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LAMINAR-TURBULENT TRANSITION IN CHANNEL FLOW:
WALL EFFECTS AND CRITICAL REYNOLDS NUMBER∗

HIDESADA KANDA†

Abstract. This article describes a possible cause of natural laminar-turbulent transition in channel flow, and the
minimum critical Reynolds number Rc,min is determined. It is assumed that the mechanism of transition is the same
for both circular pipe flow and channel flow since each flow has its own minimum critical Reynolds number. Our
starting points are that under natural disturbance conditions, transition appears to take place only in the developing
entrance region and that the critical Reynolds number Rc becomes Rc,min when using a sharp-edged uniform channel.
In our previous studies of circular pipe flow, we have developed a model for transition and obtained Rc,min = 1910
and 1950 in two mesh systems. In this study, for channel flow, the above transition model is verified by obtaining
Rc,min = 1190 and 1260 in two mesh systems.
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1. Introduction. The notation used in this paper is collected in Appendix A.

1.1. Reynolds’ problem. The laminar-turbulent (L-T) transition in circular pipe flow is
one of the fundamental problems of fluid dynamics. Osborne Reynolds in 1883 [22] first found
the Reynolds number Re = DVm/ν and also determined two critical values: an upper critical
Reynolds number Rc ≈ 12, 800 by the color-band method and a lower critical Reynolds
number Rc,min ≈ 2050, which he called the real critical value, by the pressure-loss method.
The preciseRc,min-value has not yet been agreed upon unanimously. A major unsolved problem
is to theoretically obtain the minimum critical Reynolds number Rc,min. This challenge is
called “Reynolds’ problem.” Why is it difficult to solve Reynolds’ problem? It is unclear what
causes all the transitions in pipe flow and in channel flow. We suppose that there are two key
parameters to the problem:

(i) Regarding the primary parameter of transition, White [32] states that “Transition
depends upon many effects, e.g., wall roughness or fluctuations in the inlet stream, but the
primary parameter is the Reynolds number.” Why is the Reynolds number itself the primary
parameter determining L-T transition?

(ii) Regarding the transition length, Reynolds [22] states that “Under no circumstances
would the disturbance occur nearer to the trumpet than about 30 diameters in any of the pipes,
and the flashes generally but not always commenced at about this distance.” Why is the
transition point nearer to the pipe or channel inlet, not the inlet itself?

In our previous studies we obtained Rc,min = 2050 and 2200 experimentally [13] and
1910 and 1950 theoretically [12] based on several assumptions (see Section 1.3). In this study,
for channel flow, the above transition model is verified.

1.2. Prerequisites for transition. (i) The fluid is an incompressible, isothermal, New-
tonian fluid with constant viscosity and density, disregarding gravity, external forces, and
artificial disturbances. The Reynolds number Re = HVm/ν ranges from about 500 to about
15, 000.

(ii) The value of Rc depends greatly upon the experimental setup such as the use of
calming chamber, baffles, honeycomb, and screens. Accordingly, it is desirable for the initial
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analysis to avoid geometrically complex channel entrances. Entrance shapes are limited to
a sharp-edged inlet and depth-contraction rounded entrances, excluding width-contraction
entrances. Channels have smooth-surface walls.

(iii) Each experimental apparatus has two types of Rc-numbers: Rc1, Rc2 from laminar
flow to turbulence, and Rc3 from turbulence to laminar flow (reverse transition). Rc1 is
qualitatively associated with small-magnitude-disturbance conditions at the inlet, and Rc2 is
for medium-magnitude-disturbance conditions.

(iv) The type of disturbances should be natural and not artificial; there is no artificial
disturbance generator in a test region or in the fully developed Poiseuille region. A disturbed
inlet flow as seen in Reynolds’ pressure-loss experiments or a disturbance generator set in
front of the inlet is available.

1.3. Assumptions and objectives. Our assumptions are as follows:
(i) The fundamental characteristics of L-T transition are the critical Reynolds number Rc

under which no turbulence exists and the transition length xt, which is defined as the distance
from the inlet to the point at which L-to-T transition takes place.

(ii) The mechanism of L-T transition in pipe flow and channel flow (flow between parallel
plates) seems to be the same, i.e., both circular pipe flow and channel flow are internal flows
bounded by smooth walls and have their own minimum critical Reynolds number Rc,min and
pressure drops (∆p)wc normal to the wall near the inlet (see Figures 5.1 and 5.2). On the
contrary, flow on flat plate (boundary-layer flow) is an external flow and does not have its own
Rc,min. However, xt is one of the key characteristics of L-to-T transition in pipe flow, channel
flow, and boundary-layer flow (Section 2.2).

(iii) Consider the transition point. Natural transition to turbulence seems to occur only in
the developing entrance region, particularly in the vicinity of the inlet, but does not occur at
the inlet itself. No transition appears to occur experimentally in the fully developed Poiseuille
region under natural disturbances (see Table 1.1).

Many researchers have concluded that the flow may become turbulent long before it
becomes fully developed Poiseuille flow [7, 11, 12]. Taneda [29] claimed that transition in
pipe flow occurs only in the entrance region. Badri Narayanan [1] states that in channel flow
the spots are born in some region near the entry section and, after traveling some distance,
merge. He also states that the transition point lies at Xt (= xt/(HRe)) = 87/3460 = 0.0251
for xt/H = 87 and Re = 3460 and that it moves toward upstream, nearer to the entry as Re is
increased, and is at Xt = 12/3850 = 0.00312 for xt/H = 12 and Re= 3850.

(iv) So far, three major aspects have been studied regarding phenomena in the entrance
region [6]: (a) a pressure difference between any two sections in the axial direction; (b) a veloc-
ity distribution at any section; and (c) the length of the entrance region Le. According to many
previous investigations, variables such as velocity and pressure distributions become similar
and independent of the Reynolds number when they are plotted against the dimensionless
distance X (= x/(HRe)).

(v) Therefore, it is important to find variables which vary in the entrance region, particu-
larly near the pipe or channel inlet. For this purpose, we found the transverse pressure drop
(∆p)wc between the pressure on the wall and on the centerline (see equation (2.1) [10]); the
values of (∆p)wc decrease as Re increases, appearing only near the inlet and disappearing
downstream as seen in Figure 5.1.

It is noted that (∆p)wc cannot be disregarded in the developing entrance region, whereas
the boundary-layer approximations disregard this transverse pressure drop.

(vi) From previous experimental results (see Table 1.1), it appears that the value of Rc is
determined greatly by the depth-contraction ratio of the entrance sections in two dimensions,
not by the width-contraction ratio, i.e., each experimental apparatus has its own Rc and xt [13].
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TABLE 1.1
Experimental data on the critical Reynolds number and the transition Reynolds number, where A-, D-, and W-,

stand for Area-, Depth-, and Width-Contraction, respectively.

Author D-Con. Depth H Width B Rc Rc xt Xt

ratio [cm] [H] type or Rt [x/H] [x/(H Re)]
Badri Narayanan et al. [1] W-4 0.318 12 Rc1 3000 ? ?

" " " " Rt 3460 87 0.0251
" " " " " 3850 12 0.00312

Badri Narayanan [2] 1 1.27 18 Rc3 2800 < 120 < 0.0429
Carlson, Widnall et al. [4] 100 0.6 133 Rc2 1330 ? ?

" " " " Rc3 1120 < 260 < 0.232
Davies, White [5] 1 0.0154 165 Rc2 1440 < 81 < 0.0564

" " 0.0205 124 " < 61 < 0.0423
" " 0.0212 120 " " < 59 < 0.0409
" " 0.0236 108 " " < 53 < 0.0368
" " 0.0244 104 " " < 51 < 0.0356

Hartnett, Koh et al. [8] 1 0.791 10 Rc1 1380 ? ?
" " " " Rt 2200 < 36 < 0.0164
" ? " " Rc1 2420 ? ?

Karnitz, Potter et al. [14] 24 1.27 70 Rc1 6700 144 0.0215
" " " " Rt 10000 120 0.0120

Lemoult, Aider et al. [17] ? 2 7.5 Rc1 7330 < 110 < 0.0150
" " " " Rc3 3770 40 0.0106

Nishioka, Iida et al. [19] 27.4 1.46 27.4 Rc1 10670 < 411 < 0.0385
Patel, Head [21] 1 0.635 48 Rc1 1350 < 203.5 < 0.151
Sano, Tamai [25] A-20 0.5 180 Rc3 1110 < 640 < 0.578
Seki, Matsubara [26] 34 0.5 52 Rc3 1400 < 100 < 0.0714
Whan, Rothfus [30] ? 1.78 20 Rc2 1420 < 291 < 0.205

In the case of a sharp-edged inlet, Rc takes a minimum critical Reynolds number Rc,min.
(vii) Possible primary causes of L-T transition are the wall effects based upon Panton’s

wall model [20] (see Section 3). Lindgren states that “the experiments indicate that real
turbulence—both in flashes and in continuous turbulent regions—is maintained by direct
action of the bounding walls [18].”

Therefore, the objectives of the present study are as follows:
(1) to confirm the wall effects in determining Rc,
(2) to confirm why the Reynolds number is the primary parameter for L-T transition,
(3) to theoretically obtain Rc,min in channel flow, and
(4) to confirm that the above mentioned assumptions apply for determining Rc,min in both

pipe and channel flows.

2. Characteristics of the entrance flow.

2.1. The entrance length. The entrance region considered in this study includes stream-
lined contraction, or depth-contraction, entrances. Thus, the inlet (x = 0) is the channel
inlet for a sharp-edged entrance channel and is the inlet end of the contraction section for
contraction entrance channels.

The entrance length xe is defined as the distance from the inlet to the point downstream
where the centerline velocity uc reaches 99% of its fully developed value (uc/Vm = 0.99×
1.5 = 1.485; see (4.8)). Then, for channel flow, the dimensionless entrance length Le is given
for Re ≥ 500 [3, 27] by

Le =
xe
H Re

=
0.63

Re(0.035 Re + 1)
+ 0.044 ≈ 0.044.
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TABLE 2.1
Comparison of length Reynolds number Rx in pipe, channel, and boundary-layer flows.

Author Flow Re xt/D Rxt
xt/H

Reynolds [22] Bellmouth Pipe 12800 30 3.84× 105

Rivas, Shapiro [23] " – – 8× 104 ∼ 4× 106

" " – – 5× 105

Badri Narayanan et al. [1] W-contract. Chan 3460 87 3.01× 105

" " 3850 12 4.62× 104

Karnitz, Potter, Smith [14] D-contract. Chan 6700 144 9.65× 105

" " 10000 120 1.2× 106

White [32] Boundary-layer – – 5× 105 ∼ 3× 106

Since the streamlined length in contraction sections is small compared with Le, the value
Le ≈ 0.044 can be used both for sharp-edged channels and for contraction-entry channels in
this study.

2.2. The transition length. (i) The dimensionless transition length Xt is defined as the
normalized distance from the inlet to the transition point as shown in Table 1.1:

Xt =
xt

H Re
.

(ii) Let us compare the transition length of pipe flows, channel flows, and boundary-layer
(B-L) flows. For flat-plate boundary-layer flow, the length Reynolds number Rx is used:

Rx ≡ xVm
ν

.

Let Rxt be the length Reynolds number of transition. The relation between Rxt and the
transition length xt in a pipe and channel flow is expressed as

Rxt =
xt
D

Re (Pipe flow) and Rxt =
xt
H

Re (Channel flow).

For pipe flow and channel flow, in a stream of moderate initial disturbance (i.e., bellmouth
or contraction entrance condition), the length Reynolds number of transition Rxt is of the
order of 5× 105 as seen in Table 2.1. Regarding the flat-plate boundary layer flow, with care
in polishing the wall and keeping the free stream quiet, the transition Reynolds number Rxt is
about 3× 106. However, for typical commercial surfaces and gusty streams, a more realistic
value is Rxt ≈ 5× 105 [32]. Thus the value of the length Reynolds number of transition Rxt
is almost the same in pipe, channel, and boundary-layer flows.

Therefore, it is clear that the transition length xt is one of the fundamental characteristics
of L-T transitions together with the critical Reynolds number Rc (see Section 1.3).

2.3. The pressure drop in the entrance region. Here the pressure difference and the
pressure drop are defined and distinguished to avoid confusing them. Let the pressure at the
inlet be zero (see x = 0, i = 1, Figure 3.1).

(i) The axial pressure difference (∆p)x is negative, defined as

(∆p)x ≡ p(x+∆x)− p(x) = pi+1 − pi < 0

and can be used in finite difference expressions, i.e.,

∂p

∂x
≈ (∆p)x

∆x
< 0.
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(ii) The streamwise pressure drop is positive and usually defined as

∆P(x) = p(0)− p(x) = 0− p(x) = −p(x) > 0.

(iii) There is the transverse pressure drop (∆p)wc in the transverse or normal direction
between the pressure on the wall (pw = p|y=h) and on the centerline (pc = p|y=0) (see
Section 5.3):

(∆p)wc = pw − pc < 0.(2.1)

(iv) The total pressure drop ∆P from the channel inlet consists of two components:
(a) the pressure drop based on the fully developed flow, f · (x/H), and (b) the excess pressure
drop K(x). K(x) is due to the momentum change of the increase in the kinetic energy flux,
∆KE flux(x), and the accumulated increment in the wall shear KShear(x) between developing
flow and Poiseuille flow [3, 27], i.e.,

K(x) = ∆KE flux(x) +KShear(x).(2.2)

Accordingly, ∆P can be expressed as

∆P(x) =
(
f
x

H
+∆KE flux′(x) +K ′Shear(x)

)(1

2
ρV 2

m

)
> 0,(2.3)

where the Darcy-Weisbach friction factor f is 24/Re for fully developed Poiseuille flow (see
(4.11)) and the primes (′) denote dimensionless variables (see (6.1) and (6.5)).

The excess pressure drop K ′(x) increases monotonically from 0 at x = 0 to a constant
valueK ′(∞) in the fully developed region, and the dimensionless value ofK(∞) is expressed
[3, 27] as

K ′(∞) = 0.64 +
19

Re
.

Note that K ′(∞) includes ∆KE flux′ of 19/35 (≈ 0.5429) (see (6.5)), which is the increase in
the dimensionless kinetic energy flux from the entrance flow to Poiseuille flow.

3. Wall effects and the control-volume method.

3.1. The wall model.
(i) Panton [20] states about a wall model that “the no-slip condition at the wall means that

the particles are not translating; however they are undergoing a rotation. We might imagine
that the wall consists of an array of marbles, which are rotating but remain at the same location
on the wall.”

(ii) Accordingly, there are two regions transversely between the channel wall and the
centerline in a channel: the wall region and the flow region. Fluid particles in the wall region
do not move or change so that the no-slip boundary condition is due to the fluid particles in
the wall region. On the other hand, fluid particles in the flow region move downstream.

(iii) The “marbles” of the above statement can be interpreted as an array of “vorticity” in
the wall region so that our wall effects are based upon the viscous terms on the wall of the
Navier-Stokes equations.
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FIG. 3.1. Axial wall force and transverse wall force in a wall control volume, where the external region (wall
region) is inside the channel wall.

3.2. The wall control-volume system.
(i) Since channel flow is symmetric at the centerline (y = 0, j = 1), here we consider

the upper half of the wall and the flow regions in a channel, [(0 ≤ y ≤ h), (1 ≤ j ≤ J0)], as
displayed in Figure 3.1. Thus, the region for ∆x in a channel is enclosed axially by Section-1
(x = xi) and Section-3 (x = xi+1).

(ii) The wall region is the space between the transverse boundary Section-2
(j = (J0 + J1)/2) and the wall surface indicated by gray circles of vorticity on the wall
(j = J0).

(iii) The combination of the wall region and the flow region may be called the “wall
control volume” since it is similar to that of the “control volume” as shown in Figure 3.2.

Hence there is a difference in the external region: for the wall control volume, the external
region is the wall region inside of the channel, whereas for the control volume the external
region is outside of the channel. However, we assume that the two external regions similarly
exert body forces as the body forces due to external regions are those which act upon the entire
flow region or the entire control-volume region.

3.3. Control volume and state function. We refer to the “control-volume method”
[31, 32] and thermodynamics [15] to analyze the transverse pressure drop (∆p)wc in the wall
control volume.

(i) The control-volume method is using a finite region, making a balance of the flow in
versus the flow out, and determining gross flow effects such as the force or torque on a body
or the total energy exchange.

(ii) In the control volume, body forces are due to external fields (gravity, magnetism,
electric potential) which act upon the entire mass within the element; similarly, body forces
are due to the wall fields (curl of vorticity, etc.) which act upon the entire fluid in the flow
region.
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FIG. 3.2. Control-volume regions, where the external region is outside the channel wall.

(iii) The concept of the control-volume method is nearly the same as that of the thermody-
namic approach.

In thermodynamics, the state of a system is specified in terms of macroscopic state
variables such as volume V , pressure p, and temperature T . Functions of state variables such
as internal energy Uint and enthalpy H are called state functions. Then the enthalpy is defined
by

H ≡ Uint + pV, Unit = [kg m2/s2],(3.1)

where the dimension of pV is [energy or work; joule] from (3.1).
(iv) For most solids and liquids, at a constant temperature, the energy Uint does not

change much with pressure (∆Uint ≈ 0). Since the change in volume is rather small unless
the changes in pressure are very large, the change in enthalpy ∆H due to a change in pressure
∆p can be approximated by

∆H = ∆(pV) = p∆V + V∆p ≈ V∆p.

If the external region performs some work ∆W upon the control-volume region, then

∆H = ∆W = V∆p.(3.2)

Equation (3.2) means that an applied force due to the external region exerts a body force
upon the control-volume region, and the body force does some work (∆W ), which equals
(V∆p) by Newton’s Second Law of Motion. Note that this process may apply to the wall
control volume.

3.4. Wall effects and the N-S equations.
(i) In the wall control volume, external forces are due to the axial and transverse viscous

terms of the Navier-Stokes equations on the wall or in the wall region.
(ii) The Navier-Stokes equation in vector form is expressed as

ρ

(
∂V

∂t
− V × ω

)
= −∇

(
p+

1

2
ρV 2

)
− µ(∇× ω),(3.3)
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where V is the velocity vector and p is the difference of the actual pressure from the hydrostatic
pressure [6].

Since V = 0 on the wall, (3.3) reduces to

−µ(∇× ω)|y=h = (∇p)|y=h < 0, Unit = [kg/(m2 s2)].(3.4)

Vorticity and its curl in two dimensions are defined by

ωz|y=h ≡
(
∂v

∂x
− ∂u

∂y

)∣∣∣∣
y=h

= − ∂u

∂y

∣∣∣∣
y=h

= − du

dy

∣∣∣∣
y=h

(3.5)

and

(3.6) (∇× ω) ≡

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y 0
0 0 ωz

∣∣∣∣∣∣ = ∂ωz
∂y

i− ∂ωz
∂x

j,

where ωx and ωy are zero. Thus the axial and transverse components of the curl of the vorticity
in two dimensions are expressed by its definition and (3.4) as

Axial: − µ(∇× ω)x|y=h = −µ ∂ωz
∂y

∣∣∣∣
y=h

=
∂p

∂x

∣∣∣∣
y=h

< 0,(3.7)

Transverse: − µ(∇× ω)y|y=h = µ
∂ωz
∂x

∣∣∣∣
y=h

=
∂p

∂y

∣∣∣∣
y=h

< 0.(3.8)

Therefore the wall effects are based on the axial and transverse viscous terms of the Navier-
Stokes equations, respectively.

(iii) We consider body forces due to the upper and lower wall regions. Each term in (3.4)
is assumed to be a constant since they are in the fixed wall region.

The volume of the flow region V is expressed for an axial distance ∆x in the channel as
V = 2b(h−∆y)(∆x) ≈ 2bh(∆x), where b is the channel width and H = 2h is the channel
height or depth. By the integrals of the left term in (3.4), we have

2

∫ b

0

∫ h

0

∫ ∆x

0

−[µ(∇× ω)]y=h dx dy dz = −2bh(∆x)[µ(∇× ω)]y=h

= −V[µ(∇× ω)]y=h.

Thus, by multiplying (3.7) and (3.8) by the volume of the flow region V , the applied forces
due to the wall control volume or the external forces are expressed as

A-Wall-Force = −V [µ(∇× ω)x]y=h , Units = [kg m/s2],(3.9)

T-Wall-Force = −V[µ(∇× ω)y]y=h,(3.10)

where (A) and (T) denote axial and transverse, respectively. Hereafter, ω denotes ωz since ωx
and ωy vanish in two dimensions.

3.5. The vorticity and its curl on the wall. We consider the relation between vorticity
and its curl on the wall in the developing entrance region, (3.5) and (3.6). The axial velocity
distribution near the wall can be approximated by a quadratic equation or parabola near the
wall and a constant in the central part as indicated in Figure 3.3 [28]:

u(y) = C

[
1−

(y
h

)2]
,(3.11)
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FIG. 3.3. Axial velocity distribution in the entrance region, where the number indicates transverse mesh points:
1 = J0, 2 = J1, . . . , 5 = J4, (see Section 8).

where C is a constant depending on xi. (For Poiseuille flow, see (4.8)).
Differentiating (3.11) twice with respect to y gives

ω|y=h = −∂u
∂y

∣∣∣∣
y=h

=
2C

h
and

∂ω

∂y

∣∣∣∣
y=h

= −∂
2u

∂y2

∣∣∣∣
y=h

=
2C

h2
.(3.12)

Accordingly, from (3.7) and (3.12), we have

ω|y=h = h
∂ω

∂y

∣∣∣∣
y=h

= h(∇× ω)x|y=h.(3.13)

4. The axial force and power. In this section, we consider axial forces and powers in
both the developing entrance region and the Poiseuille region.

4.1. The wall shear stress and wall effects.
(i) The wall shear stress τw is an example of wall effects expressed via (3.12) and (3.13)

as

τw ≡ µ
du

dy

∣∣∣∣
y=h

= −µ ω|y=h = −h
(
µ
∂ω

∂y

)∣∣∣∣
y=h

= −h[µ(∇× ω)x]y=h < 0.(4.1)

(ii) The applied forces due to the wall shear stress τw and the axial pressure difference
(∆p)x for the small axial distance ∆x are related as

2b(∆x)τw = bH(∆p)x < 0, Units = [kg m/s2].(4.2)

(iii) From (4.2), we have

τw =
h(∆p)x
∆x

= h
∂p

∂x
.

4.2. The axial wall and flow forces.
(i) The axial wall force due to the upper and lower wall regions, denoted as A-Wall-Force,

is expressed with (3.9) and (4.1) as

A-Wall-Force = −V [µ(∇× ω)x]y=h = −2bh(∆x) [µ(∇× ω)x]y=h
= 2b(∆x)τw < 0.

(4.3)
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Similarly, the axial flow force, A-Flow-Force, in the flow region is obtained from the third
term of (3.7):

A-Flow-Force = 2

∫ b

0

∫ h

0

∫ ∆x

0

[
∂p

∂x

]
y=h

dx dy dz

≈ 2

∫ b

0

∫ h

0

∫ ∆x

0

[
∂p

∂x

]
dx dy dz = 2bh(∆p)x = bH(∆p)x.

(4.4)

(ii) By Newton’s Second Law, A-Wall-Force exerts an equal force, A-Flow-Force, on the
fluid in the flow region: i.e., A-Wall-Force = A-Flow-Force.

Although equation (4.2) is usually derived from the N-S equation, it is also verified by the
wall control-volume method from (4.3) and (4.4).

4.3. The axial wall and flow powers. The wall region does not move, but the fluid in the
flow region travels relatively downstream with mean velocity Vm. Therefore, A-Wall-Force
performs negative work on the fluid in the flow region, resulting in a pressure difference in the
axial direction. This negative work can be called the axial wall power (A-Wall-Power), and
the energy loss of the fluid is called the axial flow power (A-Flow-Power), and their dimension
is that of power, energy/time, as measured in watts (W = J/s, [kg m2/s3]).

The axial wall power and axial flow power, denoted as A-Wall-Power and A-Flow-Power,
respectively, are derived by multiplying (4.3) and (4.4) by Vm:

A-Wall-Power = −
{
V [µ(∇× ω)x]y=h

}
Vm = −Q(∆x)[µ(∇× ω)x]y=h

= −
{
2bh(∆x) [µ(∇× ω)x]y=h

}
Vm = 2b(∆x)τwVm

(4.5)

and

A-Flow-Power = 2bh(∆p)xVm = Q(∆p)x,(4.6)

where Q = 2bhVm is the volumetric flux. A-Wall-Power is made dimensionless by dividing
(4.5) by Q[(1/2)ρV 2

m]:

A-Wall-Power′ = −
Q(∆x) [µ(∇× ω)x]y=h

Q[(1/2)ρV 2
m]

= −
(∆x) [µ(∇× ω)x]y=h

[(1/2)ρV 2
m]

.(4.7)

Similarly, dividing (4.6) by Q[(1/2)ρV 2
m] yields

A-Flow-Power′ =
Q(∆p)x

Q[(1/2)ρV 2
m]

= (∆p′)x.

4.4. The dimensionless A-Wall-Power in Poiseuille flow. In Poiseuille flow, the axial
velocity distribution u is obtained by replacing C in (3.11) with (3/2)Vm:

u(y) =
3

2
Vm

[
1−

(y
h

)2]
.(4.8)

Differentiating (4.8) twice with respect to y gives

ω|y=h = −∂u
∂y

∣∣∣∣
y=h

=
3Vm
h

and
∂ω

∂y

∣∣∣∣
y=h

= −∂
2u

∂y2

∣∣∣∣
y=h

=
3Vm
h2

.(4.9)
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Accordingly, from (3.7) and (4.9), we have

ω|y=h = h
∂ω

∂y

∣∣∣∣
y=h

= h(∇× ω)x|y=h.(4.10)

It is noted that equations (3.13) and (4.10) are the same, satisfied in both the developing
entrance region and the Poiseuille region.

From (4.7), (4.9), and (4.10), we have

A-Wall-Power′ = − (∆x)[(3µVm)/h2]

[(1/2)ρV 2
m]

= − 24

Re
∆x

H
= −24∆X,(4.11)

where (f = 24/Re) is the Darcy-Weisbach friction factor for Poiseuille flow (see (2.3)).

5. The transverse force and power. We consider transverse forces and powers in the
developing entrance region. Note that they are zero in the Poiseuille region.

5.1. The transverse wall and flow forces.
(i) The transverse wall force (T-Wall-Force) in the upper and lower wall regions is

similarly written by (3.8) and (3.10) as

T-Wall-Force = −V[µ(∇× ω)y]y=h = −2bh(∆x)[µ(∇× ω)y]y=h

= 2bh(∆x)

[
µ(
∂ω

∂x
)

]
y=h

= 2bh(µ∆ω)x|y=h < 0.
(5.1)

(ii) T-Wall-Force exerts an equal transverse flow force (T-Flow-Force) on the fluid in
the flow region in the transverse direction, resulting in a transverse pressure drop (∆p)wc as
indicated in Figure 5.1. Then T-Flow-Force for ∆x is given by

T-Flow-Force = 2

∫ b

0

∫ h

0

∫ ∆x

0

[
∂p

∂y

]
y=h

dx dy dz

≈ 2b(∆x)

∫ h

0

[
∂p

∂y

]
dy ≈ 2b(∆x)(∆p)y = 2b(∆x)(∆p)wc < 0,

(5.2)

where T-Flow-Force = T-Wall-Force by Newton’s Second Law.
It is noted from Figure 5.1 that (∆p)wc defined in (2.1) decreases as Re increases and

appears only near the inlet and disappears downstream, which are variable conditions for
determining L-to-T transition in channel flow.

(iii) For pipe flow, we similarly have obtained the pressure drop in the radial direction (see
Figure 5.2, copied from [9]). From Figures 5.1 and 5.2, the L-to-T transition process appears
to be the same in both pipe and channel flows.

5.2. T-Wall-Force, acceleration of fluid, and L-to-T transition. We consider the rela-
tion between T-Wall-Force and Rc.

(i) T-Wall-Force and (∆p)wc satisfy the conditions for variables that vary in the entrance
region, particularly near the channel inlet (see Section 1.3).

In the previous study, from (∆p)wc, we have obtained Rc,min ≈ 910 when using
(b) J0 = 51 mesh points in the transverse direction and Rc,min ≈ 1230 when (c) J0 = 101 for
channel flow (see Table 7.2) [10].

(ii) In this study, we try to obtain new values of Rc,min from T-Wall-Force and to verify the
method since T-Wall-Force is the primary cause and T-Flow-Force or (∆p)wc is the secondary
result.
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FIG. 5.1. Channel flow: Axial pressure drop with (∆p)wc due to |T-Flow-Force|, where the mesh system is (c)
J0 = 101 (see Section 7.2). From Kanda [10].

(iii) Accordingly, from (3.3), (5.1), and (5.2), it is possible to assume the following process
for the acceleration of the fluid to Poiseuille flow in the flow region:

(a) T-Wall-Force in the wall region exerts an equal transverse force T-Flow-Force on the
fluid in the flow region by Newton’s Second Law.

(b) T-Wall-Force and T-Flow-Force cause the fluid in the flow region to move towards the
centerline in the transverse direction as shown in Figure 3.1, resulting in an increase in kinetic
energy.

(c) An increase in kinetic energy means that the pressure of the fluid decreases as can
be seen in the first term on the right-hand side of (3.3). T-Flow-Force shows a result of this
change.

(d) T-Flow-Force shows that the pressure on the centerline is higher than that on the wall.
As explained in (b) above, however, the fluid near the centerline does not move towards the
wall.

(e) Thus T-Wall-Force and T-Flow-Force work as acceleration forces together with the
“equation of continuity.”

(f) Hence, the onset of L-to-T transition should depend on whether or not the acceleration
power provided by T-Wall-Force exceeds a required value of ∆KE flux.

5.3. The transverse flow work and flow power. We consider T-Flow-Work (transverse
flow work) done on the fluid by T-Wall-Force.

(i) T-Wall-Force yields transverse velocity v and pressure drop (∆p)wc in the transverse
direction.
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a) Re = 1000c b) Re = 2000c
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FIG. 5.2. Pipe flow: Axial pressure drop with (∆p)wc due to |R-Flow-Force|, (Radial-Flow-Force), where the
downstream distance (zz) = X and the mesh system is (c) J0 = 101. From Kanda [9].

(ii) Equation (3.2) can be applied to incompressible flow as well so that T-Flow-Work is
expressed as

T-Flow-Work = V(∆p)wc = 2bh(∆x)(∆p)wc.(5.3)

Note that the dimension of V(∆p)wc is physically equivalent to energy, and by multiplying
by a frequency (inverse of a period, ω|y=h), the unit of [V(∆p)wc(ω|y=h)] becomes that of
power (see (5.8)).

(iii) The pressure drop in the transverse direction is approximated by the mean difference
in the pressure between xi and xi+1,

(∆pi)wc ≈
1

2
[(pi,J0 + pi+1,J0)− (pi,1 + pi+1,1)].(5.4)

(iv) The period during which T-Wall-Force acts on the flow passing along vorticity ωi,J0
and vorticity ωi+1,J0 on the wall is considered. The period ∆t∗i may be estimated by dividing
the axial mesh space ∆x by the mean velocity at two points (i, J1) and (i+ 1, J1).

∆t∗i =
∆x

(1/2)(ui,J1 + ui+1,J1)
≈ ∆x

ui+1/2,J1

.

However, if this ∆t∗i is the correct period, then an inconsistency is encountered. Three simple
cases are considered as examples to illustrate this inconsistency.

(a) First, if the mesh aspect ratio is ∆x = 2∆y, (m = 2), as indicated in Figure 3.1,
where ∆x is constant, then T-Flow-Work(a) and T-Flow-Power(a) can be expressed as

T-Flow-Work(a) = V(∆p)wc,(5.5)

T-Flow-Power(a) =
V(∆p)wc

∆x/(ui+1/2,J1)
=
V(∆p)wc (ui+1/2,J1)

2∆y
.
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(b) Next, if ∆x and V are equally divided into two parts, then ∆x = ∆y + ∆y and
V = V1 + V2. T-Flow-Work(b) in V is calculated by adding work in V1 and work in V2:

T-Flow-Work(b) = V1(∆p1)wc + V2(∆p2)wc ≈ V(∆p)wc.(5.6)

T-Flow-Power(b) in V is calculated by adding the power in V1 and the power in V2,

T-Flow-Power(b) =
V1(∆p1)wc

∆y/(ui+1/4,J1)
+
V2(∆p2)wc

∆y/(ui+3/4,J1)

≈
V(∆p)wc (ui+1/2,J1)

∆y
≈ 2 T-Flow-Power(a),

where it is assumed that (∆p1)wc ≈ (∆p2)wc ≈ (∆p)wc and ui+1/4,J1 ≈ ui+3/4,J1 ≈
ui+1/2,J1 . From (5.5) and (5.6), T-Flow-Work(a) equals T-Flow-Work(b). Comparing
T-Flow-Power(a) and T-Flow-Power(b), however, T-Flow-Power(b) is twice the value of
T-Flow-Power(a) although the volume and position are the same.

(c) In numerical calculations, usually ∆x = m∆y (m = 1, 2, 3, . . . ). To avoid the
inconsistency between T-Flow-Power(a) and T-Flow-Power(b) above, the following period is
required for a general mesh system of ∆x = m∆y:

∆ti =
∆y

(1/2)(ui,J1 + ui+1,J1)
≈ 1

(1/2)(ωi,J0 + ωi+1,J0)
≈ 1

ωi+1/2,J0

.(5.7)

This period in (5.7) is based on the following assumptions: Rotation of a fluid particle on
the wall yields a vortex and a vorticity. Then the curl of the vorticity yields T-Wall-Force
from (5.1). The diameter of vorticities on the wall is ∆y. Accordingly, T-Wall-Force is
produced between two continuous vortexes or per ∆y.

(v) T-Flow-Power is derived from (5.3), (5.4), and (5.7):

T-Flow-Power = [V(∆pi)wc] · (ωi+1/2,J0) = [2bh∆x(∆pi)wc] · (ωi+1/2,J0).(5.8)

5.4. The transverse wall work and wall power.
(i) T-Wall-Work can be expressed by (5.1) as:

T-Wall-Work = (T-Wall-Force)× h = −Vh[µ(∇× ω)y]y=h
= −2bh2(∆x)[µ(∇× ω)y]y=h = 2bh2(µ∆ω)x|y=h.

(ii) The transverse wall power (T-Wall-Power) is obtained from (5.7) by multiplying
T-Wall-Work by the vorticity (ω|y=h):

T-Wall-Power = (T-Wall-Work) · ω = [2bh2(µ∆ω)x|y=h] · (ωi+1/2,J0).(5.9)

6. A criterion for determining Rc.

6.1. Dimensionless variables. In the numerical calculations, dimensionless variables
denoted with prime (′) are used:

(6.1)
x′ =

x

H
, y′ =

y

H
, ω′ =

ω

Vm/H
, p′ =

p

(1/2)ρV 2
m

,

t′ =
Vm
H
t, ψ′ =

ψ

H2Vm
, X =

x

HRe
,

where t′ is the time, ψ′ is the stream function, and x′ and X are the dimensionless axial
coordinates. Note that x′ (= x/H) is used for the numerical calculation, and X (= x/(H Re))
is used in the figures and tables.
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6.2. The kinetic energy flux.
(i) Consider the kinetic energy flux (KE flux) at the inlet. KE flux varies with inlet shapes

such as rounded contractions and with transverse velocities. In this study, the inlet shape is
without any contraction, and the velocity profile is the mean axial velocity Vm only. Then the
kinetic energy flux across the inlet, where the channel width is b, is given by

KE fluxInlet = 2

∫ h

0

Vm

(
1

2
ρV 2

m

)
b dy = 2bhVm

(
1

2
ρV 2

m

)
= Q

(
1

2
ρV 2

m

)
.(6.2)

In this case, KE fluxInlet has a constant value for channel flow, so we define KE fluxMean as

KE fluxMean ≡ Q
(
1

2
ρV 2

m

)
.

Note that the unit of KE flux is that of power. In the fully developed Poiseuille flow, the
streamwise velocity distribution is given by (4.8), and the kinetic energy flux of channel
Poiseuille flow is

KE fluxPoiseuille = 2

∫ h

0

(
1

2
ρ

)(
3

2
Vm
[
1− (

y

h
)2
])3

b dy =
54

35
Q

(
1

2
ρV 2

m

)
.(6.3)

Then, ∆KE flux is expressed as

∆KE flux = KE fluxPoiseuille − KE fluxInlet.(6.4)

(ii) KE flux and ∆KE flux are made dimensionless by dividing by KE fluxMean. From
(6.2), (6.3), and (6.4), the dimensionless ∆KE flux is given by

∆KE flux′ =
∆KE flux

KE fluxMean
=

∆KE flux
Q[(1/2)ρV 2

m]
=

54

35
− 1 =

19

35
≈ 0.5429.(6.5)

6.3. The dimensionless T-Wall-Power and T-Flow-Power. Let the total transverse
wall power and the total transverse flow power be denoted as T-T-Wall-Power and T-T-Flow-Power,
respectively.

(i) For a sharp-edged inlet channel, the dimensionless T-Wall-Power′ is reduced from
(5.9) and (6.1) to

|T-Wall-Power′| =
∣∣∣∣2bh2[(µ∆ω)x] · ωQ[(1/2)ρV 2

m

∣∣∣∣ = 1

Re
|(∆ω′)x · ω′|y=h ,(6.6)

and thus,

|T-T-Wall-Power′| = 1

Re

I1∑
i=2

|(∆ω′)x · ω′|y=h .(6.7)

In the numerical calculation, we have

ω′ ≈ 1

2
(ω′i + ω′i+1), (∆ω′)x = (ω′i+1 − ω′i), and

ω′(∆ω′)x ≈
1

2
(ω′i + ω′i+1) · (ω′i+1 − ω′i) =

1

2
(ω′2i+1 − ω′2i ).
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Therefore, equation (6.6) yields

|T-Wall-Power′| ≈ 1

2Re
|(ω′2i+1 − ω′2i )|y=h.

Regarding |T-T-Wall-Power′|, we have

|T-T-Wall-Power′| ≈ 1

2Re

I1∑
i=2

|(ω′2i+1 − ω′2i )|y=h =
1

2Re
|(ω′2i=2 − 62)|y=h,(6.8)

where if I1(= I0 − 1) indicates the Poiseuille region, then ω′|y=h = 6 from (4.9) and (6.1).
(ii) The dimensionless T-Flow-Power is obtained from (5.8) as

|T-Flow-Power′| = |2bh(∆x)(∆p)wc · ω|
Q[(1/2)ρV 2

m]
= |(∆x′)(∆p′)wc · ω′|y=h,

and thus,

|T-T-Flow-Power′| =
I1∑
i=2

|(∆x′)(∆p′)wc · ω′|y=h.(6.9)

6.4. Determination of Rc. This section follows Section 5.2.
(i) |T-T-Wall-Power| decreases as Re increases, whereas ∆KE flux is constant. Therefore,

the criteria for determining Rc depends upon the relation between |T-T-Wall-Power| and
∆KE flux. Thus, the criteria for determining Rc are

|T-T-Wall-Power|


> ∆KE flux, no transition,
= ∆KE flux, Re = Rc, and
< ∆KE flux, a transition occurs.

If |T-T-Wall-Power′| = ∆KE flux′ = (19/35), then Re = Rc,min from (6.7) and (6.8):

Re = Rc,min =
35

19

I1∑
i=2

|(∆ω′)x · ω′|y=h ≈
35

38
|(ω′2i=2 − 62)|y=h.(6.10)

However, since |T-T-Wall-Power′| depends upon Re, it is difficult to directly calculate Rc,min
from (6.10). Therefore Rc,min is obtained in two steps: (a) |T-T-Wall-Power′| from (6.8) and
(b) via linear interpolation as can be seen in Table 7.2 and Figure 7.2.

(ii) It is noted that equations (6.8) and (6.10) show a possible reason why Re is the primary
parameter for L-T transition in channel flow [32].

(iii) When |T-T-Wall-Power| > ∆KE flux, the difference between |T-T-Wall-Power| and
∆KE flux might be maintained in the internal energy of the fluid, restoring to the pressure of
the fluid.

(iv) Since T-Flow-Power equals T-Wall-Power, the criteria for determining Rc can be
written as follows [10]:

|T-T-Flow-Power|


> ∆KE flux, no transition,
= ∆KE flux, Re = Rc, and
< ∆KE flux, a transition occurs.

(6.11)

Therefore, if |T-T-Flow-Power′| = ∆KE flux′ = (19/35), then Re = Rc,min from (6.9)
and (6.11).
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6.5. The stability of Poiseuille flow.
(i) We consider the reason why Poiseuille flow is stable by examining the shear stress

µ(du/dy). The shear forces exert on a fluid some shear stresses at y and (y +∆y) for ∆x,
denoted as τ -force1 and τ -force2, respectively. From (4.8), we have

τ -force1 = (b∆x)µ
du

dy
= −3µVmb(∆x)y

h2
,

τ -force2 = (b∆x)µ
du

dy
= −3µVmb(∆x)(y +∆y)

h2
.

Then the shear force per unit volume is expressed by subtracting τ -force1 from τ -force2,
resulting in the constant axial pressure difference:

τ -force2 − τ -force1
b∆x∆y

= −3µVm
h2

= −12µVm
H2

(1/2)ρV 2
m

(1/2)ρV 2
m

= − 24µ

ρHVm

1

H

(
1

2
ρV 2

m

)
= − 24

Re
1

H

(
1

2
ρV 2

m

)
=

(∆p)x
∆x

.

(6.12)

From (6.12), the Darcy-Weisbach friction factor f = 24/Re in (2.3) is obtained. Thus, the
constant shear force (−3µVm/h2) is active across the height or depth in the entire Poiseuille
region, so that transition to turbulence will not occur in the Poiseuille region.

(ii) If large artificial disturbances are given in Poiseuille flow, then Poiseuille flow changes
to a disturbed turbulent flow. Regarding pipe flow, Leite states [16] that “The small disturbances
introduced by the periodic motion of the sliding sleeve decayed as they travel downstream
for all the Reynolds numbers at which the measurements were taken (i.e., up to Re = 13,000).
Larger disturbances introduced by the motion of the ring airfoil did not decay at all Reynolds
numbers.”

7. Calculation of Rc,min. Part of this section refers to previous calculations [10].

7.1. Governing equations. We introduce the stream function and vorticity formulae in
two-dimensional Cartesian coordinates as governing equations to avoid the explicit appearance
of the pressure term. Accordingly, the velocity fields are determined without any assumptions
regarding pressure. Subsequently, the pressure distribution is calculated using values of the
velocity fields.

Let ψ be the stream function. The dimensionless transport equation for the vorticity ω is
expressed as

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=

1

Re
∇2ω.

The Poisson equation for the stream function is given by

∇2ψ = −ω.

The axial velocity u and transverse velocity v are defined as derivatives of the stream function,

u =
∂ψ

∂y
, v = − ∂ψ

∂x
.(7.1)

The pressure can be calculated from the steady-state form of the Navier-Stokes equations. The
pressure distribution for the x-partial derivative is

∂p

∂x
= −2

(
u
∂u

∂x
+ v

∂u

∂y

)
+

2

Re
∇2u(7.2)
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and that for the y-partial derivative is

∂p

∂y
= −2

(
u
∂v

∂x
+ v

∂v

∂y

)
+

2

Re
∇2v.(7.3)

Since u and v are known at every point from (7.1), a smooth pressure distribution that satisfies
both (7.2) and (7.3) is calculated using the Poisson equation for the pressure [24],

∇2p =
∂2p

∂x2
+
∂2p

∂y2
= −4

[
∂v

∂x

∂u

∂y
− ∂u

∂x

∂v

∂y

]
.(7.4)

For the calculation of the pressure distribution, it is important to make no assumptions.
Accordingly, the vorticity transport is solved first and then the pressure distribution equations
are solved. The initial values are determined using (7.2), and then (7.4) is used to obtain better
approximations.

7.2. The numerical method and the mesh system. The finite difference equations for
both the stream function-vorticity and the pressure are solved by the Gauss-Seidel iterative
method. This computational scheme uses the Forward-Time, Centered-Space (FTCS) method.
The scheme has second-order accuracy in the space variables and first-order accuracy in time.
The used rectangular mesh system is schematically illustrated in Figure 3.1, where I0 and
J0 are the maximum coordinates for the axial and transverse mesh points, respectively, and
I1 = I0 − 1 and J1 = J0 − 1. Here, J0 means on the wall, and J1 means at the wall. To
calculate T-Wall-Power and T-Flow-Power, two mesh systems (b) and (c) are used, where
∆X = 0.0001, ∆x = Re∆X:

(b) J0 = 51, I0 = 1001, maxX = 0.1, and four Reynolds numbers, 1000, 2000, 4000,
and 10, 000; (c) J0 = 101, for three Re = 700, 1500, and 2000, I0 = 201, maxX = 0.02,
and for Re = 1000, I0 = 1001, and maxX = 0.1.

7.3. The vorticity on the wall. For the vorticity, the boundary condition at the no-slip
walls is derived from (3.5). Using a three-point, one-sided approximation for derivatives, we
obtain

ωi,J0 = − ∂u

∂y

∣∣∣∣
y=h

≈ −3ui,J0 − 4ui,J1 + ui,J2
24y

=
4ui,J1 − ui,J2

24y
.(7.5)

The boundary conditions for the axial velocity at the channel inlet (i = 1) are approximated as

u1,j = 1, 1 ≤ j ≤ J1, and u1,J0 = 0.

Table 7.1 displays the calculated results for the vorticity on the wall, where a large value of
vorticity may appear at a channel inlet edge; ω1,J0 at the channel inlet is 150 for J0 = 51
(∆y ≈ 0.01) and 300 for J0 = 101 (∆y ≈ 0.005); if ∆y → 0, then ω1,J0 →∞. In the FTCS
method, ω1,J0 is not used so that a reasonable ω|y=h can be observed in Table 7.1.

7.4. Calculation of Rc,min. |T-T-Wall-Power| and |T-T-Flow-Power| are obtained from
(6.8) and (6.9), respectively, and the calculated results are displayed in Table 7.2 and Figure 7.1.

From (6.10), if |T-T-Wall-Power′| = ∆KE flux′ = (19/35) = 0.5429, then Re = Rc,min.
The minimum critical Reynolds number Rc,min is obtained via linear interpolation as indicated
in Figure 7.2.

For (b) J0 = 51, |T-T-Wall-Power|, Re1 = 1000, and Re2 = 2000,

Rc,min − 1000

0.5429− 0.6555
=

2000− 1000

0.228− 0.6555
, so Rc,min = 1260.
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TABLE 7.1
Vorticity at (i = 2, j = J0) vs. X and Re, where (b) J0 = 51 and (c) J0 = 101.

X / Re 500-b 1000-b 2000-b 4000-b 700-c 1000-c 1500-c 2000-c
0.0001 47.970 36.701 30.793 28.013 41.849 36.790 32.792 30.767
0.0002 23.284 18.917 17.821 18.433 19.945 18.540 17.778 17.675
0.0003 16.760 15.197 15.731 16.803 15.424 15.097 15.310 15.718
0.0005 13.183 13.556 14.655 15.185 13.074 13.520 14.215 14.650
0.0007 12.149 13.095 13.889 14.077 12.465 13.071 13.645 13.883
0.001 11.554 12.542 12.902 12.929 12.034 12.526 12.821 12.896
0.002 10.559 10.901 10.924 10.886 10.778 10.891 10.922 10.915
0.003 9.748 9.882 9.876 9.841 9.828 9.870 9.875 9.964
0.005 8.691 8.739 8.729 8.705 8.710 8.724 8.722 8.714
0.007 8.069 8.095 8.087 8.070 8.071 8.079 8.076 8.070
0.01 7.498 7.512 7.506 7.495 7.489 7.493 7.491 7.487
0.02 6.655 6.659 6.657 6.653 6.654 6.638 6.654 6.652
0.03 6.332 6.334 6.333 6.331 - 6.310 - -
0.04 6.186 6.187 6.186 6.185 - 6.161 - -
0.05 6.118 6.118 6.118 6.118 - 6.091 - -
0.06 6.086 6.086 6.086 6.086 - 6.059 - -
0.07 6.072 6.071 6.072 6.072 - 6.043 - -
0.10 6.066 6.060 6.066 6.060 - 6.031 - -

TABLE 7.2
|T-T-Wall-Power| and |T-T-Flow-Power| vs. Re and Rc,min, where ω2 − 62 = ω2

i=2 − 62; cf. equation (6.8).

Re 500-b 1000-b 2000-b 4000-b 700-c 1000-c 1500-c 2000-c
ωi=2 47.970 36.701 30.793 28.013 41.849 36.790 32.792 30.767

ω2 − 62 2265 1311 912 749 1715 1318 1039 911
TTWP 2.265 0.6555 0.228 0.0936 1.225 0.6588 0.3464 0.2277
Rc,min 1260 1190
TTFP 0.7906 0.4905 0.2524 0.1610 0.7824 0.6167 0.4582 0.3660
Rc,min 910 1230

Similarly, for (c) J0 = 101, |T-T-Wall-Power|, Re1= 1000, and Re2= 1500,

Rc,min − 1000

0.5429− 0.6588
=

1500− 1000

0.3464− 0.6588
, so Rc,min = 1190.

In the case of |T-T-Wall-Power| in this study, both calculated values ofRc,min are close to the ob-
served experimental values of about 1100–1400 (see Table 1.1). When using |T-T-Flow-Power|
in the previous study [10], the calculated value for J0 = 51 is somewhat smaller than the exper-
imental value although the value for J0 = 101 is close to its corresponding experimental value.
The approximation for the pressure field needs to be reconsidered in future investigations.

In summary, it is clear that |T-T-Wall-Power| and |T-T-Flow-Power| vs. ∆KE flux are
possible methods for calculating Rc.

8. Discussion. We consider the wall vorticity vs. the transverse mesh size ∆y, (3.11).
The wall surface is (y = h), and the center of vorticity on the wall is (y = h− (1/2)∆y)

so that the center of vorticity is approximated as (y = h), as displayed in Figure 3.3, where
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FIG. 7.1. |T-T-Wall-Power| and |T-T-Flow-Power| for the mesh systems (b) J0 = 51 and (c) J0 = 101.

the numbers 1–5 indicate the velocities u(1)–u(5), respectively;

u(1) = 0,

u(2) =
C

h2
[h2 − (h−∆y)2] = C

h2
[2h∆y − (∆y)2],

u(3) =
C

h2
[h2 − (h− 2∆y)2] =

C

h2
[4h∆y − 4(∆y)2],

...

u(5) =
C

h2
[h2 − (h− 4∆y)2] =

C

h2
[8h∆y − 16(∆y)2].

The vorticity on the wall is calculated from (7.5):
(b) the mesh size is (2∆y) and uses u(1), u(3), u(5);
(c) the mesh size is ∆y and uses u(1), u(2), u(3).

Then,

ω(b) =

(
4
C

h2
[4h∆y − 4(∆y)2]− C

h2
[8h∆y − 16(∆y)2]

)
1

2(2∆y)
=

2C

h

and

ω(c) =

(
4
C

h2
[2h∆y − (∆y)2]− C

h2
[4h∆y − 4(∆y)2]

)
1

2(∆y)
=

2C

h
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

CALCULATION OF MINIMUM CRITICAL REYNOLDS NUMBER 567

FIG. 7.2. Linear interpolation for |T-T-Wall-Power| and Rc,min.

Thus, if the velocity distribution near the wall is quadratic, then ω(b) = ω(c) under different
transverse mesh sizes. The calculated results for the vorticity on the wall is nearly the same
for (b) J0 = 51 and (c) J0 = 101 at Re = 1000 as can be seen in Table 7.1.

9. Conclusions. L-to-T transition occurs only in the entrance region under natural dis-
turbance conditions, and the transition point is near the pipe or channel inlet, not the inlet.

In this paper we have studied ∆KE flux by the introduction of T-Wall-Power, which arises
due to the transverse component of the viscous term (T-Wall-Force) in the Navier-Stokes equa-
tions on the wall. Accordingly, the hypothesized criterion for laminar-turbulent transition can
be tersely expressed as follows: L-T transition occurs if and only if
|T-T-Wall-Power| < ∆KE flux. The criterion simply implies that if a channel flow develops
into Poiseuille flow, then transition does not occur, and if not, then transition occurs.

T-Wall-Power clarified that under natural disturbance conditions:

(1) T-Wall-Power and ∆KE flux are effective only in the entrance region so that in
determining Rc, T-Wall-Force is a possible primary cause of the transition process;

(2) the Reynolds number becomes a critical Reynolds number, i.e., Re = Rc, when
|T-T-Wall-Power| = ∆KE flux;

(3) the Rc value depends greatly upon the roundness of the entrance or depth-contraction
ratio and upon the flow conditions at the inlet. Thus Rc has minimum values of Rc,min = 1260
for (b) J0 = 51 and 1190 for (c) J0 = 101, when using a sharp-edged entrance channel;

(4) therefore, the assumptions outlined in Section 1.3 have been confirmed, and

(5) we have devised the wall control-volume method, i.e., by the method, it is clear that
A-Wall-Force is the primary cause for the axial pressure drop and T-Wall-Force is that for the
transverse pressure drop or ∆KE flux, resulting in equation (2.3).
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Appendix A. Notation.
b = channel width
D = pipe diameter
f = Darcy-Weisbach friction factor (2.3)
h = one-half of the channel height
H = channel height or depth (= 2h),

= enthalpy (3.1)
i = axial point of mesh system
I0 = maximum number of axial mesh points
j = transverse point of mesh system
J0 = maximum number of transverse mesh points
K = minor pressure loss (2.2)
Le = dimensionless entrance length (xe/(HRe))
p = pressure
P = pressure (P = −p, (2.3))
Q = volumetric flux (bHVm)
Rc = critical Re for L-T transition
Rc1 = Rc under small disturbance conditions
Rc2 = Rc under medium disturbance conditions
Rc3 = Rc under reverse transition conditions

Rc,min = minimum Rc
Re = Reynolds number for channel flow (HVm/ν),

= Reynolds number for pipe flow (DVm/ν)
Rt = transition Reynolds number, Rc < Rt
Rx = length Reynolds number for boundary-layer flow (xVm/ν)

u, v, w = Cartesian velocity components
Uint = internal energy of a fluid
V = velocity vector (u, v, w)
Vm = mean velocity in channel flow
V = flow region volume

x, y, z = Cartesian coordinates
x′ = dimensionless x-coordinate (x/H)
xe = entrance length from inlet
xt = transition length from inlet
X = dimensionless X-coordinate for channel flow (x/(HRe))
Xt = dimensionless transition length (xt/(HRe))
y = transverse or y coordinate
µ = viscosity coefficient
ν = kinematic viscosity (µ/ρ)
ρ = density
τw = wall shear stress (4.1)
ω = vorticity
ψ = stream function

∆KE flux = increase in kinetic energy flux (6.4)
(∆p)wc = transverse pressure drop between the pressures on the wall and the centerline
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