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A MULTIGRID FRAME BASED METHOD FOR IMAGE DEBLURRING∗
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Abstract. Iterative soft thresholding algorithms combine one step of a Landweber method (or accelerated
variants) with one step of thresholding of the wavelet (framelet) coefficients. In this paper, we improve these methods
by using the framelet multilevel decomposition for defining a multigrid deconvolution with grid transfer operators
given by the low-pass filter of the frame. Assuming that an estimate of the noise level is available, we combine a
recently proposed iterative method for `2-regularization with linear framelet denoising by soft-thresholding. This
combination allows a fast frequency filtering in the Fourier domain and produces a sparse reconstruction in the
wavelet domain. Moreover, its employment in a multigrid scheme ensures stable convergence and a reduced noise
amplification. The proposed multigrid method is independent of the imposed boundary conditions, and the iterations
can be easily projected onto a closed and convex set, e.g., the nonnegative cone. We study the convergence of the
proposed algorithm and prove that it is a regularization method. Several numerical results prove that this approach
is able to provide highly accurate reconstructions in several different scenarios without requiring the setting of any
parameter.
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1. Introduction. Image deblurring is an inverse problem that consists in recovering an
unknown image from blurred and noisy measurements. These are obtained as a result of a
Fredholm integral operator of the first kind. Assuming that the blur is spatially invariant, i.e.,
that it does not depend on the location, the measured data g can be computed by

(1.1) g(x, y) =

∫
K(s− x, t− y)f(s, t)dsdt = K ∗ f,

where f denotes the true signal and K is a possibly smooth integral kernel with compact
support. K is usually referred to as a point spread function (PSF) since it represents how a
single point is spread across its neighborhood. Because K has compact support, equation (1.1)
is ill-posed [27].

After the discretization of (1.1) using a quadrature formula on a uniform grid, we have to
consider that images are available only on finite regions, the field of view (FOV). The values
assumed by the blurred image near the boundaries are also determined by data outside the
FOV. For simplicity, let us assume that the observed image B is square with matrix dimensions
n× n and that the PSF H is m×m with m ≤ n. Thus, the true image X̃, which includes all
the pixels involved in the definition of B, is of size q × q with q = n+m− 1. By column
stacking X̃ and B, the discretized version of (1.1) can be expressed as the linear system of
equations

(1.2) Ãx̃ = b,

where x̃ and b are vectors of size q2 × 1 and n2 × 1, respectively, and Ã is an underdeter-
mined n2 × q2 rectangular matrix. By imposing boundary conditions (bc’s), i.e., by making
assumptions on the behavior of the true image outside the FOV, we may consider only the
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n× n internal points of X̃, denoted by X, and obtain a square matrix A such that

(1.3) Ax = b,

where A ∈ RN×N and x,b ∈ RN , with N = n2. The choice of the bc’s directly in-
fluences the structure of A, and some choices allow us to use fast transformations for its
diagonalization [35].

The discretization process, along with measurement errors, introduces some errors usually
referred to as noise. Thus, the error-free b is not available, and the real measured signal,
denoted by bδ , is such that

(1.4)
∥∥b− bδ

∥∥ ≤ δ,
where ‖·‖ denotes the Euclidean norm and δ > 0 is the so-called noise level. Therefore, in
practice, instead of solving (1.2), we deal with

(1.5) Ax = bδ.

Throughout this paper we will assume that a fairly sharp bound for δ is known.
Because (1.1) is ill-posed, A is severely ill-conditioned and may be rank deficient. This,

in addition to the unavoidable presence of noise, results in the impossibility of directly
solving (1.5); see, e.g., [33]. Thus, regularization methods are essential to compute a good
approximation of the true image x† = A†b, where by A† we denote the Moore-Penrose
pseudo-inverse.

One of the most popular regularization methods is Tikhonov regularization,

(1.6) min
x

∥∥Ax− bδ
∥∥2

+ α ‖x‖2 ,

where α > 0 is the regularization parameter. Tikhonov regularization bounds the norm of the
solution so that the oscillations, due to the inversion of the noise, are kept under control while
ensuring that the reconstructed image fits the measured data. It is well known that Tikhonov
regularization leads to over-smoothed solutions and that a poor estimation of the parameter α
may lead to unsatisfactory reconstructions.

The iterative regularization method known as Iterated Tikhonov (IT) can be constructed
by applying an iterative refinement technique to (1.6); see [27, 33]. Given an initial guess x0,
the IT method is formulated by the following iteration:

xk+1 = xk + (AtA+ αkI)−1At(bδ −Axk),

= xk +At(AAt + αkI)−1(bδ −Axk), k = 0, 1, . . . ,
(1.7)

where At denotes the transpose of the matrix A. IT is an iterative regularization method, and
hence it displays semi-convergence. During the first iterations, the iterates approach the true
solution x† and the restoration error decreases until a certain “optimal” iteration number is
reached. After that, the noise present in bδ is included in the reconstruction and gets amplified,
thus deteriorating and eventually destroying the quality of the reconstruction. Therefore, a
regularization effect is obtained by an early stopping of the iteration. It is clear that it is crucial
to stop the iterations close to the optimal iteration number, which is unknown.

Unfortunately, the iteration (1.7) requires at each step the inversion of either AtA+ αkI
or AAt + αkI , which can be computationally demanding when A is of large dimensions and
cannot be diagonalized by fast transforms. For this reason in [22], the authors developed an
iterative method with a nonstationary preconditioner that can be seen as an approximated
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version of IT. In particular, they considered an operator C which is spectrally equivalent to A
(see Assumption 1) and formed the preconditioner at step k as

Ct(CCt + αkI)−1 ≈ At(AAt + αkI)−1,

where αk is determined by a damped version of the discrepancy principle. In this way, by
wisely choosing the structure of C, the resulting iterative method is fast and computationally
cheap without requiring the setting of any parameter. In the following we will refer to this
method as AIT (Approximated Iterated Tikhonov). Similarly, the method proposed in [36] uses
an approximation of A in a small Krylov subspace.

In many applications it is known that x† ∈ Ω, where Ω is a closed and convex set, e.g., for
image deblurring a possible choice for Ω is the nonnegative cone. The APIT (Approximated
Projected Iterated Tikhonov) algorithm is obtained by projecting at each step the computed
approximation into a convex set; see [7].

Multigrid methods are powerful algorithms that are able to achieve fast computations and
high accuracy when the main ingredients (smoother and grid transfer operators) are properly
combined; see e.g., [47]. They have been initially developed for solving linear systems of
equations derived from partial differential equations (PDEs) and later have been successfully
applied to more general linear systems [45]. Multigrid methods have already been considered
for solving ill-posed problems [14, 15, 24, 34, 38, 39, 44] but usually as solvers for Tikhonov-
like regularized models. The first attempt of using multigrid methods as iterative regularization
methods for image deblurring has been done, to the best of our knowledge, in [23], where the
authors combined an iterative regularization method used as pre-smoother with a low-pass
filter coarsening. A different multilevel strategy based on the cascadic approach was proposed
in [43]. Nonlinear “corrections” to the previous multigrid methods were introduced in [40]
using a total variation-type regularization and in [19, 28] combining multigrid and wavelets
methods. More recently, also blind deconvolution has been successfully approached in [29].
Note that these multigrid methods have been defined to preserve the block Toeplitz with
Toeplitz blocks (BTTB) structure of the blurring matrix at each coarser level. This is crucial
for the definition of the algorithm and for preserving a fast and simple matrix-vector product.

The main novelty in [19], with respect to [23], was the addition, as a post-smoother,
of a soft-thresholding denoising. We are going to define our method starting from the idea
presented in [19] by combining framelet denoising and a multigrid method. Firstly, different
from previous works, we define a general coarsening strategy independent of the bc’s. This
strategy consists in applying a Galerkin projection to the PSF instead of applying it to the
coefficient matrix and then employing, at each coarser level, the desired bc’s so that fast
computations are preserved across the levels. We will prove that it is equivalent to constructing
a sequence of continuous operators by the Galerkin approach and then discretizing each
continuous problem on the corresponding grid with appropriate bc’s. In particular, at the
coarser levels, exploiting the properties of the error equation, we change the structure of
the coefficient matrix resorting to block circulant with circulant blocks (BCCB) matrices,
such that all the involved computations can be done by the fast Fourier transform (FFT).
Furthermore, our proposal differs from the one in [19] also in the usage of framelet denoising
and in the usage of the above described APIT algorithm instead of CGLS as inner iterative
regularization method. Because APIT projects at each iteration into a closed and convex set Ω,
this choice let us ensure that the provided approximation lies in Ω as well. Thus, using APIT
as post-smoother is equivalent to projecting each multigrid iteration into Ω.

Finally, we also provide a proof of convergence of the algorithm in the two-grid case
(as usual for multigrid methods [47]). We show that the proposed method is an iterative
regularization method, i.e., that regularization is achieved by an early stopping of the iteration
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and that, denoting by xδ the reconstruction obtained with the noise level δ, it holds that
xδ → x∗ as δ → 0, where x∗ denotes a solution of the noise-free system (1.3). This analysis
was not present in [20]. We would like to stress that, differently from variational methods,
iterative regularization methods do not aim at minimizing a known objective function but
achieve regularization by an appropriate choice of the stopping criterion in a semi-convergent
method. In other words, the proposed approach will solve the exact system only in the
unrealistic scenario where the right-hand side b is not affected by noise. When the right-hand
side is corrupted by noise, the proposed approach will only be able to provide an accurate
approximation of the exact solution x†. We emphasize that the proposed algorithm is very
robust and that, using only the knowledge of δ, it is able to achieve high accuracy without
tuning any parameter. This is confirmed by numerical comparison with several state-of-the-art
algorithms.

The main idea exploited in our multigrid regularization method, both in the post-smoother
and in the coarsening strategy, is the refinement of the previous approximations by means of
the error equation. The potential of the error equation, fully exploited in multigrid methods,
is that in some applications there is more information available on the error than on the true
solution. In the case of image deblurring the bc’s model tries to extrapolate the unavailable
information on the true image outside the FOV. Clearly, such a model does not always provide
a reliable extrapolation, and accurate bc’s usually lead to coefficient matrices that are not
diagonalizable by fast trigonometric transforms. On the other hand, when considering an
iterative method, if the chosen bc’s well describe the current image and the method itself
is near convergence, then the error can be accurately modeled as a random image. Hence,
the choice of the bc’s is not crucial for the error image, and classical periodic bc’s are a
computationally attractive choice since all computations, even (pseudo-)inversions, can be
efficiently carried out using the FFT. This is one of the several interpretations behind the
robustness of the iterative algorithm proposed in [22], which is the foundation of the APIT
method used as post-smoother.

This paper is structured as follows: In Section 2 we briefly describe the tools which are
needed for the formulation of our algorithm. In Section 3 we describe our multigrid method,
while its convergence and regularization property are proven in Section 4. Finally, Section 5 is
devoted to the numerical examples.

2. Preliminaries. In this section we discuss the tools, which are already present in the
literature, used for constructing our algorithm.

2.1. The structure of the blurring matrix. As already mentioned in the introduction, a
popular method to deal with the boundary artifacts is to impose appropriate bc’s. The boundary
artifacts are ringing effects in the restored image due to the fact that the pixels of the observed
image close to the boundary highly depend on pixels outside the FOV. Other strategies could be
employed, for instance, it is possible to deal directly with the undetermined linear system (1.2)
as done in [1, 48] or to enlarge the observed image like in [4, 42]. Nevertheless, if the bc’s are
well chosen for the problem at hand, then they usually provide restored images without ringing
artifacts and with a quality comparable to the other strategies; see, for instance, the numerical
results in [13], where some of the numerical methods cited above are compared. In this paper,
we consider the bc’s approach because the iterative method used as smoother in our multigrid
method requires square matrices. Our proposal could be adapted also to the other approaches
for dealing with the boundary artifacts whenever the smoother is properly adjusted.

We assume that the position of the PSF center is known, and it is denoted by the index
(0, 0). Thus, H ∈ Rm×m can be depicted as H = [[hj1,j2 ]

m2,1

j1=−m1,1
]
m2,2

j2=−m1,2
, where it

holds that m1,i + m2,i + 1 = m, for i = 1, 2, and the indices are shifted according to the
center of the PSF. Given the pixels hj1,j2 of the PSF, it is possible to associate the so-called
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TABLE 2.1
Pad of the original image X obtained by imposing the classical bc’s considered in [35], with Xc = fliplr(X),

Xr = flipud(X), and Xrc = flipud(fliplr(X)), where fliplr(·) and flipud(·) are the MATLAB functions that
perform the left-right and up-down flip, respectively.

Zero Periodic Reflective

0 0 0
0 X 0
0 0 0

X X X
X X X
X X X

Xrc Xr Xrc

Xc X Xc

Xrc Xr Xrc

generating function f(x1, x2) =
∑m2,1

j1=−m1,1

∑m2,2

j2=−m1,2
hj1,j2ei(j1x1+j2x2), where i2 = −1.

For instance, if n is odd and the PSF is obtained by observing a white pixel on a black
background in the middle of the n× n image, then m = n, and the associated symbol is

f(x1, x2) =

(n−1)/2∑
j1,j2=−(n−1)/2

hj1,j2ei(j1x1+j2x2),

where the coefficients hj1,j2 far from the center h0,0 are almost zero due to the compact
support of the PSF.

We now discuss some classical bc’s and the structure of the resulting matrix A that can be
exploited to achieve fast computations. The matrix-vector product can always be performed by
an FFT resorting to a proper padding of the vector depending on the imposed bc’s. Table 2.1
summarizes the definition of zero, periodic, and reflective bc’s; for a detailed description we
refer to [35]; for antireflective bc’s, see the review paper [25] and the original proposal in [46].
More sophisticated bc’s could be applied without changing our regularizing multigrid method.
For instance, the synthetic bc’s proposed in [1] or the higher order bc’s in [16, 18] could be
applied as well.

The zero bc’s are obtained by assuming that outside the FOV the image is zero everywhere.
This is a good choice when we deal with images having a black background, occurring for
instance in astronomical applications. The resulting blurring matrix A is a block Toeplitz with
Toeplitz block (BTTB) matrix defined as

A = Tn(f) =


T0 T−1 · · · T−n+1

T1
. . . . . .

...
...

. . . . . . T−1

Tn−1 · · · T1 T0


n2×n2

, Tk =


hk,0 hk,−1 · · · hk,−n+1

hk,1
. . . . . .

...
...

. . . . . . hk,−1

hk,n−1 · · · hk,1 hk,0


n×n

,

for k = −n+ 1, . . . , n− 1. Unfortunately, there are no fast transformations to diagonalize a
general matrix of this form. This represents an important drawback of the use of zero bc’s
with filtering methods like classical Tikhonov. On the contrary, for other bc’s, fast transforms
are available; see [35] and below.

Periodic bc’s assume that outside the FOV the image repeats itself periodically in all
directions. In this case the blurring matrix A is block circulant with circulant block (BCCB),
and it is diagonalized by the two dimensional Fourier matrix F defined by F = F1⊗F1, where
F1 = [e−2jkiπ/n]n−1

j,k=0 ∈ Cn×n and ⊗ denotes the Kronecker product. This factorization
allows extremely fast computations with A, including the (pseudo)-inversion, through the FFT
algorithm; see, e.g., [35].

A kind of bc’s suitable for generic images are reflective bc’s proposed in [41]. They
assume that the image is reflected (like in a mirror) outside the FOV so that the image is
continuous on the boundaries. The resulting matrix A has a more involved structure than the
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(a) (b) (c) (d)

FIG. 2.1. Examples of bc’s, the red box delimits the FOV: (a) zero, (b) periodic, (c) reflective, (d) antireflective.

ones obtained with periodic or zero bc’s. Nevertheless, it can be diagonalized by the discrete
cosine transform if the PSF is quadrantally symmetric, i.e., if it is symmetric with regard to
both the horizontal and vertical axes.

With a similar spirit, Serra-Capizzano proposed the antireflective bc’s in [46]. The
antireflective bc’s ensure that on the boundary, the image is not only continuous but also
its normal derivative is continuous. In this case we antireflect the image outside the FOV;
see [25] for details. Even if the structure of the resulting matrix A is quite complicated, like
for reflective bc’s, A can be diagonalized by a modification of the discrete sine transform
whenever the PSF is quadrantally symmetric [3, 21, 46]. Figure 2.1 shows an example of the
bc’s described above.

2.2. Approximated Iterated Tikhonov method. As discussed in the introduction, IT
can be interpreted as an iterative refinement based on the Tikhonov method. Let x0 be an
approximation of x†. We can included it into the Tikhonov method (1.6) by computing

min
x

∥∥Ax− bδ
∥∥2

+ α ‖x− x0‖2 ⇐⇒ min
h
‖Ah− r0‖2 + α ‖h‖2 ,

where r0 = bδ−Ax0 is the residual and h = x−x0. Therefore h provides an approximation
of the error e0 = x† − x0 up to the noise in bδ , and an improved restoration can be computed
as x1 = x0 + h. Applying iteratively the same refinement strategy, we obtain the IT method:

Given x0, for k = 0, 1, . . .,
1. compute rk = bδ −Axk,
2. solve hk = arg minh ‖Ah− rk‖2 + αk ‖h‖2,
3. update xk+1 = xk + hk.

The above algorithm can be formulated as the iteration (1.7).
The choice of αk in the IT method plays a crucial role, and many strategies have been

proposed. If the same α is used for each iteration, then we call the method stationary, whereas
if α depends on k we call the method nonstationary. In many applications, the latter type has
proven to obtain better results in terms of accuracy and stability than the classical Tikhonov
method avoiding an accurate estimation of the parameter α. A generalization to the case where
a matrix different from the identity is used in the IT iterations has recently been proposed
in [8].

The discrepancy principle is often chosen as a stopping rule for iterative regularization
methods like IT. It stops the iterations after k = kδ ≥ 0 steps, with kδ such that

‖rkδ‖ ≤ τδ < ‖rk‖ , k = 0, 1, . . . , kδ − 1,

where τ > 1 is a fixed constant.
Note that the residual rk at item 1. is computed using the observed image bδ instead of

the true blurred image b. Therefore, the error equation, used at item 2. for computing the
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refinement of the previous approximation, is correct up to the noise in the observation. Hence,
we can replace the matrix A with an approximation C if the further introduced error is lower
than the noise level δ. This is a possible interpretation of the preconditioned iteration proposed
in [22], which accordingly requires the following assumption:

ASSUMPTION 1. Let C be such that

(2.1) ‖(C −A)z‖ ≤ ρ ‖Az‖ , ∀z ∈ RN ,

for some 0 < ρ < 1
2 .

Note that the above assumption implies that C is spectrally equivalent to A, and it is
crucial for the convergence analysis of the following AIT algorithm [22].

ALGORITHM 1 (AIT). Let x0 ∈ RN be fixed, and set k = 0. Choose τ = 1+2ρ
1−2ρ with ρ as

in (2.1), and fix q ∈ [2ρ, 1].
While ‖rk‖ > τδ,

• let τk = ‖rk‖/δ and qk = max
{
q, 2ρ+ 1+ρ

τk

}
,

• compute

hk = Ct(CCt + αkI)−1rk,

where αk is such that

(2.2) ‖rk − Chk‖ = qk ‖rk‖ ,

and
• update

xk+1 = xk + hk,(2.3)

rk+1 = bδ −Axk+1.

We summarize the main theoretical results for the convergence of AIT proven in [22].
The parameter q is not necessary for the theoretical analysis, but it is useful in the numerical
results preventing a too rapid convergence, which could reduce the quality of the computed
solution. Firstly, we recall the monotone decrease of the norm of the restoration error

ek = x† − xk.

LEMMA 2.1 ([22]). Assume that (1.4) and Assumption 1 hold. If τk = ‖rk‖ /δ > τ∗,
with τ = (1 + 2ρ)/(1− 2ρ), then it follows that

‖rk − Cek‖ ≤
(
ρ+

1 + ρ

τk

)
‖rk‖ < (1− ρ) ‖rk‖ .

PROPOSITION 2.2 ([22]). Assume Assumption 1 holds, and let τ = (1+2ρ)/(1−2ρ). As
long as ‖rk‖ > τδ, the norm of the reconstruction error ek decreases monotonically, namely
‖ek+1‖ ≤ ‖ek‖, for k = 0, 1, . . .

From this proposition, it follows that AIT terminates after finitely many iterations accord-
ing to the following corollary:

COROLLARY 2.3 ([22]). With the assumptions and the notation of Proposition 2.2, it
holds that

c

kδ−1∑
k=0

‖rk‖2 ≤ 2ρ

kδ∑
k=0

∥∥(CCt + αkI)−1rk
∥∥ ‖rk‖ ≤ ‖e0‖
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for some constant c > 0, depending only on ρ of (2.1) and on the parameter q of Algorithm 1.
On the other hand, if the data are exact (δ = 0), then the iterates of Algorithm 1 converge

to an exact solution of (1.3) as k →∞.
THEOREM 2.4 ([22]). Assume that the data are exact, i.e., δ = 0, and that x0 is not

a solution of problem (1.3). Then the sequence {xk}k converges as k → ∞ to the solution
of (1.3) which is nearest to x0.

Finally, Algorithm 1 is a regularization method according to the definition in [27].
THEOREM 2.5 ([22]). Let δ 7→ bδ be a function from R+ to RN such that (1.4) holds

true for all δ > 0. Under Assumption 1, for two fixed parameters τ and q, denote by xδ the
resulting approximation obtained with AIT. Then for δ → 0 we have that xδ → x†0 which is
the nearest solution of (1.3) to x0.

In [7] an extension of the AIT algorithm has been proposed which constrains the iterations
to lie in a closed and convex set Ω ⊂ RN . An example of a suitable Ω in the case of image
deblurring is the nonnegative cone. In fact, since images are measurements of a quantity of
light, they can not assume negative values. With the assumption that x† ∈ Ω, denoting by
PΩ the metric projection onto Ω, the iterations of the projected AIT (APIT) can be computed
simply by replacing equation (2.3) by

xk+1 = PΩ(xk + hk).

All the theoretical results from AIT are directly inherited by APIT as proven in [7].
In both [7, 22], the authors choose A to be the blurring matrix with the desired bc’s

and C as the blurring matrix with the same PSF of A but with periodic bc’s. In this way,
independently of the structure of the PSF, it is possible to compute the matrix vector product
with Ct(CCt + αkI)−1 in O(n2 log n) flops by two FFTs, and the computation of αk in (2.2)
is linear in N since it requires only a few Newton steps in the Fourier domain where the
variables are decoupled.

2.3. Tight frames denoising. We now describe the classical wavelet (framelet) soft-
thresholding signal denoising [26]. A very important feature of tight frames is their redundancy,
thus the loss of some information can be tolerated. Hence, wavelets have been often replaced
by tight frames in many image applications like inpainting and deblurring [10, 11].

Let the matrixW be the analysis operator. Then

W is a tight frame ⇐⇒ WtW = I.

Note that in generalWWt 6= I unless the system is orthogonal. We can identify some of the
elements of the tight frame as low-frequency vectors and the others as high-frequency vectors.
In other words, we can write

W =

[
W0

W1

]
,

where the rows of W0 are the low-frequency vectors and the rows of W1 are the high-
frequency vectors. ApplyingW to a vector x, we obtain c1 = W0x and d1 = W1x. We can
recursively apply this decomposition by decomposing c1 again, thus obtaining c2 = W

(1)
0 c1

and d2 = W
(1)
1 c1, where we indicated with a superscript (1) the various operators on the

(possibly) smaller space in which c1 lives. For each level j = 0, . . . , l − 1, starting from
c0 = x, we have that

cj+1 = W
(j)
0 cj , dj+1 = W

(j)
1 cj .
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We can apply soft-thresholding to the high-frequency components dj to eliminate the
noise from a signal. Let θ be the threshold parameter. The soft-thresholding operator µθ
applied to the vector d is defined as

µθ(d) = sgn(d)(|d| − θ)+,

where sgn(x) denotes the sign of x and x+ is the positive part of x, i.e., x+ = max{x, 0},
and all the operations are computed element-wise. The choice of the parameter θ is of crucial
importance. According to [26], we use

(2.4) θ = c

√
2 log n

n
,

where c > 0 is a constant that for Gaussian noise can be chosen as c = δ/
∥∥bδ∥∥. Recall that

we are assuming that the images are square of dimensions n× n.
The denoising algorithm is summarized in Algorithm 2 and will be denoted by

Slθ(z) := Denoise(z, θ, 0, l).

ALGORITHM 2 (Denoise). Let bδ denote the noisy signal, θ the thresholding parameter,
and l the number of levels.

y = Denoise(z, θ, lev, l)

if lev = l
y = z

else [
c
d

]
=Wz

c1 = Denoise(c, θ, lev + 1, l)
d1 = µθ(d)

y =Wt

[
c1

d1

]
end

The tight frame used in the numerical results is the one related to linear B-splines; see,
e.g., [11, 12] and the references therein. Note that the low-pass filter of linear B-splines
will also be used in the multilevel deblurring algorithm as grid transfer operator. This is not
necessary since denoising and projecting work on the signal and the residual, respectively, but
in practice, this combination provides better restorations compared to using two independent
approximation schemes. The system of linear B-splines is formed by one low-pass filter W0

and two high-pass filters W1 and W2. The corresponding masks are

w(0) =
1

2
(1, 2, 1) , w(1) =

√
2

4
(1, 0, −1) , w(2) =

1

4
(−1, 2, −1) .

Imposing the reflexive bc’s, so thatWtW = I , the resulting filters are

W0 =
1

4


3 1 0 . . . 0
1 2 1

. . . . . . . . .
1 2 1

0 . . . 0 1 3

 , W1 =

√
2

4


−1 1 0 . . . 0
−1 0 1

. . . . . . . . .
−1 0 1

0 . . . 0 −1 1

 ,
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and

W2 =
1

4


1 −1 0 . . . 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 . . . 0 −1 1

 .

The previous operators Wi, i = 0, 1, 2, are designed for one-dimensional signals. The
operators for two space-dimension are defined by using the tensor product

(2.5) Wij = Wi ⊗Wj , i, j = 0, 1, 2.

Thus, the analysis operator is

W =


W00

W01

...
W22

 .
The low-pass filter is the matrix W00, while all the other matrices contain at least a high-pass
filter in one direction.

2.4. Multigrid methods. Multigrid methods create a sequence of linear systems that
decrease in size by consecutive projections. The computational effort is thus reduced, and
the convergence speed is improved if the smaller linear systems are properly chosen. It is
well known that iterative methods for solving linear systems show faster convergence on the
well-conditioned space and that convergence can be very slow in the ill-conditioned space.

REMARK 2.6. The definition of the well- and ill-conditioned space is informal. Let
V ⊂ RN be a linear subspace of RN . We define the conditioning number of A restricted to V
by

κV =

(
sup
x∈V

‖Ax‖
‖x‖

)
·

(
sup
x∈V

∥∥A†x∥∥
‖x‖

)
.

The well-conditioned space is the space W such that κW is not too large, whereas the
ill-conditioned space I is the one where κI is very large. For matrices derived from the
discretization of a compact integral operator, like, e.g., (1.3), we have that W corresponds to
the low-frequency space and I is the high-frequency space.

Let us first describe the Two Grid Method (TGM), which is an iterative algorithm. Let
xk be an approximation of the solution of (1.3) at the kth step, apply ν1 steps of an iterative
method to xk obtaining

x̃k = Pre-Smooth(A,b,xk, ν1).

This step is called pre-smoothing since it precedes all other computations and, in the context
of differential equations, damps the error in the high-frequencies, i.e., it smooths the error. In
order to refine x̃k using the error equation, we compute the new residual gk = b−Ax̃k.

Let 0 < N1 < N . We denote by R ∈ RN1×N the restriction operator. This operator
projects a vector from a grid of size N to a grid of size N1. Differently, the interpolation
operator P ∈ RN×N1 interpolates a vector from a grid of size N1 to a grid of size N . Usually
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R = cP t with c > 0. Using the Galerkin approach, the restricted operator is defined as
A1 = RAP ∈ RN1×N1 . Assuming that both R and P are of full rank, then A1 is invertible
whenever A is invertible. To refine the approximation x̃k, a coarser problem is defined using
the error equation. Assume that A1 is invertible, and compute the coarser approximation of
the error as hk = PA−1

1 Rgk. Then the refined version of x̃k is

x̂k = x̃k + hk = x̃k + PA−1
1 R(b−Ax̃k) = x̃k + P (RAP )−1R(b−Ax̃k).

The procedure that computes x̂k from x̃k is called Coarse Grid Correction (CGC). The iteration
matrix of the CGC is

C = I − P (RAP )−1RA.

Note that C is a projector, and hence, the TGM algorithm requires a smoothing step to converge
to the solution of (1.3); see [6]. Finally, to obtain the (k + 1)st approximation, we can apply
ν2 steps of an iterative method, called post-smoothing, which may be different from the
pre-smoother.

It is possible to show that, under mild conditions, this method converges to the solution
of (1.3) whenever A is positive definite. Nevertheless, a linear convergence rate can be
achieved only if the smoother and the projector are chosen in order to reduce the error in
almost orthogonal subspaces.

When N1 is large, the main computational issue of the TGM algorithm is the computation
of hk since it requires the solution of a linear system of size N1×N1. Therefore, the multigrid
method applies recursively the TGM restricting the grids until a very small and easily solvable
problem is obtained.

Let N = N0 > N1 > . . . > NL > 0. We denote by Ri and Pi the ith restriction and
interpolation operator, respectively, so that it holds that Ri ∈ RNi+1×Ni and Pi ∈ RNi×Ni+1 ,
for i = 0, . . . , L− 1. Then

(2.6) Ai =

{
A if i = 0,

Ri−1Ai−1Pi−1 i = 1, . . . , L.

For instance, for images of size 2L × 2L, we have N = 22L, and defining Ri as the operator
that selects every second pixel in each direction (downsampling), it holds that Ni = 22(L−i),
for i = 0, . . . , L, thus NL = 1.

Summarizing, the single step of the multigrid iteration reads as follows:

yi = V-Step(xi, Ai,bi, i, L)

if (i = L) then yL = Solve(ALyL = bL)
else x̃i = Pre-Smooth

(
Ai,bi,xi, ν1

)
ri+1= Ri(bi −Aix̃i)
ei+1= V-Step(0, Ai+1, ri+1, i+ 1, L)
x̂i = x̃i + Piei+1

yi = Post-Smooth
(
Ai,bi, x̂i, ν2

)
end

This is called a V-cycle since when represented graphically it resembles a V; see [47]. The
Multigrid Method is the following iterative application of such V-cycles,

xk+1 = V-Step(xk, A,b, 0, L),
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given an initial approximation x0.
For well-posed Toeplitz-like linear systems, multigrid methods have been extensively

investigated starting from the seminal work [30]. The symbol analysis for Toeplitz matrices
can be considered a generalization of the local Fourier analysis, as proven in [17], and can
be extended to many Toeplitz-like structures and multidimensional problems; see, e.g., [2].
In all cases the grid transfer operator is constructed as the combination of a square matrix
generated by the symbol p and having the same structure of the coefficient matrix with a
proper downsampling operator which preserves the same structure at the coarser level. In such
a way, for two dimensional problems, the coarser matrix is generated by the symbol

fnext(x1, x2) =
1

4

(
fp2

(x1

2
,
x2

2

)
+ fp2

(x1

2
+ π,

x2

2

)
+ fp2

(x1

2
,
x2

2
+ π

)
+ fp2

(x1

2
+ π,

x2

2
+ π

))
,

where f is the symbol of the coefficient matrix. According to this observation, in [37]
a multigrid method for BTTB has been defined choosing as coarser matrix the Toeplitz
matrix generated by fnext independently of the used downsampling. This approach can be
interpreted as a “geometric” multigrid for structured matrices, where at the coarser level, the
rediscretization of the same operator associated to f is not used but those associated to fnext,
which is computed by applying a Galerkin strategy to the continuous operators, i.e., to the
Fourier coefficients of the symbols f and p. It is well known that the geometric approach is
less robust with respect to the Galerkin approach in term of speed of convergence, but it is
more flexible since it does not requires that specific relations between the sizes of the matrices
are preserved.

For well-posed problems, the results in [2] show that for certain matrix algebras related to
BTTB, under some hypothesis that link the smoother and the coarsening strategy, the multigrid
method has a linear convergence rate, i.e., the number of iterations do not depend on the
dimension of the problem. Intuitively the restriction operator should map the error equation
into the subspace where A is ill-conditioned because classical smoothers reduce the error in
the well-conditioned subspace.

Conversely, for ill-posed problems, the projection in the ill-conditioned subspace results
to be dangerous because this space is mainly formed by the high frequencies where the noise
has its most relevant components. Hence solving the problem projected to the ill-conditioned
space may lead to a dramatical amplification of the noise. Therefore, the grid transfer operator
has to be chosen differently, as proposed in [23] and proven in [25]. On the other hand, the
projection in the well-conditioned subspace also allows the inversion of the coarser matrix
if NL is small enough. Note that using a projection into the well-conditioned subspace, the
multigrid method that we are going to construct does not have a linear convergence rate since
it does not fulfills the hypothesis in [2], but it shows a very stable convergence which is a
very useful feature for iterative regularization methods. A fast enough convergence could be
preserved using a fast smoother defined for instance using some preconditioning techniques.

3. Our multigrid iterative regularization method. Here we describe our algorithmic
proposal which combines low-pass filters with fast iterative regularization methods. Firstly,
we introduce the coarsening strategy that is necessary to define the coarser problems, and then
we describe our pre- and post-smoother.
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3.1. Coarsening. The restriction Ri : Rn
2
i−1 → Rn2

i is the full weighting operator, and
the prolongation is

(3.1) Pi =
1

4
Rti, i = 0, . . . , L− 1,

which is a scaled version of bilinear interpolation. The stencil associated to Ri is

M =
1

16

1 2 1
2 4 2
1 2 1

 ,
which corresponds to the symbol

p(x1, x2) =
1

4
(1 + cos(x1))(1 + cos(x2)).

In order to obtain a coarser problem, the square matrix generated by p(x1, x2) has to be
combined with a downsampling operator. Let K(i)

d be the downsampling operator at level i. It
is defined as

K
(i)
d = K̃

(i)
d ⊗ K̃

(i)
d ,

where K̃(i)
d is the one-dimensional downsampling operator which keeps every second compo-

nent. Namely, K̃(i)
d can be written as an ni+1 × ni matrix such that

K̃
(i)
d =


1 0 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
0 0 0 0 1 . . . 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 . . . 1 0


or

K̃
(i)
d =


0 1 0 0 0 0 . . . 0 0
0 0 0 1 0 0 . . . 0 0
0 0 0 0 0 1 . . . 0 0
...

...
...

...
...

... . . .
...

...
0 0 0 0 0 0 . . . 1 0

 ,

for ni even and odd, respectively. Therefore, Ni = n2
i , for i = 0, . . . , L, with ni+i = ni/2 if

ni is even and ni+i = (ni − 1)/2 for ni odd. For instance, in the case of zero Dirichlet bc’s,
the restriction operator is

(3.2) Ri = K
(i)
d Tni(p), i = 0, . . . , L− 1.

REMARK 3.1. The restriction matrix Ri, analogous to that in (3.2) but defined by
imposing reflective bc’s, coincides with the low-pass filter W00 in (2.5).

We now provide some details on the implementation. Working on 2D problems we store
the data in bidimensional arrays. Using Matlab notation, we denote by vec(·) the function
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that returns a vector containing the columns of the input matrix stacked below each other. Let
X ∈ Rni×ni and x = vec(X). The restriction of the vector x can be computed by

Rix = K
(i)
d Tni(p)x =

(
K̃

(i)
d ⊗ K̃

(i)
d

)
Tni(p)vec(X)

=
(
K̃

(i)
d ⊗ K̃

(i)
d

)
vec (M ∗X) = vec

(
K̃

(i)
d (M ∗X) (K̃

(i)
d )t

)
,

where ∗ denotes the convolution operator. Similarly, the prolongation Pi can be applied to an
image X ∈ Rni−1×ni−1 as follows:

Pix =
1

4
T tni(p)(K

(i)
d )tx =

1

4
vec
(
M ∗

(
(K̃

(i)
d )tXK̃

(i)
d

))
.

A crucial choice concerns the construction of the matrices Ai. For general bc’s and an
arbitrary size of the true image X, the Galerkin approach in (2.6) does not ensure that the
structure of the coefficient matrix is preserved through the levels. Indeed the proposals [19, 23]
require images of size (2` − 1) × (2` − 1), ` ∈ N, and zero Dirichlet boundary conditions.
In particular, if A has a structure defined by reflective or antireflective boundary conditions,
then A1 = R1AP1 does not have the same structure as A. Since the structure of the matrices
is essential for fast computations and for the spectral analysis at the coarser levels, we use
the approach proposed in [37], where the coarser matrices Ai+1 are computed imposing a
prescribed structure to the matrix generated by the symbol

fi+1(x1, x2) =
1

4

(
qi

(x1

2
,
x2

2

)
+ qi

(x1

2
+ π,

x2

2

)
+ qi

(x1

2
,
x2

2
+ π

)
+ qi

(x1

2
+ π,

x2

2
+ π

))
,

with qi = fip
2
i , for i = 0, . . . , L−1, andA0 = A. A natural choice is to use the same structure

of A like in [37], but it is possible to save some computational cost without deteriorating the
quality of the computed solution simply by defining Ai+1 as BCCB matrices. This follows
from the fact that the CGC operates on the error equation. Hence, if the multigrid method is
computing a good restoration, then the error can be seen as a random image. Thus, it is not
necessary to impose accurate bc’s for the error equation, but the periodic assumption, which
leads to BCCB matrices, is reliable. Note that if A is defined by periodic bc’s and n is a power
of two, then the proposed coarsening strategy coincides with the standard Galerkin approach,
i.e., Ai+1 = RiAiPi.

Computationally, the sequence of symbols {fi}Li=0 is simply represented by the sequence
of the corresponding Fourier coefficients {PSFi}Li=0, where f0 = f and PSF0 = PSF since
A0 = A. Therefore, according to (2.6), the coarser Fourier coefficients are computed by

(3.3) PSFi =

{
PSF i = 0,

K
(i−1)
d (M t ∗ PSFi−1 ∗ 1

4M)K
(i−1)
u i = 1, . . . , L.

The matrices PSFi are computed in a setup phase executed before the iterations of the
multigrid method, while the construction of the matrices Ai is not necessary since they are
never allocated and only computations by FFTs are performed.

The coarsening is repeated until the system is reduced to a single equation in only one
variable such that its solution is fast and stable.
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3.2. Smoothing. The pre-smoother is the framelet denoising described in Section 2.3.
This pre-smoother is able to keep the effects of the noise under control without smoothing the
edges. Differently from [19], here we use the framelet denoising as a pre-smoother instead
of a post-smoother. At the finest level there is no substantial difference in applying a method
as pre- or post-smoother thanks to the iterative nature of multigrid methods. This choice is
mainly due to two facts:

1. We want to project the iteration inside the nonnegative cone. The denoising of a
nonnegative signal can, in principle, insert negative values, and thus, since the post-
smoother is the very last operation performed, using it as a post-smoother may result
in negative values of the determined approximation.

2. Since the pre-smoother acts directly on the initial approximation at each level, we
are going to denoise only the finest level. In fact, the initial approximation of the
coarser levels is the zero vector, and thus, its soft-thresholded version is again 0
independently of the parameter θ. Moreover, since we do not apply denoising to the
lower levels, there is no need to estimate further parameters.

Framelet denoising is preferable to the usage of few iterations of an iterative regularization
method like CGLS because framelet denoising has proven to be able to effectively remove
noise while preserving relevant information of the image. Moreover, few iterations of an
iterative regularization method may destroy some of the relevant information in the image,
especially when the method is close to convergence, due to the semi-convergence phenomenon.
Finally, the introduction of the framelet denoising let us develop a complete convergence
theory; see Section 4.

The threshold parameter θ for the denoising is chosen in a nonstationary way. We use the
following sequence of parameters

(3.4) θk = pk−1 δ

‖bδ‖

√
2 log n

n
,

where 0 < p < 1 and k denotes the iteration. Note that θ1 coincides with the parameter choice
in (2.4). However, since the post-smoother which we are going to use also has a denoising
effect, we thus choose to decrease the parameter throughout the iterations.

For the post-smoother, we use one iteration of Algorithm 1 AIT described in Section 2.2.
For the computation of the regularization parameter α1 at each coarser level, we need an
estimate of the norm of the noise at each levels. This is obtained by the estimation in [40],
where it is proven that, fixing δ0 = δ, the norm of the noise δi can be estimated by

(3.5) δi =
δi−1

2
, i = 1, . . . , L− 1.

Note that at the coarser levels, since we impose periodic bc’s, AIT simply reduces to IT saving
some computational cost. Nevertheless, we use exactly the same algorithmic proposal of AIT
for estimating α1.

Enforcing the nonnegativity of the solution can help in achieving better reconstructions,
so we want to be sure that our method fulfills this constraint. This can be easily added at each
iteration as shown in [13], which is equivalent to using APIT as post-smoother at the finest
level.

The projection onto the nonnegative cone is performed only at the finest level and not
on the coarser ones. This is due to the nature of multigrid methods. As we described above,
at the coarser levels, multigrid methods solve the error equation and not the problem itself.
Each element of the error vector can be either positive or negative, and the error vector, in
general, does not belong to the nonnegative cone. So the projection onto the nonnegative cone

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

298 A. BUCCINI AND M. DONATELLI

may deteriorate the quality of the computed solution since it may destroy relevant information.
More general, determining a closed and convex set in which the error lies is not an easy task,
and thus, we do not enforce any constraint on the coarser levels.

3.3. The algorithm. To determine at which iteration to stop our multigrid regularization,
we use an adaptation of the discrepancy principle, which is the same as in Algorithm 1; see
[22] and [7] for details on AIT and APIT, respectively. Let xk be the approximated solution at
step k. Then the stopping iteration kδ is

(3.6) kδ = min
k

{
k :
∥∥Axk − bδ

∥∥ ≤ 1 + 2ρ

1− 2ρ
δ

}
,

where ρ is defined in (2.1).
As mentioned above, we treat the finest level differently from the coarser levels. This

choice is motivated by the fact that the coarser levels deal with the error equation which has
different properties. In particular, at the coarser levels:

1. We do not apply any denoising because the initial guess is the 0 vector;
2. We do not use projection in the post-smoother because it is not suitable for the error;
3. We employ periodic bc’s which usually are a good model for a random image such

as the error. In fact, the error can be seen almost as a random variable, and thus the
periodic assumption is well approximating the true behavior of the error. Hence, the
matrices Ai, for i = 1, . . . , L, are BCCB, and all the required computations can be
done very efficiently by FFTs.

ALGORITHM 3 (Multigrid Method (MgM)). Consider the system (1.5). Let Ai be defined
as the blurring matrix with the PSF PSFi defined as in (3.3), for i = 0, . . . , L, and choose
suitable bc’s for i = 0 and periodic bc’s for i = 1, . . . , L. Let Ri and Pi be defined as in (3.1)
and (3.2), let the noise levels for each level δi be defined as in (3.5), the parameter θk be
chosen as in (3.4), and choose the number of framelet levels l to which we apply the denoising.
Let x0 be an initial guess for the solution of (1.5). The MgM algorithm reads as follows:

x = MGM(x0, A,b
δ)

k = 1

While
∥∥Axk − bδ

∥∥ > 1+2ρ
1−2ρδ

xk = MGM Single Step(xk−1, A,b
δ, 0, l, L)

k = k + 1
end

The single step of the algorithm is defined by

yi = MGM Single Step(xi, Ai,b
δi
i , i, l, L)

if (i = L) then yL = A†Lb
δL
L

else x̃i =

{
Slθk(xi) i = 0
xi otherwise

ri+1= Ri(b
δi
i −Aix̃i)

ei+1= MGM Single Step(0, Ai+1, ri+1, i+ 1, l, L)
x̂i = x̃i + Piei+1

ŷi = AIT
(
x̂i, Ai,b

δi
i , 1

)
yi =

{
PΩ(ŷi) i = 0
ŷi otherwise

end
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Here, AIT
(
x̂i, Ai,b

δi
i , 1

)
denotes the application of one step of Algorithm 1 with the initial

guess x̂i, the system matrix Ai, the right-hand side bδii , and the estimated noise level δi.
REMARK 3.2. Differently from the well-posed case, it might happen that AL is not

invertible. Then at level L we solve the least square problem

yL = arg min
y

∥∥∥ALy − bδLL

∥∥∥2

= A†Lb
δL
L .

We now discuss the choice of x0. As we will see in Section 4, the convergence of the
method is guaranteed for any initial guess. This choice can affect the quality of the final
restoration only marginally. From our experiments, according to the numerical results in [22],
we have observed that the choice of x0 = bδ is very natural and leads to very accurate
restorations. Nevertheless, different choices for x0, like x0 = 0 and x0 = Atbδ, can be
considered as well.

REMARK 3.3. Our multigrid method does not fulfill the hypothesis in [2], and hence we
cannot expect a linear convergence rate. In particular, the chosen projector does not project
into the ill-conditioned space of Ai. On the contrary, being a low-pass filter, it projects into
the well-conditioned space of Ai which is the low-frequency space. This means that, as we
will see in the numerical results in Section 5, our algorithm requires a number of iterations
slightly higher if compared to the post-smoother APIT. However, this is needed in order to
improve the regularizing effect and improve the quality of the restorations.

Concerning the arithmetic cost of one multigrid iteration, this is not much higher than
the cost of a single iteration of the post-smoother APIT at the finer level, which is lower
than cn2 log n for a fixed constant c > 0 up to lower-order terms, due to four FFTs (two
for computing the residual with the chosen bc’s and two for applying the preconditioner).
Indeed, at the coarser levels, APIT reduces to IT with periodic bc’s saving two FFTs, and
the denoising pre-smoother, which is linear in n, is applied only at the finest level. Hence,
since the computational cost at each coarser level i = 1, . . . , L is lower than c

2n
2
i log ni up to

lower-order terms, the total arithmetic cost of one iteration of our MgM for image deblurring
is 7

6cn
2 log n+O(n) according to the computational cost of a classical V-cycle [47].

4. Convergence Analysis. We are now going to study the convergence and regularization
properties of our algorithm. In order to do that, we assume that Ω is the nonnegative cone,
the discretization of (1.1) is computed imposing periodic bc’s so that the coarse matrices
computed using (3.3) coincide with the standard Galerkin approach as in (2.6). Note that
a PSF usually has nonnegative entries because it performs weighted averages. Hence, by
imposing periodic bc’s, the resulting matrix has nonnegative entries. Finally, as usually done
for the theoretical analysis of multigrid methods like in [47], we consider the simplest case of
the two-grid method such that L = 1.

Observe that Pi = 1
4R

t
i according to (3.1). Then, denoting the interpolation operator P0

simply by P , we obtain that

A1 = 4P tAP.

The two-grid version of our MgM algorithm is reported in Algorithm 4.
ALGORITHM 4 (TGM). Consider the system (1.5). Let the parameter θk be chosen as

in (3.4), and choose the number of framelet levels l to which we apply the denoising. Let ρ be
the parameter in equation (2.1) and q be a constant such that 2ρ ≤ q ≤ 1. Let x0 be an initial
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guess for the solution of (1.5).

x = TGM(x0, A,b
δ)

k = 0

While
∥∥bδ −Axk∥∥ ≥ 2+ρ

2−ρδ

x̃k = Slθk(xk)
rk = bδ −Ax̃k
hk = P (P tAP )†P trk
x̂k = x̃k + hk

qk = max
{
q, 2ρ+ (1+ρ)δ

‖bδ−Ax̂k‖

}
r̂k = bδ −Ax̂k
αk ← determine αk that solves the non-linear equation∥∥r̂k − CCt(CCt + αkI)−1r̂k

∥∥ = qk ‖r̂k‖
xk+1= PΩ

(
x̂k + Ct(CCt + αkI)−1(bδ −Ax̂k)

)
k = k + 1

end

Note that αk in Algorithm 4 is chosen by solving the non linear equation∥∥r̂k − CCt(CCt + αkI)−1r̂k
∥∥ = qk ‖r̂k‖ .

This can be performed easily when C is a BCCB matrix using Newton’s method; see [22].
We define the following errors

(4.1) ek = x† − xk, ẽk = x† − x̃k, êk = x† − x̂k.

For convenience, we also define

(4.2) D = P (P tAP )†P t, Qk = Ct(CCt + αkI)−1.

In order to prove convergence, we need the following assumptions:
ASSUMPTION 2. The thresholding parameters θk and the number of levels l ensure that

‖ek‖ ≥ ‖ẽk‖ .

ASSUMPTION 3. The noise vector ξ = bδ − b does not have any component inR(P t),
i.e., ξ ∈ N (P t) = R(P )⊥.

Assumption 2 requires that the threshold parameter is chosen so that it does not deteriorate
the error. Obviously, it is satisfied if the parameter is small enough, and this is reasonable for a
converging algorithm. Since the sequence (θk)k is strictly decreasing, the assumption will be
satisfied, at least for k large enough. Assumption 3 is unlikely to be completely satisfied in a
real case scenario, but it is almost true because the noise is a highly oscillating function, thus
most of its components lie in the high-frequency space which coincides with the null space of
P t since P represents a low-pass filter. Thus, while it might not be true that ξ ∈ N (P t), in
practice ‖P tξ‖ ≈ 0.

REMARK 4.1. Note that when the data are exact, i.e., δ = 0, Assumption 3 is trivially
satisfied. Moreover, θk = 0, and so also Assumption 2 holds. In other words, in the noise-free
case both Assumptions 2 and 3 are satisfied.

First of all we have to prove the following result:
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LEMMA 4.2. Let êk and ẽk be defined as in (4.1). Assume that x† ∈ Ω. Under
Assumption 3 it holds that

‖êk‖ ≤ ‖ẽk‖ .

Proof. Note that C = I −DA is the CGC matrix where D is defined as in (4.2). Hence C
is a projector and ‖C‖ = 1. Thus, it holds that

‖êk‖ =
∥∥x† − x̂k

∥∥ =
∥∥x† − (x̃k +D(bδ −Ax̃k))

∥∥ (a)
=
∥∥x† − (x̃k +D(b−Ax̃k)

∥∥
=
∥∥x† − x̃k −DA(x† − x̃k)

∥∥ =
∥∥(I −DA)(x† − x̃k)

∥∥ ≤ ‖ẽk‖ ,
where (a) is justified by Assumption 3; in fact,

Dbδ = P (P tAP )†P tbδ = P (P tAP )†P tb = Db.

We can now prove the following preliminary result:
PROPOSITION 4.3. Let êk, ẽk, and ek be defined as in (4.1). Under Assumptions 1, 2, and 3,

it holds that

‖ek‖2 − ‖ek+1‖2 ≥ 2ρ
∥∥(CCt + αkI)−1r̂k

∥∥ ‖r̂k‖ ,
where r̂k = bδ −Ax̂k.

Proof. Denote with ĥk = Ct(CCt + αkI)−1r̂k. Consider

‖ek+1‖2 =
∥∥x† − xk+1

∥∥2
=
∥∥∥x† − PΩ

(
x̂k + ĥk

)∥∥∥2 (a)
=
∥∥∥PΩ

(
x†
)
− PΩ

(
x̂k + ĥk

)∥∥∥2

(b)

≤
∥∥∥x† − x̂k − ĥk

∥∥∥2

= ‖êk‖2 − 2
〈
êk, ĥk

〉
+
∥∥∥ĥk∥∥∥2

,

where in order to obtain (a) we have used the fact that, by assumption, x† ∈ Ω, and for (b) we
have used the fact that the metric projection is a contractive mapping; see [50].

Combining Assumption 2 with Lemma 4.2, it holds that

‖ek‖2 − ‖ek+1‖2 ≥ ‖ẽk‖2 − ‖ek+1‖2 ≥ ‖êk‖2 − ‖ek+1‖2 .

The remaining part of the proof is inspired by the proof of Proposition 2.2 in [7, 22]. Thus

‖ek‖2−‖ek+1‖2 ≥ ‖êk‖2 − ‖ek+1‖2

≥ 2
〈
êk, ĥk

〉
−
∥∥∥ĥk∥∥∥2

= 2
〈
Cêk, (CC

t + αkI)−1r̂k
〉
−
〈
r̂k, CC

t(CCt + αkI)−2r̂k
〉

= 2
〈
r̂k, (CC

t + αkI)−1r̂k
〉
−
〈
r̂k, CC

t(CCt + αkI)−2r̂k
〉

− 2
〈
r̂k − Cêk, (CCt + αkI)−1r̂k

〉
≥ 2

〈
r̂k, (CC

t + αkI)−1r̂k
〉
− 2

〈
r̂k, CC

t(CCt + αkI)−2r̂k
〉

− 2
〈
r̂k − Cêk, (CCt + αkI)−1r̂k

〉
= 2αk

〈
r̂k, (CC

t + αkI)−2r̂k
〉
−
〈
r̂k − Cêk, (CCt + αkI)−1r̂k

〉
≥ 2αk

〈
r̂k, (CC

t + αkI)−2r̂k
〉
− ‖r̂k − Cêk‖

∥∥(CCt + αkI)−1r̂k
∥∥

≥ 2
∥∥(CCt + αkI)−1r̂k

∥∥ (∥∥αk(CCt + αkI)−1r̂k
∥∥− ‖r̂k − Cêk‖) .
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Since αk(CCt + αkI)−1r̂k = r̂k − Cĥk and inserting the definition of αk, we have that∥∥αk(CCt + αkI)−1r̂k
∥∥ = qk ‖r̂k‖ .

Thus,

‖ek‖2 − ‖ek+1‖2 ≥ 2
∥∥(CCt + αkI)−1r̂k

∥∥ (qk ‖r̂k‖ − ‖r̂k − Cêk‖) .

Using Lemma 2.1 and the definition of qk, it holds that

‖ek‖2 − ‖ek+1‖2 ≥ 2
∥∥(CCt + αkI)−1r̂k

∥∥(qk ‖r̂k‖ − (ρ+
1 + ρ

τk

)
‖r̂k‖

)
≥ 2ρ

∥∥(CCt + αkI)−1r̂k
∥∥ ‖r̂k‖ ,

which concludes the proof.
COROLLARY 4.4. With the same notation and assumptions of Proposition 4.3, it holds

that

c

kδ−1∑
k=0

‖r̂k+1‖2 ≤ 2ρ

kδ−1∑
k=0

∥∥(CCt + αkI)−1r̂k
∥∥ ‖r̂k‖ ≤ ‖e0‖ ,

for some constant c > 0 depending only on ρ and q.
Proof. This is direct consequence of the iterated application of Proposition 4.3 combined

with Corollary 2.3.
Corollary 4.4 proves that, when δ > 0, Algorithm 4 stops after finitely many iterations

independently of the choice of x0. In fact, assuming that kδ =∞, i.e., that the algorithm does
not stop after finitely many iterations, then it has to be the case that

∞∑
k=0

‖r̂k‖2 ≤ c ‖e0‖ <∞

for some constant c > 0. Thus, the norm of the residual becomes arbitrarily small which is
absurd due to the stopping criteria (3.6).

We are now in a position to prove convergence of the TGM Algorithm 4 in the noise free
case and that, if x0 is not a solution of the system, an infinite number of iterations are needed.

THEOREM 4.5. Let δ = 0, and assume that x0 is not a solution of the linear system (1.3).
Assume that Ω is the nonnegative cone and that all entries of A are nonnegative. Then the
iterates generated by Algorithm 4 converge to a solution of (1.3). Moreover, an infinite number
of iterations are needed.

Proof. This proof is inspired by the proof of [22, Theorem 4], but some details are
different. We start first by proving that infinitely many iterations are needed. If δ = 0, then
the stopping criterion can be satisfied for a k = kδ only if xk is a solution of the system (1.5).
This implies, in order for xk+1 to be a solution of (1.5), that ĥk−1 coincides with êk−1 up to
an element in N (A), where

ĥk−1 = Ct(CCt + αkI)−1r̂k−1.

From Assumption 1 we obtain that N (A) = N (C), and from the definition of αk−1 and
Lemma 2.1 it follows that

qk−1 ‖r̂k−1‖ =
∥∥∥r̂k−1 − Cĥk−1

∥∥∥ = ‖r̂k−1 − Cêk−1‖ ≤
(
ρ+

1 + ρ

τk−1

)
‖r̂k−1‖ .
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However, this contradicts the definition of qk−1, which means that the iterations do not stop if
x̂0 is not a solution of the system.

We now show that the sequence {xk}k is a Cauchy sequence, and hence that it converges.
Let m+ 1 ≥ l and consider the following estimates:

‖xm+1 − PΩ(x̂l)‖2 =
∥∥∥PΩ(x̂m + ĥm)− PΩ(x̂l)

∥∥∥2

≤
∥∥∥x̂m + ĥm − x̂l

∥∥∥2

≤ 2 ‖x̂m − x̂l‖2 + 2
∥∥∥ĥm∥∥∥2

= 2 ‖êm − 2êl‖2 + 2
∥∥∥ĥm∥∥∥2

= 2 ‖êm‖2 − 2 ‖êl‖2 − 4 〈êl, êm − êl〉+ 2
∥∥∥ĥm∥∥∥2

= 2 ‖êm‖2 − 2 ‖êl‖2 + 4

m−1∑
j=l

〈êl, êj − êj+1〉+ 2
∥∥∥ĥm∥∥∥2

,

= 2 ‖êm‖2 − 2 ‖êl‖2 + 4
m−1∑
j=l

〈êl, x̂j+1 − x̂j〉+ 2
∥∥∥ĥm∥∥∥2

= 2 ‖êm‖2 − 2 ‖êl‖2 + 4

m−1∑
j=l

〈
êl, ĥj

〉
+ 2

∥∥∥ĥm∥∥∥2

= 2 ‖êm‖2 − 2 ‖êl‖2 + 4

m−1∑
j=l

〈
Cêl, (C

∗C + αjI)−1r̂j
〉

+ 2
∥∥∥ĥm∥∥∥2

≤ 2 ‖êm‖2 − 2 ‖êl‖2 + 4

m−1∑
j=l

‖Cêl‖
∥∥(C∗C + αjI)−1r̂j

∥∥+ 2
∥∥∥ĥm∥∥∥2

≤ 2 ‖êm‖2 − 2 ‖êl‖2 + 4(1 + ρ)

m−1∑
j=l

‖Aêl‖
∥∥(C∗C + αjI)−1r̂j

∥∥+ 2
∥∥∥ĥm∥∥∥2

= 2 ‖êm‖2 − 2 ‖êl‖2 + 4(1 + ρ)

m−1∑
j=l

‖r̂l‖
∥∥(C∗C + αjI)−1r̂j

∥∥+ 2
∥∥∥ĥm∥∥∥2

.

Let n+ 1 ≤ l. Similarly as before we obtain

‖PΩ(x̂l)− xn+1‖2 ≤ 2 ‖ên‖2−2 ‖êl‖2+4(1+ρ)

n−1∑
j=l

‖r̂l‖
∥∥(C∗C + αjI)−1r̂j

∥∥+2
∥∥∥ĥn∥∥∥2

.

Let l be such that m+ 1 ≤ l ≤ n+ 1 and ‖r̂l‖ is minimal. Then we obtain

‖xm+1 − xn+1‖2 ≤ 2 ‖PΩ(x̂l)− xn+1‖2 + 2 ‖xm+1 − PΩ(x̂l)‖2

≤ 4 ‖êm‖2 + 4 ‖ên‖2 − 8 ‖êl‖2 + 4
∥∥∥ĥm∥∥∥2

+ 4
∥∥∥ĥn∥∥∥2

+ 8(1 + ρ)

m−1∑
j=n

‖r̂l‖
∥∥(C∗C + αjI)−1r̂j

∥∥ .
This shows that the sequence xj is a Cauchy sequence due to the fact that the sequence ‖êj‖ is
convergent in view of Proposition 4.3, the summation is the tail of a convergent series thanks
to Corollary 4.4, and

∥∥∥ĥj∥∥∥→ 0 as j →∞ by Theorem 2.4.
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Since all the entries of A are nonnegative and Ω is the nonnegative cone, it follows that

(4.3) ‖rk+1‖ = ‖Aek+1‖ ≤ ‖Aêk‖ = ‖r̂k‖ ,

where the inequality is obtained thanks to the fact that all the positive entries of ek+1 are
smaller than the ones in êk and the entries of A are all nonnegative.

From Corollary 4.4 we know that ‖r̂k‖ → 0 as k → ∞. Then from (4.3) we obtain
that ‖rk‖ → 0 as k → ∞ and thus that the limit of the sequence {xk}k is a solution of the
noise-free system.

The last result that we would like to prove is that Algorithm 4 is a regularization method.
THEOREM 4.6. Assume that Assumption 1 holds for some 0 < ρ ≤ 1

2 , and let δ 7→ bδ be
a function from R+ to RN such that for all δ it holds that

∥∥b− bδ
∥∥ ≤ δ. For fixed τ and q,

denote by xδ the approximation of x† obtained with Algorithm 4. Then, as δ → 0, xδ tends to
a solution of the system (1.3).

We omit the proof since it can be copied from [32, Theorem 2.3]; for further reference
see also [27, Theorem 11.5]. Its essentials ingredients are the monotonicity proven in Proposi-
tion 2.2, the convergence to the exact solution in the exact data case proven in Theorem 4.5,
and the continuity of the map δ 7→ bδ .

5. Numerical examples. We firstly recall how we construct in Algorithm 3 the operators
Ai, for i = 0, . . . , L, the approximation Ci, for i = 0, . . . , L− 1, and the parameters ρi and
qi, for i = 0, . . . , L− 1.

For the finest level we select A0 = A as the blurring matrix with the appropriate bc’s, i.e.,
the one which better approximate the nature of the image. For the coarser levels, since we are
working on the error equation, the bc’s are irrelevant, and so we select Ai, for i = 1, . . . , L, as
the blurring matrix with the PSF PSFi defined as in (3.3) and with periodic bc’s.

We set Ci, for i = 0, . . . , L− 1, as in [7, 22] as the blurring matrix associated to PSFi
and with periodic bc’s. In this way the computation of Cti (CiC

t
i + αI)−1 can be done in

O(n2 log n) flops using two FFTs. However, at the coarser levels, since we are imposing
periodic bc’s, we have that Ai = Ci, and thus, the AIT algorithm is simply the IT method,
where the regularization parameter is chosen as in AIT. This choice ensures that Assumption 1
is trivially satisfied for any ρ, and, moreover, let us further dampen the computational cost.

We set ρi = 10−4, q0 = 0.7, qi = 1 for the levels i = 1, . . . , L − 1, and we fix l = 4,
where l denotes the number of decompositions in the denoising algorithm (see Algorithm 2).
Finally, we set L so that AL ∈ R, i.e., the problem at the coarsest level is reduced to a single
linear equation in one variable.

We would like to stress that the choice of the parameters above is not crucial for the quality
of the computed restorations, and different choices lead to practically identical reconstructions.
In other words, the proposed algorithm is very stable with respect to the choice of these
parameters. This is confirmed by the following numerical examples where different kind of
blur and noise and images with different features are considered; see also Figure 5.4. Thanks
to this stability we can consider the proposed algorithm completely parameter-free whenever
an estimation of the noise level δ is available.

We compare Algorithm 3 to several methods from the literature with respect to both
accuracy and efficiency. For the comparison in accuracy, we consider three measures, the Rel-
ative Reconstruction Error (RRE), the Peak Signal to Noise Ratio (PSNR), and the Structural
SIMilarity index (SSIM). The first two quantities are defined as follows:

RRE(x) =

∥∥x− x†
∥∥

‖x†‖
, PSNR(x) = 20 log10

(
nM

‖x− x†‖

)
,
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(a) (b) (c)

FIG. 5.1. Peppers image test problem: (a) true image (502 × 502 pixels), (b) Gaussian non symmetric PSF
(11 × 11 pixels), (c) blurred and noisy image with ξ = 0.03 (502 × 502 pixels).

where n2 is the the number of elements of x and M denotes the maximum value of x†; the
definition of the third one is more involved and we refer to [49] for it. Here we just recall that
the SSIM measures how well the overall structure of the image is recovered and that the higher
the index the better the reconstruction. In particular, the highest value achievable is 1.

For constructing the examples, in order to simulate real test data, we first blur the true
image using the periodic bc’s, then we cut from the blurred image the boundary pixels affected
by the periodicity assumption depending on the support of the PSF. Finally, we add white
Gaussian noise with a noise level ξ such that

δ = ξ ‖b‖ .

We compare our MgM Algorithm 3 with other regularization methods recently proposed
in the literature:

• Approximated Projected Iterated Tikhonov (APIT); see Section 2.2 and [7];
• The Multigrid Regularization Method (MgM-CGLS) developed in [19];
• Linearized Bregman algorithm (LBA); see [11];
• The Modified Linearized Bregman Algorithm (MLBA-AIT) developed in [13];
• ADMM with unknown boundary conditions (ADMM-UBC) which uses a Total

Variation penalty term; see [1];
• The `2 − `q coupled with the discrepancy principle described in [9];
• The IRhtv method in the IRtools package [31];
• The IRell1 method in the IRtools package [31].

Some of these methods require the estimation of a parameter, in particular this is true for
ADMM-UBC, LBA, and MLBA-AIT. For these methods, we use the parameter which mini-
mizes the RRE (or, equivalently, maximizes the PSNR). ADMM-UBC has a proper treatment
of the boundary effects, while for the other algorithms the matrix A is the same as for our
MGM, i.e., the same bc’s are imposed. The maximum number of iterations is fixed at 400 for
all methods.

Peppers. In the first example we consider the peppers image, and we blur it with a motion
PSF. Finally we add white Gaussian noise with ξ = 0.03. Figure 5.1 shows the true image, the
PSF, and the blurred and noisy image. For the deblurring we use the antireflexive bc’s.

From the comparison in Table 5.1 of the results obtained with MgM and the other methods
considered, we can see that our method outperforms all the others in terms of accuracy and
SSIM. Moreover, from the visual inspection of the reconstructions in Figure 5.2, we can see
that the reconstruction provided by the proposed approach is sharper than the ones obtained
with the other methods.
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TABLE 5.1
Peppers test problem: Comparison of the proposed MgM and other methods from the literature. For ADMM-

UBC, LBA, and MLBA-AIT, the optimal regularization parameter was used. In bold the smallest error and the greatest
PSNR and SSIM.

Method RRE PSNR SSIM CPU time (sec.)
MgM 0.06649 28.2841 0.74398 65.7461
APIT 0.07966 26.7142 0.64551 3.0685
MgM-CGLS 0.07668 27.0459 0.71774 74.4698
LBA 0.13908 21.8739 0.63246 127.9507
MLBA-AIT 0.07062 27.7611 0.72387 7.9436
ADMM-UBC 0.14474 21.5273 0.61317 8.2949
`2 − `q 0.07320 27.4490 0.72364 9.7205
IRhtv 0.15989 20.6631 0.45378 265.1156
IRell1 0.16731 20.2690 0.45302 7.9181

(a) (b) (c)

FIG. 5.2. Peppers image test problem, reconstructions obtained with different methods: (a) MgM, (b) MLBA-AIT,
(c) `2 − `q .

Cameraman. In the second example we blur the cameraman image with a circular blur
PSF and add Gaussian noise so that ξ = 0.02. Figure 5.3 shows the true image, the PSF, and
the blurred and noisy image. We employ the antireflective bc’s.

In the considered case the PSF is quadrantally symmetric, and thus the operator A is
diagonalizable using the fast antireflective transform [3], and we could chose C0 = A0 = A
without introducing any approximation of the operator in the post-smoother. However, we
avoid this implementation since there is no remarkable improvement in the quality of the
reconstruction, which is already evident even when the circulant approximation is employed.
Moreover, this let us show that AIT, and by extension MgM, is very robust with respect of the
choice of the bc’s used for the preconditioner.

Table 5.2 reports the results obtained with MgM and the benchmark methods. From this
comparison we can see that MgM greatly outperforms most of the other methods in term of
accuracy. The error obtained with MLBA-AIT is smaller. However, this error is obtained by
hand-tuning the regularization parameter inside the method so that the error becomes minimal,
and small changes in the parameter leads to a larger error. In detail, for the optimal parameter
0.35, the RRE is 0.07911, while when the parameter is set to 0.1, the RRE is 0.083838, and
when is set to 1.5, the RRE is 0.083673. Differently, our MgM does not require the tuning of
any parameter and has a SSIM larger than the one obtained by all other methods. The only
two parameters present in the MgM algorithm are ρ and q. This is very important in real
applications since it is not possible to rely on the knowledge of the exact solution for tuning
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(a) (b) (c)

FIG. 5.3. Cameraman test problem: (a) true image (238 × 238 pixels), (b) circular motion PSF (21 × 21
pixels), (c) blurred and noisy image with ξ = 0.02 (238 × 238 pixels).

TABLE 5.2
Cameraman test problem: Comparison of MgM and other methods from the literature. For ADMM-UBC, LBA,

and MLBA-AIT the optimal regularization parameter was used. In bold the smallest error and the greatest PSNR and
SSIM.

Method RRE PSNR SSIM CPU time (sec.)
MgM 0.08259 27.2753 0.83357 17.7704
APIT 0.11637 24.3712 0.62238 2.2912
MgM-CGLS 0.09432 26.2138 0.82228 76.9488
LBA 0.08539 27.0602 0.76072 24.4277
MLBA-AIT 0.07911 27.7236 0.82568 21.2005
ADMM-UBC 0.17498 20.8282 0.69009 2.0235
`2 − `q 0.11340 24.5960 0.57334 24.5685
IRhtv 0.11399 24.5510 0.58923 34.6928
IRell1 0.11384 24.5626 0.58173 3.5299

the parameters. Moreover, when the parameters in an algorithm are not set automatically,
they have to be hand-tuned, and this process can be sometimes unreliable and extremely time
consuming. Finally, we would like to stress that the proposed algorithm is very stable with
respect to the choice of these parameters. To illustrate this in Figure 5.4, we present the value
of the RRE, PSNR, and SSIM obtained with different choices of ρ and q. We can observe
that even large changes in these two parameters barely affect the quality of the reconstructed
solution. Thus, we can fix these two parameters as described above without compromising the
quality of the restoration.

From the visual inspection of the reconstruction in Figure 5.5, we can see how accurate
the approximation given by MgM is also in comparison with MLBA-AIT.

Hubble. For the last example, we consider an image of the Hubble Telescope blurred
with a nonsymmetric PSF, and we add white Gaussian noise with ξ = 0.05. Figure 5.6 shows
the true image, the PSF, and the blurred and noisy image. Since this is an astronomical image,
we have employed zero Dirichlet bc’s.

Table 5.3 compares the results obtained with our algorithm against the ones obtained
with the other considered methods. MgM gives the highest SSIM while keeping a reasonable
computational cost. In Figures 5.7 and 5.8 we can observe the different reconstructions
obtained with three methods: MgM, ADMM-UBC, and APIT, and blow-ups around the
antenna of the telescope. From a visual inspection, note that the reconstruction obtained with
ADMM-UBC is not able to reconstruct the black area around the antenna and is affected
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(a) (b) (c)

FIG. 5.4. Cameraman test problem: Value of the RRE (a), PSNR (b), and SSIM (c) obtained with different
parameters ρ and q.

(a) (b) (c)

FIG. 5.5. Cameraman test problem, reconstructions obtained with different methods: (a) MgM, (b) LBA,
(c) MLBA-AIT.

by a heavy staircase effect. On the other hand, our MgM is able to correctly recognize the
background as black and provides an accurate reconstruction of the antenna of the telescope.

We would like to stress that the most competitive methods among the tested ones, i.e.,
ADMM-UBC, LBA, and MBLA-AIT, all rely on an estimate of a parameter which has to
be hand-tuned. All these methods are quite sensible with respect to the selection of the
regularization parameter, and an imprudent choice can lead to very poor reconstructions. This
is confirmed in Figure 5.9, where we plot the RRE obtained with ADMM-UBC, LBA, and
MBLA-AIT against their regularization parameters. We can observe that in all three methods
the accuracy of the reconstruction deteriorates rapidly if the regularization parameter is chosen
far from the optimal one. This is particularly evident for the ADMM-UBC and LBA methods,
while the MBLA-AIT method is more stable.

6. Conclusions. We have defined a new iterative multigrid method for image deblurring
which combines the idea of a regularizing multigrid method introduced in [23] (and in
particular its extension proposed in [19]) with the nonstationary preconditioning developed
in [22] and the extensions in [7].

The constructed method can be applied with any boundary condition, preserves the
nonnegativity of the image pixels, and does not require the estimation of any parameter
provided that an estimation of the norm of the noise is available. This last point is in accordance
with the Bakushinskii veto [5], which states that it is not possible to develop a complete
convergence analysis of the regularization properties of a method unless some information on
the noise is available. A theoretical analysis of the convergence and the regularization property
of the method is provided.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

A MULTIGRID FRAME BASED METHOD FOR IMAGE DEBLURRING 309

(a) (b) (c)

FIG. 5.6. Hubble test problem: (a) true image (234 × 234 pixels), (b) nonsymmetric PSF (17 × 17 pixels),
(c) blurred and noisy image with ξ = 0.05 (234 × 234 pixels).

TABLE 5.3
Hubble test problem: Comparison between MgM and other methods from the literature. For ADMM-UBC, LBA,

and MLBA-AIT the optimal regularization parameter was used. In bold the smallest error and the greatest PSNR and
SSIM.

Method RRE PSNR SSIM CPU time (sec.)
MgM 0.14830 26.3100 0.85603 13.2393
APIT 0.16805 25.2242 0.70313 1.3034
MgM-CGLS 0.16140 25.5752 0.71101 0.9462
LBA 0.15976 25.6638 0.58699 21.4703
MLBA-AIT 0.14871 26.2863 0.83654 6.1021
ADMM-UBC 0.14180 26.6995 0.78301 2.5935
`2 − `q 0.17360 24.9422 0.52144 21.9041
IRhtv 0.26195 21.3686 0.39063 31.3013
IRell1 0.26270 21.3439 0.38752 1.1514
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