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CONVERGENCE RESULTS AND LOW-ORDER RATES FOR NONLINEAR
TIKHONOV REGULARIZATION WITH OVERSMOOTHING PENALTY TERM∗

BERND HOFMANN† AND ROBERT PLATO‡

Abstract. For Tikhonov regularization of ill-posed nonlinear operator equations, convergence is studied in a
Hilbert scale setting. We include the case of oversmoothing penalty terms, which means that the exact solution
does not belong to the domain of definition of the considered penalty functional. In this case, we try to close a gap
in the present theory, where Hölder-type convergence rates results have been proven under corresponding source
conditions, but assertions on norm convergence for regularized solutions without source conditions are completely
missing. A result of the present work is to provide sufficient conditions for convergence under a priori and a posteriori
regularization parameter choice strategies without any additional smoothness assumption on the solution. The obtained
error estimates moreover allow us to prove low-order convergence rates under associated (for example logarithmic)
source conditions. Some numerical illustrations are also given.
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1. Introduction. The subject of this paper are nonlinear operator equations of the form

(1.1) Fu = f† ,

where F : X ⊃ D(F ) → Y is a nonlinear operator between infinite-dimensional Hilbert
spacesX and Y with norms ‖·‖. We suppose that the right-hand side f† ∈ Y is approximately
given as fδ ∈ Y satisfying the deterministic noise model

(1.2) ‖fδ − f†‖ ≤ δ,

with the noise level δ ≥ 0. Throughout the paper, it is assumed that the considered equa-
tion (1.1) has a solution u† ∈ D(F ) and is (at least locally at u†) ill-posed (cf. [14]).

For finding stable approximations to the solution u† ∈ D(F ) of equation (1.1), we
consider Tikhonov regularization, where the regularized solutions are minimizers of the
extremal problem

(1.3) T δα(u) := ‖Fu− fδ‖2 + α‖u− u‖21 → min subject to u ∈ D(F ),

with a regularization parameter α > 0. In this context, ‖ · ‖1 is assumed to be a norm of
a densely defined subspace X1 of X , which is stronger than the original norm ‖ · ‖ in X .
Throughout this paper, we suppose that the initial guess u in the penalty term of T δα(u) satisfies
the condition

(1.4) u ∈ D := D(F ) ∩X1.

Precisely, we define the stronger norm ‖ · ‖1 by a generator B : X ⊃ D(B)→ X , which
is a self-adjoint and positive definite unbounded linear operator with dense domain D(B), i.e.,
we have for some constant m > 0,

‖Bu‖ ≥ m‖u‖ for u ∈ D(B).(1.5)
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This allows us to introduce the norms

‖u‖τ := ‖Bτu‖, u ∈ Xτ (τ ∈ R),

where Xτ := D(Bτ ) for τ > 0 and Xτ := X for τ ≤ 0. The fractional powers are defined
by means of the resolution of the identity generated by the inverse operator B−1; see, e.g., [7,
Section 2.3]. Note that the system of spaces (Xτ )τ∈R equipped with the respective norms is
strongly related to the Hilbert scale generated by the operator B; see, e.g., [7, Section 8.4].
However, for τ < 0, a topological completion of the spaces Xτ = X with respect to the norm
‖ · ‖τ is not needed in our setting and thus omitted.

In the present work, we discuss nonlinear Tikhonov regularization (1.3) in particular
with an oversmoothing penalty term, where we have u† 6∈ X1 = D(B), or in other words,
‖u†‖1 = +∞. This continues some studies started in [11, 12] and [9], where convergence
rates and numerical case studies are provided for a priori and a posteriori parameter choices,
respectively, under certain smoothness assumptions on u† and structural conditions on F .
Under the same structural conditions, which are also similar to those in the corresponding
seminal paper for linear operator equations by Natterer [20], we present—as the novelty of
this paper—convergence results based on the Banach–Steinhaus theorem without requiring
any smoothness assumptions. The error estimates derived in the context of convergence
assertions moreover allow us to prove low-order convergence rates under associated (for
example logarithmic) source conditions.

The outline of the remainder is as follows: in Section 2, we introduce Hilbert scales and
formulate the basic assumptions, and in addition we establish the well-posedness of Tikhonov
regularization used in our setting. Then in Section 3, we introduce auxiliary elements needed
for the proof of the convergence results, and in addition we provide preliminary error estimates
for Tikhonov regularization, which are based on those auxiliary elements and which are
needed for the subsequent convergence proofs. The regularizing properties of an a priori
parameter choice as well as a discrepancy principle are considered in Section 4. The suggested
discrepancy principle is considered in a form that is suitable for misfit functionals which may
depend discontinuously on the regularization parameter α > 0. As a byproduct of the derived
error estimates, we can prove low-order convergence rates in Section 5. We conclude this
paper by presenting some results of numerical experiments.

2. Prerequisites and assumptions.

2.1. Main assumptions. In the following assumption, we briefly summarize the struc-
tural properties of the operator F and of its domain D(F ), in particular with respect to the
solution u† of equation (1.3). For examples of nonlinear inverse problems that satisfy these as-
sumptions (or at least substantial parts of it), we refer to [6, 9] and to the appendices of [11, 28].

ASSUMPTION 2.1.
(a) The operator F : X ⊃ D(F )→ Y is sequentially continuous on D(F ) with respect

to the weak topologies of the Hilbert spaces X and Y .
(b) The domain of definition D(F ) ⊂ X is a closed and convex subset of X .
(c) Let D := D(F ) ∩ D(B) = D(F ) ∩X1 be a non-empty set.
(d) Let the solution u† ∈ D(F ) to equation (1.1) with right-hand side f† be an interior

point of the domain D(F ).
(e) Let the data fδ ∈ Y satisfy the noise model (1.2), and let the initial guess u satisfy

(1.4).
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(f) Let a > 0, and let there exist finite constants 0 < ca ≤ Ca such that the inequality
chain

ca‖u− u†‖−a ≤ ‖Fu− f†‖ ≤ Ca‖u− u†‖−a(2.1)

holds true for all u ∈ D.
REMARK 2.2. From (2.1) in item (f) (left-hand side inequality), we have for u† ∈ X1 that

u† is the uniquely determined solution to equation (1.1) in the set D. For u† /∈ X1, there is no
solution at all to (1.1) in D. But in both cases, alternative solutions u∗ /∈ X1 with u∗ ∈ D(F )
and Fu∗ = f† cannot be excluded.

2.2. Properties of regularized solutions of Tikhonov regularization. For α > 0, min-
imizers of the Tikhonov functional T δα exist (cf. Proposition 2.4 below) and are denoted by
uδα, i.e., we have T δα(uδα) = minu∈D(F ) T

δ
α(u). Evidently, by definition of the penalty term,

uδα ∈ D holds true.
EXAMPLE 2.3. In this example let F = A : X → Y with D(F ) = X be a bounded

linear operator with non-closed range R(A), and for simplicity let u = 0. In this setting,
Tikhonov regularized solutions uδα solve the linear operator equation

(A∗A+ αB−2)uδα = A∗fδ.

In the special situation of an injective operator A and of a scale generator B = (A∗A)−q/2

with q > 0, this gives

(A∗A+ α(A∗A)q)uδα = A∗fδ,

and Assumption 2.1 is then satisfied with a = 1/q. The oversmoothing case u† 6∈ X1 here
means that u† 6∈ R((A∗A)q/2). This situation is discussed in the analysis of fractional
Tikhonov regularization, and we refer for example to [3, 10, 17]. In Natterer’s paper [20], the
following analog

(2.2) ca‖u‖−a ≤ ‖Au‖ ≤ Ca‖u‖−a for all u ∈ X

of the inequality chain (2.1) is the basis for error estimates and convergence rates results for
linear operator equations. The constant a > 0 here characterizes the degree of ill-posedness of
the problem. For extensions of Natterer’s results in the case of linear problems, we refer to
[7, Section 8.5]. For nonlinear problems, we mention that Neubauer has discussed in [21] the
consequences of the two-sided condition

ca‖u‖−a ≤ ‖F ′(u†)u‖ ≤ Ca‖u‖−a for all u ∈ X,

which is an extension of (2.2) to the nonlinear case and closely connected to (2.1) if the forward
operator F has a Fréchet derivative F ′(u†) at u†. For more details, see also [6, Sect. 4].

The extremal problem (1.3) for finding regularized solutions is well-posed with respect to
the existence of minimizers and their stability in a sense specified in the following proposition.
This follows by standard results from regularization theory (cf., e.g., [25, Chapter 2.6], [26, 27],
and [24, Section 4.1.1]). So we give a sketch of proof only.

PROPOSITION 2.4. Let Assumption 2.1 be satisfied.

(a) There exists, for all α > 0, a minimizer uδα of the Tikhonov functional T δα in the set D.
(b) Each minimizing sequence of T δα over D has a subsequence that converges strongly in

X1 to a minimizer uδα ∈ D of the Tikhonov functional.
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(c) For every α > 0, the regularized solutions uδα are stable in X1 with respect to small
perturbations in the data fδ .
Proof. The basic ingredients needed for the proof are as follows:

1. The operator F , when considered as F : X1 ⊃ D → Y , is sequentially continuous
with respect to the weak topologies on X1 and Y . This implies that the misfit
functional u ∈ D 7→ ‖Fu− fδ‖ ∈ R is sequentially continuous with respect to the
weak topology on X1.

2. The set D is weakly closed in X1.
3. The stabilizing functional ‖ · −u‖21 is sequentially weakly lower continuous on X1.

The statement in the second item follows from the two facts that (i) the embedding
operator X1 ↪→ X is continuous and that (ii) each closed convex subset of a Hilbert space is
weakly closed.

From these ingredients, it follows that each minimizing sequence (un) ⊂ D of the
Tikhonov functional has a subsequence which converges weakly in X1 to a minimizer uδα, and
the corresponding subsequence of (‖un − u‖1) converges to ‖uδα − u‖1.

REMARK 2.5. We note that the minimizer of the Tikhonov functional may be non-
unique because T δα can, for nonlinear forward operators F , be a non-convex functional as a
consequence of a non-convex misfit term ‖Fu−fδ‖2. If, for example, Fu := u?u represents
the autoconvolution operator in X = L2(0, 1) (cf., e.g., [5] and references therein) and u = 0,
then we have T δα(u) = T δα(−u), which illustrates the non-uniqueness phenomenon. On the
other hand, it should be mentioned that the properties of Tikhonov regularization in Hilbert
spaces are well investigated when the penalty functional in the Tikhonov functional is replaced
by u 7→ ‖u − u‖2, cf., e.g., [7, Chapter 10] or [23, Section 3.1] and the references therein,
respectively.

One of the two main goals of this study is to discuss convergence results for Tikhonov
regularization with oversmoothing penalty, i.e., u† 6∈ X1 (note, however, that this is not
explicitly required anywhere), and when the regularization error uδα − u† is still measured
in the norm of X . This continues former studies like [9] under the assumption u† ∈ Xp for
some 0 < p < 1. In contrast to those papers, the focus of the present work is, although also
not explicitly required anywhere, on the case u† 6∈ Xp for each 0 < p < 1, thus consequently
on the situation characterized by p = 0. On the other hand, we also mention convergence
assertions for u† ∈ Xp with p ≥ 1 under the inequality chain (2.1).

3. Auxiliary elements and preparatory results.

3.1. Auxiliary elements. In this section, we consider auxiliary elements that are needed
to verify our convergence results. As a preparation, we introduce the bounded, injective,
selfadjoint, positive semidefinite linear operator

G := B−(2a+2) : X → X,(3.1)

where the operator B obeying the condition (1.5) is defined in Section 1, and a > 0 is
introduced in item (f) of Assumption 2.1. Note that the rangeR(G) of G is not closed, and
hence, zero is an accumulation point of the spectrum σ(G) ⊂ [0, ‖G‖] of G. In this context,
we also mention that u ∈ Xp (p > 0) is equivalent to u ∈ R(G

p
2a+2 ), which means that u

obeys a power-type source condition u = G
p

2a+2w with some source element w ∈ X . In the
case p = 0, i.e., if u ∈ X but u /∈ Xp for all p > 0, then it was shown in [13, 18] that there
exist an index function1ϕ (for example of logarithmic type, cf. [15]) and a source element
w ∈ X such that a (low-order) source condition u = ϕ(G)w is satisfied.

1According to [19], we call a function ϕ : (0,∞)→ (0,∞) index function, if it is continuous, non-decreasing,
and satisfies the limit condition limt→0 ϕ(t) = 0.
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The auxiliary elements based on the operator G from (3.1) are defined as follows:

ûα := u+G(G+ αI)−1(u† − u) = u† − α(G+ αI)−1(u† − u) for α > 0,(3.2)

where the solution u† of the operator equation (1.1) and the corresponding initial guess u
are as introduced above. The basic properties of the auxiliary elements are summarized in
Lemma 3.1.

We should mention that the auxiliary elements ûα are the uniquely determined minimizers
of the artificial Tikhonov functional

Ta,α(u) := ‖u− u†‖2−a + α ‖u− u‖21

over all u ∈ X . The mapping u† 7→ ûα is a variant of a proximal operator and possesses an
explicit character. This allows for error estimates and convergence assertions for our Hilbert
scale model in the case of oversmoothing penalties. If we leave the Hilbert scales, then it
becomes much more difficult to handle oversmoothing penalties. This is exemplified by the
work in [8], where the `1-regularization is studied when the solution u† is only in `2. There,
the auxiliary elements are constructed by projection mappings instead of proximal mappings,
and the occurring conditions for convergence are difficult to interpret.

In order to specify the limit behaviour of different positive functions occurring in the
error estimates, in the sequel we use a collection of non-negative functions named fi(α),
(i = 1, 2, . . .), defined for α > 0 and with the property

lim
α→0

fi(α) = 0,(3.3)

to be supposed for all indices i. Consequently, we have for all i that fi(α) = o(1) as α→ 0.
Note that pairwise products fi(α)fj(α) and linear combinations Kifi(α) + Kjfj(α) with
non-negative constants Ki,Kj can again be written as such a function fk(α) = o(1) as
α→ 0.

LEMMA 3.1. There are functions fi(α) (i = 1, 2, 3, α > 0) satisfying (3.3) such that the
auxiliary elements from (3.2) have the following properties:

1. ‖ûα − u†‖ = f1(α) = o(1) as α→ 0,
2. ‖ûα − u†‖−a = f2(α)αa/(2a+2) = o(αa/(2a+2)) as α→ 0,
3. ‖ûα − u‖1 = f3(α)α−1/(2a+2) = o(α−1/(2a+2)) as α→ 0.

Proof. We show first that

‖Gθ(G+ αI)−1u‖ = o(αθ−1) as α→ 0(3.4)

holds true for all 0 ≤ θ < 1 and u ∈ X . It is well known that

‖G(G+ αI)−1‖ ≤ 1, ‖(G+ αI)−1‖ ≤ α−1 for α > 0.

Then the interpolation inequality implies the estimate

‖Gθ(G+ αI)−1‖ ≤ αθ−1 for α > 0 and 0 ≤ θ ≤ 1.(3.5)

Note that the operator G is selfadjoint and positive semidefinite, and thus the fractional powers
Gθ are well-defined.

In addition, for fixed 0 ≤ θ < 1 and any u ∈ R(Gq) with q > 0 chosen so small such
that θ + q ≤ 1, we have, from (3.5) with θ replaced by θ + q,

α1−θ‖Gθ(G+ αI)−1u‖ = α1−θ‖Gθ(G+ αI)−1Gqv‖ ≤ αq‖v‖ → 0 as α→ 0,(3.6)
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where u = Gqv. The asymptotics (3.4) now follows from (3.5) and (3.6) and from an
application of the Banach–Steinhaus theorem to the operators α1−θGθ(G+αI)−1 for α→ 0.
Here 0 ≤ θ < 1 is fixed, and we have used the fact that for arbitrary q > 0, the range of
the operator Gq is dense in X , i.e., R(Gq) = X . For the Banach–Steinhaus theorem, cf.,
e.g., [16, Problem 10.1] or [22, Theorem 1.1.4].

For the functions

f1(α) = ‖α(G+ αI)−1(u† − u)‖,(3.7)

f2(α) = α−a/(2a+2)‖Ga/(2a+2)[α(G+ αI)−1(u† − u)]‖,(3.8)

f3(α) = α−(2a+1)/(2a+2)‖G(2a+1)/(2a+2)[α(G+ αI)−1(u† − u)]‖,(3.9)

the statements of the lemma are now easily obtained from (3.4) and the following three
representations,

ûα − u† = −α(G+ αI)−1(u† − u),

B−a(ûα − u†) = −Ga/(2a+2)[α(G+ αI)−1(u† − u)],

B(ûα − u) = G(2a+1)/(2a+2)[(G+ αI)−1(u† − u)].

3.2. Some estimates for oversmoothing Tikhonov regularization.
LEMMA 3.2. Let Assumption 2.1 be satisfied. Then there is a function f4(α) for α > 0

satisfying (3.3) such that for all α > 0 and δ > 0, we have

max{‖Fuδα − fδ‖,
√
α‖uδα − u‖1} ≤ f4(α)αa/(2a+2) + δ.

Proof. For α > 0 small enough, say 0 < α ≤ α0, we have ûα ∈ D because item 1 of
Lemma 3.1 holds and u† is an interior point of D(F ). Thus

(‖Fuδα − fδ‖2 + α‖uδα − u‖21)1/2 ≤ (‖Fûα − fδ‖2 + α‖ûα − u‖21)1/2

≤ ‖Fûα − fδ‖+
√
α‖ûα − u‖1 ≤ ‖Fûα − f†‖+

√
α‖ûα − u‖1 + δ.

The first term on the right-hand side of the latter estimate can be written as

‖Fûα − f†‖ ≤ Ca‖ûα − u†‖−a ≤ Ca f2(α)αa/(2a+2).

This is a consequence of item 2 of Lemma 3.1. The second term on the right-hand side of the
latter estimate attains the form

√
α‖ûα − u‖1 ≤ f3(α)αa/(2a+2),

based on item 3 of Lemma 3.1. This yields the function

f4(α) := Ca f2(α) + f3(α) for α ≤ α0.

Note that f4(α)→ 0 as α→ 0. For α > α0, the estimate

(‖Fuδα − fδ‖2 + α‖uδα − u‖21)1/2 ≤ ‖Fu− fδ‖ ≤ ‖Fu− f†‖+ δ

holds, so we may define

f4(α) :=
‖Fu− f†‖
αa/(2a+2)

for α > α0.

This completes the proof of the lemma.
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COROLLARY 3.3. Let Assumption 2.1 be satisfied. Then there are a function f5(α) for
α > 0 satisfying (3.3) and a constant K1 > 0 such that for all α > 0 and δ > 0, we have

‖uδα − u†‖−a ≤ f5(α)αa/(2a+2) +K1 δ.

Proof. It can be concluded from the estimate on the left-hand side of (2.1) and Lemma 3.2
that

ca‖uδα − u†‖−a ≤ ‖Fuδα − f†‖ ≤ ‖Fuδα − fδ‖+ δ ≤ f4(α)αa/(2a+2) + 2δ.

The assertion of the corollary now follows by setting f5(α) := f4(α)
ca

and K1 := 2
ca
.

The error ‖uδα − u†‖ is now bounded by the following series of error estimates. Using the
triangle inequality and Lemma 3.1, we obtain

‖uδα − u†‖ ≤ ‖uδα − ûα‖+ ‖ûα − u†‖ = ‖uδα − ûα‖+ f1(α),(3.10)

and below we consider the term ‖uδα − ûα‖ in more detail. From the interpolation inequality
for bounded linear, self-adjoint, and positive semidefinite operators on Hilbert spaces, cf. [7,
(2.49)], it follows that

‖uδα − ûα‖ ≤ ‖uδα − ûα‖
1/(a+1)
−a ‖uδα − ûα‖

a/(a+1)
1 .(3.11)

Both terms on the right-hand side of the estimate (3.11) can be handled by Corollary 3.3 and
Lemma 3.1 in the following manner: Precisely, we find with f6(α) := f2(α) + f5(α) and
f7(α) := f3(α) + f4(α) the estimates

‖uδα − ûα‖−a ≤ ‖uδα − u†‖−a + ‖ûα − u†‖−a ≤ f6(α)αa/(2a+2) +K1δ,

‖uδα − ûα‖1 ≤ ‖uδα − u‖1 + ‖ûα − u‖1 ≤ α−1/2
(
f7(α)αa/(2a+2) + δ

)
.

Thus, we can continue bounding (3.11). Introducing f8(α) := max{f6(α), f7(α)} and
K2 := max{K1, 1}, we obtain

‖uδα − ûα‖ ≤
(
f6(α)αa/(2a+2) +K1δ

)1/(a+1)(
α−1/2

(
f7(α)αa/(2a+2) + δ

))a/(a+1)

≤
(
f8(α)αa/(2a+2) +K2δ

)1/(a+1)(
α−1/2

(
f8(α)αa/(2a+2) +K2δ

))a/(a+1)

= α−a/(2a+2)
(
f8(α)αa/(2a+2) +K2δ

)
= f8(α) +K2

δ

αa/(2a+2)
.

From the latter estimate and (3.10), the following proposition now immediately follows by
considering f9(α) := f1(α) + f8(α) there.

PROPOSITION 3.4. Let Assumption 2.1 be satisfied. Then there are a function f9(α) for
α > 0 satisfying (3.3) and a constant K2 > 0 such that for all α > 0 and δ > 0, we have

‖uδα − u†‖ ≤ f9(α) +K2
δ

αa/(2a+2)
.(3.12)

The inequality (3.12), which is valid for arbitrary noise levels δ > 0 and regularization
parameters α > 0, allows us to formulate in the subsequent section sufficient conditions for
the convergence of the error norm ‖uδα − u†‖ of the regularized solutions.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

320 B. HOFMANN AND R. PLATO

4. Convergence results.

4.1. Main theorem. The following main theorem is an immediate consequence of the
error estimates outlined in the preceding section. The formulated convergence result follows
straightforwardly from the inequality (3.12).

THEOREM 4.1. Let Assumption 2.1 be satisfied. Then for any a priori parameter
choice α∗ = α(δ) and any a posteriori parameter choice α∗ = α(δ, yδ), the regularized
solutions uδα∗

converge in the norm of the Hilbert space X to the solution u† of the operator
equation (1.1) for δ → 0, i.e., limδ→0 ‖uδα∗

− u†‖ = 0 whenever

(4.1) α∗ → 0 and δ

α
a/(2a+2)
∗

→ 0 as δ → 0.

REMARK 4.2. If2

(4.2) α
a/(2a+2)
∗ ∼ δ as δ → 0,

then convergence cannot be derived in this way because in that borderline case, the second
term on the right-hand side of inequality (3.12) does not tend to zero.

REMARK 4.3. The convergence result of Theorem 4.1 applies both to (a) the classical
case u† ∈ D(B) as well as to (b) oversmoothing penalties u† /∈ D(B). This theorem is
directly based on formula (3.12). An inspection of the proof of this formula, given by means
of Lemma 3.2 through Proposition 3.4, shows that both inequalities in (2.1) are needed for
the convergence result of Theorem 4.1. Nevertheless, for the oversmoothing case (b), this is
real progress since the convergence result of Theorem 4.1 does not use any form of additional
smoothness on u†. Such pure convergence assertions for the oversmoothing case, without any
smoothness assumptions like the condition u† ∈ Xp for some p ∈ (0, 1) that was used in [11]
for obtaining convergence rates results, are missing in the literature by now. However, as is
mentioned in [7, Remark 8.24], general norm convergence of the regularized solutions under
the condition (4.1) is known for linear problems including the oversmoothing case.

As is well known, in case (a) with u† ∈ D(B), the parameter choice condition

α∗ → 0 and δ2

α∗
→ 0 as δ → 0,

which is stronger than (4.1), is always sufficient for the convergence of the regularized
solutions, and the inequalities occurring in (2.1) represent only tools for obtaining convergence
rates. On the other hand, in the limit situation α∗ ∼ δ2 of choosing the regularization
parameter, one needs the left-hand side inequality in (2.1) for obtaining convergence rates, and
this inequality occurs here as a conditional stability estimate (cf. [9, Prop. 3], [6, Theorem 1.1]
and the references therein). Convergence is then a consequence of the derived convergence
rates.

4.2. A priori parameter choice of power type. In this section, we consider—in light
of Theorem 4.1—the a priori parameter choice

(4.3) α∗ = α(δ) ∼ δκ

for some exponent κ > 0. Then condition (4.1) is satisfied if and only if 0 < κ < 2 + 2
a ,

and the borderline condition (4.2) holds if and only if κ = 2 + 2
a . This yields the following

proposition:

2With a slight abuse of notation, for two nonnegative functions we write f(δ) ∼ g(δ) if there exist two constants
0 < c1 ≤ c2 such that c1f(δ) ≤ g(δ) ≤ c2f(δ) for each δ > 0 small enough.
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PROPOSITION 4.4. For the a priori choice (4.3) of the regularization parameter α > 0,
condition (4.1) in Theorem 4.1 holds if and only if 0 < κ < 2 + 2

a . For all a > 0, the choice
α∗ ∼ δ2 yields convergence.

We can distinguish the κ-intervals (A): 0 < κ < 2, (B): κ = 2, and (C): 2 < κ < 2 + 2
a

for (4.3). Then we have δ2

α∗
→ 0 as δ → 0 in situation (A) and δ2

α∗
∼ 1 in situation (B). Note

that both situation also occur and yield convergent regularized solutions in the oversmoothing
case u† /∈ D(B). This is a little bit surprising because the behaviour

(4.4)
δ2

α∗
→∞ as δ → 0

occurring in situation (C) was supposed in the literature to be typical for the case of over-
smoothing penalties. Namely, as is seen in [12], convergence rate results of the form

‖uδα∗
− u†‖ = O

(
δ

p
a+p

)
as δ → 0

are obtained under the two-sided structural condition (2.1) and in particular under the smooth-
ness assumption u† ∈ Xp for 0 < p < 1, whenever the a priori parameter choice of type (4.3)
with a prescribed exponent κ = 2(a+1)

a+p = 2 + 2(1−p)
a+p applies. Evidently, this prescribed κ

satisfies the conditions (4.4) and 2 < κ < 2 + 2
a for all 0 < p < 1. It is important to note

that p = 0 coincides with the borderline case κ = 2 + 2
a , which, however, is not sufficient for

convergent regularized solutions.

4.3. A discrepancy principle. For the specification of an appropriate discrepancy prin-
ciple, the behaviour of the misfit functional α 7→ ‖Fuδα − fδ‖ needs to be described for δ > 0
fixed. The basic properties are summarized in the following proposition:

PROPOSITION 4.5. Let Assumption 2.1 be satisfied. Then for δ > 0 fixed, the function
α 7→ ‖Fuδα − fδ‖ is non-decreasing, with

lim
α→0
‖Fuδα − fδ‖ ≤ δ, lim

α→∞
‖Fuδα − fδ‖ = ‖Fu− fδ‖.(4.5)

We have limα→∞ ‖uδα − u‖ = 0.
Proof. We start with the verification of the first statement of the proposition. As a

preparation, we show that the function α 7→ ‖uδα − u‖1 is non-increasing. Indeed, for
0 < α ≤ β fixed, we have

T δβ (uδβ) ≤ T δβ (uδα) = T δα(uδα) + (β − α)‖uδα − u‖21
≤ T δα(uδβ) + (β − α)‖uδα − u‖21
= T δβ (uδβ) + (β − α)(‖uδα − u‖21 − ‖uδβ − u‖21),

and thus ‖uδβ−u‖1 ≤ ‖uδα−u‖1. The first statement of the proposition is now easily obtained:
for 0 < α ≤ β we have

‖Fuδα − fδ‖2 + α‖uδα − u‖21 = T δα(uδα) ≤ T δα(uδβ) = ‖Fuδβ − fδ‖2 + α‖uδβ − u‖21
≤ ‖Fuδβ − fδ‖2 + α‖uδα − u‖21,

and thus ‖Fuδα − fδ‖ ≤ ‖Fuδβ − fδ‖.
Next we consider the latter statement of the proposition. There holds

‖Fuδα − fδ‖2 + α‖uδα − u‖21 = T δα(uδα) ≤ T δα(u) = ‖Fu− fδ‖2,(4.6)
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and thus in particular ‖uδα − u‖1 = O(α−1/2) as α → ∞. The estimate (1.5) implies
‖uδα − u‖ = O(α−1/2) as α→∞, which implies the latter statement of the proposition.

The first statement in (4.5) follows directly from Lemma 3.2, and we finally consider the
second statement in (4.5). From (4.6) we know that limα→∞ ‖Fuδα − fδ‖ ≤ ‖Fu − fδ‖.
Conversely, sequential weak continuity of the operator F implies the weak convergence
Fuδα ⇀ Fu as α → ∞, and thus limα→∞ ‖Fuδα − fδ‖ ≥ ‖Fu− fδ‖. This completes the
proof of the proposition.

REMARK 4.6. Notice that in the proof of Proposition 4.5, no use of the fundamental
estimates (2.1) for the smoothing property of F is made. Notice also that the statement
of Proposition 4.5 is quite similar to related results for Tikhonov regularization with non-
oversmoothing penalty, cf. [1], [25, Section 2.6], and [27, Section 6.7].

It follows from Proposition 4.5 that the following version of the discrepancy principle
(cf. [26, 27]) is implementable. It determines, for each noise level δ > 0, an approximation
uδα∗
∈ D. Possible discontinuities of the misfit functional α 7→ ‖Fuδα − fδ‖ are taken into

account.
ALGORITHM 4.7 (Discrepancy principle). Let b > 1 and c > 1 be finite constants.

1. If ‖Fu− fδ‖ ≤ bδ holds, then choose α∗ =∞, i.e., uδ∞ := u ∈ D.
2. Otherwise, choose a finite parameter α =: α∗ > 0 such that

‖Fuδα∗
− fδ‖ ≤ bδ ≤ ‖Fuδβ∗

− fδ‖ for some α∗ ≤ β∗ ≤ cα∗.(4.7)

Algorithm 4.7 can be realized by the following strategy:
REMARK 4.8 (Sequential discrepancy principle). Practically, a parameter α∗ satisfying

condition (4.7) can be determined, e.g., by choosing a constant θ > 1 and an initial guess
α(0) > 0 and proceeding then as follows:

• If ‖Fuδ
α(0) − fδ‖ ≥ bδ holds, then, with the notation α(k) = θ−kα(0), proceed for

k = 1, 2, . . . until ‖Fuδ
α(k) − fδ‖ ≤ bδ ≤ ‖Fuδα(k−1) − fδ‖ is satisfied for the first

time; define α∗ = α(k) then.
• If ‖Fuδ

α(0) − fδ‖ ≤ bδ holds, then, with the notation α(k) = θkα(0), proceed for
k = 1, 2, . . . until ‖Fuδ

α(k−1) − fδ‖ ≤ bδ ≤ ‖Fuδα(k) − fδ‖ is satisfied for the first
time; define α∗ = α(k−1) then.

The regularizing properties of Algorithm 4.7 are stated in the following theorem:
THEOREM 4.9. Let Assumption 2.1 be satisfied. For the a posteriori parameter choice

introduced in Algorithm 4.7, we have

‖uδα∗
− u†‖ → 0, δ

α
a/(2a+2)
∗

→ 0 as δ → 0.(4.8)

Proof. For an arbitrary countable noise level set ∆ ⊂ R+ having the origin as only
accumulation point, we consider the following three cases: (a) α∗ = ∞ for each δ ∈ ∆,
(b) α∗ → 0 as ∆ 3 δ → 0, and (c) α∗ < ∞ for each δ ∈ ∆, lim inf∆3δ→0 α∗ > 0. Below
we show that in each of those three cases, (4.8) holds. The main statement of the theorem
then follows by a standard subsequence argument. Note that in cases (a) and (c), the second
statement in (4.8) trivially holds.
(a) The case α∗ =∞ for δ ∈ ∆ means ‖Fu− fδ‖ ≤ bδ for δ ∈ ∆, and thus Fu = f†, and
then uδ∞ = u = u† for δ ∈ ∆.
(b) Suppose that α∗ → 0 as ∆ 3 δ → 0. From Lemma 3.2, we obtain

bδ ≤ ‖Fuδβ∗
− fδ‖ ≤ o(βa/(2a+2)

∗ ) + δ = o(α
a/(2a+2)
∗ ) + δ,

and thus δ/αa/(2a+2)
∗ → 0 as ∆ 3 δ → 0. Proposition 3.4 then yields ‖uδα∗

− u†‖ → 0 as
∆ 3 δ → 0.
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(c) Next suppose that both α∗ <∞, for δ ∈ ∆, and

lim inf
∆3δ→0

α∗ > 0.(4.9)

(i) We first observe that

ca‖uδα∗
− u†‖−a ≤ ‖Fuδα∗

− f†‖ ≤ ‖Fuδα∗
− fδ‖+ δ ≤ (b+ 1)δ,(4.10)

so ‖uδα∗
− u†‖−a = O(δ) as ∆ 3 δ → 0. Note that the asymptotics (4.9) is not needed for

this result.
(ii) There holds

‖uδα∗
‖1 = O(1) as ∆ 3 δ → 0.(4.11)

This easily follows from (4.6) and (4.9) in combination with the estimate

√
α∗‖uδα∗

− u‖1 ≤ ‖Fu− fδ‖ ≤ ‖Fu− f†‖+ δ.

(iii) We next show that

u† ∈ D(B).(4.12)

For this purpose, we observe that the estimate (4.11) implies weak convergence in X1 for
some subsequence ∆′ ⊂ ∆, i.e., for some element v ∈ D(B) = X1, we have uδα∗

⇀ v in X1

as ∆′ 3 δ → 0. From the (weak) continuity of the embedding operator X1 ↪→ X , we then
obtain uδα∗

⇀ v in X as ∆′ 3 δ → 0, and thus v ∈ D due to the weak closedness of D(F ).
Since the operator F is sequentially weakly continuous, we have Fuδα∗

⇀ Fv as ∆′ 3 δ → 0.
Algorithm 4.7 implies ‖Fuδα∗

− Fu†‖ → 0 as δ → 0, so we obtain Fv = Fu†. The lower
bound in (2.1) then gives v = u†, which finally implies (4.12).
(iv) From (4.10), (4.12), and the interpolation inequality, we now obtain

‖uδα∗
− u†‖ ≤ ‖uδα∗

− u†‖1/(a+1)
−a · ‖uδα∗

− u†‖a/(a+1)
1 = O(δ1/(a+1)) as ∆ 3 δ → 0.

This completes the proof of the theorem.

Note that in the oversmoothing situation u† 6∈ X1, case (c) in the proof of Theorem 4.9
does not emerge; cf. (4.12). This fact has, in a similar setting, already been observed in
[11, Lemma 1].

REMARK 4.10. Notice that the situation (b) in the proof of Theorem 4.9 is the regular
case in applications. The case (c) is an exceptional case, which, in the non-oversmoothing
case, can be excluded if the exact penalization veto is satisfied. This veto had been introduced
in the paper [1]; see also [2].

5. Low-order convergence rates. Our convergence assertion established in the main
theorem formulated in Section 4 is due to the error estimate (3.12) derived in Section 3. The
presented sufficient conditions for convergence are based on the Banach–Steinhaus theorem
and do not need any form of solution smoothness. In other words, the case p = 0 is included,
where u† does not satisfy a power-type source condition. However, as already mentioned
above, there exists at least a source condition of lower order for the solution element u† ∈ X .
Precisely, there is always an index function ϕ and a source element w ∈ X such that

(5.1) u† − u = ϕ(G)w.
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Based on formula (3.12) and taking into account the representations (3.7), (3.8), and (3.9), we
can derive for such a source condition low-order convergence rates in the case of oversmoothing
penalties as a byproduct of the studies presented in Section 3. We will outline this in the
following.

LEMMA 5.1. If, for an index function ϕ, the quotient function ϕ(t)/t is non-increasing
for 0 < t ≤ t with some constant t ∈ (0, ‖G‖], then there exist positive constants C and α
such that

(5.2) sup
0<λ≤‖G‖

αϕ(λ)

λ+ α
≤ C ϕ(α) (0 < α ≤ α).

The assertion of the lemma follows directly from [4, Prop. 3.3].3

COROLLARY 5.2. Let ϕ be an index function such that for each exponent η > 0 the
quotient function tη/ϕ(t) is strictly increasing for sufficiently small t > 0. Then for each
0 ≤ θ < 1 there exist positive constants C and α such that

(5.3) sup
0<λ≤‖G‖

αλθϕ(λ)

λ+ α
≤ C αθϕ(α) (0 < α ≤ α).

Proof. We have that for all 0 ≤ θ < 1, the quotient function tθϕ(t)
t = ϕ(t)

t1−θ
with

1− θ > 0 is non-increasing for sufficiently small t > 0. Consequently, there are, according
to formula (5.2) of Lemma 5.1, positive constants C and α depending on θ such that (5.3) is
valid.

THEOREM 5.3. Let Assumption 2.1 and the source condition (5.1) be satisfied, where it is
supposed that for all η > 0, the index function ϕ has a strictly increasing quotient function
tη/ϕ(t) for sufficiently small t > 0. Then we have, for some positive constant K0 and K2

from (3.12) and for all δ > 0 and sufficiently small α > 0, the error estimate

‖uδα − u†‖ ≤ K0 ϕ(α) +K2
δ

αa/(2a+2)
.(5.4)

Proof. Based on the source condition (5.1), the functions f1, f2, and f3 from Lemma 3.1
satisfy

f1(α) = O(ϕ(α)), f2(α) = O(ϕ(α)), f3(α) = O(ϕ(α)) as α→ 0.

These properties are immediate consequences of (5.3) taking into account the three represen-
tations (3.7), (3.8), and (3.9). Since the function f9(α) in the error estimate (3.12) can be
estimated from above by linear combinations and by maximizing the functions f1, f2, and f3

for α > 0 sufficiently small, there is a positive constant K0 such that f9(α) ≤ K0 ϕ(α) holds
for sufficiently small α > 0.

This yields directly the following low-order convergence rate result:
COROLLARY 5.4. Under the assumptions of Theorem 5.3, let ψ(α) := ϕ(α)α

a
2a+2 and

α∗ = α(δ) := ψ−1(δ). Then we have

‖uδα∗
− u†‖ = O

(
ϕ(ψ−1(δ)

)
as δ → 0.

3For the understanding of the formula (5.2), the concept of qualification for a regularization method introduced
in [19] is helpful. Precisely, all index functions ϕ(t) which are covered by the function t are qualifications for the
classical Tikhonov regularization applied to the operator G, which implies that an inequality of type (5.2) is valid.
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EXAMPLE 5.5. In this example, we consider source conditions (5.1) of logarithmic type
with the function

ϕ(t) = ϕκlog(t) := (− log(t))−κ (κ > 0),(5.5)

which is strictly concave for sufficiently small t > 0 and can be extended to (0,∞) as an index
function. Is is evident for all η, κ > 0 that the quotient function tη/ϕκlog(t) is strictly increasing
for sufficiently small t > 0, and Corollary 5.2 applies. This yields the error estimate (5.4)
written as

‖uδα − u†‖ ≤ K0 (− log(α))
−κ

+K2
δ

αa/(2a+2)
.

For the a priori choice α∗ = α(δ) ∼ δ2 of the regularization parameter, this implies the
logarithmic convergence rate

‖uδα∗
− u†‖ = O

(
(− log(δ))−κ

)
= O

(
ϕκlog(δ)

)
as δ → 0.(5.6)

Note that this parameter choice strategy differs from the one presented in Corollary 5.4.

6. Numerical illustrations. The theoretical results are numerically illustrated for the
nonlinear operator F : `2 ⊃ D(F )→ `2 given by the sum F = F1 + F2 of a linear operator
F1 and a quadratic operator F2 as follows:

F1 : `2 ⊃ D(F )→ `2, (un) 7→ 7( 1
nun),(6.1)

F2 : `2 ⊃ D(F )→ `2, (un) 7→ ( 1
nu

2
n).(6.2)

Here,

D(F ) = {u ∈ `2 | ‖u‖`2 ≤ 3 },

and `2 = { (un) | ‖u‖2`2 =
∑∞
n=1 u

2
n < ∞}. The stronger norm ‖ · ‖1 is defined by the

generator

B : `2 ⊃ D(B)→ `2, (un) 7→ (nun), D(B) := { (un) | (nun) ∈ `2 }.

In what follows, we consider the equation Fu = f† having

u† = (u†n), with u†1 = 1, u†n =
1√

n(log n)2.31
, n = 2, 3, . . . ,

as a solution. Assumption 2.1 is satisfied then; in particular, the two structural inequalities
in (2.1) are satisfied for a = 1. In addition, we have u† 6∈ D(B).

Below, some additional remarks on the numerical tests are given.
• We consider Tikhonov regularization (1.3) with u = 0.
• For the finite-dimensional approximation needed for the computations, we replace in

(6.1), (6.2) the space `2 by RN , with N = 6000 at each occurrence.
• In the numerical experiments, we consider perturbations of the form fδn = fn + ∆n,

for n = 1, 2, . . . , N , with uniformly distributed random values ∆n satisfying the
error bound |∆n | ≤ δ/

√
N .

For this framework, we consider Tikhonov regularization (1.3) with an a priori and an a poste-
riori parameter choice, respectively.
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6.1. Numerical results for an a priori parameter choice. We first consider the a priori
parameter choice α∗ = δ2 for different values of δ. The numerical results in Table 6.1 confirm
the logarithmic convergence rate given by (5.6). Note that a logarithmic-type source condition
u† = ϕκlog(G)w is indeed satisfied with ϕκlog(t) given by (5.5), which is considered for t ≤ 0.9
and κ = 1.8, and

w = (wn), with wn =
4κ√

n(log n)0.51
, n = 2, 3, . . . .

TABLE 6.1
Numerical results for the a priori parameter choice strategy.

δ 100 · δ/‖f‖`2 ‖uδα∗
− u†‖`2 ‖uδα∗

− u†‖`2 /ϕκlog(δ)

8.00 · 10−3 7.41 · 10−2 5.16 · 10−2 0.8786
4.00 · 10−3 3.71 · 10−2 4.31 · 10−2 0.9336
2.00 · 10−3 1.85 · 10−2 3.65 · 10−2 0.9776
1.00 · 10−3 9.27 · 10−3 3.12 · 10−2 1.0101
5.00 · 10−4 4.63 · 10−3 2.68 · 10−2 1.0328
2.50 · 10−4 2.32 · 10−3 2.32 · 10−2 1.0457
1.25 · 10−4 1.16 · 10−3 2.01 · 10−2 1.0483
6.25 · 10−5 5.79 · 10−4 1.75 · 10−2 1.0395
3.12 · 10−5 2.90 · 10−4 1.51 · 10−2 1.0193
1.56 · 10−5 1.45 · 10−4 1.30 · 10−2 0.9856
7.81 · 10−6 7.24 · 10−5 1.11 · 10−2 0.9361
3.91 · 10−6 3.62 · 10−5 9.26 · 10−3 0.8671
1.95 · 10−6 1.81 · 10−5 7.49 · 10−3 0.7728

6.2. Numerical results for the discrepancy principle. We next consider the discrep-
ancy principle, cf. Algorithm 4.7, with b = 4 and for different values of δ. It is in fact realized
by the sequential version considered in Remark 4.8 with θ = 10. The numerical results are
reported in Table 6.2. The results in columns 3 and 5 confirm the statement of Theorem 4.9.
The results in the last column are presented as an illustration of the asymptotical behavior (4.4).

TABLE 6.2
Numerical results for the discrepancy principle.

δ 100 · δ/‖f†‖`2 ‖uδα∗
− u†‖`2 α∗ δ/α

1/4
∗ δ2/α∗

1.00 · 10−3 9.27 · 10−3 4.09 · 10−2 1.00 · 10−5 1.78 · 10−2 0.10
5.00 · 10−4 4.63 · 10−3 3.13 · 10−2 1.00 · 10−6 1.58 · 10−2 0.25
2.50 · 10−4 2.32 · 10−3 2.44 · 10−2 1.00 · 10−7 1.41 · 10−2 0.62
1.25 · 10−4 1.16 · 10−3 1.92 · 10−2 1.00 · 10−8 1.25 · 10−2 1.56
6.25 · 10−5 5.79 · 10−4 1.51 · 10−2 1.00 · 10−9 1.11 · 10−2 3.91
3.12 · 10−5 2.90 · 10−4 1.16 · 10−2 1.00 · 10−10 9.88 · 10−3 9.77
1.56 · 10−5 1.45 · 10−4 1.17 · 10−2 1.00 · 10−10 4.94 · 10−3 2.44
7.81 · 10−6 7.24 · 10−5 8.64 · 10−3 1.00 · 10−11 4.39 · 10−3 6.10
3.91 · 10−6 3.62 · 10−5 5.62 · 10−3 1.00 · 10−12 3.91 · 10−3 15.26
1.95 · 10−6 1.81 · 10−5 2.48 · 10−3 1.00 · 10−13 3.47 · 10−3 38.15
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