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ADAPTIVE MULTILEVEL KRYLOV METHODS∗

RENÉ KEHL†, REINHARD NABBEN‡, AND DANIEL B. SZYLD§

Abstract. Inexact (variable) preconditioning of Multilevel Krylov methods (MK methods) for the solution of
linear systems of equations is considered. MK methods approximate the solution of the local systems on a subspace
using a few, but fixed, number of iteration steps of a preconditioned flexible Krylov method. In this paper, using
the philosophy of inexact Krylov subspace methods, we use a theoretically-derived criterion to choose the number
of iterations needed on each level to achieve a desired tolerance. We use this criterion on one level and obtain an
improved MK method. Inspired by these results, a second ad hoc method is also explored. Numerical experiments for
the Poisson, Helmholtz, and the convection-diffusion equations illustrate the efficiency and robustness of this adaptive
Multilevel Krylov method.
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1. Introduction. We consider the iterative solution of linear systems

Ax = b, A ∈ Rn×n, x, b ∈ Rn,(1.1)

where A is a large, sparse, and possibly nonsymmetric matrix. Krylov subspace methods in
combination with multilevel preconditioners are the methods of choice for the approximate
solution of (1.1); see, e.g., [5, 19, 29].

Erlangga and Nabben [8, 9, 10] introduced Multilevel Krylov methods (MK methods).
This type of multilevel method was inspired by the idea of shifting some eigenvalues that
are close to zero farther away from zero, e.g., to have value one. This shifting is performed
in the spirit of deflation techniques, i.e., one has to solve smaller systems on a subspace or
coarse-grid systems. This in turn leads to the multilevel structure. MK methods, as originally
presented, approximate the solution of the subspace systems by performing just a few iterations
of a preconditioned flexible Krylov method such as flexible GMRES [22].

In [8], the MK methods are analyzed, and their potential is demonstrated for the 2D
Poisson and the 2D convection-diffusion equations. The latter is an example with a nonsym-
metric matrix of coefficients. By using a simple piecewise constant interpolation to construct
the subspace or coarse-grid system, an h-independent convergence for the Poisson equation
and an almost h- and Pe-independent convergence for the convection-diffusion equation are
observed, where h is the mesh width and Pe is the Péclet number.

The Multilevel Krylov technique was combined with the shifted Laplacian preconditioner
[11, 12, 13] to solve high wavenumber 2D Helmholtz equations [9]. There, the linear system
is preconditioned by the shifted Laplacian first, and then the shifting of some eigenvalues is
performed. Numerical results show that not only the convergence is almost independent of h
but also only mildly dependent on the wavenumber. The theoretical results in [15] help to
explain this convergence rate. In [23, 24] the shift is performed first, followed by the shifted
Laplacian preconditioner. This approach can be seen as a preconditioned Multilevel Krylov
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method. This combination leads to a powerful method for 3D realistic Helmholtz equations
with high wavenumbers, further illustrating the potential of MK methods.

The idea of applying Krylov subspace methods on different levels or using them as precon-
ditioners was also considered elsewhere. Kraus [16] provided for the first time a convergence
analysis showing h-independent convergence rates of nonlinear algebraic multilevel iteration
(nonlinear AMLI) methods; see further [17]. Notay and Vassilevski [21] followed this with a
similar recursive Krylov-based multigrid cycle, which uses flexible Krylov methods to solve
the coarse-grid systems in a classical (algebraic) multigrid step that includes and depends on
smoothing steps. Elman, Ernst, and O’Leary [4] use Krylov subspace methods in a combined
way: the method solves the coarse-grid system at the intermediate levels of multigrid, and
the Krylov subspace method is also used as a replacement for the smoother. In [25], flexible
Krylov subspace methods that are preconditioned by Krylov subspace methods themselves are
studied but not in the context of a multilevel structure.

In the Multilevel Krylov methods described earlier, the number of iterations performed
at each level is fixed a priori. The choice of this number results from experiments run with
similar systems. In other words, one can consider these methods as Krylov subspace methods
with inexact preconditioning, in which the level of inexactness is prescribed in an ad hoc
manner. Our analysis here instead gives insight into the evolution of the residual, depending
on the accuracy of the coarse-grid solutions and hence on the number of iterations on these
grids. Inspired by the analysis of inexact Krylov methods in [26, 27], in this paper we consider
varying the number of iterations by relaxing the tolerance of each application of the inexact
preconditioner, while obtaining the same overall accuracy. We show that for the MK methods,
the number of iteration steps for the subspace systems can be reduced during the fine-level
iteration in an adaptive way.

The numerical results in [8, 9, 23] demonstrate that the number of iterations on the second
level is important. Typically 8 iterations on the second level are used, then 2 on the next level,
while only 1 iteration on all other levels. Here we produce a theoretically-derived criterion
that can be used to adapt the number of iterations on each level. We thus use this criterion
to reduce the number of iterations on the second level. Another ad hoc variant inspired by
adaptive MK is also presented. Examples for Poisson, Helmholtz, and convection-diffusion
equations illustrate the efficiency and robustness of this technique.

The paper is organized as follows. In Section 2, we briefly describe the Multilevel Krylov
methods. In Section 3, we begin with a few comments on general Krylov methods, then we
describe inexact Krylov subspace methods and the new results for adaptive Multilevel Krylov
methods. Numerical results in Section 4 illustrate the performance of both the proposed
adaptive method and the ad hoc variant. Experiments related to the parameters used are shown
in Appendix A.

2. Multilevel Krylov methods. We begin by briefly describing the MK methods; for
more details see [7, 10]. For the sake of simplicity, in what follows we mainly discuss the
two-level method; the multilevel method is obtained by a recursive application of the two-level
method on the corresponding coarse-grid solve. We start with a rectangular matrix Z ∈ Rn×r,
with r ≤ n, i.e., describing an operator

Z : Rr 7→ Rn.

In the multilevel language the operator Z is the prolongation or interpolation operator, which
transfers variables from a coarse level to a fine one. The restriction operator

ZT : Rn 7→ Rr
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does the opposite; it transfers some variables from a fine level to a coarse one. The so-called
coarse-level (grid) matrix or subspace matrix is then defined by the Galerkin operator

E = ZTAZ ∈ Rr×r.

Here we assume that E is nonsingular. Note that instead of ZT any other r × n matrix Y T

can be used (see [7, 18] for details). We define the operator

PD := I −AZE−1ZT .

Note that P 2
D = PD, thus PD is the (oblique) projection operator onto the nullspace of ZT

along the range of AZ. We then consider the (projected or) preconditioned system

(2.1) PDAx = PDb.

A two-level Krylov method is obtained if a Krylov subspace method such as GMRES is
applied to (2.1), this being the first level, while the solution of the linear system with the
coefficient matrix E is the second level.

The convergence of Krylov subspace methods is driven by the eigenvalues of the coeffi-
cient matrix—for (2.1), σ(PDA)—as well as the corresponding eigenvectors in the nonsym-
metric case; see, e.g., [19, 27]. Related to this feature, the following observation is useful to
gain some insight into the convergence of the Multilevel Krylov method. As shown in [20],
for any full rank Z, the spectrum of PDA is

σ(PDA) = {0, . . . , 0, µr+1, . . . .µn}.(2.2)

We first note that the values of µi, i = r + 1, . . . , n, depend on the specific choice of Z. The
operator PD is known as the deflation operator; see, e.g., [8, 14]. If A is symmetric positive
definite and the columns of Z consist of orthogonal eigenvectors of A, then the eigenvalues µj

of the preconditioned operator in (2.2) are eigenvalues of A. Hence, some of the eigenvalues
of A are deflated out of the spectrum of A, or, in other words, they are shifted to zero. A
Krylov subspace method that works for singular matrices can be used to solve (2.1). Typically,
only the eigenvalues µr+1, . . . , µn are those which enter into the spectral error bounds for
such a Krylov subspace method.

In order to obtain the zeros in (2.2), the linear systems corresponding to the product with
E−1, i.e., the subspace systems, have to be computed exactly. If they are approximated or
solved inexactly, i.e., if the product with E−1 is replaced by one with E−1 + P , where P is a
small perturbation, then the zeros in (2.2) are expected to be small numbers. This would slow
down the convergence of the Krylov method.

To allow inexact subspace solves, one can consider the operator

PN := I −AZE−1ZT + λZE−1ZT ,(2.3)

where λ can be any real number, e.g., the number one. This operator was first introduced
in [7] and for λ = 1 is equivalent to the ADEF operator introduced in [28]. Note that PN is
no longer a projection. We now have that (in exact arithmetic)

σ(PNA) = {λ, . . . , λ, µr+1, . . . .µn}.

Thus, some of the eigenvalues are shifted to λ. If the subspace method is solved inexactly, then
only a small perturbation might be added to the eigenvalues. Of course, PN can be written as

PN := I − (A− λI)ZE−1ZT ,(2.4)

so just one subspace solve is needed and not two, as it might appear from (2.3).
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The concept of the Multilevel Krylov method is as follows: We use PN as preconditioner
for a flexible Krylov subspace method, and to solve the subspace system with the matrix E,
we use a few steps of the same flexible Krylov subspace preconditioned by a preconditioner
of the same form as PN in (2.4) (just of smaller dimension). To apply this second-level
preconditioner, a subspace system has to be solved again, which is done in the same manner.
Thus, we obtain recursively the multilevel structure. In [8, 9, 23] typically 8 or 4 iterations are
used on the second level, 2 iterations on the third level and 1 iteration on all other levels. This
is denoted by MK(8,2,1) or MK(4,2,1), respectively, or more generally MK(p,2,1).

The main purpose of this paper is to adaptively choose p at each (outer) iteration of the
Krylov subspace method. This choice is based on a solid theoretical foundation, and it is
intended to find an approximation to the solution of the problem with a residual of the same
order of magnitude but with less computational effort.

Flexible Krylov methods need right preconditioning. Our purpose is to establish a bound
for the residual of the GMRES method. As left preconditioning would give results only for
the preconditioned residual, we define the operator

QN := I − ZE−1ZTA+ λZE−1ZT = I − ZE−1ZT (A− λI)(2.5)

and solve the system

AQN x̃ = b, with x = QN x̃.(2.6)

We note that since

PNA = AQN ,

the spectral properties of PNA and AQN are the same, and the discussion on shifting 0
to λ ∈ σ(AQN ) is thus valid in this case as well.

Finally, we note that the techniques described above can be combined with another (say
ordinary) preconditioner in two ways. The first alternative as used in [9, 10] is the following:
The matrix A can be preconditioned so that A is replaced by AM or MA, where M is
the preconditioner. Secondly, the shifted systems PNA or AQN can be combined with a
preconditioner so that we obtain (MPD + λZE−1ZT )A [7] and A(PT

DM + λZE−1ZT ),
respectively. More details about the implementation of MK methods can be found in [10].

3. Inexact Krylov methods. Our goal is to solve the system (1.1) more efficiently by
(right) preconditioning with a given nonsingular matrix QN as in (2.5) that might not be given
explicitly, i.e., we solve (2.6) approximately. In the iteration process, when applying QN ,
linear systems with E have to be approximately solved. This is done by a few iteration steps of
a preconditioned flexible Krylov subspace method. Thus the preconditioner QN varies from
step to step, and QN cannot be applied exactly (i.e., it is not given explicitly, and in fact it is
no longer linear). In this paper, we choose flexible GMRES (FGMRES) [22] as the inner and
outer solver of the linear systems in (2.6).

In the rest of this section, we begin with a very brief review on general Krylov subspace
methods followed by a discussion on inexact methods and their application to the Multilevel
Krylov method.

3.1. General Krylov subspace methods. Let A be nonsingular and x0 an initial vector
for the solution of (1.1). Krylov subspace methods find at the m-th iteration an approximation
xm in the space x0 + Km(A, v1), where Km(A, v1) is the m-th Krylov subspace, i.e., the
space spanned by the vectors v1, Av1, . . . , Am−1v1 satisfying some optimality condition,
where v1 is usually chosen as the normalized initial residual r0 = b − Ax0, i.e., r0 = βv1,
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β = ‖r0‖2. An orthonormal basis {v1, . . . , vm} of this Krylov subspace is usually obtained
by the Arnoldi procedure, in which the main operation is the matrix-vector product Avi. These
basis vectors are collected as columns of the matrix Vm. This gives rise to the Arnoldi relation

AVm = Vm+1Hm,(3.1)

whereHm ∈ R(m+1)×m is an upper Hessenberg matrix, and we have assumed that ‖vk‖2 = 1,
for all k ≤ m + 1. For GMRES and its variants, the optimality condition corresponds to
minimizing the norm of the residual, i.e.,

min
x∈x0+Km(A,v1)

‖r0 −Ax‖2

= min
y∈Rm

‖βe1 −Hmy‖2,(3.2)

where e1 is the first Euclidean vector. In the remainder of this article ‖ · ‖ will describe the
Euclidean norm, which is the one to be optimized.

3.2. Inexact Krylov subspace methods. We review here results from [25, 26, 27] on
inexact Krylov subspace methods, which we use in our application to Multilevel Krylov
methods.

When the matrix-vector multiplication Avi in the Arnoldi procedure is not performed ex-
actly, it can be interpreted as being of the form (A + Gi)vi, where Gi ∈ Rn×n,
i = 1, . . . ,m, can be thought of as perturbations of A. The analogue to (3.1) is an inex-
act Arnoldi relation

AVm + [G1v1, . . . , Gmvm] = Vm+1Hm, i.e.,(3.3)
[(A+G1)v1, . . . , (A+Gm)vm] = Vm+1Hm.

With Em =
∑m

k=1Gkvkv
T
k , equation (3.3) can be written in compact form as

(A+ Em)Vm = Vm+1Hm.

In particular this means that at each iteration, the solution given by the Krylov subspace
method with inexact matrix-vector products is an element of a perturbed Krylov subspace
Km(A+ Em, v1).

REMARK 3.1. The expression given in (3.2) no longer minimizes the residual norm using
the matrix A, as in (3.2), but instead with the perturbed matrix given in (3.3). We refer to the
solution of (3.2) as the GMRES (or the FGMRES) minimizer.

One problem that arises during the iteration process is that the residual rm is no longer an
available quantity since the “true residual" should be calculated with help of the unperturbed
matrix A, i.e.,

(3.4) rm = r0 −AVmym = r0 − Vm+1Hmym + EmVmym,

where ym is the solution of the minimization problem (3.2). Note that neither Em nor AVm
are available. The “computed residual” that is carried out by the inexact method is thus

(3.5) r̃m = r0 − (A+ Em)Vmym = r0 − Vm+1Hmym = rm − EmVmym.

Therefore the difference ‖rm − r̃m‖ can be bounded as follows

‖rm − r̃m‖ = ‖EmVmym‖ ≤
m∑

k=1

‖Gk‖|y(k)m |,
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where y(k)m is the k-th component of the iterate ym.
The following results come from [26].
LEMMA 3.2. Assume that m iterations of the inexact Arnoldi method have been carried

out, and let ym be the solution of the GMRES minimization problem (3.2) (see Remark 3.1).
Then, for any k = 1, . . . ,m,

|y(k)m | ≤
1

σm(Hm)
‖r̃k−1‖,

where σm(Hm) denotes the smallest singular value of Hm and r̃k−1 is as in (3.5).
THEOREM 3.3. Let ε > 0. Let rm be the GMRES residual after m iterations of the

inexact Arnoldi method given by (3.4). Under the same notation and hypothesis of Lemma 3.2,
if for every k ≤ m,

‖Gk‖ ≤
σm(Hm)

m

1

‖r̃k−1‖
ε,(3.6)

then ‖rm − r̃m‖ ≤ ε. Moreover, if

‖Gk‖ ≤
1

mκ(Hm)

1

‖r̃k−1‖
ε,(3.7)

where κ(Hm) denote the condition number of Hm, then ‖(Vm+1Hm)T rm‖ ≤ ε.
Conditions (3.6) and (3.7) are of the form

‖Gk‖ ≤ cm ·
ε

‖r̃k−1‖
·

While in some cases, cm ≈ 1 is a reasonable choice for various problems [1, 2], there are
cases, where cm needs to contain further information on A or Hm. In most applications, it
is not possible to calculate the exact value of cm a priori since the singular values of Hm at
the m-th step are not known beforehand. Nevertheless, there are some estimation strategies
one could use; cf. [26, §5, §9]. We discuss this issue further for our application to Multilevel
Krylov methods in our numerical experiments in Section 4.

3.3. Application to Multilevel Krylov methods. We begin by considering the applica-
tion of a right multilevel preconditioner of the form (2.5), with λ > 0, Z ∈ Rn×r, r � n,
and E = ZTAZ, the coarse-grid Galerkin matrix. For a given vk ∈ Rn, the (approximate)
product QNvk proceeds in three steps as follows:

1. Calculate wk = ZT (λI −A)vk.
2. Solve Et = wk inexactly to a given tolerance τ , producing the approximation t̃k,

which leads to the second-level residual qk = wk − Et̃k so that ‖qk‖2/‖wk‖2 < τ .
3. Calculate z̃k = vk + Zt̃k ≈ QNvk.

For a two-level method, the system in step 2. is solved with a direct solver, i.e., with
τ = 0. In the multilevel case, we set Ã = E, Z̃ ∈ Rr×s, s� r and apply a preconditioner of
the form of QN and perform some iterations with flexible GMRES (FGMRES) starting with
the initial vector t0 = 0 on every grid. One either chooses a priori the number of FGMRES
iterations, as in [8, 9, 10], or by the appropriate choice of the tolerance τ as we propose in this
paper. In principle one can continue until the coarsest-grid system becomes sufficiently small.
However, in our numerical experiments described in the next section, we use a 5-level method
and solve the coarsest system with a direct solver.

In this section, we develop the criteria on how to choose the tolerance τ for each of
the linear systems on the second level. This choice will determine the number of FGMRES

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

518 R. KEHL, R. NABBEN, AND D. B. SZYLD

iterations at the second level. As discussed above, the criteria can be applied on further levels
as well, but since the MK algorithm uses only one or two steps at other levels, the criterion is
not used.

To that end, let zk = QNvk (the “exact" matrix-vector product), and let z̃k be the
corresponding approximate matrix-vector product as per the three steps described above. Let
us collect these vectors, for k = 1, . . . ,m, into a matrix Z̃m := [z̃1, . . . , z̃m].

As in the previous section, we have the “true" residual

(3.8) rm = r0 −AQNVmym,

where ym comes from the solution of the least-squares problem (3.2) in FGMRES. The
computed residual is

(3.9) r̃m = r0 −AZ̃mym.

Then,

rm − r̃m = −A(QNVm − Z̃m)ym = −A
m∑

k=1

(QNvk − z̃k) y(k)m .

We now look in detail at the difference in parenthesis. We have

QNvk − z̃k = vk + ZE−1wk − z̃k = vk + ZE−1wk − (vk + Zt̃k) = Z
(
E−1wk − t̃k

)
= ZE−1

(
wk − Et̃k

)
= ZE−1qk,

and hence

‖rm − r̃m‖ ≤ ‖AZE−1‖
m∑

k=1

‖qk‖ · |y(k)m |.(3.10)

The bound (3.10) gives the desired connection between the allowable tolerance τ for the
residual qk at the second level so that the residual at the fine level can achieve the desired
accuracy. Using this bound and the analysis of the form of the components y(k)m from [26]
given in Lemma 3.2, we obtain our main result.

THEOREM 3.4. Let ε > 0, and assume that m iterations of the inexact Arnoldi method
have been carried out for the preconditioned system AQN x̄ = b, x = QN x̄. Let ym be
the FGMRES minimizer and x̄m = x0 + Vmym, and let rm, r̃m be given as in (3.8), (3.9),
respectively. Let wk = ZT (λI −A)vk and t̃k be an approximate solution of Et = wk. If for
each iteration k ≤ m, the inner residual qk = wk − Et̃k satisfies

‖qk‖ ≤
σm(Hm)

‖AZE−1‖m
· 1

‖r̃k−1‖
ε,(3.11)

it follows that ‖rm − r̃m‖ ≤ ε. Moreover, if

‖qk‖ ≤
1

‖AZE−1‖mκ(Hm)

1

‖r̃k−1‖
ε,

then ‖(Vm+1Hm)T rm‖ ≤ ε.
REMARK 3.5. Theorem 3.4 refers to an algorithm where the operator QN is applied

twice. First it is used as an inexact preconditioner to obtain the solution x̄. It is reapplied to
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x̄ = x0 +Vmym to calculate the solution x. In practice, we do not keep Vm for the calculation
of x, but instead we keep Zm = QNVm so that we get x = x0 + Zmym.

Theorem 3.4 deals with the residuals of two consecutive levels such that it can be applied
successively in the multigrid context. It can be seen as a global strategy for each (inner or
outer) iteration process.

As discussed in the previous section, these inner bounds may be difficult to calculate
exactly. Here the norm of AZE−1 is an additional quantity that has to be estimated. The
bound on the inner residual is again of the form

‖qk‖ ≤ cm ·
ε

‖r̃k−1‖
·(3.12)

Due to the proven existence of such a bound, one can use an initial value for cm and refine
that choice if there is no convergence or if the convergence is too slow, until an appropriate
tolerance is achieved; see also the comments in [26].

We note that the bound also holds for a residual difference relative to the right-hand side,
i.e., use ε̃ = ‖b‖ · ε in Theorem 3.4, and obtain the same result. We also note that if (3.11)
holds and the computed residual is below the tolerance, i.e., ‖r̃m‖ ≤ ε, then this means that
for the unknown true residual the bound

‖rm‖ ≤ ‖r̃m‖+ ‖rm − r̃m‖ ≤ 2ε

holds at the end of the iteration process, i.e., when the calculated residual ‖r̃m‖ reached the
given tolerance.

4. Adaptive MK methods and numerical examples. As mentioned above we use QN

in (2.5) as preconditioner for a flexible Krylov subspace method (the outer iterations), and to
solve the subspace system with the matrix E, we use a few steps of the same flexible Krylov
subspace method preconditioned by a preconditioner of the same form as QN (just of smaller
dimension). To apply this second-level preconditioner, a subspace system has to be solved
again, which is done in the same manner. Thus, we obtain recursively the multilevel structure.

The theoretical results of the previous section can be used to devise a strategy to reduce
the number of (inner) iterations to solve the systems on each level in the multilevel method
during the outer iteration. However, it was observed in [9] that the number of second-level
iterations is the most important. The number of iterations on all the other levels can be chosen
as 2 or even as 1. So, on these levels there is no need to apply an adaptive technique.

While we can calculate or approximate satisfactorily the value of ‖AZE−1‖ for some
examples, the exact value of σm(Hm) is not available in advance. The latter quantity comes
from the Hessenberg matrix of the inexact Arnoldi equation at the m-th iteration, which is
also unavailable. In can be easily seen that the smallest value of cm for all steps m is attained
at the end of the iteration, and we show this for specific examples in Appendix A. We will use
this fact and choose a constant value for cm in our examples.

In the following we will investigate the use of the proposed adaptive MK method on three
problems, the 2D-Poisson equation, the convection-diffusion equation, and the Helmholtz
equation. Our experiments showed that choosing cm = 10 works out for all of these three
problems and the multilevel methods described below.

Thus, here we investigate first an adaptive variant of the MK-method that uses the results of
Theorem 3.4. We also investigate an ad hoc static variant, which is inspired by our theoretical
results in the sense that we reduce the number of inner iterations as the method progresses
but we maintain those numbers fixed. In other words, we are trying to mimic the adaptive
paradigm. This strategy may perform well in practice, but it is not guaranteed to converge. It
may be useful though for some problems.
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We compare these two relaxed MK methods with two basic MK methods. In [9] the
(8,2,1)-method was investigated. We have found that using two steps on all levels except
the second instead of one improved this method. Thus, as already mentioned, we use in our
comparisons a (8,2,2)-method, i.e., we investigate a five-level method1 that performs 8 steps
on the second level and only 2 iterations on all the other levels, while on the last level the
problem is solved directly. The other basic method performs the minimal number of iterations,
i.e., two iterations on each level.

More specifically, we consider four classes of experiments:
• MKadap: Five-level MK method using 8 inner iterations on the second level in the

first outer step of the Krylov method and reducing this number of inner iterations on
the subsequent Krylov steps following the strategy given in Theorem 3.4, where the
criterion for the inner residual is ‖qk‖ ≤ cm · 10−10/‖r̃k−1‖ for an estimated value
of cm. The number of iterations on all other levels is 2.

• MKstat: Five-level MK method using 8 inner iterations in the first outer step of the
Krylov method, and after a fixed number of outer iterations (say 10), the method
changes to 2 inner iterations on the second level. The number of iterations on all
other levels is 2.

• MK(8,2,2): Five-level MK method. On the second level we perform 8 iterations and
two iterations on every other level.

• MK(2,2,2): Same as the previous case with only 2 iterations per level.
We present various numerical experiments with the two-dimensional Poisson equation,

with the two-dimensional Helmholtz equation, and with the convection-diffusion equation. As
mentioned before, we use cm = 10 for all experiments and a global tolerance of ε = 10−10.
For the MKstat version, we choose to change the number of second-level iterations from 8 to
2 after 10 (outer) iterations.

4.1. 2D Poisson equation. In this section, we present numerical experiments with the
2D Poisson equation

−∆u = f in Ω = (0, 1)2

with inhomogeneous Dirichlet conditions on the boundary ∂Ω. The discretization with a
central difference scheme leads to a symmetric positive definite matrix A. For the multilevel
method we choose four coarse levels such that each solution vector on a coarse grid has half
the size (rounded down) of the corresponding fine-grid solution. The solution on the coarsest
grid is carried out with a direct method and the deflation matrix Z resulting from assembling
two neighbor points in a lexicographic way, i.e., Z has the following form:

1 0 . . . 0
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 1


.

The results of our numerical experiments for this problem for different grid sizes are
displayed in Figure 4.1. The number of direct solves on the coarsest grid and the number of

1In all cases reported here we use the MK method with five levels. We have explored going deeper with more
levels, but this does not improve the performance, as shown in Appendix A.
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iterations to converge to a relative residual below ε = 10−10 are given in Table 4.1, where x is
the Matlab backslash solution. In the table, we report the number of coarsest-grid direct solves
that have to be performed during the process. This is a useful measure in order to compare
these methods. Since the adaptive MK methods can be seen as inexact two-level methods, for
completeness, we also perform numerical tests with an exact two-level method.
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(a) 4002 grid points.
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FIG. 4.1. Convergence behavior for the Poisson equation using 4002, 6002, and 8002 grid points. Relative
residual norm vs. number of Krylov subspace iterations.

As it can be observed, for the smallest grid considered, all four versions converge in
between 22 and 30 iterations, but for larger grid sizes, the method MK(2,2,2) fails to converge
in 90 iterations (set as the maximum allowed)2. The original version MK(8,2,2) and the
adaptive strategy converge essentially in the same number of iterations, while the ad hoc static
version exhibits a certain delay. The computational effort though is varied. The adaptive
strategy is about 10% faster than the original MK(8,2,2) method, while the static version is
about 50% faster. This difference in performance is easily explained. While each iteration of
the original MK(8,2,2) method uses 8 second-level iterations, the static version reduces this
to 2 second-level iterations after 10 steps. The adaptive strategy starts reducing the number

2We note, however, that we could have equally set this maximum to 100 as we do for the problem in the next
section, and the results would not change.
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TABLE 4.1
Number of calculated coarsest-grid solutions (number of iterations to converge) [iteration number where

switching criterion is satisfied] and the error ‖x− xk‖ of the different MK methods for the 2D Poisson equation.

Grid MK(8,2,2) MKadap MKstat MK(2,2,2) two-level

4002
704(22) 592(23)[17] 424(26) 240(30) 22(22)
2.9 · 10−10 5.7 · 10−10 1.3 · 10−9 1.4 · 10−9 5.4 · 10−10

6002
736(23) 596(23)[17] 440(28) – (90) 22(22)
6.1 · 10−10 7.2 · 10−10 1.5 · 10−9 1 · 10−4 8.0 · 10−10

8002
704(22) 596(23)[17] 432(27) – (90) 22(22)
4.6 · 10−10 1.0 · 10−9 1.2 · 10−9 2.8 · 10−1 1.1 · 10−9

of second-level iterations only when the criterion (3.12) is satisfied, which occurs at the 18th
(outer) iteration. The number of necessary second-level iterations then decreases during the
outer iteration process until it reaches the minimal allowed value of 2; for the Poisson problem
on a 4002-point grid, the method performs 6, 4, and then 2 steps on the second level3.

It follows that the two new strategies, the adaptive and static versions, perform better than
the fixed strategies in this case. We note also that while the static strategy works in this case,
this cannot always be guaranteed (as shown in the example in the next section). Compared to
the two-level method we have the same number of iterations, while the true (relative) residual
norm is below the tolerance of 2 · 10−10.

We conclude the section by mentioning that we experimented with larger values of cm4,
and we were able to observe a further reduction in the computational time to about 20% of the
original method.

4.2. The convection-diffusion equation. In the following we investigate the behavior
of the MK methods for the numerical solution of the convection-diffusion equation

∂u

∂y
− 1

Pe
∆u = 0, in Ω = (0, 1)2,

where Pe is the Péclet number. The boundary conditions for the problem are given as follows:
u(x, 0) = u(0, y) = 0, u(x, 1) = u(1, y) = 1. The problem is solved in a finite difference
context with an upwind scheme as given in [3].

We consider the same four versions of the MK method as described earlier with the same
tolerance ε = 10−10. Here we study the convergence behaviour on two square grids, namely
200× 200 and 600× 600 mesh points, with the unknowns ordered using a downwind scheme
for two values of the Péclet number, Pe = 20 and Pe = 200. Convergence curves for the four
methods are reported in Figure 4.2. As before, for completeness, we also perform numerical
tests with an exact two-level method.

Similarly to the previous examples, one can observe that the adaptive method converges
essentially in the same number of iterations as the original MK(8,2,2) version, while there
is a significant reduction of computational cost; this reduction is presented in Table 4.2. In
fact, the adaptive method is faster than the regular MK(8,2,2) version by about 15% with the
value of cm = 10. On the other hand, the convergence delay of the static ad hoc version is
much more marked, leading to non-convergence in some cases. The MK(2,2,2) version fails
to converge in 100 iterations5.

3Experiments with a 2002-point grid are not reported since they are qualitatively similar to those with a 4002-
point grid.

4Further comments on the value of cm can be found in Appendix A.
5Experiments with 4002-grids are qualitatively similar to those reported.
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FIG. 4.2. Convergence behavior for the convection-diffusion problem. Relative residual norm vs. number of
Krylov subspace iterations.

As was the case for the Poisson equation, the MK methods (except the MK(2,2,2) method)
lead to the same number of iterations as the two-level method.

4.3. 2D-Helmholtz equation. In this section, numerical experiments for a 2D Helmholtz
problem in a square domain with constant wavenumber are presented, i.e., we solve the problem

Au := −
(
∂2

∂x2
+

∂2

∂y2
+ ω2(x, y)

)
u(x, y) = g(x, y), in Ω = (0, 1)2.

At the boundaries, the first-order approximation to the Sommerfeld (non-reflecting) condition
due to Engquist and Majda [6] is imposed. We consider a problem where a source is generated
in the middle of the domain.

Before solving the system (2.6) with the flexible GMRES method [22], we apply the
(complex) shifted Laplacian preconditioner M to the matrix A, i.e., the discretization of

M := − ∂2

∂x2
− ∂2

∂y2
− (1− 0.5 · i)ω2(x, y),

such that we solve ÂQx̄ = b, Qx̄ = x, Â = AM−1.
This is the setup used in [9]. Here, we consider numerical experiments with the same

environment, i.e., the same construction of the deflation matrices Z, Galerkin matrices E, etc.
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TABLE 4.2
Number of calculated coarsest-grid solutions (number of iterations to converge) [iteration number where

switching criterion is satisfied] and the error ‖x − xk‖ of the different MK methods for the convection-diffusion
problem, where x is the Matlab backslash solution.

Pe = 20 MK(8,2,2) MKadap MKstat MK(2,2,2) two-level

2002
800(25) 672(27)[18] 1008(96) – (100) 25(25)
6.8 · 10−9 1.1 · 10−8 1.5 · 10−7 7 · 10−6 6.1 · 10−9

6002
800(25) 664(26)[19] −(100) – (100) 25(25)
3.4 · 10−8 8.1 · 10−8 7.2 · 10−4 0.4 2.3 · 10−8

Pe = 200

2002
1568(49) 1348(51)[38] 920(88) 800(100) 47(47)
8.0 · 10−9 1.9 · 10−8 2.2 · 10−8 2.4 · 10−8 6.1 · 10−9

6002
2176(68) 1992(72)[59] −(100) – (100) 56(56)
3.4 · 10−7 1.7 · 10−7 0.9 · 10−2 1.1 · 10−2 2.8 · 10−8

TABLE 4.3
Number of calculated coarsest-grid solutions (number of iterations to converge) of the different MK methods for

the 2D-Helmholtz equation.

ω n MK(8,2,2) MKadap MKstat MK(2,2,2)
40 2502 576(18) 484(19) 392(22) 232(29)
70 2502 672(21) 592(25) 536(40) 464(58)

100 2502 928(29) 836(29) 920(88) 968(121)
120 3002 1056(33) 964(33) 1264(131) 1288(161)

The matrix M is the discretization ofM. Furthermore, the value for cm is chosen to be 10
as it was in the prior experiments. We briefly describe some of the elements of this setup but
refer the reader for more details to [9].

During the whole iteration process, the matrix M−1 is never calculated explicitly, but the
approximation to the solution of M−1v for a given vector v is carried out by one multigrid
step. This also means that we never calculate the Galerkin matrix

E = ZT ÂZ = ZTAM−1Z

explicitly, which might no longer be a sparse matrix. Instead we approximate E by the product
of the coarse-grid versions of A,M−1, and the identity, i.e.,

E ≈ ZTAZ(ZTMZ)−1ZTZ.

In our experiments we use the Jacobi smoother for 2 presmoothing steps of the Laplacian
multigrid preconditioning procedure. In Figure 4.3, we show the results for a discretization
on a 2502-point grid for different wavenumbers from 40 to 100 and on a larger 3002-point
grid for ω = 120. In Table 4.3 we give an overview on the number of coarsest-grid direct
solves that have to be performed during the process. This is a useful measure to compare
these methods concerning their efficiency. It can be observed that the adaptive method is more
efficient than the others.

5. Conclusions. We developed a theory of adaptive Multilevel Krylov methods. At each
level, the number of iterations of the second level is determined by the residual at the previous
step using the criterion (3.12). With this strategy, the theory guarantees convergence of the
adaptive MK method to the tolerance. An ad hoc static method which mimics this strategy is
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FIG. 4.3. Convergence behavior for the Helmholtz problem. Relative residual norm vs. number of Krylov
subspace iterations.

also presented which in some cases is also effective. The constant cm in (3.12) depends on
quantities which are not always available. If one finds that given a value of cm, the method
fails to converge, then the value of cm should be reduced.
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Appendix A. In this appendix, we further discuss the choice of the parameters used in
our computations, namely the quantity cm in (3.12) and the number of levels used in the MK
methods.

From (3.11), we see that the quantity cm is given by σm(Hm)/(m‖AZE−1‖), where
m here should be interpreted as the maximum number of possible iteration of the Krylov
subspace. We have used m = 90 for Poisson’s problem and m = 100 for the convection-
diffusion equation; see Tables 4.1 and 4.2. We run our codes for problems with order n
between 4 · 102 and 105 and computed σm(Hm), the smallest singular values of the upper
Hessenberg matrix in the inexact Arnoldi method from (3.3). These are shown in Figure A.1
(left) and Figure A.2 (left) for the Poisson problem and the convection-diffusion equation (for
Pe = 200), respectively. In both cases, σm(Hm) varies within a narrow range and is of the
order of 10−1.

We approximated the value of ‖AZE−1‖ using appropriately the power method up to
a precision of 10−6. We plotted the ration σm(Hm)/‖AZE−1‖ for these two problems for
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different grid sizes in Figure A.1 (right) and Figure A.2 (right). As it can be appreciated, the
calculation gives a value of cm of order of 10−2/m, i.e., of the order of 10−4.
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FIG. A.1. Left: smallest singular value of the Hessenberg matrix. Right: values for mcm.
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TABLE A.1
Number of calculated coarsest-grid solutions (and number of iterations) for 7- and 9-level methods.

Grid MK(8,2,2) MKadap MKstat MK(2,2,2)
4002 2816(22) 2480(24)[18] 2944(65) 1248(39)
8002 11776(23) 10176(25)[18] 8320(38) 3248(41)

These values could be used for the adaptive parameter, but they were shown to be too
restrictive, as our experiments with cm = 10 show. The reason for this discrepancy was
already discussed in [26], where it is explained that the bounds used in its derivation such as
(3.10) are far from tight.

We end this appendix by exploring the question on whether using more than five levels
in the multilevel procedures would be advisable. We compare the solution of the Poisson
problem for n with values 4002 and 8002 with a 7- and 9-level method, respectively. We
perform 8 steps on the second and 2 on every coarser level. The results are given in Table A.1.
These results should be compared with those of Table 4.1. It can be observed that for this
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problem, the number of (outer) Krylov iterations does not change with more than 5 levels.
On the other hand, the number of coarsest-grid solutions soars, which implies a much larger
execution time.
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