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APPROXIMATION OF WEAKLY SINGULAR INTEGRAL EQUATIONS
BY SINC PROJECTION METHODS∗

KHADIJEH NEDAIASL†

Abstract. In this paper, two numerical schemes for a nonlinear integral equation of Fredholm type with weakly
singular kernel are studied. These numerical methods blend collocation, convolution, and approximations based on
sinc basis functions with iterative schemes like the steepest descent and Newton’s method, involving the solution of a
nonlinear system of equations. Exponential rate of convergence for the convolution scheme is shown and collocation
method is analyzed. Numerical experiments are presented to illustrate the sharpness of the theoretical estimates and
the sensitivity of the solutions with respect to some parameters in the equations. The comparison between the schemes
indicates that the sinc convolution method is more effective.
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1. Introduction. The aim of this paper is to study the numerical solution of the nonlinear
Fredholm integral equation

(1.1) u(t) = g(t) +

∫ b

a

f(|t− s|)k(t, s)ψ(s, u(s))ds, −∞ < a ≤ t ≤ b <∞,

where u(t) is an unknown function to be determined and k(t, s), ψ(s, u), and g(t) are given
functions. Equation (1.1) is an algebraic weakly singular integral equation whenever f(t) is
given by t−λ, 0 < λ < 1. A more general type of this equation, the so-called Urysohn weakly
singular integral equation [25], is defined as

(1.2) u(t) = g(t) +

∫ b

a

f(|t− s|)k(t, s, u(s))ds, −∞ < a ≤ t ≤ b <∞.

Linear and nonlinear integral equations with weakly singular kernels arise in various appli-
cations such as astrophysics [2]. In potential theory, the boundary integral equations of the
Laplace and Helmholtz operators can be expressed as linear combinations of weakly singular
operators [16].

It is well known that the solution of (1.1) has some singularities near the boundaries. This
is an important property that should be considered in the design of numerical solution methods.
There has been considerable interest in the numerical analysis of linear and nonlinear integral
equations with weakly singular kernels. This interest was followed by the development of
some projection schemes such as Galerkin, collocation, and product integration methods
with singularity-preserving approaches, which find approximate solutions with optimal error
bounds [1, 5, 6, 7, 8, 15, 26]. It is worth mentioning that the numerical solution of (1.1) with a
smooth kernel is comprehensively studied; for more information, see [3, 11, 14].

In the current study, we propose two reliable schemes in order to achieve appropriate
approximations for the nonlinear weakly singular integral equation (1.1). The methods are
designed to take the singular behavior of the solution into account. For the sake of comparison,
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we present two algorithms based on sinc approximation methods. In what follows, we will
elucidate the relevant characteristics and convergence rates of these schemes.

The first objective of this study is to investigate the analysis of sinc collocation methods for
nonlinear weakly singular Fredholm integral equations. In [12], the authors have studied this
subject and obtained the rate of convergence O(‖A−1‖∞(3 + log(N))

√
N exp(−

√
πdλN)).

Here, we consider a sinc collocation method with different basis functions by adding two
fractional polynomials (t − a)λ and (b − t)λ in the finite-dimensional space utilized as the
approximation space. We propose an error analysis for the approximate solution chosen from
an appropriate finite-dimensional space built from shifted sinc functions, while considering
the singular properties of the exact solution. However, we encounter a term ξN in the upper
bound, which depends on N and is unavoidable due to the nature of the projection methods.

For the second objective, we present and analyze a numerical scheme using as the key
idea an appropriate approximation of the following nonlinear convolution

r(x) =

∫ x

a

k(x, x− t, t)dt,

which is called sinc convolution method. Here, we replace the independent variables with the
single exponential transformation introduced in Section 2.

In order to make the paper self-contained, the basic properties of the sinc approximation
method are introduced in Section 2. Two numerical schemes based on sinc collocation and
sinc convolution methods will be studied in Section 3. Furthermore, this section contains a
complete convergence analysis for the proposed methods. Finally, Section 4 is devoted to
some numerical experiments in order to show consistency with the theoretical estimates of the
convergence rate.

In this work, we present numerical schemes based on sinc approximation, sinc convolution,
and sinc collocation methods for nonlinear Fredholm weakly singular integral equations. Sinc
convolution is introduced in [21] to collocate indefinite integrals of convolution type, and it
can be interpreted as a special type of Nyström method. It will be shown that this method has
an exponential rate of convergence. For a comprehensive study of sinc convolution methods
and their applications to different kinds of equations, we refer to [20, 22]. Furthermore, sinc
collocation methods and their properties in connection with nonlinear integral equation are
studied in this paper.

Equations (1.1) and (1.2) can be expressed in operator form as

(1.3) (I −Ki)u = g, i = 1, 2,

where

(K1u)(t) =

∫ b

a

f(|t− s|)k(t, s)ψ(s, u(s))ds,

(K2u)(t) =

∫ b

a

f(|t− s|)k(t, s, u(s))ds.

These operators are defined on the Banach space X = H∞(D) ∩ C(D̄). In this notation,
D ⊂ C is a simply connected domain that satisfies (a, b) ⊂ D, and H∞(D) denotes the family
of all functions f that are analytic in the domain D and have finite uniform (supremum) norm.
We assume that the unknown solution u(t) to be determined is geometrically isolated [9, 13],
which means that there is a ball

B(u, r) = {x ∈ X : ‖x− u‖ ≤ r},

with r > 0, where equation (1.1) has the only solution u.
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2. Preliminaries. In order to make the paper self-contained, some basic definitions and
theorems for sinc function, sinc interpolation, and quadrature are presented.

2.1. Sinc interpolation. The sinc function on the real line R is defined by

sinc(t) =

{
sin(πt)
πt , t 6= 0,

1, t = 0.

It is well known that a function f with suitable smoothness properties can be approximated by
sinc functions as

(2.1) f(t) ≈
N∑

j=−N
f(jh)S(j, h)(t), t ∈ R,

where the basis function S(j, h)(t) is given by

(2.2) S(j, h)(t) = sinc(
t

h
− j), j ∈ Z.

Here, h is a step size appropriately chosen depending on a given positive integer N , and the
function in (2.2) is called the jth sinc function. Equation (2.1) can be adjusted to approximate
functions on general intervals by an accompanying variable transformation t = ϕ(x). Appro-
priate single exponential and double exponential transformations can be used [20, 24] as a
converting function ϕ(x). The single exponential transformation and its inverse are given as

ϕa,b(x) =
b− a

2
tanh(

x

2
) +

b+ a

2
,

φa,b(t) = log(
t− a
b− t

),

respectively. The subscripts a and b in the transformations play an important role in the
application of sinc collocation methods for weakly singular integral equations. The strip
domain is introduced

Dd =
{
z ∈ C : |=z| < d

}
,

for some d > 0, in order to define a suitable function space. When it is incorporated into the
transformation, we consider the transformed domain

ϕ(Dd) =
{
z ∈ C :

∣∣∣ arg(
z − a
b− z

)
∣∣∣ < d

}
.

The following definitions and theorems are presented for the sake of detailing the procedure.
DEFINITION 2.1 ([20]). Let α and C be positive constants, and let D be a bounded

and simply connected domain which satisfies (a, b) ⊂ D. Then Lα(D) denotes the set of all
functions f ∈ H∞(D) that satisfy

(2.3) |f(z)| ≤ C|Q(z)|α,

for all z in D, where Q(z) = (z − a)(b− z).
The next theorem clarifies the exponential convergence rate of the sinc interpolation.
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THEOREM 2.2 ([18]). Let f ∈ Lα(ϕa,b(Dd)) for d with 0 < d < π. Suppose that h is

given by the formula h =
√

πd
αN , where N is a positive integer. Then there is a constant C

independent of N such that

∥∥∥f(t)−
N∑

j=−N
f(ϕa,b(jh))S(j, h)(φ(t))

∥∥∥ ≤ C√N exp(−
√
πdαN),

where

C =
2K(b− a)2α

α

[
2

πd(1− e−2
√
πdα)(cos(d2 ))2α

+

√
α

πd

]
.

According to Theorem 2.2, in order to attain exponential convergence, the approximated
function should be in Lα(D). By condition (2.3), such a function is expected to be zero at
the endpoints, which is too restrictive in practice. However, it can be related to the following
function spaceMα(D) with 0 < α ≤ 1 and 0 < d < π.

DEFINITION 2.3 ([20]). LetD be a simply connected and bounded domain which contains
(a, b). The familyMα(D) contains all analytical functions f that are continuous in D̄ such
that the transformation

G[f ](t) = f(t)− [(
b− t
b− a

)f(a) + (
t− a
b− a

)f(b)],

is in Lα(D).

2.2. Sinc quadrature. A sinc approximation incorporating a single exponential transfor-
mation can be applied to definite integration based on function approximations yielding a sinc
quadrature. The following theorem provides an error bound for the sinc quadrature of f on
(a, b).

THEOREM 2.4 ([18]). Let (fQ) ∈ Lα(ϕa,b(Dd)) for d with 0 < d < π. Suppose that N

is a positive integer and h is selected by the formula h =
√

πd
αN . Then

(2.4)
∣∣∣ ∫ b

a

f(s) ds− h
N∑

j=−N
f(ϕa,b(jh))(ϕa,b)

′(jh)
∣∣∣ ≤ C(b− a)2α−1 exp(−

√
πdαN),

where C is a constant independent of N .

3. Two numerical schemes.

3.1. Sinc collocation. In this section, sinc collocation and its application to nonlinear
Fredholm integral equations with weakly singular kernels are discussed. A sinc approximation
uN to the solution u ∈Mλ(ϕa,b(Dd)) of (1.1) is constructed in this section. For this aim, the
interpolation operator PN :Mλ → XN is defined as

PN [u](t) = Lu(t) +

N∑
j=−N

[u(tj)− (Lu)(tj)]S(j, h)(φa,b(t)),

where

L[u](t) = (
b− t
b− a

)λu(a) + (
t− a
b− a

)1−λu(b).
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In this formula, the sinc points tj are determined by

(3.1) tj =

 a, j = −N − 1,
ϕa,b(jh), j = −N, . . . , N ,
b, j = N + 1.

The approximate solution can be represented as

uN (t) = c−N−1(
b− t
b− a

)λ +

N∑
j=−N

cjS(j, h)(φa,b(t)) + cN+1(
t− a
b− a

)1−λ,

where the parameter λ indicating the exponent of the singularity is introduced in (1.1). It is
worth noticing that the choice of these basis functions combined with sinc functions reflects
the singularity of the exact solution well. Employing the operator PN on both sides of (1.1)
leads to the following approximate equation

uN = PNg + PNKuN .

This equation can be rewritten as

(3.2) uN (ti) = g(ti) +

∫ b

a

f(|ti − s|)k(ti, s)ψ(s, uN (s))ds, i = −N − 1, . . . , N + 1,

hence, the collocation method for solving (1.1) agrees with (3.2) for N sufficiently large.
We utilize the theory of function spaces of holomorphic functions along with the singularity-
preserving representation of the approximate solution to blend a mechanism for approximating
the singular integrals that arise from the discretization of weakly singular integral operators.
Let us start with the following representation of (3.2):

uN (ti) =

∫ ti

a

f(|ti − s|)k(ti, s)ψ(s, uN (s))ds

+

∫ b

ti

f(|ti − s|)k(ti, s)ψ(s, uN (s))ds+ g(ti), i = −N − 1, . . . , N + 1.

(3.3)

Due to the complexity of the integral kernel, we utilize the approximation of the integral
operator in (3.3) by the quadrature formula presented in (2.4). We notice that in order to use
the sinc quadrature method properly, the intervals [a, ti] and [ti, b] should be transformed to
the whole real line. So, equation (3.3) can be written as

uN (ti) = h|ti − a|λ
N∑

j=−N

k
(
ti, ϕa,ti(jh)

)
(1 + ejh)λ(1 + e−jh)

ψ
(
ϕa,ti(jh), uN (ϕa,ti(jh))

)

+ h|b− ti|λ
N∑

j=−N

k
(
ti, ϕti,b(jh)

)
(1 + ejh)λ(1 + e−jh)

ψ
(
ϕti,b(jh), uN (ϕti,b(jh))

)
+ g(ti), i = −N − 1, . . . , N + 1.

(3.4)

This numerical procedure (3.4) can be rewritten in operator form as

(3.5) uN − PNKNuN = PNg,
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where the discrete operator KNu is defined as

(KNu)(t) :=

h|t− a|λ
N∑

j=−N

k
(
t, ϕa,ti(jh)

)
(1 + ejh)λ(1 + e−jh)

ψ
(
ϕa,ti(jh), u(ϕa,ti(jh))

)

+ h|b− t|λ
N∑

j=−N

k
(
t, ϕti,b(jh)

)
(1 + ejh)λ(1 + e−jh)

ψ
(
ϕti,b(jh), u(ϕti,b(jh))

)
.

Equation (3.5) is the operator form of the discrete collocation method based on the sinc basis
function. By solving the nonlinear system of equations (3.5), the unknown coefficients in uN
are determined.

3.1.1. Convergence analysis. In this section we provide an error analysis for the sinc
collocation method. We state the following lemmas which are used subsequently.

LEMMA 3.1 ([20]). Let h > 0. Then it holds that

sup
x∈R

N∑
j=−N

|S(j, h)(x)| ≤ 2

π
(3 + log(N)).

From this lemma, one may conclude that ‖PN‖ ≤ C log(N), where C is a constant indepen-
dent of N and PN is the interpolation operator constructed from the sinc points.

LEMMA 3.2 ([17]). Let d be a constant with 0 < d < π. Define the function

ϕ1(x) =
1

2
tanh(

x

2
) +

1

2
.

Then there is a constant cd such that for all x ∈ R and y ∈ [−d, d],

|{ϕa,b}′(x+ iy)| ≤ (b− a)cdϕ
′
1(x),(3.6)

|ϕ0,1(x+ iy)| ≥ ϕ1(x).(3.7)

In addition, if t ≤ x, then

(3.8) |ϕa,b(x+ iy)− ϕa,b(t+ iy)| ≥ (b− a){ϕ1(x)− ϕ1(t)}.

With the aid of Lemma 3.2, the analytical behavior of the solution is investigated for a general
kernel function. It is convenient to define the following nonlinear operators, which will be
used in the next theorem:

(K1u)(t) =

∫ t

a

|t− s|−λk(t, s, u(s))ds,

(K2u)(t) =

∫ b

t

|t− s|−λk(t, s, u(s))ds.

(3.9)

THEOREM 3.3. Let D = (ϕa,b)
−1(Dd) for a constant d with 0 < d < π. Suppose that

k(z, ., v) ∈ H∞(D) for all z and v in D, and k(z, w, .) ∈ H∞(D) for all z and w in D.
Moreover, suppose that k(., v, w) ∈ M1−λ(D) for all v, w ∈ D, k(z, v, w) is bounded for
z, v, and w in D, and y ∈ Mβ(D). Then the solution u of (1.1) belongs toMγ(D), where
γ = min(1− λ, β).
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Proof. In [10, p. 83], sufficient conditions are stated to have a nonlinear analytic operator
and thus an analytic solution. Hence, it is enough to show thatKu is (1−λ)-Hölder continuous.
For this aim, we show that the operators defined in (3.9) have this property. To demonstrate
the (1− λ)-Hölder continuity of K1u and K2u, the idea of Lemma A.2 in [17] is extended
to the nonlinear case. Set x = Re[(ϕa,b)

−1(z)], y = Im[(ϕa,b)
−1(z)], and v = ϕa,b(t+ iy).

Then

(K1u)(z)− (K1u)(a) =

∫ z

a

|z − v|−λk(z, v, u(v))dv − 0

=

∫ x

∞
|ϕa,b(x+ iy)− ϕa,b(t+ iy)|−λk(x+ iy, t+ iy, u(t+ iy))(ϕa,b)

′(t+ iy)dt.

Applying the absolute value on both sides of the above equation and using equations (3.6)
and (3.8), we have

|(K1u)(z)− (K1u)(a)| ≤
∫ x

∞
(b− a)−λ(ϕ1(x)− ϕ1(t))−λMk(b− a)cdϕ

′
1(t)dt

≤ Mkcd
1− λ

((b− a)ϕ1(x))
1−λ

,

where Mk = maxD |k(z, w, v)|. In addition, by using property (3.7), the inequality
(b− a)ϕ1(x) ≤ |z − a| can be derived. Therefore,

|(K1u)(z)− (K1u)(a)| ≤ Mkcd
1− λ

|z − a|(1−λ).

Now, the (1− λ)-Hölder continuity at the point b is considered:

(K1u)(b)− (K1u)(z) =

∫ b

a

|b− v|−λ
{
k(b, v, u(v))− k(z, v, u(v))

}
dv

+

∫ b

a

{
|b− v|−λ − |z − v|−λ

}
k(z, v, u(v))dv

−
∫ z

b

|z − v|−λk(z, v, u(v))dv.

Since k(., v, w) ∈M1−λ(D), there exists M1 such that∣∣∣ ∫ b

a

|b− v|−λ
{
k(b, v, u(v))− k(z, v, u(v))

}
dv
∣∣∣ ≤M1|b− z|(1−λ)

∫ b

a

|b− v
∣∣−λdv

≤ M1|b− a|1−λ

1− λ
|b− z|1−λ.

The third term is bounded by∣∣ ∫ z

b

|z − v|−λk(z, v, u(v))dv
∣∣ ≤ Mkcd

1− λ
|b− z|1−λ.

Integration by part, the Hölder continuity of the function F (z) = z1−λ, and the assumptions
on k(z, w, .) and k(z, ., v) ∈ H∞(D) result in the bound

|(K1u)(b)− (K1u)(z)| ≤ M2

1− λ
|b− z|(1−λ).

The (1−λ)-Hölder continuity of the operator K2(u) can be proved in a similar manner.
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The Fréchet derivative of the nonlinear operators K and KN for all u is given by

(K′u)x(t) =

∫ b

a

f(|t− s|)k(t, s)
∂ψ

∂u
(s, u(s))x(s)ds, t ∈ [a, b], x ∈ X,

and

(K′Nu)x(t) =

h|t− a|λ
N∑

j=−N

k
(
t, ϕa,ti(jh)

)
(1 + ejh)λ(1 + e−jh)

∂ψ

∂u

(
ϕa,ti(jh), u(ϕa,ti(jh))

)
x(jh)

+ h|b− t|λ
N∑

j=−N

k
(
t, ϕti,b(jh)

)
(1 + ejh)λ(1 + e−jh)

∂ψ

∂u

(
ϕti,b(jh), u(ϕti,b(jh))

)
x(jh).

THEOREM 3.4. Assume that u(t) is the true solution of equation (1.1) such that I −K′u
is a non-singular operator. Additionally, suppose that the term ∂2ψ

∂u2 (t, s, u) is well defined
and continuous on its domain. Furthermore, assume that g ∈ Mλ(ϕa,b(Dd)) and Ku ∈
Mλ(ϕa,b(Dd)) for all u ∈ B(u, r). Then, there is a constant C independent of N such that

‖u− uN‖ ≤ CξN
√
N log(N + 1) exp(−

√
πdλN),

where ξN = ‖(I − PN (KN )′(u))−1‖.
Proof. To find an upper error bound, we subtract (1.3) from (3.5) and obtain

u− uN = Ku− PNKNuN + g − PNg.

This relation is rewritten as

u− uN = (I − PN (K′N )(u))−1
{

(g − PNg)

+ (Ku− PNKu) + PN (Ku−KNu)

+ PN (KNu−KNuN − (K′N )(u)(u− uN ))
}
.

Finally, the following estimate is obtained

‖u− uN‖ ≤ ‖(I − PN (K′N )(u))−1‖
{
‖g − PNg‖

+ ‖Ku− PNKu‖+ ‖PN‖‖Ku−KNu‖
}

+ ‖PN‖O(‖u− uN‖2).

Because of g,Ku ∈Mλ(ϕa,b(Dd)) and Theorem 2.2, we find

‖g − PNg‖ ≤ C1

√
N exp(−

√
πdλN),

‖Ku− PNKu‖ ≤ C2

√
N exp(−

√
πdλN).

By using Theorem 2.4, we conclude that

‖Ku−KNu‖ ≤ C3 exp(−
√
πdλN),

and, finally, we find an upper bound for ‖PN‖ by Lemma 3.1. Hence,

‖u− uN‖ ≤ CξN log(N + 1)
√
N exp(−

√
πdλN).
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3.2. Sinc convolution. Let f(t) be a function with a singularity at the origin and g(t) be
a function with singularities at both endpoints. The method of sinc convolution is based on an
accurate approximation of the following integrals

p(s) =

∫ s

a

f(s− t)g(t)dt, s ∈ (a, b),

q(s) =

∫ b

s

f(t− s)g(t)dt, s ∈ (a, b),

(3.10)

which can then be used to approximate the definite convolution integral∫ b

a

f(|s− t|)g(t)dt.

In the sequel, the following notation is used.
DEFINITION 3.5. For a given positive integer N , let DN and VN denote the linear

operators acting on a function u by

DNu = diag[u(t−N ), . . . , u(tN )],

VNu =(u(t−N ), . . . , u(tN ))T ,

where the superscript T specifies the transpose and diag denotes the diagonal matrix. Set the
basis functions as

γj(t) = S(j, h)(ϕa,b(t)), j = −N, . . . , N,
ωj(t) = γj(t), j = −N, . . . , N,

ω−N (t) =
b− t
b− a

−
N∑

j=−N+1

1

1 + ejh
γj(t),

ωN (t) =
t− a
b− a

−
N−1∑
j=−N

ejh

1 + ejh
γj(t).

With the aid of these basis functions, for a given vector c = (c−N , . . . , cN )T , we consider a
linear combination denoted as ΠN as follows:

(ΠNc)(t) =

N∑
j=−N

cjωj(t).

Let us define the interpolation operator PcN :Mλ(D)→ XN = span{ωj(t)}Nj=−N as

PcNf(t) =

N∑
j=−N

f(tj)ωj(t),

where the points tj are defined in (3.1). The numbers σk and ek are determined by

σk =

∫ k

0

sinc(t)dt, k ∈ Z,

ek =
1

2
+ σk.
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We now define an (2N+1)×(2N+1) (Toeplitz) matrix I(−1) = [ei−j ], where ei−j represents
the (i, j)-th element of I(−1). In addition, the operators I+ and I− are given as

(I+g)(t) =

∫ t

a

g(s)ds, (I−g)(t) =

∫ b

t

g(s)ds.

The following discrete operators I+N and I−N approximate the operators I+ and I− as

(I+Ng)(t) = ΠNA(1)VNg(t), A(1) = hI(−1)DN (
1

ϕ′a,b
),

(I−Nf)(t) = ΠNA(2)VNg(t), A(2) = h(I(−1))TDN (
1

ϕ′a,b
).

(3.11)

For a function f , the operator F [f ](s) is defined by

(3.12) F [f ](s) =

∫ c

0

e
−t
s f(t)dt,

and it is assumed that equation (3.12) is well defined for some c ∈ [b− a,∞] and for all s in
the right half of the complex plane, Ω+ = {z ∈ C : <(z) > 0}.

Sinc convolution methods provide formulae of high accuracy and allow f(s) to have an
integrable singularity at s = b− a and g to have singularities at both endpoints of (a, b) [22].
This property of sinc convolution makes this method suitable for approximating weakly
singular integral equations.

Now for convenience, some useful theorems related to the sinc convolution method are
introduced. The following theorem predicts their convergence rate.

THEOREM 3.6 ([22]). (a) Suppose that the integrals p(t) and q(t) in (3.10) exist and
are uniformly bounded on (a, b), and let F be defined by (3.12). Then the following operator
identities hold

(3.13) p = F(I+)g, q = F(I−)g.

(b) Assume that
g

ϕa,b
∈ Lλ(D). If for some positive C ′ independent of N , the inequality

|F ′(s)| ≤ C ′ holds for all <(s) ≥ 0, then there is a constant C, which is independent of N ,
such that

‖ p−F(I+N )g ‖ ≤ C
√
N exp(−

√
πλdN),

‖ q −F(I−N )g ‖ ≤ C
√
N exp(−

√
πλdN).

3.2.1. Sinc convolution scheme. In order to make practical use of the convolution
method, it is assumed that the dimension of the matrices, 2N + 1, is such that the matrices
A(1) and A(2) are diagonalizable [22]:

(3.14) A(j) = X(j)S(Xj)−1, j = 1, 2,

where

S = diag(s−N , . . . , sN ),

X(1) = [xk,l], (X(1))−1 = [xk,l],

X(2) = [ξk,l], (X(2))−1 = [ξk,l].
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The integral in (1.1) is split in the following way:∫ b

a

|t− s|−λk(t, s, u(s))ds =

∫ t

a

|t− s|−λk(t, s, u(s))ds

+

∫ b

t

|t− s|−λk(t, s, u(s))ds.

(3.15)

Based on formulae (3.11), two discrete nonlinear operators are defined as

(K1
Nu)(t) = ΠNA(1)VNk(t, s, u(s)), (K2

Nu)(t) = ΠNA(2)VNk(t, s, u(s)).

The approximate solution takes the form

ucN (t) =

N∑
j=−N

cjωj(t),

where the cj are unknown coefficients to be determined. The integrals on the right-hand
side of (3.15) are approximated by formulae (3.11), (3.13), and (3.14). We substitute these
approximations to (1.1), and then the obtained equation is collocated at the sinc points. This
process reduces the solution of (1.1) to solving the following finite-dimensional system of
equations

cj−
N∑

k=−N

xj,k

N∑
l=−N

xk,lF(sk)k(zj , zl, cl)

−
N∑

k=−N

ξj,k

N∑
l=−N

ξk,lF(sk)k(zj , zl, cl) = y(zj),

(3.16)

for j = −N, . . . , N. Equation (3.16) can be expressed in operator notation as

(3.17) ucN − PcNK1
Nu

c
N − PcNK2

Nu
c
N = PcNy.

3.2.2. Convergence analysis. The convergence analysis of the sinc convolution method
is discussed in this section. The main result is formulated in the following theorem.

THEOREM 3.7. Suppose that u(t) is an exact solution of equation (1.1) and that the kernel
k satisfies a Lipschitz condition with respect to the third variable. Also, let the assumptions of
Theorem 3.3 be fulfilled. Then there is a constant C independent of N such that

‖u− ucN‖ ≤ C
√
N log(N) exp(−

√
πdλN).

Proof. By subtracting equation (1.1) from (3.17), the following bound can be derived:

‖u− ucN‖ ≤ ‖K1u− PcNK1
Nu

c
N‖+ ‖K2u− PcNK2

Nu
c
N‖+ ‖y − PcNy‖.

The derivation of upper bounds for the first and second terms is almost identical. For this aim,
the first term is rewritten as

K1u− PcNK1
Nu

c
N = K1u− PcNK1u

c
N + PcNK1u

c
N − PcNK1

Nu
c
N ,

so we have

‖K1u− PNK1
Nu

c
N‖ ≤ ‖K1u−K1u

c
N‖

+ ‖K1ucN − PNK1ucN‖+ ‖PcN‖‖K1ucN −K1
Nu

c
N‖,
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where the second term is bounded by Theorem 2.2. Due to the Lipschitz condition, the first
term is bounded by

‖K1u−K1ucN‖ ≤ C1‖u− ucN‖,

where C1 is a suitable constant. In addition, Lemma 3.1 and Theorem 3.6 help us to find the
upper bound

‖PcN‖‖K1u
c
N −K1

Nu
c
N‖ ≤ C2

√
N log(N) exp(−

√
πdλN).

Finally, we get

‖u− ucN‖ ≤ C
√
N log(N) exp(−

√
πdλN).

4. Numerical experiments. This section is devoted to numerical experiments concern-
ing the accuracy and the rate of convergence of the presented methods. The proposed algo-
rithms are implemented in Mathematica. To solve the nonlinear systems which arise in the
formulation of the methods, we have utilized Newton’s iteration. In order to find an initial
guess for the Newton procedure, the steepest descent method is employed, which is less sensi-
tive to the initial guess [4]. The convergence rate of the sinc convolution and sinc convolution
methods depends on two parameters α and d. Specifically, the parameter d specifies the size of
the holomorphic domain of u. In all examples, the parameter α is determined by Theorem 3.3
and d is set to 3.14. Furthermore the parameter c in formula (3.12) is taken as infinity.

EXAMPLE 4.1 ([15, 19]). Let us examine the integral equation

u(t)−
∫ 1

0

|t− s|
−1
2 u2(s)ds = g(t), t ∈ (0, 1),

where

g(t) = [t(1− t)] 1
2 +

16

15
t
5
2 + 2t2(1− t) 1

2 +
4

3
t(1− t) 3

2 +
2

5
(1− t) 5

2

− 4

3
t
3
2 − 2t(1− t) 1

2 − 2

3
(1− t) 3

2 ,

with the exact solution u(t) =
√
t(1− t). The exact solution has a singularity near zero.

The numerical results are given in Figure 4.1. As reported in [19], the maximum of the
absolute errors at the collocation points for a piecewise polynomial collocation method is
around 10−7 due to the super-convergence property of the piecewise collocation method.
Furthermore, in [15] the authors have applied the multi-Galerkin method for weakly singular
integral equations of Hammerstein type. A comparison between the reported results reveal
better findings for the sinc approach.

EXAMPLE 4.2 ([23]). In this example, we consider the following integral equation

u(t)−
∫ 1

0

|t− s|
−1
4 u2(s)ds = g(t), t ∈ (0, 1).

The function g(t) is chosen such that u(t) = t
3
2 is the exact solution. The first derivative of

the exact solution has a singularity near zero. Figure 4.2 illustrates the error results achieved
for the sinc convolution and the sinc collocation methods, which are competitive with the
results reported in [23].
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FIG. 4.1. Plots of the absolute error for the sinc convolution and sinc collocation method for Example 4.1.
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FIG. 4.2. Plots of the absolute error for the sinc convolution and sinc collocation method for Example 4.2.

EXAMPLE 4.3. Consider the integral equation

u(t)−
∫ 1

0

|t− s|
−1
2 cos(s+ u(s))ds = g(t),

where g(t) is selected so that u(t) = cos(t). This example with an infinitely smooth solution
is discussed in [12]. Here we compare the solutions of sinc collocation and sinc convolution.
Figure 4.3 displays better results for the sinc convolution approach in comparison with the
sinc collocation method.

EXAMPLE 4.4. In this experiment, we explore the sensitivity of the methods to the
parameter λ ∈ (0, 1) in the weakly singular integral equation. We consider the equation

u(t)−
∫ 1

0

1

|t− s|1−λ
u2(s)ds = g(t),

with the exact solution uλ(t) = t2−λ. We choose λ = k
10 , for k ∈ {1, 2, . . . , 9}, and the

errors for the sinc convolution method are displayed in Figure 4.4.

Conclusion. In this paper, sinc collocation and sinc convolution methods are considered
for nonlinear weakly singular Fredholm integral equations, and rigorous proofs of the expo-
nential convergence of the schemes are obtained. The theoretical arguments show that directly
applying the collocation method with sinc basis functions leads to a parameter ξN in the
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FIG. 4.3. Plots of the absolute error for the sinc convolution and sinc collocation method for Example 4.3.
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FIG. 4.4. Plots of the absolute error for the sinc convolution method for different values of λ.

error bound. This parameter is unavoidable due to the non-uniform boundedness of the sinc
interpolation operator. Hence, a numerical method based on the sinc convolution is proposed.
It is shown both in theory and by numerical experiments that convolution methods are more
accurate and achieve exponential convergence with respect to N . The main advantage of the
sinc methods for the weakly singular kernels is the fact that they allow for singularities at
the boundaries. The method is capable of handling discrete sinc convolution operators and
extendable to the case to fully implicit integral equations by utilizing double exponential sinc
methods.
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Utah) for helpful discussions and remarks.
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Approximate Solution of Operator Equations, Wolters-Noordhoff, Groningen, 1972.
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