this difficulty was to use a
“conditional relaxation” technique, meaning that one should switch from pointwise to verti-
cal line relaxation starting from a grid where the viscous coupling is strong enough. In the
present paper we test a “conditional coarsening” technique — to switch to full coarsening
whenever it is possible. It is clear that we would like to use full coarsening as much as possi-
ble, since it is cheaper. The main hindrance is the increased inherent numerical viscosity on
coarse grids. (An explicit numerical viscosity term with a sign opposite to that of the inherent
numerical viscosity can cause instabilities in the discretization and therefore its appearance
is undesirable.) But if the full coarsening step follows a semi-coarsening one (which, in turn,
decreases the inherent numerical viscosity) then the inherent numerical viscosity on the grid
obtained by the full coarsening is already about the same as on the target grid. Thus one
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could use full coarsening for every other coarsening step. However, in practice, we need a
more delicate criterion for the switching since the inherent numerical viscosity depends on
the characteristic inclination; therefore the rule above cannot be applied automatically.

Another more accurate criterion, derived from the coupling analysis and confirmed in the
two-level experiments, will be exhibited in the next section.

2. Non-aligned Sonic Flow.

2.1. Problem statement.We consider the simple equation

∂2Φ
∂ξ2

= F,(2.1)

where the characteristic direction isξ = (x + ty)(1 + t2)−1/2 andt = tanψ is the tangent
of the angle of non-alignment, i.e., the angle between the characteristic direction and the
referencex−axis. We require|t| ≤ 1. The unknown scalar functionΦ(x, y) is defined on the
square(x, y) ∈ [0, 1]× [0, 1]

Eq. (2.1) is supplied with Dirichlet boundary conditions in thex direction and periodic
conditions in they direction:

Φ(0, y) = g0(y), Φ(1, y) = g1(y), Φ(x, y) = Φ(x, y + 1),(2.2)

whereg0(y) andg1(y) are given functions.
The nine-point discretization of (2.1) on a grid with aspect ratiom = hx/hy, wherehx

andhy are the meshsizes in thex andy directions, respectively, is defined by

L(hx,hy)φi1,i2 ≡
1

h2
x+(k+s)2h2

y
[(1− s) (φi1−1,i2−k + φi1+1,i2+k)

+s
(
φi1−1,i2−(k+1) + φi1+1,i2+(k+1)

)
−2φi1,i2 − s(1− s) (φi1,i2−1 − 2φi1,i2 + φi1,i2+1)]
−A 1

h2
y

[φi1,i2+2 − 4φi1,i2+1 + 6φi1,i2 − 4φi1,i2−1 + φi1,i2−2] .

(2.3)

Hereφi1,i2 is a discrete approximation toΦ(i1hx, i2hy); k + s = mt, k is integer and
0 ≤ s < 1 (see Figure 2.1);A is the explicit numerical viscosity coefficient. Thus the
differential problem (2.1)–(2.2) is discretized on the grid as

L(hx,hy)φi1,i2 = fi1,i2 , i1 = 1, . . . , n1 − 1
φ0,i2 = g0(i2hy),
φn1,i2 = g1(i2hy),(2.4)

φi1,i2+n2 = φi1,i2 , i1 = 0, 1, . . . , n1

where n1 = 1/hx, i2 ∈ Z, n2 = 1/hy andfi1,i2 = F (i1hx, i2hy).
The first differential approximation (cf. [13], [1]) to the operator (2.3) is

φhξξ − h2
y

[
A+

(
(1− s)s cos(ψ)

2m

)2
]
φyyyy,(2.5)

whereφhξξ is the first differential approximation to the one-dimensional prototype. For char-
acteristic componentsφhξξ ≈ φξξ. On the target gridA = 0, and on coarser gridsA is
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FIG. 2.1.Anisotropic grid; nine point stencil.

chosen so that thetotal cross-characteristic viscosity, i.e., the coefficient ofφyyyy in (2.5),
remains the same as on the target grid. Note that upon a semi-coarsening step the values ofhy
andψ remain unchanged whiles(1 − s)/m decreases, i.e., the inherent numerical viscosity
decreases. On the other hand upon a full coarsening stephy increases, while all the other
parameters remain the same, hence, the inherent numerical viscosity increases. Note also
that the true cross-characteristic viscosity should be defined as the coefficient of the fourth
derivative with respect toη, whereη = (−tx+y)(1+ t2)−1/2 is the variable along the cross-
characteristic direction, but for the characteristic components in the constant coefficient case
that is just proportional to they-directional viscosity.

2.2. Multigrid cycles and coarsening policy. In this section we first present a two-
level cycle employing either semi- or full coarsening. The basic parts of the cycle, such as
relaxation, residual transfer and correction interpolation are described. The two-level numer-
ical tests together with the coupling analysis discussed here allow us to construct an efficient
multigrid cycle, which is examined at the end of this section.

2.2.1. Relaxation.The relaxation to be used in the algorithm is the eight-color Gauss-
Seidel relaxation. The elementary step of this relaxation is to change the solution approxima-
tion at the point(i1, i2) to satisfy Eq. (2.4). The order of performance of the elementary step
obeys the following rules.

1) The odd vertical lines (the vertical lines with oddi1 coordinate) are relaxed before the
even ones.

2) The relaxation in each vertical line consists of four sweeps. Each sweep performs the
elementary step for every fourth point on the line. The first sweep starts from the point with
vertical coordinatei2 = 0, the second — from the point withi2 = 2, the third — from the
point with i2 = 1 and the last — from the point withi2 = 3.
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- fine grid point, -  coarse grid point, - characteristic

FIG. 2.2.Residual transfer to semi-coarsened grid.

It is a quite efficient and fully parallelizable relaxation. This order of relaxation is not
necessary for efficient smoothing. It is chosen to enable full parallelization and preclude
the appearance of relaxation “boundary layers”. To be sure, the red-black relaxation scheme
would be efficient as well, but then the results would slightly depend onwherethe sweeps
start and end, which we wanted to avoid.

2.2.2. Inter-grid transfers. The inter-grid communication within any cycle consists of
two types of transfers. The fine-to-coarse transfer forms the coarse-grid approximation to the
fine-grid residual function

ri2i1 = f i2i1 − L
(hx,hy)φi2i1 .

The coarse-to-fine transfer is the interpolation of the coarse-grid correction. In our cycle both
transfers are anisotropic. The distinguished direction tends to coincide with the characteristic
one.

Residual transfer to a semi-coarsened gridis given by

Ri1,i2 =(
IHh r

)
i1,i2

= .5 r2i1,i2 + .25
[
(1− s)

(
r2i1−1,i2−k + r2i1+1,i2+k

)
+s
(
r2i1−1,i2−k−1 + r2i1+1,i2+k+1

)]
,

(2.6)

whereR andr denote the coarse and fine grid residual functions, respectively.
The scheme is described in Figure 2.2. The solid arrows show where a fine-grid point

residual is sent to. The dashed arrows exhibit all the fine-grid points sending their residuals
to a given coarse-grid point.
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- fine grid point, -  coarse grid point, - characteristic

FIG. 2.3.Residual transfer to fully coarsened grid.

Correction interpolation from a semi-coarsened gridis given by the operator adjoint
to (2.6), 

v2i1,i2 = Vi1,i2 ,

v2i1+1,i2 = .5
[(

1− S1

)(
Vi1,i2−K1 + Vi1+1,i2+K1

)
+S1

(
Vi1,i2−K1−1 + Vi1+1,i2+K1+1

)]
,

whereV is the solution of the coarse-grid problem,v denotes the correction to the fine-grid
solution approximation andK1 is an integer such that(K+S)/2 = K1 +S1, 0 ≤ S1 < 1,K
andS being the parameters of the coarse-grid discretization (defined likek ands in Fig. 2.1).

Residual transfer to a fully coarsened gridis defined by

Ri1,i2 =
1
4
r2i1,2i2 +

1
8

(
r2i1,2i2−1 + r2i1,2i2+1

)
+

1
16

[
(1− s)

(
r2i1−1,2i2−(k−1) + r2i1+1,2i2+(k−1)

)
+ (1 + s)

(
r2i1−1,2i2−(k+1) + r2i1+1,2i2+(k+1)

)]
+

1
16

[
(2− s) (r2i1−1,2i2−k + r2i1+1,2i2+k) + s

(
r2i1−1,2i2−(k+2) + r2i1+1,2i2+(k+2)

)]
.

The map of this transfer is shown in Fig. 2.3. The notations remain the same: dashed ar-
rows show the fine-grid points contributing to a given coarse-grid point residual, solid arrows
show where a given fine-grid point residual is sent to.
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Correction interpolation from a fully coarsened grid is described in the following
formulas


v2i2

2i1
= V i2i1 ,

v2i2
2i1+1 = .5

[
(1− S1)

(
V i2−K1
i1

+ V i2+K1
i1+1

)
+ S1

(
V
i2−(K1+1)
i1

+ V
i2+(K1+1)
i1+1

)]
,

v2i2+1
2i1

= .5
[(
V i2i1 + V i2+1

i1

)]
,

v2i2+1
2i1+1 = .5

[
(1− S2)

(
V i2+1−K2
i1

+ V i2+K2
i1+1

)
+ S2

(
V
i2+1−(K2+1)
i1

+ V
i2+(K2+1)
i1+1

)]
,

whereK1 andK2 are integers,K1 + S1 = (K + S)/2, K2 + S2 = (K + S + 1)/2, 0 ≤
S1, S2 < 1; K andS are the coarse-grid discretization parameters (in the case of full coars-
ening they are in fact the same ask ands of the fine-grid discretization).

2.2.3. Coarsening policy and numerical experiments.As mentioned in Section 1.4,
the criterion whether to use full or semi- coarsening can be derived from a coupling analysis
of the FDA approximation (2.5). The “characteristic” coupling is determined byφhξξ and a
quantitative measure of this coupling is

h−2
ξ =

((
m2 + (k + s)2

)
h2
y

)−1

.

The “viscous” coupling is maintained by the second term in (2.5) in whichφyyyy has the
coupling strengthh−4

y . We can switch to full coarsening when this “viscous” coupling be-
comes comparable with the “characteristic” one, i.e., when the ratio between them, which
we call theRelative Coupling (RC), becomes close to one. In practice one should switch
to full coarsening already when RC> .5, since otherwise the viscous coupling on the next
semi-coarsened grid will be too strong, making pointwise relaxation there somewhat ineffi-
cient. The derived criterion completely agrees with the experimental comparison between the
asymptotic convergence rate of the two-level cycles employing full vs. semi-coarsening.

The two-level cycleV2(ν1, ν2) can formally be defined by the following six steps.
(i) Pre-relaxation sweeps. Improve the initial fine-grid approximation byν1 relaxation

sweeps
(ii) Residual transfer. Form on the coarse grid the approximationR to the fine-grid

residual function.
(iii) Coarse-grid equation. Form the coarse-grid equation

L(Hx,Hy)V = R.

The discrete operatorL(Hx,Hy)V depends on the coarse-grid discretization parametersK and
S which should be recalculated by means of the coarse-grid aspect ratio. The value of the
coarse-grid explicit numerical viscosity parameterA is chosen so that the coarse-grid total
viscosity is exactly the same as on the fine grid.

(iv) Exact solution. Solve the coarse-grid equation by whatever method.
(v) Coarse-grid correction. Interpolate the obtained coarse-grid solution to the fine grid

to correct the current fine-grid approximation.
(vi) Post-relaxation sweeps. Improve the corrected fine-grid approximation byν2 relax-

ation sweeps
We have run the two-level cycles with either full or semi-coarsening on grids with aspect

ratiosm = 1, 2, 4, 8, 16 for different characteristic inclinations. We chose zero right hand
side and zero boundary conditions, so thatU(x, y) ≡ 0 is the exact solution of the differ-
ential problem (2.1-2.2). This choice of data together with random initial error facilitates
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observing the cycle asymptotic behavior. The fine-grid explicit numerical viscosity parame-
terA value has been calculated under the assumption that the fine grid itself was obtained by
(log2m steps of) semi-coarsening starting with a uniform target grid. In other words the total
numerical viscosity in the cycle was chosen to be equal to the inherent numerical viscosity of
the uniform grid with meshsizehy.

Within each experiment we have performed two runs of theV2(1, 1) cycle, starting each
time from a random initial error. The first run was done for the cycle employing semi-
coarsening and the second — for the cycle with fully coarsened coarse grids. Each run
consisted of at least 12 cycles, stopping further cycling if the maximal difference in the con-
vergence factors of the three last cycles did not exceed0.01. The results of these experiments
are exhibited in Table 1.

This table uses the following notation:hy is the vertical meshsize;m is the fine-grid
aspect ratio;t = tanψ is the inclination parameter, whereψ is the angle between the char-
acteristic direction and the referencex axis; ν1 andν2 are cycle parameters. The column
“cycles” shows the number of cycles performed until the convergence factor has been stabi-
lized. In the column “final” the convergence factor of this last cycle (theL2 error norm before
the cycle divided by that norm after the cycle) is printed. The column “aver.” exhibits the
convergence factor averaged overall the cycles performed in the run.

The comparison of the results for different types of coarsening shows that for RC≤ .25
the only efficient cycle is that employing semi-coarsening; for.25 < RC< 2 the results are
satisfactory for both types of coarsening and for2 < RC both cycles are inefficient. The
results mean that the threshold value of the relative coupling to switch between semi- and full
coarsening should be.25 ≤ RC≤ .5. We choose RC =.5, to separate the cases of different
coarsening.

Thus, themultilevelcycle employingconditional coarseningobeys the following rule: if
on the current grid RC≤ .5 then the grid is next semi-coarsened; otherwise full coarsening is
used. We performed experiments with a 6-levelV6(1, 1) cycle using conditional coarsening.
This cycle can formally be described similar to the two-level cycle description, except that
step (iv) is replaced by a recursive call to the same cycle applied to the coarse-grid problem.
These experiments show a stable asymptotic convergence with slightly slower rate than in
the two-level experiments. Table 2 compares the results of conditional coarsening cycle with
those of a cycle using the conditional relaxation technique (see [9]). The conditional coars-
ening cycle seems to be a bit less efficient, but it is cheaper and this can be significant in the
case when the target grid discretization possesses a relatively strong viscous coupling. (But
not as strong as RC> 2; in that case the adequate coarse grid is obtained by semi-coarsening
in thevertical (viscous coupling) direction.)

2.3. FMG solver. The FMG solver based on theV (1, 1) cycle using conditional coars-
ening possessestextbook multigrid efficiency. Its setupwork can be described by the follow-
ing steps.

1. Target-grid problem.We formulate the discrete equation (2.3) on the chosen target
grid. The parameterA for this grid is set to zero. The total viscosity value for the entire
algorithm is defined as this target-grid inherent numerical viscosity. A proper discretization
of the right-hand sidef and the boundary condition functionsg0 andg1 is also performed.
In our implementation these discrete functions are simply injected from the corresponding
continuous ones.

2. Next coarse-grid construction.The next coarse grid is constructed by either semi- or
full coarsening, depending on the current-grid relative coupling value in the same way as in
the cycle described above.

3. Coarse-grid problem.The discretization parameters such as the aspect ratio, the new
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K,S parameters and the explicit numerical viscosity coefficientA are calculated for the new
grid. The general form of the coarse-grid operator remains the same. The coarse-grid right-
hand side functionF is formed by the same averaging procedure that is used for the residual
transfer inside the cycles, i.e.,

Fi1,i2 = .5 f2i1,i2 + .25
[
(1− s)

(
f2i1−1,i2−k + f2i1+1,i2+k

)
+ s
(
f2i1−1,i2−k−1 + f2i1+1,i2+k+1

)]
for semi-coarsening and

F i2i1 =
1
4
f2i2

2i1
+

1
8
(
f2i2−1

2i1
+ f2i2+1

2i1

)
+

1
16

[
(1− s)

(
f

2i2−(k−1)
2i1−1 + f

2i2+(k−1)
2i1+1

)
+ (1 + s)

(
f

2i2−(k+1)
2i1−1 + f

2i2+(k+1)
2i1+1

)]
+

1
16

[
(2− s)

(
f2i2−k

2i1−1 + f2i2+k
2i1+1

)
+ s

(
f

2i2−(k+2)
2i1−1 + f

2i2+(k+2)
2i1+1

)]
for full coarsening. The coarse-grid boundary conditions areinjectedfrom the previous fine
grid (averaging could as well be used).

Steps 2 and 3 are repeated until the coarsest possible grid is reached and its problem is
defined.

Theexecutionof the FMG algorithm then involves the following steps:
a) The coarsest-grid problem is solved by whatever method.
b) The solution obtained on the current grid is interpolated to the next fine grid to serve

as an initial approximation to the fine-grid solution. The “FMG interpolation” used in this
step is the fourth order in the characteristic direction and the second order in the vertical
direction. (In the vertical direction we may also need a higher order interpolation, especially
for the full coarsening step, but the experiments show that even with this lower order vertical
interpolation the algorithm successfully reduces the algebraic errors well below the level of
the discretization errors.)

c) The obtained initial approximation is improved by one V(1,1) cycle.
We repeat the stepsb) andc) up to the target grid. There we perform one additional

improving cycle (mainly for checking purposes).
We have performed numerical experiments with a six-level FMG algorithm. The target

finest grid is always a uniform grid with meshsizehy = hx = h = 2−7. The right-hand
side function and boundary conditions of the differential problem (2.1)–(2.2) are chosen so
that the continuous functionsin(θx+ ωy) is the exact solution. For all types of components
we check four different characteristic slopest = tanψ. The results are collected in Table 3
where we compare the target-grid discretization error with the algebraic errors after the FMG
interpolation to the target grid and at the end of the first and the second improving cycles.
For nearly all the examined components the algebraic error after the first cycle is much less
than the discretization error. In fact, in the case of characteristic components the algebraic
error is at the level of the discretization error already after the FMG interpolation. For non-
characteristic components, oneV (1, 1) target-grid cycle is enough to obtain an approximation
possessing the discretization accuracy.

We can thus conclude that the FMG algorithm requires only oneV (1, 1) cycle per FMG
level, or a total of about13 “minimal work units”, to reach the discretization accuracy for the
target-grid approximation.

2.4. Notes about 3D sonic flow.Experiments performed with the 3D sonic flow solver
confirm that this approach is well extendible to 3D, keeping the textbook multigrid efficiency.
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(In fact, this 3D solver requires justsix “minimal work units” to get the target-grid approx-
imation, with an error which is less than the target-grid discretization error.) One can find
the numerical test results in [10]. We should also emphasize that the work saving of the con-
ditional coarsening algorithm in comparison with the conditional relaxation algorithm from
[9] is less important in 3D since the 3D semi-coarsening has two coarsening directions and,
therefore, conditional relaxation algorithm is extremely cheap as well.

Nevertheless, one can imagine cases when the conditional coarsening approach can give
a real gain. For example, 3D semi-elliptic problems on a one-dimensional characteristic
manifold (e.g. convection) fall into this category.
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3. Tables of Numerical Results.

Table 1. Multigrid solver of the eqn.∂
2U
∂ξ2 = f in 2D.

2 level algorithm;

Exact continuous solution:U ≡ 0

asymptotic convergence rate
relative semi coarsening full coarsening

hy m t ν1 ν2 coupling cycles final aver. cycles final aver.

0.03125 1 0.100 1 1 0.00203 20 4.21 13.8 14 1.1 2.73

0.03125 1 0.300 1 1 0.01103 20 3.44 5.54 20 1.33 2.43

0.03125 1 0.500 1 1 0.01562 21 4.99 6.76 17 1.4 2.73

0.03125 1 0.700 1 1 0.01103 18 3.48 5.76 23 1.32 2.24

0.03125 1 0.900 1 1 0.00202 13 4.18 19.6 16 1.09 2.6

0.01562 2 0.100 1 1 0.00810 19 3.39 6.99 17 1.22 2.48

0.01562 2 0.300 1 1 0.04410 23 6.05 8.94 18 1.95 3.3

0.01562 2 0.500 1 1 0.06250 33 13.3 14.8 32 1.6 2.23

0.01562 2 0.700 1 1 0.04410 28 6.09 8.44 16 1.94 3.58

0.01562 2 0.900 1 1 0.00810 20 3.39 6.73 15 1.24 2.65

0.00781 4 0.100 1 1 0.03240 26 5.35 7.36 17 1.74 3.15

0.00781 4 0.300 1 1 0.17640 30 17.8 20.9 18 3.8 4.88

0.00781 4 0.500 1 1 0.25000 28 20.9 22.2 24 3.05 4.1

0.00781 4 0.700 1 1 0.17640 35 17.8 20.4 24 3.79 4.66

0.00781 4 0.900 1 1 0.03240 24 5.38 7.52 17 1.7 3.1

0.00391 8 0.100 1 1 0.12960 28 15.9 19.3 20 2.99 4.15

0.00391 8 0.300 1 1 0.70560 31 6.19 6.65 25 6.33 6.79

0.00391 8 0.500 1 1 1.00000 15 3.7 4.3 16 3.7 4.24

0.00391 8 0.700 1 1 0.70560 30 6.18 6.65 27 6.31 6.8

0.00391 8 0.900 1 1 0.12960 30 15.9 19.3 23 3.01 4.08

0.00195 16 0.100 1 1 0.51840 36 8.86 9.59 37 8.84 9.35

0.00195 16 0.300 1 1 2.82240 15 1.64 2.4 14 1.64 2.47

0.00195 16 0.500 1 1 4.00000 15 1.43 2.35 15 1.43 2.34

0.00195 16 0.700 1 1 2.82240 15 1.63 2.39 14 1.64 2.46

0.00195 16 0.900 1 1 0.51840 42 8.87 9.55 35 8.84 9.35
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Table 2. Multigrid solver of the eqn.∂
2U
∂ξ2 = f in 2D.

6 level algorithm;

Exact continuous solution:U ≡ 0

asymptotic convergence rate
conditional coarsening conditional relaxation

hy m t ν1 ν2 cycles final aver. cycles final aver.

0.01562 1 0.100 1 1 15 2.1 14.2 12 2.23 25.7

0.01562 1 0.300 1 1 21 3.09 5.3 24 3.19 5.82

0.01562 1 0.500 1 1 31 4.13 5.65 26 5.01 7.41

0.01562 1 0.700 1 1 21 3.1 5.2 28 3.16 5.33

0.01562 1 0.900 1 1 14 2.09 13.5 13 2.22 23

0.00781 2 0.100 1 1 26 2.66 5.4 20 2.71 7.09

0.00781 2 0.300 1 1 33 4.07 6.18 27 5.82 8.95

0.00781 2 0.500 1 1 21 4.45 7.8 22 10.9 16.1

0.00781 2 0.700 1 1 26 4.15 6.79 24 5.81 9.17

0.00781 2 0.900 1 1 27 2.66 5.27 26 2.72 5.95

0.00391 4 0.100 1 1 25 3.99 6.36 34 5.07 7.33

0.00391 4 0.300 1 1 21 4.15 7.21 26 8.17 24.6

0.00391 4 0.500 1 1 32 4.37 5.66 29 11 14.6

0.00391 4 0.700 1 1 23 4.18 6.91 27 8.23 24.4

0.00391 4 0.900 1 1 25 3.98 6.31 28 5.06 7.69

0.00195 8 0.100 1 1 20 4.09 7.84 27 6.82 22.2

0.00195 8 0.300 1 1 22 4.23 5.49 25 8.04 19.9

0.00195 8 0.500 1 1 18 3.69 4.19 26 9.93 13.2

0.00195 8 0.700 1 1 25 4.25 5.41 29 8.01 18.6

0.00195 8 0.900 1 1 20 4.06 7.8 27 6.77 22.2

0.00098 16 0.100 1 1 25 4.08 5.42 24 6.63 15.2

0.00098 16 0.300 1 1 14 1.64 2.46 41 10.9 27.6

0.00098 16 0.500 1 1 15 1.43 2.35 24 11.7 36.8

0.00098 16 0.700 1 1 14 1.64 2.46 37 10.8 29.6

0.00098 16 0.900 1 1 25 4.09 5.41 26 6.66 14.6
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Table 3. Multigrid 1FMG-solver of the eqn.∂
2U
∂ξ2 = f in 2D.

ξ = x+ty√
1+t2

; η = −tx+y√
1+t2

6 levels; basic cycle: conditional coarsening V(1,1);

Exact continuous solution:U = sin(βξξ + βηη) = sin(θx+ ωy)

Discretization Algebraic error
t βξ

√
1 + t2hy ωhy θhx error Before cycles After 1 cycle After 2 cycle

0.100 0.05131 0.09817 0.04149 0.00056 0.00019 1.92 · 10−05 9.05 · 10−06

0.300 0.05330 0.09817 0.02385 0.000796 0.001 5.14 · 10−05 1.18 · 10−05

0.500 0.05708 0.09817 0.00799 0.00065 0.00156 0.000101 9.23 · 10−06

0.800 0.06538 0.09817 −0.01316 0.000395 0.000298 4.19 · 10−05 9.71 · 10−06

0.100 0.05131 0.98175 −0.04687 0.0789 0.0693 0.0179 0.00554

0.300 0.05330 0.98175 −0.24123 0.409 0.0542 0.00939 0.00225

0.500 0.05708 0.98175 −0.43380 0.477 0.022 0.00397 0.000819

0.800 0.06538 0.98175 −0.72002 0.402 0.0527 0.0109 0.00242

0.100 0.05131 2.45437 −0.19413 0.604 0.0424 0.0111 0.00429

0.300 0.05330 2.45437 −0.68301 0.676 0.0523 0.00697 0.00136

0.500 0.05708 2.45437 −1.17011 0.681 0.0478 0.00473 0.000373

0.800 0.06538 2.45437 −1.89812 0.67 0.0507 0.00926 0.00266

0.100 0.72025 0.09817 0.71043 0.0384 0.0462 0.00206 0.000944

0.300 0.74823 0.09817 0.71878 0.041 0.0539 0.00203 0.000205

0.500 0.80127 0.09817 0.75218 0.0539 0.0699 0.00316 0.000129

0.800 0.91779 0.09817 0.83925 0.063 0.112 0.00188 0.000332

0.100 0.72025 1.07992 0.61226 0.111 0.0817 0.014 0.00438

0.300 0.74823 1.07992 0.42425 0.156 0.159 0.00758 0.00185

0.500 0.80127 1.07992 0.26131 0.135 0.257 0.0145 0.0022

0.800 0.91779 1.07992 0.05385 0.0881 0.152 0.00232 0.000534

0.100 0.72025 2.06167 0.51408 0.394 0.125 0.0038 0.00142

0.300 0.74823 2.06167 0.12973 0.44 0.533 0.0896 0.0179

0.500 0.80127 2.06167 −0.22957 0.118 0.494 0.0535 0.00584

0.800 0.91779 2.06167 −0.73154 0.00653 0.258 0.00665 0.00146

0.100 2.20022 0.09817 2.19040 0.433 1.36 0.00272 0.000964

0.300 2.28569 0.09817 2.25624 0.513 1.46 0.041 0.00159

0.500 2.44771 0.09817 2.39862 0.685 1.63 0.0792 0.00067

0.800 2.80367 0.09817 2.72513 0.836 2.02 0.134 0.0337

0.100 2.20022 0.88357 2.11186 0.476 1.43 0.0108 0.00308

0.300 2.28569 0.88357 2.02062 0.551 1.65 0.0255 0.00419

0.500 2.44771 0.88357 2.00592 0.655 1.85 0.0622 0.00596

0.800 2.80367 0.88357 2.09681 0.894 3.26 0.242 0.0722

0.100 2.20022 2.25802 1.97441 0.682 1.7 0.0267 0.00768

0.300 2.28569 2.25802 1.60829 1.33 2.63 0.0459 0.00377

0.500 2.44771 2.25802 1.31870 1.59 2.33 0.104 0.0106

0.800 2.80367 2.25802 0.99725 1.26 5.46 1.72 0.668


