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Abstract. In this paper, we propose a weighted harmonic Golub-Kahan-Lanczos algorithm for the linear
response eigenvalue problem (LREP). Convergence properties are established for the error bounds of the approximate
eigenpairs. Moreover, we consider a practical thick-restart procedure to reduce the computational and memory costs
and present a weighted harmonic Golub-Kahan-Lanczos algorithm with deflated restarting. Numerical tests show the
efficiency of our new algorithms.
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1. Introduction. In this paper, we consider the following eigenproblem

(1.1) Hz :=

[
0 K
M 0

] [
u
v

]
= λ

[
u
v

]
= λz,

where K,M ∈ Rn×n are both symmetric and positive definite. Such a problem is referred
to as linear response eigenvalue problem (LREP) [3, 4, 17, 24]. It describes the excitation
states (energies) of physical systems in the study of the collective motion of many-particle
systems. It is also known as the Bethe-Salpeter eigenvalue problem [19] or the random phase
approximation eigenvalue problem [15]. The LREP has important applications in the area of
computational quantum chemistry and physics such as silicon nanoparticles and nanoscale
materials and the analysis of interstellar clouds and polarizabilities [3, 17].

All the eigenvalues of H are real and appear in pairs {λ,−λ} [3, 27], and we denote the
ordered eigenvalues of H by

−λ1 ≤ · · · ≤ −λn < λn ≤ · · · ≤ λ1 with λj > 0 (j = 1, . . . , n).

If either K or M or both are semidefinite, then some eigenvalues may be equal to zero [3].
Although there are cases that either K or M or both may be semidefinite [14], in most many-
particle systems, both K and M are positive definite [16, 17, 23]. Thus throughout this paper,
we consider the common case that both K and M are real symmetric positive definite. All the
results in this paper can be simply extended to the complex Hermitian case.

Recently, an important notion for the LREP was proposed in [3], namely, the pair of
deflating subspaces {U ,V} ⊆ Rn which satisfy

KU ⊆ V and MV ⊆ U .

The notion is fundamental for several efficient algorithms, e.g., the locally optimal block pre-
conditioned four-dimensional conjugate gradient method [4], the block Chebyshev-Davidson
method [22], and the generalized Lanczos method [21, 24]. All of the above methods generate
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approximate deflating subspaces and then approximate eigenpairs of H from a far smaller ma-
trix HS =

[
0 KS
MS 0

]
, whereKS andMS are both symmetric and positive definite. Some other

effective methods and a rigorous theoretical analysis can be found in the references [9, 26].
Motivated by the bidiagonalization idea in [1], a weighted Golub-Kahan-Lanczos method

(WGKL) was proposed for solving the LREP in [28]. It aims to generate a projection matrix
Bk =

[
0 BTk
Bk 0

]
of H at the kth iteration, where Bk is an upper or lower bidiagonal matrix.

Due to the symmetry of Bk, the eigenpairs of H can be constructed just from Bk, not the
whole Bk. The convergence analysis shows that running k iterations of WGKL is equivalent to
applying 2k iterations of a weighted Lanczos algorithm to H [28]. In the following discussion,
we focus on the case that Bk is an upper bidiagonal matrix; the lower bidiagonal case can be
treated similarly.

It is well known that the classical Rayleigh-Ritz projection methods are suited to solve
the exterior eigenproblems [18, 20], while harmonic Rayleigh-Ritz projection methods are
often used as efficient techniques for interior eigenproblems [10, 11, 12, 25, 29]. If we want
to find the eigenpairs of a matrix A, then the harmonic Arnoldi method seeks (θ, x) satisfying{

x ∈ Km(A, v),

Ax− θx ⊥ (A− σI)Km(A, v),

where σ is the target, Km(A, v) is the Krylov subspace, and v is the initial vector. This pair
(θ, x) is a so-called harmonic Ritz pair. In this paper, the interior eigenvalues of H that we
seek are those near to 0, i.e., here σ = 0. However, for the LREP, it is not known whether
or not the harmonic type of WGKL is better suited for computing the interior eigenvalues.
With WGKL, we propose a weighted harmonic Golub-Kahan-Lanczos algorithm (WHGKL)
to solve the eigenproblem for H and study the question which one of WGKL and WHGKL
methods is better for computing exterior or interior eigenvalues for LREP.

In this method, by increasing the iteration number, the dimension of the search space
generally increases, thus, the computational cost of the orthogonalization usually becomes
too large. This makes restarting necessary for solving interior eigenvalues. Motivated by the
idea of the restarting strategy in [2, 13], in this paper, we consider how to restart our weighted
harmonic Golub-Kahan-Lanczos algorithm using the deflated restarting strategy, i.e., we add
some harmonic Ritz vectors to the search subspace to achieve the purpose of acceleration.
Consequently, we propose a weighted harmonic Golub-Kahan-Lanczos with thick restarting
algorithm (WHGKL-TR) for the LREP.

The rest of this paper is organized as follows. In Section 2, some preliminaries are
provided. In Section 3, we propose our weighted harmonic Golub-Kahan-Lanczos algorithm
and a second version, both for the LREP, and give their error bounds for the approximate
eigenpairs. We also analyze which method is better for interior eigenvalues. In Section 4, we
consider how to restart the weighted harmonic Golub-Kahan-Lanczos algorithm and present
the main algorithm of this paper. Numerical experiments in Section 5 illustrate the benefits of
our new algorithms.

Throughout this paper, we use a capital letter to represent a matrix, and we write Ai,j
for a matrix with i rows and j columns and write Ai for a matrix with i columns. In is the
n× n identity matrix. The vector ej is the jth column of the identity matrix of suitable size.
If there is no special explanation, an eigenvector is a right eigenvector, and the same rule
applies to a (harmonic) Ritz vector. A > 0 (≥ 0) means that the matrix A is symmetric
positive definite (semidefinite). We use ‖ · ‖2 to express the spectral norm for matrices and the
2-norm for vectors. We use the weighted inner product (x, y)A = xTAy in Rn obtained from
an n × n symmetric positive definite matrix A. The corresponding weighted norm, called
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A-norm, is defined by ‖x‖A =
√

(x, x)A. A matrix X is A-orthonormal if XTAX = I
(and it is A-orthogonal if X is a square matrix). A set of vectors {x1, . . . , xk} is also called
A-orthonormal if X = [x1, . . . , xk] is A-orthonormal and A-orthogonal if (xi, xj)A = 0 for
i 6= j.

2. Preliminaries. In this section, we first introduce the weighted Golub-Kahan-Lanczos
algorithm (WGKL) [28], which is a useful method for the LREP. For the symmetric and
positive definite matrices K and M given in (1.1), there exists an M -orthogonal matrix
X ∈ Rn×n and a K-orthogonal matrix Y ∈ Rn×n such that

(2.1) MX = Y B, KY = XBT ,

where B is upper bidiagonal; for details see [28, Lemma 1]. Based on the relations in (2.1),
the WGKL algorithm can be stated as follows.

ALGORITHM 1 (WGKL).
Choose x1 satisfying ‖x1‖M = 1, and set β0 = 1, y0 = 0. Compute g1 = Mx1.
For j = 1, 2, . . .

sj = gj/βj−1 − βj−1yj−1
fj = Ksj
αj = (sTj fj)

1
2

yj = sj/αj
tj+1 = fj/αj − αjxj
gj+1 = Mtj+1

βj = (tTj+1gj+1)
1
2

xj+1 = tj+1/βj
End

Let

Xk = [x1, . . . , xk], Yk = [y1, . . . , yk], Bk =


α1 β1

. . . . . .
. . . βk−1

αk

 ,
then after k iterations, the following wGKL relations are valid:

MXk = YkBk,

KYk = XkB
T
k + βkxk+1e

T
k = Xk+1

[
Bk βkek

]T
, Xk+1B

T
k,k+1,

(2.2)

XT
kMXk = Ik = Y Tk KYk.(2.3)

The WGKL process can be used to solve the LREP. One first defines

Xk =

[
Xk 0
0 Yk

]
and Bk =

[
0 BTk
Bk 0

]
.

Then from (2.2),

(2.4) HXk = XkBk + βk

[
xk+1

0

]
eT2k.

Consequently, the first ` smallest eigenvalues of H together with their corresponding eigen-
vectors can be approximately constructed from Bk, which is obviously symmetric. Suppose
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that Bk has an SVD, Bk = ΦkΣkΨ
T

k , where Φk = [φ̄1, . . . , φ̄k], Ψk = [ψ̄1, . . . , ψ̄k], and
Σk = diag(σ̄1, . . . , σ̄k), with σ̄1 ≥ · · · ≥ σ̄k > 0. Then from (2.4), we may take

(2.5) ±λ̄j = ±σ̄j , z̄±j =
1√
2

[
Xkψ̄j
±Ykφ̄j

]
, j = 1, . . . , k,

as Ritz values along with the corresponding M-orthonormal Ritz vectors of H, where

M =

[
M 0
0 K

]
. We may use the residual norm

(2.6) ‖Hz̄+j − λ̄j z̄
+
j ‖M =

βk |φ̄jk|√
2

as the stopping criteria, where φ̄jk is the kth element of φ̄j . The following algorithm is the
weighted Golub-Kahan-Lanczos algorithm for the LREP [28], denoted by WGKL-1.

ALGORITHM 2 (WGKL-1).
1. Given an initial guess x1 satisfying ‖x1‖M = 1, a tolerance tol, as well as ` the number of
desired eigenpairs. Set β0 = 1, y0 = 0;
2. Apply WGKL to generate Xk, Yk, Bk, βk;
3. Compute an SVD of Bk, select ` ≤ k wanted singular values σ̄j and their associated
left and right singular vectors φ̄j and ψ̄j . Form ±λ̄j and z̄±j as in (2.5). Use (2.6) to verify
convergence; if ‖Hz̄+j − λ̄j z̄

+
j ‖M ≤ tol, then stop.

The following lemma is critical to our later discussion.
LEMMA 2.1 ([28, Prop. 3.1]). The matrix MK has n positive eigenvalues λ21 ≥ λ22 ≥

· · · ≥ λ2n > 0. The corresponding right eigenvectors ξ1, . . . , ξn can be chosenK-orthonormal,
and the corresponding left eigenvectors η1, . . . , ηn can be chosen M -orthonormal. In partic-
ular, for given {ξj}, one can choose ηj = λ−1j Kξj , and for given {ηj}, ξj = λ−1j Mηj , for
j = 1, . . . , n.

REMARK 2.2. From Lemma 2.1, it is not hard to obtain that λj are the eigenvalues of H
and [ηj , ξj ]

T are the corresponding eigenvectors. Moreover, we have that

(2.7) MKΞ = ΞΛ2, KMΓ = ΓΛ2,

are the spectral decompositions of MK and KM , respectively, where Ξ = [ξ1, . . . , ξn],
Γ = [η1, . . . , ηn], and Λ = diag(λ1, . . . , λn).

REMARK 2.3. With k increasing in Step 2, the M -orthogonality of Xk and the K-
orthogonality of Yk will slowly get lost. Thus, in practice, a reorthogonalization process can
be added in each iteration to eliminate this shortcoming. The same strategy is executed in the
following algorithms.

3. Weighted harmonic Golub-Kahan-Lanczos algorithm. In fact, the above algo-
rithm WGKL-1 is a weighted Rayleigh-Ritz projection method. In this section, we first
describe a weighted harmonic Golub-Kahan-Lanczos algorithm (WHGKL) in detail. Then
we analyze the bound for the difference between the exact eigenvalue and the approximate
one, together with their corresponding eigenvectors. Between WGKL-1 and WHGKL, we
also discuss which one is better suited to solve exterior or interior eigenvalues for the LREP.
Finally, the second type of a weighted Golub-Kahan-Lanczos algorithm (WGKL-2) is given,
and the difference between WGKL-2 and WHGKL is illustrated.
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3.1. The principle of WHGKL. From Algorithm 1, we have equation (2.4). Making use
of the harmonic projection condition, the weighted harmonic Golub-Kahan-Lanczos algorithm
seeks the pair (λ̂j , ẑj), j = 1, . . . , k, which satisfies

(3.1)

{
ẑj ∈ span{Xk},
Hẑj − λ̂j ẑj⊥MH span{Xk},

where ⊥M denotes M-orthogonality. The (λ̂j , ẑj) is called the weighted harmonic Ritz pair

of H in span{Xk}, and we let ẑj =

[
Xk 0
0 Yk

] [
gj
fj

]
. Thus from (3.1), we have

[
Xk 0
0 Yk

]T [
0 K
M 0

]T [
M 0
0 K

] [
0 K
M 0

] [
Xk 0
0 Yk

] [
gj
fj

]
= λ̂j

[
Xk 0
0 Yk

]T [
0 K
M 0

]T [
M 0
0 K

] [
Xk 0
0 Yk

] [
gj
fj

]
.

Rewriting the above equation, one has

(3.2)
[
XT
kMKMXk 0

0 Y Tk KMKYk

] [
gj
fj

]
= λ̂j

[
0 XT

kMKXk

Y Tk KMYk 0

] [
gj
fj

]
.

Recalling (2.2) and (2.3), equation (3.2) becomes

(3.3)
[
BTk Bk 0

0 BkB
T
k + β2

keke
T
k

] [
gj
fj

]
= λ̂j

[
0 BTk
Bk 0

] [
gj
fj

]
,

thus we have

(3.4) BTk Bkgj = λ̂jB
T
k fj , (BkB

T
k + β2

keke
T
k )fj = λ̂jBkgj .

REMARK 3.1. Actually, equation (3.4) looks similar to{
η̃Bk,kd̃ = Bk,k+1B

T
k,k+1c̃,

θ̃BTk,k c̃ = BTk,kBk,kd̃

in [8, Sec. 7] except for the coefficients η̃ and θ̃. Here we use the same coefficient λ̂.
From the above, we know that BTk = XT

kMKXk since K and M are positive definite
and Xk is M -orthonormal. Thus, BTk is nonsingular. Left-multiplying the first equation
of (3.4) byB−Tk , we haveBkgj = λ̂jfj . We then substitute it into the second equation of (3.4)
yielding

(3.5) Bk,k+1B
T
k,k+1fj = λ̂2jfj ,

where Bk,k+1 = [Bk, βkek]. Let the singular value decomposition of Bk,k+1 be

(3.6) Bk,k+1 = ΦkΣkΨT
k+1,k,

where Φk ∈ Rk×k,Ψk+1,k ∈ R(k+1)×k,Σk = diag(σ1, . . . , σk) satisfying ΦTk Φk = Ik,
ΨT
k+1,kΨk+1,k = Ik, σ1 ≥ · · · ≥ σk > 0. Consequently, Bk,k+1B

T
k,k+1 = ΦkΣ2

kΦTk . From
equation (3.5), we can take λ̂j = σj , fj = φj , where φj is the jth column of Φk. Then
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gj = λ̂jB
−1
k fj = σjB

−1
k φj . Note that all the eigenvalues of H are real and appear in pairs

{λ,−λ}. Therefore, the approximate eigenpairs of H can be set as

(3.7) ±λ̂j = ±σj , ẑ±j =

[
Xk

Yk

] [
gj
±fj

]
=

[
σjXkB

−1
k φj

±Ykφj

]
.

Next, we give the stopping criterion of WHGKL. Equation (3.3) can be written as[
BTk Bk 0

0 BkB
T
k

] [
gj
fj

]
+

[
0 0
0 β2

keke
T
k

] [
gj
fj

]
= λ̂j

[
0 BTk
Bk 0

] [
gj
fj

]
.

Left-multiplying the above equation by
[

0 BTk
Bk 0

]−1
and moving the terms, we have[

0 BTk
Bk 0

] [
gj
fj

]
− λ̂j

[
gj
fj

]
= −

[
0 β2

kB
−1
k eke

T
k

0 0

] [
gj
fj

]
= −β2

ke
T
k fj

[
B−1k ek

0

]
.

It follows from (2.4) that we have

Hẑ+j − λ̂j ẑ
+
j =

[
0 K
M 0

] [
Xk

Yk

] [
gj
fj

]
− λ̂j

[
Xk

Yk

] [
gj
fj

]
=

[
Xk

Yk

]([
0 BTk
Bk 0

] [
gj
fj

]
− λ̂j

[
gj
fj

])
+ βke

T
k fj

[
xk+1

0

]

= βke
T
k fj

[
Xk+1

Yk

] −βkB−1k ek
1
0

 .
So we can use

(3.8) ‖Hẑ+j − λ̂j ẑ
+
j ‖M = β2

k |fjk|

√
1

β2
k

+ ‖B−1ek‖22

as the stopping criterion, where fjk is the kth element of fj . Thus we have the following
algorithm.

ALGORITHM 3 (WHGKL).
1. Given an initial guess x1 satisfying ‖x1‖M = 1, a tolerance tol, an integerm the dimension
of the solution subspace, as well as ` the desired number of eigenpairs. Set β0 = 1, y0 = 0;
2. Apply WGKL to generate Xk, Yk, Bk,k+1;
3. Compute an SVD of Bk,k+1 as in (3.6), select ` ≤ k wanted singular values σj and
their associated left singular vectors φj . Form ±λ̂j and ẑ±j as in (3.7). Use (3.8) to verify
convergence; if ‖Hẑ+j − λ̂j ẑ

+
j ‖M ≤ tol, then stop.

3.2. Convergence analysis. Naturally, the few largest σj are used to approximate the
few largest λj , and the few smallest σj are used to approximate the few smallest λj . In this
section, we give the accuracy of these approximates. Firstly, the bounds for the errors in σ2

j

as an approximation to λ2j , together with their corresponding eigenvector, are presented in
the following theorem. We denote by Cj(x) the Chebyshev polynomial of the first kind of
degree j [21], and two angles are defined as follows:

θ(x, y) = arccos
|xT y|
‖x‖‖y‖

, θA(x, y) = arccos
|(x, y)A|
‖x‖A‖y‖A

,
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where 0 6= x, y ∈ Rn, 0 < A ∈ Rn×n.
THEOREM 3.2 (cf. [28, Thm. 3.2]). For j = 1, 2, . . . , n, suppose that the eigenvalues

of MK are λ21 ≥ · · · ≥ λ2n > 0 and ξ1, . . . , ξn are their corresponding K-orthogonal
eigenvectors. Suppose that Algorithm 1 does not break down at the kth iteration. Let the SVD
of Bk,k+1 be (3.6), and σ1 ≥ · · · ≥ σk > 0, and let w = ΞTKMx1 = [w1, . . . , wn]T . Then,
for j = 1, . . . , k, there holds

(3.9) 0 ≤ λ2j − σ2
j ≤ (λ2j − λ2n)

(
πj,kµj

Ck−j(1 + 2γj)

)2

and √
λ2j‖B

−1
k φj‖22 sin2 θM (σjXkB

−1
k φj , ηj) + 1− λ2j‖B

−1
k φj‖22

= sin θK(Ykφj , ξj) ≤
πj
√

1 + (αk+1βk)2/δ2j

Ck−j(1 + 2γj)
tan θK(Mx1, ξj),

(3.10)

where

πj,k = max
j+1≤t≤n

j−1∏
i=1

∣∣∣∣∣σ2
i − λ2t
σ2
i − λ2j

∣∣∣∣∣ , µj =

√
n∑

i=j+1

|wi|2

|wj |
, γj =

λ2j − λ2j+1

λ2j+1 − λ2n
,

πj =

j−1∏
i=1

λ2i − λ2n
λ2i − λ2j

, δj = min
i 6=j
|λ2j − σ2

i |.

Proof. Since K > 0, K has a factorization K = LLT with L invertible. From Lemma 2.1
and (2.7), it is easy to see that for any j = 1, . . . , n, λ2j is an eigenvalue of LTML with the
corresponding eigenvector LT ξj , i.e.,

(3.11) LTML = LTΞΛ2(LTΞ)T

is the spectral decomposition of LTML and LT ξ1, . . . , LT ξn are orthonormal.
Left-multiplying the second equation of (2.2) by M , we get

(3.12) MKYk = YkBk,k+1B
T
k,k+1 + αk+1βkyk+1e

T
k .

Let A = LTML, Tk = Bk,k+1B
T
k,k+1, and transform the above equation to

(3.13) AVk = VkTk + αk+1βkvk+1e
T
k

with Vk = LTYk and vk = LT yk. Obviously, Vk+1 is orthonormal, and (3.13) can be
considered as the relation obtained by using the standard Lanczos algorithm for A. Then for
all u ∈ Rk, there exists χ ∈ Pk−1 such that Vku = χ(A)v1, where Pk−1 is the set of all
polynomials of degree less than or equal to k − 1 with coefficients in R. From the SVD of
Bk,k+1 (3.6), we can also see that σ2

1 , . . . , σ
2
k are the Ritz values of A, Vkφ1, . . . , Vkφk are

the corresponding orthonormal Ritz vectors, and Tk = ΦkΣ2
kΦTk is the spectral decomposition

of Tk.
From [28], we know that if Algorithm 1 does not break down at the kth iteration, then

αj , βj 6= 0, j = 1, . . . , k. Hence, Tk is an irreducible symmetric tridiagonal matrix, so for
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any u ∈ Rk, u ⊥ φi means that χ(σ2
i ) = 0, i = 1, . . . , j − 1. Note that w = ΞTKMx1 =

α1(LTΞ)T v1 by Algorithm 1. Then we have

σ2
j = max

u⊥φi
1 ≤ i ≤ j − 1

uTTku

uTu
= max

χ(σ2i ) = 0

1 ≤ i ≤ j − 1

uTV Tk AVku

uTV Tk Vku

= max
χ(σ2i ) = 0

1 ≤ i ≤ j − 1

vT1 χ(A)Aχ(A)v1
vT1 χ

2(A)v1

= max
χ(σ2i ) = 0

1 ≤ i ≤ j − 1

vT1 L
TΞχ(Λ2)Λ2χ(Λ2)(LTΞ)T v1
vT1 L

TΞχ2(Λ2)(LTΞ)T v1

= max
χ(σ2i ) = 0

1 ≤ i ≤ j − 1

wTχ(Λ2)Λ2χ(Λ2)w

wTχ2(Λ2)w
,

where the last equality is using the spectral decomposition (3.11) of A. Again using (3.11)
and (3.13), we have λj ≥ σj ≥ λn−k+j , which is a consequence of the Cauchy interlacing
inequalities applied to A and Tk, j = 1, . . . , k. Thus,

0 ≤ λ2j − σ2
j = min

χ(σ2i ) = 0

1 ≤ i ≤ j − 1

wTχ(Λ2)(λ2j − Λ2)χ(Λ2)w

wTχ2(Λ2)w

= min
χ(σ2i ) = 0

1 ≤ i ≤ j − 1

n∑
i=1

(λ2j − λ2i )χ2(λ2i )|wi|2

n∑
i=1

χ2(λ2i )|wi|2

≤ min
χ(σ2i ) = 0

1 ≤ i ≤ j − 1

n∑
i=j+1

(λ2j − λ2i )χ2(λ2i )|wi|2

χ2(λ2j )|wj |2
.

(3.14)

Take

(3.15) χ(t) = (t− σ2
1) · · · (t− σ2

j−1)Ck−j(τ), with τ = 1 + 2
t− λ2j+1

λ2j+1 − λ2n
.

It is easy to verify that −1 ≤ τ ≤ 1 for λ2n ≤ t ≤ λ2j+1, and

(3.16) τ |t=λ2
j
= 1 + 2γj , |χ(λ2i )| ≤ max

j+1≤t≤n

n∏
i=j+1

|λ2t − σ2
i |, for j + 1 ≤ i ≤ n.

Thus, the bound (3.9) is now a consequence of (3.14)–(3.16).
Next, let us turn to proving (3.10). Similarly to the proof of Theorem 3.2 in [28], applying

the standard Lanczos convergence results in [18, Sec. 6.6] to (3.13), one has

sin θ(Vkφj , L
T ξj) ≤

πj
√

1 + (αk+1βk)2/δ2j

Ck−j(1 + 2γj)
tan θ(LT y1, L

T ξj).

Hence, the bound (3.10) can be obtained by using the identities

θ(LT y1, L
T ξj) = θK(y1, ξj) = θK(Mx1, ξj), θ(Vkφj , L

T ξj) = θK(Ykφj , ξj).
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Finally, we prove the equality in (3.10). By the first equation of (2.2), we know that
Ykφj = 1

σj
σjMXkB

−1
k φj . Then from Lemma 2.1, one obtains

sin2 θK(Ykφj , ξj) = 1− cos2 θK(Ykφk, ξj) = 1− |(Ykφj)TKξj |2

= 1−
λ2j
σ2
j

∣∣∣∣(σjMXkB
−1
k φj)

T Kξj
λj

∣∣∣∣2
= 1−

λ2j
σ2
j

‖σjXkB
−1
k φj‖2M

|(σjXkB
−1
k φj)

TMηj |2

‖σjXkB
−1
k φj‖2M

= 1− λ2j‖B−1k φj‖22 cos2 θM (σjXkB
−1
k φj , ηj)

= 1− λ2j‖B−1k φj‖22 + λ2j‖B−1k φj‖22 sin2 θM (σjXkB
−1
k φj , ηj).

Taking the square root of the above equality completes the proof.
REMARK 3.3. Because WHGKL differs from WGKL-1, we have presented Theorem 3.2

to prove convergence for WHGKL similar to equation (3.6) in [28, Theorem 3.2], which is
the convergence proof of WGKL-1. Moreover, the proofs of the two theorems are different.
In [28], the standard Lanczos convergence results in [18, Sec. 6.6] are applied to (3.13), while
here, we use the min-max principle [20, Thm. 3.5] for the matrix Tk.

REMARK 3.4. Since Bk,k+1 = [Bk, βkek], if the difference between the SVD of Bk,k+1

and Bk is tiny, then ‖B−1k φj‖2 is very close to σ−1j . Consequently, from the left part of (3.10),
we can see that when σj is close to λj , the accuracy of the approximation Ykφj of ξj is related
to the accuracy of the approximation σjXkB

−1
k φj of ηj .

REMARK 3.5. Theorem 3.2 and the following Theorems 3.6, 3.7 bound the angles
between Ykφj and the eigenvector ξj or ξn−k+j of MK for WHGKL and WGKL-2 (as is
discussed in Section 3.3). The values ofCk−j(1+2γj) andCk−j(1+2γ̄j) are fixed for fixed j,
and they will not be less than 1. The values of tan θK(Mx1, ξj) and tan θK(Mx1, ξn−k+j)
represent the effect of the initial vector x1 to the approximated eigenvectors.

Similar results can be obtained for the errors in σ2
j as an approximation to λ2n−k+j .

THEOREM 3.6. With the same conditions and notations as in Theorem 3.2, then for
j = k, k − 1, . . . , 1, there holds

0 ≤ σ2
j − λ2n−k+j ≤ (λ21 − λ2n−k+j)

(
π̄j,kµ̄j

Ck−j(1 + 2γ̄j)

)2

and √
λ2n−k+j‖B

−1
k φj‖22 sin2 θM (σjXkB

−1
k φj , ηn−k+j) + 1− λ2n−k+j‖B

−1
k φj‖22

= sin θK(Ykφj , ξn−k+j) ≤
π̄j

√
1 + (αk+1βk)2/δ̄2j

Ck−j(1 + 2γ̄j)
tan θK(Mx1, ξn−k+j),

where

π̄j,k = max
1≤t≤n−k+j−1

k∏
i=j+1

∣∣∣∣∣ σ2
i − λ2t

σ2
i − λ2n−k+j

∣∣∣∣∣ , µ̄j =

√
n−k+j−1∑

i=1

|wi|2

|wn−k+j |
,

γ̄j =
λ2n−k+j−1 − λ2n−k+j
λ21 − λ2n−k+j−1

, π̄j =

n∏
i=n−k+j+1

λ2i − λ21
λ2i − λ2n−k+j

, δ̄j = min
i 6=j
|λ2n−k+j − σ2

i |.
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3.3. The second weighted Golub-Kahan-Lanczos algorithm. In this section, we de-
scribe another way to approximate eigenpairs of H by using Bk,k+1, i.e., the second weighted
Golub-Kahan-Lanczos algorithm, denoted by WGKL-2. In addition, we provide its new
convergence theory and analyze the difference between WGKL-2 and WHGKL.

Suppose that yk+1 is computed by WGKL but xk+2 is not computed. Then the following
relations hold:

KYk = Xk+1B
T
k,k+1, MXk+1 = YkBk,k+1 + αk+1yk+1e

T
k+1,(3.17)

XT
k+1MXk+1 = Ik+1 = Y Tk+1KYk+1.

Define

Xk =

[
Xk+1

Yk

]
, Bk =

[
BTk,k+1

Bk,k+1

]
.

Then

(3.18) HXk = XkBk + αk+1

[
0

yk+1

]
eT2k+1.

Hence, from the SVD of Bk,k+1 (3.6) and (3.18), we can take

(3.19) ±λ̃j = ±σj , z̃±j =
1√
2

[
Xk+1ψj
±Ykφj

]
, j = 1, . . . , k,

as the Ritz values and the corresponding M-orthonormal Ritz vectors of H. We may take

(3.20) ‖Hz̃+j − λ̃j z̃
+
j ‖M =

αk+1 |φjk|√
2

as the stopping criteria. Here φjk is the k-th element of φj . The following algorithm is the
second weighted Golub-Kahan-Lanczos algorithm (WGKL-2).

ALGORITHM 4 (WGKL-2).
1. Given an initial guess x1 satisfying ‖x1‖M = 1, a tolerance tol, an integer m (the
dimension of the solution subspace) as well as ` (the desired number of eigenpairs). Set
β0 = 1, y0 = 0;
2. Apply WGKL to generate Xk+1, Yk, Bk,k+1, αk+1;
3. Compute an SVD of Bk,k+1 as in (3.6), select ` ≤ k wanted singular values σj and
their associated left and right singular vectors φj and ψj . Form ±λ̂j and ẑ±j as in (3.19).
Use (3.20) to verify convergence; if ‖Hz̃+j − λ̃j z̃

+
j ‖M ≤ tol, then stop.

Since left-multiplying the first equation in (3.17) by M yields (3.12), we can establish
the convergence theory of WGKL-2 similar to WHGKL. Theorem 3.7 provides the bounds for
the errors in σ2

j as an approximation to λ2j together with their corresponding eigenvector and
also gives the parallel results applied to the errors in σ2

j as an approximation for λ2n−k+j .
THEOREM 3.7. With the same conditions and notations as in Theorem 3.2 and 3.6, for

j = 1, . . . , k, there holds

0 ≤ λ2j − σ2
j ≤ (λ2j − λ2n)

(
πj,kµj

Ck−j(1 + 2γj)

)2
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and √
σ2
j

λ2j
sin2 θM (Xk+1ψj , ηj) + 1−

σ2
j

λ2j

= sin θK(Ykφj , ξj) ≤
πj
√

1 + (αk+1βk)2/δ2j

Ck−j(1 + 2γj)
tan θK(Mx1, ξj).

Moreover, for j = k, k − 1, . . . , 1, there holds

0 ≤ σ2
j − λ2n−k+j ≤ (λ21 − λ2n−k+j)

(
π̄j,kµ̄j

Ck−j(1 + 2γ̄j)

)2

and √
σ2
j

λ2n−k+j
sin2 θM (Xk+1ψj , ηn−k+j) + 1−

σ2
j

λ2n−k+j

= sin θK(Ykφj , ξn−k+j) ≤
π̄j

√
1 + (αk+1βk)2/δ̄2j

Ck−j(1 + 2γ̄j)
tan θK(Mx1, ξn−k+j).

REMARK 3.8. By observing the upper bound of λ2j − σ2
j in Theorem 3.7, we can easily

find that

λ2j − λ2n ≤ λ21 − λ2n, µj =

√
n∑

i=j+1

|wi|2

|wj |
≤

√
n∑

j 6=i=1

|wi|2

|wj |
= tan θK(Mx1, ξj).

This means that the bound here is tighter than the bound of λ2j − σ2
j in [28, Thm. 3.3], and the

same results for σ2
j − λ2n−k+j hold.

REMARK 3.9. From the above discussion, we can see that WGKL-1 uses the singular
values σ̄j of Bk as the approximate eigenvalues of H, while WHGKL and WGKL-2 use the
singular values σj of Bk,k+1. Similar to Remark 3.4 in [28], because σ̄1 ≥ · · · ≥ σ̄k are the
singular value of Bk and σ1 ≥ · · · ≥ σk are the singular value of Bk,k+1, using the interlacing
properties [7, Cor. 8.6.3], we have

σ1 ≥ σ̄1 ≥ · · · ≥ σk ≥ σ̄k.

Hence, from Theorems 3.2, 3.6, and 3.7, σj will be more accurate for approximating a large
eigenvalue λj of H, and σ̄j will be more accurate for approximating a small eigenvalue λj
of H.

REMARK 3.10. By comparing WGKL-2 and WHGKL, we can see that WGKL-2 needs
Xk+1, Yk, Bk,k+1, and αk+1 to form the approximated eigenpairs, while WHGKL needs Xk,
Yk, Bk,k+1, and B−1k . Thus, although WHGKL requires less computational effort with respect
to matrix-vector products than WGKL-2, it needs much more computational effort for the
inversion B−1k . Fortunately, Bk is not only upper bidiagonal but also small. So the costs of
this will generally be very modest compared to a matrix-vector product, and we use a direct
solve with MATLAB backslash.
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4. Restart. With the size of the search space increasing, the storage and the computa-
tional costs of WHGKL grows quickly, and the M -orthogonality and K-orthogonality will be
gradually lost, so its numerical stability will deteriorate. To overcome the difficulty, motivated
by the idea in [2], we consider a thick-restarting procedure for WHGKL, i.e., we add some
harmonic Ritz vectors to the search subspace for the purpose of acceleration. In fact, the
methods in [2] can be seen as solving eigenproblems for a symmetric matrix

[
0 AT

A 0

]
, while in

this paper, our matrix is [ 0 K
M 0 ], which is not symmetric. Therefore, we study how to apply

their strategy to our problem. Details are discussed in the following.
Assume that WHGKL runs m steps and generates the matrices Xm+1, Ym, Bm, and

Bm,m+1 = [Bm, βmem]. Let Bm,m+1 = ΦmΣmΨT
m+1,m be the SVD of Bm,m+1, and let

Φm,s be the first s columns of Φm. Here, the integer s ≤ m is the number of added harmonic
Ritz vectors. Take the QR decomposition,

(4.1)
[
B−1m Φm,sΣs −βmB−1m em

0 1

]
= Qs+1Rs+1,

where Qs+1 ∈ R(s+1)×(s+1) is orthogonal and Rs+1 ∈ R(s+1)×(s+1) is an upper tridiagonal
matrix, whose (s+ 1)× (s+ 1) element is 1.

Let

(4.2) X̃s+1 = [x̃1, . . . , x̃s+1] = [Xm, xm+1]Qs+1.

Then X̃T
s+1MX̃s+1 = Is+1, and

MX̃s+1 = [MXm,Mxm+1]

[
B−1m Φm,sΣs −βmB−1m em

0 1

]
R−1s+1

= [YmBm,Mxm+1]

[
B−1m Φm,sΣk −βmB−1m em

0 1

]
R−1s+1

= [YmΦm,sΣs,−βmym +Mxm+1]R−1s+1.

Now let

(4.3) Ỹs = YmΦm,s,

and Ỹ Tk K(−βmym +Mxm+1) = [γ̃1, . . . , γ̃s]
T = C̃s, and let

(4.4) −βmym +Mxm+1 − ỸsC̃s = α̃s+1ỹs+1,

where α̃s+1 is the value such that ‖ỹs+1‖K = 1. Thus Ỹ Ts+1KỸs+1 = Is+1, and

MX̃s+1 =[Ỹs, ỹs+1]


σ1 γ̃1

. . .
...

σs γ̃s
0 · · · 0 α̃s+1

R−1s+1 = Ỹs+1B̃s+1,(4.5)

where Ỹs+1 = [Ỹs, ỹs+1] and

(4.6) B̃s+1 =


σ1 γ̃1

. . .
...

σs γ̃s
0 · · · 0 α̃s+1

R−1s+1.
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Obviously, the (s+ 1, s+ 1) element of B̃s+1 is α̃s+1.
Since the SVD of Bm,m+1 is Bm,m+1 = ΦmΣmΨT

m+1,m, we have

(4.7) BTm,m+1Φm,s = Ψm+1,sΣs,

and

(4.8) [Bm, βmem]Ψm+1,s = Φm,sΣs.

From (4.8), we get [Im, βmB
−1
m em]Ψm+1,k = B−1m Φm,sΣs. Thus,

Ψm+1,s =

[
B−1m Φm,sΣs −βmB−1m em

0 1

] [
Is

eTm+1Ψm+1,s

]
= Qs+1Rs+1

[
Is

eTm+1Ψm+1,s

]
.

(4.9)

Consequently, from (4.7) and (4.9), we have

KỸs = KYmΦm,s = Xm+1B
T
m,m+1Φm,s = Xm+1Ψm+1,sΣs

= Xm+1Qs+1Rs+1

[
Is

eTm+1Ψm+1,s

]
Σs

= X̃s+1Rs+1

[
Is

eTm+1Ψm+1,s

]
Σs.

(4.10)

From (4.5), we know that

Ỹ Ts KMX̃s+1 = [Is, 0]B̃s+1 , B̃s,s+1,

while from (4.10), we have

X̃T
s+1KMỸs = Rs+1

[
Is

eTm+1Ψm+1,s

]
Σs.

Comparing the above two equations, it can be deduced that

B̃Ts,s+1 = Rs+1

[
Is

eTm+1Ψm+1,s

]
Σs,

so (4.10) can be written as

KỸs = X̃s+1B̃
T
s,s+1.

Next, let us consider the vector Kỹs+1. Because

X̃T
s+1MKỹs+1 = B̃Ts Ỹ

T
s+1Kỹs+1 = B̃Ts es+1 = α̃s+1es+1,

we can suppose that Kỹs+1 = α̃s+1x̃s+1 + r̃s+1. Here r̃s+1 satisfies X̃T
s+1Mr̃s+1 = 0.

Therefore,

KỸs+1 = [KỸs,Kỹs+1] = [X̃s+1B̃
T
s,s+1, α̃s+1x̃s+1 + r̃s+1]

= X̃s+1[B̃Ts,s+1, α̃s+1es+1] + r̃s+1e
T
s+1 = X̃s+1B̃

T
s+1 + r̃s+1e

T
s+1.
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Let β̃s+1 = ‖r̃s+1‖M and

(4.11) x̃s+2 = r̃s+1/‖r̃s+1‖M ,

and set X̃s+2 = [X̃s+1, x̃s+2] and

(4.12) B̃s+1,s+2 = [B̃s+1, β̃s+1es+1].

We then have

KỸs+1 = X̃s+1B̃
T
s+1 + β̃s+1x̃s+2e

T
s+1 = X̃s+2B̃

T
s+1,s+2.

REMARK 4.1. B̃s+1 is an upper tridiagonal matrix; it is no longer an upper bidiagonal
matrix like Bs+1 in WGKL and WHGKL. For simplicity, using Xm, Ym, Bm, and Bm,m+1 to
replace X̃m, Ỹm, B̃m, and B̃m,m+1, respectively, then equation (2.2) still holds for WHGKL-
TR.

The following is the weighted harmonic Golub-Kahan-Lanczos with thick-restarting
algorithm WHGKL-TR.

ALGORITHM 5. WHGKL-TR(M,S)
1. Given an initial guess x1 satisfying ‖x1‖M = 1, a tolerance tol, an integer s for the number
of approximate eigenvectors that we want to add to the solution subspace, an integer m for the
dimension of the solution subspace, as well as ` the desired number of eigenpairs. Set β0 = 1,
y0 = 0;
2. Apply WGKL from the current point to generate the rest of Xm+1, Ym, and Bm,m+1. If it
is the first cycle, then the current point is x1, else xs+2;
3. Compute an SVD of Bm,m+1 as in (3.6), select ` ≤ m wanted singular values σj and their

associated left singular vectors φj . Form ±λ̂j = ±σj , ẑ±j =

[
σjXmB

−1
m φj

±Ymφj

]
. Use (3.8) to

verify convergence; if ‖Hẑ+j − λ̂j ẑ
+
j ‖M ≤ tol, then stop, else continue;

4. Generate new X̃s+2, Ỹs+1, and B̃s+1,s+2 by using the old Xm+1, Ym, and Bm,m+1.
Perform a QR decomposition (4.1), and use (4.2)–(4.4), (4.6), (4.11), (4.12) to generate X̃s+1,
Ỹs, ỹs+1, B̃s+1, x̃s+2, and B̃s+1,s+2, respectively. Then set Xs+2 = X̃s+2, Ys+1 = Ỹs+1,
Bs+1,s+2 = B̃s+1,s+2, and go to Step 2.

REMARK 4.2. In Step 3, we compute the harmonic Ritz pairs after m iterations. In
practice, we do the computation for each iteration k = 1, . . . ,m. When restarting, the
information chosen to add to the solution subspaces are the wanted ` singular values of
Bm,m+1 with their corresponding left and right singular vectors.

5. Numerical examples. In this section, two numerical experiments are carried out by
using MATLAB 8.4 (R2014b) on a laptop with an Intel Core i5-6200U CPU 2.3GHz memory
8GB under the Windows 10 operating system.

EXAMPLE 5.1. In this example, we investigate the approximate eigenvalues derived by
Algorithm 2 (WGKL-1), Algorithm 3 (WHGKL), and Algorithm 4 (WGKL-2) for the LREP.
The initial vector x1 satisfied ‖x1‖M = 1, which is generated by using the MATLAB code
randn(). There are two groups of tested matrices K and M , all of them are symmetric
positive definite. Test 1 and Test 2 are used to denote the groups, and they come from the
linear response analysis for a Na2 and silane (SiH4) compound, respectively, which are derived
by the turboTDDFT code in QUANTUM ESPRESSO [6]. The order of Test 1 and Test 2 are
n = 1862 and 5660, respectively.
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FIG. 5.1. Relative errors of the extreme positive eigenvalues for Test 1 in Example 5.1
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FIG. 5.2. Relative errors of the extreme positive eigenvalues for Test 2 in Example 5.1.

Suppose σj is the jth approximate eigenvalue obtained by the above three algorithms,
for j = 1, . . . , k. We compute the relative eigenvalue errors for the largest and smallest
eigenvalues of H:

e(σ1) =
|σ1 − λ1|

λ1
, e(σk) =

|σk − λn|
λn

,

where λ1 and λn are the “exact” largest and smallest eigenvalues of H generated by using the
MATLAB code eig()’.

For the largest eigenvalue, we set k = 1, . . . , 15, and for the smallest eigenvalue,
k = 1, . . . , 150. In Figure 5.1 and 5.2, the numerical results are reported. From the fig-
ures, we can observe, because WGKL-2 and WHGKL both perform an SVD of the matrix
Bk,k+1, that the σ1s of the two algorithms are the same in value and are closer to the largest
eigenvalue of H than that of WGKL-1. The σk of WGKL-1 is closest to the smallest eigen-
value of H among the three algorithms. Thus, the phenomena shown here are consistent with
those discussed in Remark 3.9.

EXAMPLE 5.2. To test the efficiency of our methods, we compare five algorithms: Algo-
rithm 4 (WHGKL-TR(M,S)), Algorithm 2 (WHGKL), Algorithm 1 (WGKL-1), Algorithm 3
(WGKL-2), and the first Lanczos type algorithm [21], which is labeled as ALG-TL. (Since in
this paper, we only present the restarting algorithm for WHGKL, we compare with WHGKL-
TR and the non-restarting version of the algorithms for WGKL-1 and WGKL-2, and we
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TABLE 5.1
The matrices K and M in Test 3 and Test 4.

Problems n K M
Test 3 9604 fv1 finan512
Test 4 9801 fv2 finan512

TABLE 5.2
Computation of the 2 largest and smallest positive eigenvalues for Test 3 and 4

Algorithms
Test 3 Test 4

σk&σk−1 σ1&σ2 σk&σk−1 σ1&σ2
CPU iter CPU iter CPU iter CPU iter

whGKL-TR(30,5) 3.02 442 0.54 82 2.79 403 0.49 75
whGKL-TR(30,10) 3.20 401 0.57 79 3.03 378 0.53 74
whGKL-TR(30,15) 3.60 390 0.64 78 3.43 371 0.60 73

whGKL 24.90 363 1.18 81 22.16 347 0.98 75
wGKL-2 26.71 379 1.04 77 23.70 370 0.89 72
wGKL-1 25.04 372 1.03 77 21.93 358 0.88 72
Alg-TL 114.37 372 1.77 77 97.54 358 1.49 72

expect that the three algorithms have almost the same costs in terms of time and Lanczos
steps.)

We choose two pairs of symmetric positive definite matrices K and M for Test 3 and
Test 4, and these matrices are all collected from the University of Florida sparse matrix
collection [5]. Table 5.1 lists the features of the test matrices, where n is the dimension of a
matrix. If the dimension of the two matrices are different, we truncate the leading principal
submatrix of the larger one to make K or M of the same size.

We aim to compute the 2 largest and smallest positive eigenvalues with their corresponding
eigenvectors. If the following relative residual 1-norm is less than 10−8, then the computed
approximated eigenpair (σj , ẑj) is regarded as converged,

r(σj) :=
‖Hẑj − σj ẑj‖1

(‖H‖1 + σj)‖ẑj‖1
, j = 1, 2, k − 1, k.

In WHGKL-TR(M,S), we select (m, s) as (30, 5), (30, 10), (30, 15), respectively, i.e.,
restart will occur once the dimension of the solution subspace is larger than m, and the
information of s harmonic Ritz vectors is kept. Table 5.2 reports the number of Lanczos steps
labeled as “iter” and the CPU times in seconds labeled as “CPU” for the five algorithms. Bold
numbers mean the least time spent.

To illustrate the accuracy of the approximations, we also compute the relative eigenvalue
errors

e(σj) :=

{ |λj−σj |
λj

, j = 1, 2,
|λn+j−k−σj |
λn+j−k

, j = k − 1, k,

for Test 3, and the “exact” eigenvalues λj are computed in the same way as in Example 5.1.
The convergence curves of the relative eigenvalue error as well as the relative residual 1-norm
are depicted in Figure 5.3 with m = 30, s = 10 for WHGKL-TR(M,S) and WHGKL.

Among WHGKL, WGKL-1, and WGKL-2, it is clearly demonstrated by Table 5.2 that
WHGKL performs the fewest iterations for the relative residual 1-norm of the two smallest
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eigenvalues. According to the table, we also see that the number of Lanczos steps for WHGKL-
TR(M,S) is slightly higher than for the other four non-restarted algorithms. From Figure 5.3,
it can be observed that WHGKL-TR(M,S) performs a few more Lanczos steps than WHGKL
to obtain the two smallest eigenvalues of Test 3 with the same accuracy. However, the
computation time for WHGKL-TR(M,S) is significantly less than for the other methods. One
reason is that ALG-TL must solve a 2k × 2k eigenproblem at every iteration. Moreover, it
must also sort the eigenvalues and their eigenvectors. The other algorithms only need to solve
a k × k SVD problem with no sorting. In addition, reducing the s orthogonalization processes
in everymth iterations is another reason for less time consumption. From the numerical results
of WHGKL-TR(M,S) in Table 5.2, we can see that by increasing s, we observe a decrease in
the number of iteration but the CPU time increases. This is due to the fact that the process of
obtaining and adding approximate eigenvectors to the solution space takes some time. Thus,
the appropriate choice for m and s is important for WHGKL-TR(M,S). We will investigate
this in the future.
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FIG. 5.3. Errors and residuals of the two smallest positive eigenvalues for Test 3 in Example 5.2

6. Conclusions. To solve the eigenvalues nearby zero for the LREP more efficiently, we
have proposed a weighted harmonic Golub-Kahan-Lanczos method (WHGKL). Theoretical
bounds for the harmonic Ritz pairs are established in Theorems 3.2 and 3.6. We also compare
the new algorithm with the algorithms proposed in [28]. To make WHGKL more feasible,
we consider to thick restart the algorithm to reduce the computational and memory costs
and propose the weighted harmonic Golub-Kahan-Lanczos with thick restarting algorithm.
Numerical experiments show that our new method can compute the desired eigenvalues
efficiently.
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