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SIMULTANEOUS IDENTIFICATION OF VOLATILITY AND INTEREST RATE
FUNCTIONS—A TWO-PARAMETER REGULARIZATION APPROACH∗
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Abstract. This paper investigates a specific ill-posed nonlinear inverse problem that arises in financial markets.
Precisely, as a benchmark problem in the context of volatility surface calibration, we consider the simultaneous
recovery of implied volatility and interest rate functions over a finite time interval from corresponding call- and
put-price functions for idealized continuous families of European vanilla options over the same maturity interval. We
prove identifiability of the pair of functions to be identified by showing injectivity of the forward operator inL2-spaces.
To overcome the ill-posedness we employ a two-parameter Tikhonov regularization with heuristic parameter choice
rules and demonstrate chances and limitations by means of numerical case studies using synthetic data.
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1. Introduction. Many authors with focus on analysis and numerics have considered the
inverse problem arising in financial markets of recovering local volatility surfaces from option
price data in the past years; see, e.g., [1, 2, 3, 4, 10, 11, 12, 13, 15, 23, 34]. In most cases, tools
from regularization theory have been incorporated in the treatment of the inverse problem
in order to overcome or at least to suppress the occurring ill-posedness phenomena. The
associated forward operators are based on solutions to the corresponding partial differential
equations named after Black, Scholes, and Dupire (cf. [9, 14]).

It has been observed soon that market prices deviate from computed prices predicted by
the models. Initial attempts to connect the prices simply vary the volatility, a single model
parameter. These models to calibrate the implied volatility σ based on Black-Scholes-type
formulas seem at first glance too simplistic to extract significant market information. In
the case of varying term structures σ(t) and varying maturities 0 ≤ t ≤ T , they leave the
dependence of required volatility surfaces σ(K, t) on the strike price K out of consideration.

To better match observed and computed prices, this paper extends the effort and considers
the varying interest in addition. The numerically obtained results demonstrate that implied
volatilities and interest rate functions can be reconstructed simultaneously. For this reason the
methods outlined below allow reconstructing the fundamental economic parameters of option
issuers by reverse engineering. To the best of our knowledge, the simultaneous identification
of time-dependent volatility and interest rate functions has not been addressed in the literature
so far.

The structure of the forward operators is straightforward if the simplified model of purely
time-dependent functions can be exploited, which may serve as a benchmark situation for
studying the nature of ill-posedness of such nonlinear inverse problems. This has been
illustrated and worked out comprehensively in the paper [22] to identify the volatility term
structure from noisy data of prices Vc(t), 0 ≤ t ≤ T , of corresponding European plain vanilla
call options. Regularization approaches are required for the stable approximate solution
of the term structure of the volatility σ. The subsequent paper [16] exploits the product
ansatz σ(K, t) = σ1

(
K exp

(
−
∫ t
0
r(τ)dτ

))
· σ2(t) with some interest rate r and clearly
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demonstrates that studies concerning the purely time-dependent case have a relevant impact
on affirmative results to recover volatility surfaces.

The continuous but not necessarily constant term structure function r(t) (0 ≤ t ≤ T )
of the interest rate is not negligible. The present paper addresses—as a next step—the
simultaneous identification of the term structure of σ(t) (0 ≤ t ≤ T ) and r(t) (0 ≤ t ≤ T )
from option price data. Since we thus have to recover a pair of continuous functions over a
finite time interval, also a pair of associated data functions must be observed. We incorporate
the associated put prices Vp(t) (0 ≤ t ≤ T ) for this purpose. In this idealized setting, it is
assumed for the analysis in infinite-dimensional abstract spaces that data are available for
a continuum of call and put prices over the time interval under consideration. Instead of
one regularization parameter in [22], we now have to execute two-parameter regularization
approaches (cf., e.g., [29, Chapt. 3] and [30]) to handle the ill-posedness phenomena for this
new inverse problem.

The volatility and interest rate functions σ and r are apparently present in observed prices.
The functions themselves, however, are hidden by the emitter of the derivative. To judge the
issuing conditions of the opponent, it is of fundamental economic interest to understand the
occurring parameters and their interplay.

Outline. The remainder of the manuscript is organized as follows: in Section 2 we intro-
duce the relevant functions arising in the context of the purely time-dependent Black-Scholes
model of option pricing. The subsequent Section 3 formulates the inverse problem in all its
facets and characterizes the occurring forward operators. For the nonlinear inverse problem of
recovering volatility and interest rate functions simultaneously from two option price functions,
we show in Section 4 the identifiability. The proof of the corresponding Proposition 4.1 is
rather straightforward, but only based on this uniqueness result, the subsequent case studies
make sense, which are of crucial importance to the paper. For the simultaneous identification
problem, the local ill-posedness everywhere will be shown in Section 5. This fact motivates
regularization strategies for the stable approximate solution of this recovery process. We
mention a classical variant of variational regularization in Section 6 and suggest two-parameter
Tikhonov regularization approaches more adapted to the practice in Section 7 motivated by
initial case studies.

Section 8 is devoted to more comprehensive numerical tests based on synthetic data
concerning heuristic rules for choosing the two regularization parameters. We present case
studies for two-dimensional L-curve or L-hypersurface methods, quasi-optimality methods,
and a combination of both approaches. We are aware of Bakushinsky’s veto (cf. [5]) against
heuristic rules, because there are worst case situations that prevent convergence of the reg-
ularized solutions of the inverse problem to the exact one. However, in [26] (see also [6])
convergence for the quasi-optimality approach was shown under certain conditions imposed
on the noise distribution in the data. On the other hand, as for example emphasized in [19],
heuristic rules like the L-curve method lead often to better results than some sophisticated
noise-level dependent rules which possess formally order-optimal convergence properties.

The appendix outlines the background of the Black-Scholes formula with integrated
time-dependent interest rates and time-dependent volatility.

2. Preliminaries. Throughout this paper we consider a variant of the Black-Scholes
model derived from the stochastic differential equation

(2.1)
dX(t)

X(t)
= µdt+ σ(t) dW (t) (0 ≤ t ≤ T )

for the time-dependent price X(t) of an asset under consideration with constant drift µ and
standard Wiener process W . At the initial time t = 0, let there exist two idealized families of
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European vanilla call and put options at the financial market with observable prices written
on the asset with current asset price X := X(0) > 0 and fixed strike K > 0. For simplicity,
we use T := 1 for the maturity interval 0 ≤ t ≤ T , which means that all real functions under
consideration are defined on the unit interval.

For the implied volatility term structure σ(t) (0 ≤ t ≤ 1), we introduce the auxiliary
functions a(t) := σ2(t) (0 ≤ t ≤ 1) and

(2.2) A(t) :=

∫ t

0

a(τ) dτ (0 ≤ t ≤ 1).

Moreover, we consider a maturity-dependent interest rate r(t) (0 ≤ t ≤ 1) and the corre-
sponding auxiliary function

(2.3) R(t) :=

∫ t

0

r(τ) dτ (0 ≤ t ≤ 1).

The Black-Scholes function with variables X > 0, K > 0, % ≥ 0, s ≥ 0, and

d±(X,K, %, s) :=
%± s

2 + ln
(
X
K

)
√
s

( i.e., d− = d+ −
√
s)

is

(2.4) UBS(X,K, %, s) :=


XΦ

(
d+(X,K, %, s)

)
−Ke−%Φ

(
d−(X,K, %, s)

)
if s > 0,

max(X −Ke−%, 0) if s = 0,

where we denote the cumulative distribution function of the standard normal distribution by

Φ(z) :=
1√
2π

∫ z

−∞
e−

x2

2 dx.

REMARK 2.1. It is essential to note that formula (2.4) is stated in terms of ρ and s; the
usual Black-Scholes formula for constant r and σ is obtained by the setting ρ = r · t and
s = σ2 · t.

The following lemma (see also [22, Lemma 2.1]), which can be easily verified from (2.4),
makes assertions on continuity and monotonicity properties of the Black-Scholes function
with respect to both the variables ρ and s.

LEMMA 2.2. Let the parameters X > 0 and K > 0 be fixed. Then the nonnegative
function UBS(X,K, ρ, s) ≤ X is continuous for (ρ, s) ∈ [0,∞) × [0,∞). Moreover, for
(ρ, s) ∈ [0,∞)× (0,∞), this function is continuously differentiable with respect to ρ, where
we have with ν := ln

(
X
K

)
∂UBS(X,K, ρ, s)

∂ρ
= exp(−ρ)KΦ

(
s− 2ρ− 2ν

2
√
s

)
< K,

and it is continuously differentiable with respect to s, where we have

(2.5)
∂UBS(X,K, ρ, s)

∂s
=

X√
8π s

exp

(
− [ν + ρ]

2

2 s
− [ν + ρ]

2
− s

8

)
> 0.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

102 C. HOFMANN, B. HOFMANN, AND A. PICHLER

3. Modelling of the inverse problem and characterization of the forward operators.
The following lemma outlines the fair call price function Vc(t) (0 ≤ t ≤ 1) and the price
function Vp(t) (0 ≤ t ≤ 1) of the associated put by taking into account the put-call parity for
European options; cf., e.g., [25, Chap. 9.4]. An economic motivation of the formula and a
sketch of a proof of this lemma can be found in the appendix.

LEMMA 3.1. By using the Black-Scholes-function UBS from (2.4) we have

(3.1) Vc(t) = UBS
(
X,K,R(t), A(t)

)
(0 ≤ t ≤ 1)

and

(3.2) Vp(t) = Vc(t)−X +Ke−R(t) (0 ≤ t ≤ 1).

In what follows we use infinite-dimensional Hilbert spaces to model our problem, in
particular, L2(0, 1) with the usual norm and H := L2(0, 1) × L2(0, 1) with the norm

‖(u, v)‖H :=
(
‖u‖2L2(0,1) + ‖v‖2L2(0,1)

)1/2
, although the functions a and r to be recov-

ered and the option price functions are at least continuous in practice. The reasons for doing
so are twofold:

1. Instead of the continuous fair option price functions Vc(t) and Vp(t) defined on the
maturity interval [0, 1], there are only noisy observations V δc (t) and V δp (t) available,
for example by bid-ask price gaps, which satisfy the deterministic noise model
(3.3)

‖(Vc, Vp)− (V δc , V
δ
p )‖H =

(
‖Vc − V δc ‖2L2(0,1) + ‖Vp − V δp ‖2L2(0,1)

)1/2
≤ δ

with some noise level δ ≥ 0. The observed noisy option prices tend to be ‘unsmooth’,
incorporating some random effects; the class of quadratically integrable functions is
able to model such effects.

2. The simultaneous recovery of volatility and interest rate functions can be associated
with the nonlinear forward operator

(3.4) F : (a, r) ∈ H 7→ (Vc, Vp) ∈ H,

possessing the domain

(3.5) D(F ) := {(a, r) ∈ H : a(t) ≥ a > 0, r(t) ≥ 0 a.e.},

such that solving the inverse problem corresponds to the solution of the nonlinear
operator equation

(3.6) F
(
(a, r)

)
= (Vc, Vp), (a, r) ∈ D(F ) ⊂ H, (Vc, Vp) ∈ H.

As we will see, the general theory of nonlinear variational regularization in the sense
of [17, 32, 33] applies immediately to that operator equation (3.6).

Following the ideas in [22] we can decompose the total inverse problem (TOP) modeled
by the nonlinear operator equation (3.6) in the Hilbert space H into an
Outer inverse problem (OIP): find the pair (A,R) ∈ H of antiderivatives to (a, r) ∈ H from
noisy data (V δc , V

δ
p ) ∈ H satisfying the noise model (3.3)

and an
Inner inverse problem (IIP): find the pair (a, r) ∈ H of derivatives to A and R, respectively,
from noisy data of A and R.
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The forward operator of (OIP)

N : (A,R) 7→ (Vc, Vp)

is nonlinear and of Nemytskii-type, which means here that Vc(t) as well as Vp(t) only depend
on the two numbers A(t) and R(t) for the same value t ∈ [0, 1]. Based on the compact linear
integration operator J : L2(0, 1)→ L2(0, 1), defined as

[Ju](t) :=

∫ t

0

u(τ)dτ (0 ≤ t ≤ 1) ,

the forward operator L of the inverse problem (IIP) mapping as

L : (a, r) 7→ (Ja, Jr)

is also linear, where the mildly ill-posed differentiation problem, i.e., the inversion of J , is
well investigated from analytical and numerical points of view; cf., e.g., [20]. Note that we
have to consider the constraints L : D(F ) ⊂ H → H imposed by the domain of F . The
studies in [27] (see also [28]) concerning Nemytskii operators indicate that outer problems
like (OIP) are not ill-posed but extremely ill-conditioned, in particular with focus on small
maturities t. Taking into account the composition structure

F = N ◦ L,

however, the ill-posedness carries over from the inner problem to the total inverse problem;
see Section 4 below. Hence, regularization is required for the stable approximate simultaneous
recovery of a and r. On the other hand, it is not a priori clear whether it is really advantageous
to solve (TIP) not directly by a regularization approach but successively by finding regularized
solutions to (OIP) in a first step and then to solve (IIP) in a second step.

PROPOSITION 3.2. The Nemytskii-type forward operator N of (OIP) is continuous in H ,
and hence the forward operator F of (TIP) from (3.4) with domain (3.5) maps weak-to-weak
continuously in H .

Proof. To show the continuity of N it is enough to show continuity of the mapping
(A,R) ∈ D(F ) ⊂ H 7→ Vc ∈ L2(0, 1) based on properties of the Black-Scholes function
UBS characterized by Lemma 2.2, since the mapping (A,R) ∈ D(F ) ⊂ H 7→ Vp ∈ L2(0, 1)
has analog properties. Along the lines of [18] we therefore have to ensure that the Carathéodory
condition and the growth condition for the generator function g(t, ρ, s) = UBS(X,K, ρ, s)
of the Nemytskii operator (A(t), R(t)) 7→ [Vc(A,R)](t) = g(t, R(t), A(t)) (0 ≤ t ≤ 1) are
valid. On the one hand, the smoothness requirements on g for the Carathéodory condition are
satisfied due to the assertions of Lemma 2.2 when taking into account that only nonnegative ρ
and s are under consideration due to the specific domain (3.5) of F . On the other hand, the
growth condition is trivially satisfied due to UBS(X,K, ρ, s) ≤ X . This proves the continuity
of N . Then the weak-to-weak continuity of F = N ◦ L is an immediate consequence of the
continuity of N , and the weak-to-norm continuity of L is an implication of the compactness
of the J-mapping in L2(0, 1). This completes the proof.

4. Simultaneous identifiability of volatility and interest rate. In this section, we show
that the nonlinear operator F is injective onD(F ), which means that the pair (a, r) ∈ D(F ) of
term structures of volatility and interest rate is simultaneously identifiable in a unique manner
from fair prices of the term structure (Vc, Vp) of associated call and put options.

PROPOSITION 4.1. If there is a pair (a, r) ∈ D(F ) with associated auxiliary functions
(A,R) according to (2.2) and (2.3) such that Vc(t) (0 ≤ t ≤ 1) and Vp(t) (0 ≤ t ≤ 1) satisfy
the formulas (3.1) and (3.2), then this pair (a, r) is uniquely determined in D(F ).
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Proof. For the pair of fair option price functions (Vc, Vp) under consideration we can
conclude as follows: we have from r(t) ≥ 0 almost everywhere on [0, 1] that, with (2.3),
R(t) ≥ 0 and consequently from formula (3.2) that X + Vp(t)− Vc(t) ≥ 0 for all 0 < t ≤ 1.
This implies the uniqueness of R(t) in formula (3.2) for all (0 ≤ t ≤ 1) and hence due to (2.3)
the uniqueness of r(t) for all 0 < t ≤ 1. Since R(t) (0 ≤ t ≤ 1) is well determined now,
we can prove the uniqueness of A(t) (0 < t ≤ 1) from formula (3.1) taking into account
that a(t) ≥ a > 0 almost everywhere on [0, 1] and hence A(t) > 0 for all 0 < t ≤ 1. By
formula (2.5) from Lemma 2.2 we get ∂

∂sUBS(X,K, ρ, s) > 0 for all 0 < s ≤ 1. This,
however, implies for all 0 < t ≤ 1 the strict growth of the function UBS

(
X,K,R(t), s

)
with respect to s > 0 for fixed parameters X,S, and R(t). Consequently, the function
A(t) (0 ≤ t ≤ 1) and hence by (2.2) also the function a(t) (0 < t ≤ 1) are uniquely
determined. This completes the proof of the proposition.

5. Local ill-posedness of the total inverse problem (TIP). We refer to [24, Defini-
tion 3] for the concept of local ill-posedness for a nonlinear operator equation with forward
operator F .

PROPOSITION 5.1. The total inverse problem (TIP) is locally ill-posed everywhere on
D(F ), which means that in any ball in H around (a, r) ∈ D(F ) with positive radius there
is a sequence {(an, rn)}n∈N ⊂ D(F ) such that lim infn→∞ ‖(an, rn) − (a, r)‖H > 0 but
limn→∞ ‖F (an, rn)− F (a, r)‖H = 0.

Proof. Evidently, for all points (a, r) ∈ D(F ) and balls around with arbitrarily small radii,
we have a sequence {(an, rn)}n∈N ⊂ D(F ) in such a ball that converges weakly to (a, r) but
not in the norm of H . Then the sequence {(Jan, Jrn)}n∈N is norm-convergent in H to the
element (Ja, Jr) as a consequence of the compactness of J . Moreover, by Proposition 3.2, we
have that F (an, rn) is norm-convergent in H to F (a, r) because N is a continuous nonlinear
operator mapping in H . This shows the local ill-posedness everywhere.

Due to the ill-posedness of the inverse problem, some regularization approach is required
for obtaining stable approximate solutions to the uniquely determined pair (a, r) ∈ D(F )
from noisy data (V δc , V

δ
p ) ∈ H .

6. A theoretical variant of variational regularization. Following the classical ap-
proach of variational regularization we can search for regularized solutions (aδα, r

δ
α) ∈ D(F )

as minimizers of the extremal problem

(6.1) T δα((ã, r̃))→ min, subject to (ã, r̃) ∈ D(F ) ⊂ H,

for the Tikhonov functional

T δα((ã, r̃)) := ‖F ((ã, r̃))− (V δc , V
δ
p )‖2H + α ‖(ã, r̃)− (a∗, r∗)‖2H ,

where α > 0 is the regularization parameter and a∗ and r∗ are prescribed initial guesses of the
functions a and r to be recovered. Due to the weak-to-weak continuity of F (cf. Proposition 3.2)
in combination with the closedness and convexity of D(F ), we thus obtain convergence of
(aδα, r

δ
α) to the uniquely determined exact solution (a, r) of problem (TIP) in the norm of H

whenever the regularization parameter α > 0 is chosen such that α → 0 and δ2/α → 0 as
δ → 0; cf., e.g., [17, Chap. 10]. This condition can be executed by an a priori parameter
choice or by using a variant of the discrepancy principle.

7. Two-parameter regularization approaches more adapted to the practice. Since
we have to identify two independent functions a and r it seems to be more adapted to
practical requirements to employ a two-parameter regularization approach with two convex
and stabilizing penalties Ω1(a) and Ω2(r), which express subjective a priori information about
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a and r, separately. Then the regularized solutions (aδα,β , r
δ
α,β) ∈ D(F ) are minimizers of the

extremal problem (6.1) but with the amended Tikhonov functional

(7.1) T δα
(
(ã, r̃)

)
:=
∥∥F ((ã, r̃))− (V δc , V

δ
p )
∥∥2
H

+ αΩ1(ã) + β Ω2(r̃)

and two positive regularization parameters α and β.

Using a discretization with an equidistant grid over the unit interval [0, 1] with 50 grid
points we investigate three test examples for an asset with present price X = 100 at t = 0 and
a family of options with fixed strike price K = 95:

EXAMPLE 7.1. For this example we consider a very smooth implied volatility function

a(t) := (t− 0.5)2 + 0.01 (0 ≤ t ≤ 1),

which is decreasing on the subinterval [0, 1/2] and increasing on [1/2, 1], and the slowly
growing interest rate function

r(t) :=
1

70
· ln(50t+ 1) + 0.02 (0 ≤ t ≤ 1).

EXAMPLE 7.2. In order to study the impact of a lower degree of smoothness in the
volatility function, we choose for this example the term structure

a(t) := 0.4

(
0.5 +

0.9

1 + 100(2.05t− 0.2)2

)
(0 ≤ t ≤ 1)

with a peak near t = 0.1 and the same interest rate

r(t) :=
1

70
· ln(50t+ 1) + 0.02 (0 ≤ t ≤ 1)

as in Example 7.1.

EXAMPLE 7.3. In a third test case, we repeat the peak structure

a(t) := 0.4

(
0.5 +

0.9

1 + 100(2.05t− 0.2)2

)
(0 ≤ t ≤ 1)

of Example 7.2 for the volatility function but slightly amend the interest rate to

r(t) :=

{
0.03 + 0.02 sin(4πt) if 0 ≤ t ≤ 0.5

0.03 + 1
70 ln(50(t− 0.05) + 1) if 0.5 < t ≤ 1

(0 ≤ t ≤ 1).
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(a) δ = 0.

(b) δ = 0.01.

FIG. 7.1. Exact functions a and r and least-squares solutions (unregularized) for Example 7.2.
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(a) Example 7.1 with α = 2, β = 3.

(b) Example 7.2 with α = 1.5, β = 2.

FIG. 7.2. Regularized solutions aδα,β and rδα,β versus exact a and r for both examples and appropriately
chosen regularization parameters α > 0, β > 0, δ = 0.01 and appropriately chosen Ω1(a) and Ω2(r).

In the numerical case studies for these three examples, with a noise level δ obeying (3.3),
a Gaussian additive noise model is used and implemented based on the formula

[V δc | V
δ
p] = [V c | V p] +

E
‖E‖F

· ‖[V c | V p]‖F · δ,
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where the underlining denotes that discretized versions (n-dimensional column vectors) are
used instead of the original continuous functions. The symbol E ∈ Rn×2 denotes the noise
matrix with Gaussian random i.i.d. entries εij ∼ N (0, 1), and ‖ · ‖F designates the Frobenius
norm.

To illustrate the ill-posedness (instability) phenomenon of the inverse problem (TIP)
we first compare the different behavior of approximate solutions between the recovery with
noiseless data (δ = 0) and noisy data (δ = 0.01). This is shown in Figure 7.1 for Example 7.2.
No regularization in the least-squares approach was employed, i.e., α = β = 0. For both
functions a and r, highly oscillating unregularized solutions are observed if the data are
contaminated with noise.

This motivates in turn to employ variational regularization (6.1) with the functional (7.1)
to be minimized. Figure 7.2 shows that for both Examples 7.1 and 7.2 there are two positive
parameters α and β for which the regularized solutions aδα,β and rδα,β are good approximations
to the exact volatilities a and interest rates r if appropriate penalty terms are chosen, even if
the data are contaminated with noise. In this case discretized versions of the second derivative
norm square Ω2(r) = ‖r′′‖2L2(0,1) as well as Ω1(a) = ‖a′′‖2L2(0,1) in Example 7.1 and the
bounded variation norm Ω1(a) = ‖a‖BV [0,1] in Example 7.2 are employed. The noise level
is set to δ = 0.01 in both cases. For the recovery of very smooth functions it makes sense
to use penalties based on the norm square of the second derivative, whereas total variation
penalties proved to be appropriate if some variants of non-smoothness like discontinuities or
peaks occur. Although these two figures appear very promising, the question how to chose the
pair (α, β) of positive regularization parameters remains open. As the error level δ is unknown
in practice, we rely on heuristic parameter choice rules. In the following section, two such
rules are suggested and numerically tested based on the Examples 7.1, 7.2, and 7.3 introduced
above.

8. Heuristic rules for two-parameter regularization.

8.1. Parameter choice based on L-hypersurfaces. The L-hypersurface or generalized
L-curve framework is an extension of the conventional L-curve. The concept was introduced
by Belge et. al. ([8, 7]), but their approach and applications are restricted to linear operators.
In the following, we apply this approach to the given nonlinear problem. The conventional
L-curve method (cf. [21, 31]) displays the trade-off between the fit to the given (noisy) data
and the size of the penalty term for various regularization parameters on a log-log scale. This
plot often results in the typical L-curve shape, and the ‘optimal’ regularization parameter
can be chosen at the point with the highest curvature. The L-hypersurface generalizes this
concept—in our case to three dimensions. The penalty terms are plotted against the residue on
a log-log-log scale for various regularization parameters. In the next step the point with the
highest Gaussian curvature is determined, and the corresponding regularization parameters
are chosen. The Gaussian curvature can be visualized in the corresponding curvature surface,
which displays the curvature depending on the regularization parameters on a log-log-log scale.
The respective regularization parameters can then be easily determined from this plot.

In what follows, we test the performance of such an approach for Example 7.1 with
discretized versions of Ω1(a) = ‖a′′‖2L2(0,1), Ω2(r) = ‖r′′‖2L2(0,1), and for a noise level
δ = 0.05. For appropriate regularization parameters we thus obtain the L-hypersurface of
Figure 8.1. It visualizes the trade-off between the penalty terms Ω1 and Ω2 and the residue or
fit to the data. It is expected that the point with the highest Gaussian curvature is a suitable
compromise between these variables. Therefore, the point with the highest curvature is selected
and the corresponding regularization parameters α and β are chosen. In a first step, this can be
done by evaluating the plot and choosing the parameters or points in question. This method is
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FIG. 8.1. Generalized L-hypersurface with selected points.

illustrated by investigating the regularized solutions aδα,β and rδα,β for selected points from the
previously introduced L-hypersurface; see Figure 8.2.

Further numerical experiments show that regularized solutions are very stable with respect
to varying β but very sensitive with respect to varying α.

In what follows, instead of ‘guessing’ the curvature from the L-hypersurface, we calculate
and plot the Gaussian curvature against the penalty terms or regularization parameters and
receive the corresponding curvature surface. Figure 8.3 displays the curvature surfaces for
selected α, β ∈ [10−2.75, 102.25]. The plot on the bottom displays the Gaussian curvature
against the regularization parameters. Both surfaces display a very pronounced (and unique)
maximum. The maximum Gaussian curvature and the appropriate regularization parameters
α = 3.162 and β = 1778 can therefore be conveniently determined from this curvature
surface.

If we look at the regularized solutions aδα,β and rδα,β for this parameter choice and the
exact solutions a and r, the results appear very promising (Figure 8.4), especially considering
the high error level of 5%.

Please note that extensive numerical experiments have been conducted in which the
L-hypersurface retains always its distinctive shape for various error levels, penalty terms,
interest, and volatility functions as well as combinations of strike and underlying.

8.2. Adaption of quasi-optimality and L-curve criteria. The following approach is
motivated by the method of Naumova and Pereverzyev [30]. These authors consider a linear
operator between Hilbert spaces and deal with the minimization of a Tikhonov functional with
two penalty terms and corresponding regularization parameters. The regularization parameters
are chosen individually, one after the other, using the quasi-optimality criterion. From the
numerical experiments in the previous section we also concluded that it is ‘easier’ to chose
the parameter α than β, as α is more stable in a certain sense than β. Extensive numerical
experiments with various heuristic parameter choice rules have also shown that a combination
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(a) Green point, aδα,β and rδα,β , α = 56, β = 1778
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(b) Red point, aδα,β and rδα,β , α = 31623, β = 316

FIG. 8.2. Regularized solutions aδα,β , rδα,β and exact solutions a and r for selected α, β; regularization
parameters chosen from the L-hypersurface; 5% additive Gaussian noise.

of Hansen’s L-curve technique in the first stage and quasi-optimality in the second has so far
been the most successful. With this idea in mind, the following parameter choice strategy
can be employed to find suitable regularization parameters for the Tikhonov functional (7.1).
Initially, choose accessible (finite) sets of regularization parameters P βM = {β1, β2, ..., βN}
and QαN = {α = αi = α0p

j : j = 0, 1, ...,M} for p > 0 and some β0. Suitable α = α(βj)

are chosen for all βj ∈ P βM using the L-curve rule.
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(a) Curvature surface depending on penalty terms.

(b) Curvature surface depending on regularization parameters.

FIG. 8.3. Curvature surface depending on penalty terms and regularization parameters for
α, β ∈ [10−2.75, 102.25].

In the second step, the quasi-optimality criterion is applied to determine β = β(αk). Note
that in the following all norms are discretized L2-norms. When employing the quasi-optimality
rule one needs to decide whether to apply the criterion to the series {xδβ(αj),αj

} or {rδβ(αj),αj
}

with x =
(
a
r

)
, which means either determining

‖xδαj ,β(αk)
− xδαj ,β(αk−1)

‖ = min{‖xδαj ,β(αj)
− xδαj ,β(αj−1)

‖ : j = 1, 2, ..., N}.

or

‖rδαj ,β(αk)
− rδαj ,β(αk−1)

‖ = min{‖rδαj ,β(αj)
− rδαj ,β(αj−1)

‖ : j = 1, 2, ..., N}.

Subsequently we evaluate this method for Example 7.1. In the first step we apply the
L-curve criterion in order to obtain some α(βj) for suitable βj ∈ P βM . Due to numerical limi-
tations we rely on precalculated values and P βM = {10k : k = −2,−2.25,−2.5, ..., 2.75, 3}.
When plotting the sum of the penalty terms Ω = Ω1(a) + Ω2(r) against the residue on a
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FIG. 8.4. Regularized solutions aδα,β , rδα,β and exact solutions a and r for α = 10, β = 17.78; regularization
parameters chosen from the curvature surface in Figure 8.3; 5% additive Gaussian noise.

log-log scale, the L-curve we obtain has the distinct shape for all βj as in Figure 8.5. It is there-
fore sensible to evaluate the curvature and chose α(βj) accordingly, i.e., at the point with the
highest curvature. In this example we therefore receive αj = α(βj) = 17.78 for all βj ∈ P βM .
In the next step we estimate β(αk). The quasi-optimality criterion is applied to {xδαj ,β(αj)

} and
{rδαj ,β(αj),

}. Figure 8.6 displays ‖xδαj ,β(αk)
−xδαj ,β(αk−1)

‖ (left) and ‖rδαj ,β(αk)
−rδαj ,β(αk−1)

‖
(right) plotted against P βM . Recall that QαN = {α = αi = α0q

i : i = 0, 1, ..., N} for q > 0
and some α0 and that α0 and q need to be chosen accordingly. In this example, α0 = 100 and
q = 0.8.

Both functions have a (local) minimum at β = 10.74. Therefore it makes sense to
determine the regularized solutions for these parameters and compare it to the exact solution.
Figure 8.7 illustrates the regularized solutions aδα,β and the exact solutions r and a for
α = 17.78 and β = 10.74. Although it appears that rδα,β is severely underregularized, this
method is promising considering the high error level of δ = 0.05.

Further studies have been conducted in order to confirm these results. In the subsequent
example, an error level of δ = 0.01 is used, and we remain in the setting of Example 7.3.
Similar to the previous experiment, we again apply the L-curve criterion for βj ∈ P βM to
obtain α(βj). In this case P βM = {10k : k = −5,−4.5,−5, ..., 1.5, 2} was used. The L-curve
has again the very distinctive shape observed in the previous example, and we determine
α(βj) = 0.0562 for all βk ∈ P βM . Similar to the previous example, Figure 8.8 displays
‖xδαj ,β(αk)

− xδαj ,β(αk−1)
‖ (left) and ‖rδαj ,β(αk)

− rδαj ,β(αk−1)
‖ (right) plotted against P βM .

Note that the minima of ‖xδαj ,β(αk)
− xδαj ,β(αk−1)

‖ and ‖rδαj ,β(αk)
− rδαj ,β(αk−1)

‖ are again
in the same location, and therefore we receive β = 0.859 in either case.

Figure 8.9 illustrates the exact and regularized solutions for these parameter choices. We
note here that the quasi-optimality criterion is very robust for different q in this situation.
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FIG. 8.5. L-curve for some fixed βj=31.62.
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FIG. 8.6. Quasi-optimality criterion for x and r, for suitable β.

8.3. Conclusions. The goal of the present article is to close a certain gap in the treatment
of the inverse option pricing problem, namely to identify time-dependent volatility and interest
rate functions simultaneously. We investigate ill-posedness and regularization approaches
for that specific nonlinear inverse problem with financial background. The injectivity of
the forward operator and therefore the identifiability of the function pair (a, r) from data
of an associated option price function pair is proven. Variants of Tikhonov regularization
using two separate penalty terms are rather successfully executed. In this context, existing
heuristic parameter choice rules are adapted and generalized for this particular problem with
two regularization parameters.

Numerical case studies for synthetic data indicate that it is possible to recover simulta-
neously time-dependent interest rate and volatility functions in a stable manner from noisy
data. We are also very confident that modifications of these approaches can be applied to real
market data and that American options can be incorporated, too.
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FIG. 8.7. Regularized solutions rδα,β and aδα,β with exacts solutions a and r for α = 17.78 and β = 10.74;
regularization parameters chosen from a combination of L-curve and quasi-optimality; 5% additive Gaussian noise.
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Appendix A. To accept Lemma 3.1 for time-varying functions σ2(·) and r(·) with an-
tiderivatives A and R, respectively, we consider a smooth function v(t,X) and the geometric
Brownian motion X(t) given by (2.1). Employing Itō’s rule gives

dv(t,X) = vtdt+ vXdX +
1

2
vXX(dX)2

= vtdt+ vX ·
(
µX(t)dt+ σX(t)dW (t)

)
+

1

2
vXX · (dX(t))2(A.1)

=

(
vt + µX(t)vX +

1

2
σ2X(t)2vXX

)
dt+ σX(t)vXdW (t).

Define Π := −v + vX ·X .

REMARK A.1. The function Π accounts for a portfolio consisting of

(i) ∆ := ∂
∂X v = vX stocks and

(ii) −1 derivatives.

This is what is called a ∆-hedge in mathematical finance.
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FIG. 8.8. Quasi-optimality criterion for x and r, for suitable β.
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FIG. 8.9. Regularized solutions aδα,β and rδα,β and exact solutions a and r for α = 0.0562 and β = 0.859;
regularization parameters chosen from a combination of L-curve and quasi-optimality; 1% additive Gaussian noise.

Using (A.1) we find that

dΠ(t) = −dvt + vX · dX(t)

= −
(
vt + µX(t)vX +

1

2
σ2X(t)2vX

)
dt

− σvXX(t)dW (t) + vX
(
µX(t)dt+ σX(t)dW (t)

)
=

(
−vt −

1

2
σ2X(t)2vXX

)
dt.(A.2)

Equation (A.2) reveals that the price of the portfolio Π(t) is not random any longer, precisely,
it does not depend on the random quantity W (t), and further the drift µ appearing in the initial
equation (2.1) is gone. This means that the portfolio Π(t) is deterministic, i.e., not random.
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However, there is only one risk-free asset on the market. It has interest r, and thus

(A.3) dΠ(t) = rΠ(t)dt = r (−v +X(t) · vX) dt.

By comparing (A.2) and (A.3) we find the Black-Scholes differential equation

(A.4) vt + rXvX +
1

2
σ2X2vXX = r v.

Note in particular that this equation is free of the drift µ but involves the risk-free interest rate
r instead. More importantly, throughout the derivation and particularly in (A.2), the interest
rate r and volatility σ can be considered as time-dependent functions, which is essential for
our setting. It is seen by direct evaluation that

v(t,X) := UBS(X,K,

∫ T

t

r(u)du,

∫ T

t

a(u)du)

solves (A.4). This is (2.4) for time reversed, and thus Lemma 3.1 holds true.
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