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A RANDOMIZED MULTIVARIATE MATRIX PENCIL METHOD FOR
SUPERRESOLUTION MICROSCOPY∗
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Abstract. The matrix pencil method is an eigenvalue-based approach for the parameter identification of
sparse exponential sums. We derive a reconstruction algorithm for multivariate exponential sums that is based on
simultaneous diagonalization. Randomization is used and quantified to reduce the simultaneous diagonalization to
the eigendecomposition of a single random matrix. To verify feasibility, the algorithm is applied to synthetic and
experimental fluorescence microscopy data.
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1. Introduction. Many imaging and data analysis problems in the applied sciences lead
to the numerical task of parameter identification in exponential sums

∑M
j=1 cje

−2πi〈tj ,·〉. For
sparse exponential sums, i.e., for small M , Prony’s method enables the identification of its
parameters {tj}Mj=1 ⊂ Rd and contributions {cj}Mj=1 ⊂ C from relatively few sampling values.
The univariate case d = 1 is well understood (see, e.g., [18, 20] and the references therein),
and the most feasible implementations are based on computing the zeros of the polynomial in
the kernel of the associated moment matrix [2, 16] or on the classical matrix pencil method [9].

A multivariate generalization of Prony’s method can be found in [11, 12, 22] and con-
sists of a two-step procedure: 1) compute the kernel of a multivariate moment matrix and
2) compute the common zeros of the polynomials associated to the kernel. General purpose
algorithms for the second step, in particular symbolic computations, are computationally quite
expensive. Popular projection-based ideas reduce the multivariate parameter identification
problem to a series of univariate problems (see, e.g., [5, 6, 19] and the references therein) and
ask for sampling the exponential sum on specific lines—data which might not be available in
applications.

In contrast, the matrix pencil method [9] has recently been generalized to the multivariate
setting [1, 8, 15, 21] and realizes the sought parameters as rank reducing numbers of d singular
matrix pencils. This approach constructs matrices S1, . . . , Sd from the sampling values,
so that their simultaneous diagonalization yields the parameters {tj}Mj=1. Since S1, . . . , Sd
are not normal, standard numerical algorithms for the simultaneous diagonalization are not
available; cf. [3, 4, 7, 10]. To circumvent this problem, we derive the joint eigenbasis from
the eigendecomposition of a single matrix that is a random linear combination of S1, . . . , Sd.
While [1] diagonalizes S1 and hopes for simple eigenvalues, the recent algorithm [15, Alg. 3.1]
and the algorithm introduced in [21] also use a random linear combination and argue that
generically the eigenvalues are simple. Moreover, in [21] the authors analyze the influence of
perturbations on their multivariate ESPRIT-method. Here, we describe the situation of using
a random linear combination of S1, . . . , Sd in more detail and quantify the influence of the

∗Received on June 18, 2018. Accepted January 30, 2019. Published online on March 19, 2019. Recommended
by Daniel Potts.
†University of Vienna, Department of Mathematics, Oskar-Morgenstern-Platz 1, A-1090 Vienna

{martin.ehler, thomas.peter}@univie.ac.at.
‡Osnabrück University, Institute for Mathematics, Albrechtstr. 28a, D-49076 Osnabrück.
¶Osnabrück University, Research Center of Cellular Nanoanalytics, Barbarastr. 11, D-49076 Osnabrück

stefan.kunis@uni-osnabrueck.de.
§Osnabrück University, Institute for Biology, Barbarastr. 11, D-49076 Osnabrück

christian.richter@biologie.uni-osnabrueck.de.

63

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol51s63


ETNA
Kent State University and

Johann Radon Institute (RICAM)

64 M. EHLER, S. KUNIS, T. PETER, AND C. RICHTER

minimal separation of the {tj}Mj=1 on the eigendecomposition of the random matrix. Similar
to the stability analysis of the univariate matrix pencil method in [14], we expect our analysis
to be useful in analysing the stability of the randomized multivariate matrix pencil method.

To verify its feasibility, our methodology is applied to analyze fluorescence microscopy
images. We cast the problem of locating protein markers as a parameter identification in
exponential sums. Due to its analytic roots, Prony’s method enables the identification of loca-
tions at the subpixel scale, sometimes referred to as superresolution fluorescence microscopy;
cf. [23]. The results on experimental fluorescence images show that our scheme is numerically
feasible.

The outline is as follows: in Section 2 we develop our numerical scheme. The approach
of simultaneous diagonalization to identify {tj}Mj=1 is presented in Section 2.1. The problem
of simultaneous diagonalization is reduced to the diagonalization of a single random matrix
in Section 2.2, where we examine the influence of the minimal separation of the parameters
{tj}Mj=1. Our new scheme is applied to synthetic and to experimental fluorescence microscopy
data in Section 3.

2. Reconstruction of sparse exponential sums from samples. Let {tj}Mj=1 ⊂ [0, 1)d

always denote M pairwise different d-dimensional parameters, and consider the exponential
sum

(2.1) f(k) =

M∑
j=1

cje−2πi〈tj ,k〉, k ∈ Zd,

with nonzero coefficients {cj}Mj=1 ⊂ C\{0}. Our aim is to identify the parameters {tj}Mj=1

and coefficients {cj}Mj=1 from sampling values {f(k)}k∈I with suitable I ⊂ Zd.

2.1. Reconstruction by simultaneous diagonalization. Let In := {0, . . . , n}d for
n ∈ N, and select a fixed ordering of the elements in In. Knowledge of the sampling values of
f on the set difference I := In+1 − In enables us to build the matrices

T := (f(k − l))k,l∈In , T` := (f(k − l + e`))k,l∈In , ` = 1, . . . , d.

For d = 1, the classical matrix pencil method [9] realizes the nodes e−2πitj as rank
reducing numbers of the singular matrix pencil zT − T1. Similar to the recent approaches [1,
15, 21], we directly generalize this for d > 1 to a simultaneous diagonalization problem as
follows. If T has rank M , then we compute the reduced singular value decomposition

T = UΣV ∗,

where Σ ∈ RM×M is a diagonal matrix with positive entries on its diagonal and
U, V ∈ CN×M satisfy U∗U = V ∗V = id ∈ RM×M with N := #In = (n+ 1)d. Therefore,
we can define the set of M ×M matrices

(2.2) S` := U∗T`V Σ−1, ` = 1, . . . , d,

which were recently also discussed in [8, Prop. 4.1]. These matrices turn out to be simultaneous
diagonalizable, cf. Theorem 2.1, which shall enable us to identify the vectors {tj}Mj=1. We
also make use of

zj := e−2πitj := (e−2πitj,1 , . . . , e−2πitj,d), j = 1, . . . ,M,

so that it is sufficient to reconstruct {zj}Mj=1 in order to identify {tj}Mj=1.
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THEOREM 2.1. If n ≥ 2πd/mini 6=j ‖zi − zj‖, then T has rank M and S1, . . . , Sd
are simultaneously diagonalizable. Furthermore, any regular matrix W that simultaneously
diagonalizes S1, . . . , Sd yields a permutation τ on {1, . . . ,M} such that

W−1S`W = diag(〈zτ(1), e`〉, . . . , 〈zτ(M), e`〉), ` = 1, . . . , d.

Proof. According to [12], the matrix T always admits the factorization

T = A∗DA,

with the multivariate complex Vandermonde matrix

A =
(
zkj
)
j=1,...,M
k∈In

∈ CM×N

and D = diag(c1, . . . , cM ). The condition on n implies that A has full rank M ; see [11,
Cor. 2.5] also for possible improvements on the factor 2πd. Together with c1, . . . , cM 6= 0,
this yields T having rank M . We also deduce the factorization

T` = A∗D`A, ` = 1, . . . , d,

where the diagonal matrix D` is given by

D` := diag(c1〈z1, e`〉, . . . , cM 〈zM , e`〉), ` = 1, . . . , d.

We shall now verify that the specific matrix W0 := (AU)∗ (which is not accessible to us)
simultaneously diagonalizes S1, . . . , Sd. Indeed, by inserting the definitions, we obtain

W−10 S`W0 = (AU)−∗U∗A∗D`AV Σ−1(AU)∗.

Note that the reduced singular value decomposition implies that both matrices AU and AV are
regular. Since Σ = U∗TV = U∗A∗DAV , we deduce Σ−1 = (AV )−1D−1(AU)−∗, which
implies

W−10 S`W0 = D`D
−1 = diag(〈z1, e`〉, . . . , 〈zM , e`〉), ` = 1, . . . , d,

so that W0 simultaneously diagonalizes S1, . . . , Sd. Note that W0 also diagonalizes any
complex linear combination

(2.3) Cµ :=

d∑
`=1

µ`S`, µ = (µ1, . . . , µd)
> ∈ Cd.

Because of

W−10 CµW0 = diag

(
d∑
`=1

µ̄`〈z1, e`〉, . . . ,
d∑
`=1

µ̄`〈zM , e`〉

)
,

the eigenvalues λ1(µ), . . . , λM (µ) of Cµ are

λj(µ) = 〈zj , µ〉

with the ordering induced by W0. Since {tj}Mj=1 are pairwise distinct, so are {zj}Mj=1. Hence,
there is µ̃ ∈ Sd−1C = {x ∈ Cd : ‖x‖ = 1} such that 〈zi − zj , µ̃〉 6= 0 for all i 6= j. Thus,
{λj(µ̃)}Mj=1 are pairwise distinct. In other words, all eigenspaces of Cµ̃ are one-dimensional.
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Any matrix W = (w1, . . . , wM ) that simultaneously diagonalizes S1, . . . , Sd also diago-
nalizes Cµ̃. Thus, there is a permutation τ such that wτ(i) spans the same space as the i-th
column of W0, which concludes the proof.

According to Theorem 2.1, the diagonalization of S` encodes the `-th entry of a permuta-
tion of the vectors {zj}Mj=1. We require the simultaneous diagonalization to ensure that these
entries are associated to the same permutation across all ` = 1, . . . , d.

In general, the matrices S1, . . . , Sd are not normal. Therefore, the numerical task of
simultaneous diagonalization is difficult and many simultaneous diagonalization algorithms in
the literature are not suitable; cf. [3, 4, 7, 10]. We attempt to circumvent such issues by using
Cµ from (2.3), which shall enable us to restrict our diagonalization efforts to a single matrix.

COROLLARY 2.2. If µ ∈ Cd is such that λ1(µ), . . . , λM (µ) are pairwise different, then
any matrix W that diagonalizes Cµ also simultaneously diagonalizes S1, . . . , Sd.

Proof. The matrices Cµ, S1, . . . , Sd are simultaneously diagonalizable. The same argu-
ments as in the proof of Theorem 2.1 imply the assertion.

According to Corollary 2.2 we aim to find µ ∈ Cd such that λ1(µ), . . . , λM (µ) are
pairwise different. For a nonzero vector z ∈ Cd, let z⊥ denote the (d− 1)-dimensional linear
subspace of Cd orthogonal to z. The proof of Theorem 2.1 reveals that

(2.4)
{
µ ∈ Cd : λ1(µ), . . . , λM (µ) are pairwise different

}
= Cd \

⋃
i 6=j

(zi − zj)⊥ .

Hence, this set is the entire Cd except for at most
(
M
2

)
many (d− 1)-dimensional subspaces.

EXAMPLE 2.3. Let d = 2, M = 5, and choose t1, . . . , t5 ∈ [0, 1)2 randomly. We
construct S1, S2 ∈ C5×5 by (2.2). Thus, we choose µ = (µ1, µ2)> ∈ S1C and construct
Cµ = µ1S1 + µ2S2. According to (2.4) we expect

(
5
2

)
= 10 great circles on S1C with

the property that choosing a µ from one of those great circles results in a Cµ that has at
least one eigenspace of dimension larger than one. For ξ ∈ C, with ‖ξ‖ = 1, we get
Cµξ = ξ (µ1S1 + µ2S2). This shows that the multiplication of Cµ by a global phase ξ does
not change the pairwise differences of the eigenvalues of Cµ. Therefore we can use Hopf
fibration, to identify great circles on S1C with a single point on S2 for visualization. Indeed, we
can observe that the minimal distance of any two eigenvalues of Cµ is nonzero on S2, except
for 10 points; see Figure 2.1(a). Note that we only see 8 of those 10 points in Figure 2.1(a),
the other 2 being on the backside of the sphere.

For visual illustration of the expected great circles, we now switch to the real case and
choose d = 3, M = 5, and restrict µ to the real sphere S2. In Figure 2.1(b), we see 10 great
circles on S2, for which Cµ has eigenspaces of dimension larger than one. Observe that away
from those great circles, the minimal distance of any two eigenvalues of Cµ rapidly increases.

REMARK 2.4. Our approach to the simultaneous diagonalization of S1, . . . , Sd suggested
in Corollary 2.2 requires our present setting, in which {zj}Mj=1 are pairwise different. Since it
does not apply to the problem of simultaneous diagonalization in general, we refer to [15] for
the case of nodes with multiplicities.

2.2. Simultaneous diagonalization by random linear combinations. The present sec-
tion is dedicated to quantify the difference λi(µ)−λj(µ) in relation to the zi−zj . If µ ∈ Sd−1C
is a random vector distributed according to the unitarily invariant probability measure on Sd−1C ,
then

E|λi(µ)− λj(µ)| = 1√
d
‖zi − zj‖.

The following result provides a more quantitative analysis:
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(a) S1, S2 ∈ C5×5, µ ∈ S1C (b) d = 3, M = 5, and µ ∈ S2

FIG. 2.1. Visualization of the smallest distance of any two eigenvalues of Cµ.

THEOREM 2.5. Let i 6= j be fixed, and suppose ε ∈ [0, 1]. If µ ∈ Sd−1C is a random
vector distributed according to the unitarily invariant probability measure on Sd−1C , then the
probability that

(2.5) |λi(µ)− λj(µ)| < ε‖zi − zj‖

holds is at most 2
√

d
π ε.

Proof. The complex sphere Sd−1C admits the standard identification with the real sphere

S2d−1 by x 7→
(

Re(x)
Im(x)

)
, and

(
Re(µ)
Im(µ)

)
is distributed according to the orthogonal invariant

probability measure on S2d−1, the latter being the standard normalized surface measure.
Let y :=

zi−zj
‖zi−zj‖ ∈ Sd−1C , so that |λi(µ)− λj(µ)|/‖zi − zj‖ = |〈y, µ〉|. Since∣∣∣ 〈(Re(y)

Im(y)

)
,
(

Re(x)
Im(x)

)〉 ∣∣∣ = |Re
(
〈y, µ〉

)
| ≤ |〈y, µ〉|,

we obtain an upper bound by simply considering

(2.6)
∣∣∣ 〈(Re(y)

Im(y)

)
,
(

Re(µ)
Im(µ)

)〉 ∣∣∣ ≤ ε.
Due to the orthogonal invariance of the surface measure on S2d−1, the distribution of the
left-hand side in (2.6) does not depend on the special choice of y ∈ Sd−1C , so that we can simply

assume that
(

Re(y)
Im(y)

)
is the north pole. The inequality (2.6) reduces to −ε ≤ Re(µ1) ≤ ε,

hence, it describes the complement of two opposing spherical caps in S2d−1. This “equatorial
band” has measure

1− I[1−ε2](d−
1

2
,

1

2
) = I[ε2](

1

2
, d− 1

2
);

see, for instance, [13], where I[x](a, b) is the cumulative distribution function of the Beta
distribution, i.e.,

I[x](a, b) =

∫ x
0
ta−1(1− t)b−1dt

Beta(a, b)
, Beta(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
.
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For d = 1, we observe

I[ε2](1/2, 1/2) =
2 arcsin(ε)

π
≤ 2√

π
ε.

Suppose now d ≥ 2, and define

f(x) := 2
√
x− I[x](1/2, d− 1/2) Beta(1/2, d− 1/2).

A short calculation yields that its derivative satisfies

f ′(x) =
1− (1− x)d−3/2√

x
≥ 0, x ∈ [0, 1].

Since f(0) = 0, we obtain

I[ε2](
1

2
, d− 1

2
) ≤ 2ε

Beta(1/2, d− 1/2)
, ε ∈ [0, 1].

The observation that 1/Beta(1/2, d− 1/2) ≤
√
d/π concludes the proof.

REMARK 2.6. Theorem 2.5 immediately implies that the probability that any of the
inequalities

|λi(µ)− λj(µ)| ≥ ε‖zi − zj‖, ∀i 6= j,

is violated is at most
(
M
2

)
2
√

d
π ε. In other words, if we select about M2 independent µ, then

the probability that (2.5) fails is at most of the order ε.
Moreover, a short calculation leads to

I[ε2](
1

2
, d− 1

2
) =

2

π

[
arcsin(ε) + ε

d∑
k=2

4k−2(k − 2)!2

(2k − 3)(2k − 4)!
(1− ε2)k−3/2

]
.

One then deduces directly that, for fixed d and small ε, the term I[ε2]( 1
2 , d −

1
2 ) is of the

order ε.
Theorem 2.1, Corollary 2.2, and Theorem 2.5 enable us to determine zτ(1), . . . , zτ(M).

The actual parameters tτ(j) are computed as the principal values of log(zτ(j)). The coeffi-
cients cτ(1), . . . , cτ(M) can be determined by the least-squares method applied to the linear
system T = A∗DA, for D = diag(cτ(1), . . . , cτ(M)) . We have summarized these steps in
Algorithm 1.

Algorithm 1 Prony’s method using the multivariate matrix pencil approach.
1: input f(k), k ∈ I .
2: Compute the reduced singular value decomposition of T .
3: Build the matrices S1, . . . , Sd.
4: Choose random µ ∈ Sd−1C , and compute a matrix W that diagonalizes Cµ.
5: Use W to simultaneously diagonalize S1, . . . , Sd, and reconstruct zτ(1), . . . , zτ(M).
6: Compute tτ(j) as the principal value of log(zτ(j)), j = 1, . . . ,M .
7: Solve argminc ‖A∗c− f‖2 to recover cτ(1), . . . , cτ(M).
8: return tτ(1), . . . , tτ(M) and cτ(1), . . . , cτ(M).
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3. Application in superresolution microscopy.

3.1. Mathematical model. In fluorescence microscopy one puts a fluorescence marker
on proteins and stimulates them with a laser. In accordance with the fluorescent microscope’s
resolution limits, proteins are modeled as point sources, cf. [23], so that the considered probe
is a tempered distribution

G =

M∑
j=1

cjδtj ,

on Rd, where {tj}Mj=1 ⊂ [0, 1)d is associated to the protein locations and δtj denotes the Dirac
delta function with center tj . Let F denote the Fourier transform on the space of tempered
distributions on Rd. Then F(G) is an exponential sum

(3.1) F(G) =

M∑
j=1

cje−2πi〈tj ,·〉.

The actual measurements g are the convolution of G with some smooth and sufficiently fast
decaying function ϕ,

g = G ∗ ϕ =

M∑
j=1

cjϕ(· − tj).

Usually, ϕ is modeled as a Gaussian with known parameters determined by the camera system.
In order to determine the locations {tj}Mj=1 and the contributions {cj}Mj=1, suppose we

have access to the Fourier transform of the measurements,

F(g) = F(G)F(ϕ).

Since ϕ is known, let us also assume that we have access to F(ϕ). If ϕ is a Gaussian, for
instance, then we know F(ϕ) analytically. We now look for some sampling set I ⊂ Zd, where
F(ϕ) does not vanish, and are able to determine the right-hand side of

(3.2) F(G)(k) = F(g)(k)/F(ϕ)(k), k ∈ I.

Combining (3.1) with (3.2) leads to the sampling problem (2.1) discussed in the previous
sections, i.e.,

(3.3)
M∑
j=1

cje−2πi〈tj ,k〉 = f(k), k ∈ I,

with f(k) := F(g)(k)/F(ϕ)(k). In principle, the parameters {tj}Mj=1 and {cj}Mj=1 can now
be determined by Algorithm 1. Note that the above derivations in this section have also been
used in [17] in combination with the univariate Prony’s method.

In practice, though, we are not able to numerically compute the Fourier transform of g
directly, so that the right-hand side of (3.3) is not readily available. Aiming at the application
of the discrete Fourier transform (DFT), we recognize that a sufficient decay of ϕ implies
g ∈ L1(Rd), so that its periodization

gper :=
∑
l∈Zd

g(·+ l)
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converges pointwise almost everywhere towards a function gper ∈ L1(Td), where Td ' [0, 1)d

is the d-dimensional torus. Let ĝper(k) denote the k-th Fourier coefficient of gper. The Poisson
formula yields

F(g)(k) = ĝper(k), k ∈ I.

Thus, (3.3) can be evaluated by first computing the periodization gper, so that its Fourier
coefficients yield

(3.4)
M∑
j=1

cje−2πi〈tj ,k〉 = ĝper(k)/F(ϕ)(k), k ∈ I.

Numerically, the DFT enables the approximation of the Fourier coefficients ĝper(k), k ∈ I ,
from samples of gper.

It should be mentioned that all numerical experiments were realized in Python on an
Intel i7, 8GByte, 3GHz, macOS 10.12. Python codes are available at t-peter.com.

3.2. Numerical results on synthetic data. In our numerical experiments, we shall apply
an implementation of the DFT to compute the discrete Fourier transform of samples of gper.
The sampling rate of g, and hence of gper, is determined by the pixel resolution. For both
synthetic and experimental fluorescence microscopy data, we choose ϕ(·) = e−b‖·‖

2

with
an adjusted parameter b derived from the camera system. Therefore, the values F(ϕ) are
available in analytic form.

Our analysis is first used on synthetic data in Figure 3.1 with

t1 =
(
2
5 ,

2
5

)
, c1 = 1, b = 150,

t2 =
(
2
5 ,

3
5

)
, c2 = 1,

t3 =
(
3
5 ,

2
5

)
, c3 = 1.

The measurements g are at first exact and in a second experiment corrupted by additive
Gaussian noise with a signal-to-noise ratio of SNR = 2.554; cf. Figure 3.1. For our com-
putations we choose, if not stated otherwise, n = 4, so that I = {−4, . . . , 5}2 and T is an
N × N Toeplitz matrix with N = 25. These matrix dimensions show that our methodol-
ogy is numerically feasible. By examining significant drops in the singular values of T , we
determine M being 3 for the synthetic data. The reconstructed locations t̃1, t̃2, t̃3 satisfy
‖tj − t̃j‖ ≤ 1.88 · 10−3, for i = 1, 2, 3, in the noisy regime and coincide with the correct
locations up to machine precision in the noise-free regime; see Figure 3.1. It is important to
note that our approach does not require the parameters {tj}Mj=1 to lie on the pixel grid. The
pixel grid is only used to approximate ĝper(k), k ∈ I , by the DCT to determine the right-hand
side in (3.4). Indeed, the locations that we compute do not lie on the pixel grid, so we are
identifying locations on the subpixel level. This is an important advantage that we gain by
making our computations in the Fourier domain. Figure 3.2 shows the difference between the
true locations t1 = 0.44, t2 = 0.56 of two one-dimensional Gaussians compared to the local
maxima of their sum. For illustration purpose we use a one-dimensional scenario in Figure 3.2.
Even though this effect is negligible when ‖t1 − t2‖2 � 0, it would entail miscalculations
when the positions t1, t2 of two proteins are close to each other. Consider a movie where each
frame is a picture as in Figure 3.1(b) and the found locations tj are used to compute movement
speeds of each protein. Then one would falsely compute an accelerated attraction and a longer
contact phase of two approaching proteins, if this effect is not considered.
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t1 = [0.4, 0.4], t2 = [0.4, 0.6], t3 = [0.6, 0.4]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(a) Blue stars indicate the three identified locations
within noiseless synthetic data.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

(b) Good location identification within synthetic data
corrupted by additive Gaussian noise with SNR =
2.554.

FIG. 3.1. In noiseless synthetic data and in the presence of additive Gaussian noise in spatial domain, our
proposed algorithm manages to find the locations t1, t2, t3 with reasonable accuracy.

FIG. 3.2. The red crosses show the true location of t1 = 0.44, t2 = 0.56 of two one-dimensional Gaussians,
each depicted as a dotted line. The red bars, however, show the local maxima of the sum of these Gaussians, and this
sum is shown in a continuous line.

To illustrate potential numerical issues when the measurements are corrupted by noise,
i.e., when g̃ := g+ ε is measured in place of g, we show in Figure 3.3 the real parts of ĝper(k),
ˆ̃gper(k), approximated by the DFT and F(ϕ)(k) = ϕ̂per(k) as well as the respective ratios
on a line k1 = 0 and k2 = −15, . . . , 15. Even though we are dealing with images of size
31×31 pixels, the frequency data of the noisy ratio ˆ̃gper(k)/ϕ̂per(k) seems reliable only close
to the center. While ϕ̂per(k) decays with growing k, the noise keeps ˆ̃gper(k) from decaying,
so that the ratio becomes unreasonably large. Therefore, we must restrict n depending on the
noise level, and n = 4 seems to work in our synthetic data with fixed SNR as well as in our
fluorescence microscopy data. Figure 3.4 shows the ratios ĝper(k)/ϕ̂(k) for k ∈ {−4, . . . , 5}2.

Theorem 2.1 requires n to be larger if the minimal separation distance

q := min
j 6=i
‖zj − zi‖

becomes smaller. In Figure 3.5 we illustrate this relation by two examples with noisy synthetic
data, one for q1 = 0.283 and the other for q2 = 0.057. For n = 1 and n = 4, the locations
can still be recovered reasonably well for q1. In the case q2, the choice n = 1 fails to recover
the locations that are close to each other, but n = 4 is successful.
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FIG. 3.3. The horizontal axis corresponds to k1 = 0 and k2 = −15, . . . , 15. The decay of the Fourier
coefficients ˆ̃gper stagnates in the presence of noise, so that the ratio ˆ̃gper(k)/ϕ̂per(k) is unbounded away from the
center.
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(a) Real part
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(b) Imaginary part

FIG. 3.4. ĝper(k)/ϕ̂per(k) on k ∈ {−4, . . . , 5}2.

3.3. Numerical results on fluorescence microscopy data. The cell-surface receptor
IFNAR2 (type I interferon beta-subunit) of living cells was labeled with biofunctionalized
quantum dots (QD605, Cat. No. Q21501MP, Invitrogen [24]). These nanoparticles are small
in size (hydrodynamic radius of 15-21 nm) but show an extraordinary high fluorescence signal.
Single-molecule imaging was done on an inverted TIRF (total internal reflection fluorescence)
microscope (Olympus IX71) with a scientific grade digital camera (Hamamatsu ORCA Flash
4.0). After optical magnification (150xTIRF objective UAPO; NA, 1.45; Olympus) and pixel-
binning, the final pixel size in the image plane was calculated to be 87 nm. To achieve a high
signal-to-noise ratio, the signal integration time was set to 32 ms.

The decay of the singular values of T with n = 4 for the experimental fluorescence
microscopy data in Figure 3.6(a) suggests M = 8. This yields Cµ, S1, S2 ∈ C8×8, and our
algorithm finds the parameters tj , cj , j = 1, . . . , 8, in less than a millisecond. Note that in
Figure 3.6(b), our algorithm, somewhat surprisingly, successfully identifies proteins at the
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(a) mini 6=j ‖zi − zj‖ = 0.283: locations are recov-
ered with error margins≤ 8 · 10−3 and≤ 1.6 · 10−3

for n = 1 and n = 3, respectively.
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0.40

(b) mini 6=j ‖zi − zj‖ = 0.059: n = 1 fails. Lo-
cations are correctly recovered for n = 3 with error
≤ 7.1 · 10−3.

FIG. 3.5. Noisy synthetic data with SNR = 2.554. The light blue circles show the true locations t1, t2, t3, t4.
The blue stars show the reconstruction with n = 1, the magenta crosses show the reconstruction with n = 3. In
accordance with the “spirit” of the requirements on n in Theorem 2.1, well-separated true locations allow for small
n. If locations are not well-separated, then n = 1 fails, but the choice n = 3 < M = 4 enables reconstruction.
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FIG. 3.6. Experimental data with blue stars marking identified locations.

boundary of the image, even though one would expect artifacts due to periodization issues.
However, those identified translations close to the boundary are not very reliable and a post-
or pre-processing step in a more elaborate analysis will be needed in practice.

Conclusion. We proposed an algorithm that finds multivariate frequencies out of struc-
tured samples of a finite sum of multivariate exponentials. Our proposed algorithm is a
multivariate generalization of a matrix pencil method and is based on simultaneous diago-
nalization of a pencil of non-normal matrices. We also studied a method to simultaneously
diagonalize the occurring non-normal matrices by analyzing random linear combinations.
Randomness was also quantified in relation to the minimal separation of the exponential
parameters. We successfully tested our algorithm on experimental data from fluorescence
microscopy.
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