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PRECONDITIONING THE COARSE PROBLEM OF BDDC METHODS—
THREE-LEVEL, ALGEBRAIC MULTIGRID, AND VERTEX-BASED

PRECONDITIONERS∗

AXEL KLAWONN†‡, MARTIN LANSER†‡, OLIVER RHEINBACH§, AND JANINE WEBER†

Abstract. A comparison of three Balancing Domain Decomposition by Constraints (BDDC) methods with
an approximate coarse space solver using the same software building blocks is attempted for the first time. The
comparison is made for a BDDC method with an algebraic multigrid preconditioner for the coarse problem, a
three-level BDDC method, and a BDDC method with a vertex-based coarse preconditioner. It is new that all methods
are presented and discussed in a common framework. Condition number bounds are provided for all approaches. All
methods are implemented in a common highly parallel scalable BDDC software package based on PETSc to allow
for a simple and meaningful comparison. Numerical results showing the parallel scalability are presented for the
equations of linear elasticity. For the first time, this includes parallel scalability tests for a vertex-based approximate
BDDC method.

Key words. approximate BDDC, three-level BDDC, multilevel BDDC, vertex-based BDDC

AMS subject classifications. 68W10, 65N22, 65N55, 65F08, 65F10, 65Y05

1. Introduction. During the last decade, approximate variants of the BDDC (Balanc-
ing Domain Decomposition by Constraints) and FETI-DP (Finite Element Tearing and
Interconnecting-Dual-Primal) methods have become popular for the solution of various linear
and nonlinear partial differential equations [1, 8, 9, 12, 14, 15, 17, 19, 21, 24, 25]. These
methods differ from their exact relatives by using an approximate solution of components of
the preconditioner, most notably the coarse problem. An approximate solution of the coarse
problem can reduce the numerical robustness slightly but can increase the scalability of the
method significantly. While multilevel BDDC (see [20, 22, 24, 25] and, recently, [1]) is
constructed by applying exact BDDC recursively to the coarse problem, in other approximate
BDDC variants, cycles of AMG (algebraic multigrid) are applied to the coarse problem; see,
e.g., [8, 13, 19]. Recently, vertex-based coarse spaces of reduced size have been suggested to
approximate the original coarse problem [9].

In [13], we have already considered, in a common framework, several linear and nonlinear
BDDC variants using AMG-based approximations, following the BDDC formulation of [19]
for linear problems. We have also compared their performance using our ultra scalable PETSc-
based [4, 5, 6] BDDC implementation applying BoomerAMG [11] for all AMG solves. In the
current paper, we continue these efforts and include the aforementioned vertex-based BDDC as
well as three-level and multilevel BDDC in our framework as well as in our software package.
In addition to a description of all methods and their condition number bounds, we also include
a numerical and parallel comparison. To the best of our knowledge, a comparison between
three-level BDDC and BDDC with AMG-based coarse approximations using implementations
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based on the same building blocks has not been considered before. Also, for the first time,
parallel scalability tests for a vertex-based BDDC method [9] are presented.

As a common baseline in all our comparisons, we include the approximate AMG-based
preconditioner which performed best in [13]. This specific variant is also related but not
identical to three preconditioners suggested in [8]. This was already discussed in detail in [13].

The remainder of this paper is organized as follows: In Section 2, we introduce the
model problem, outline the domain decomposition approach, and present an exact BDDC
preconditioner for the globally assembled system. In Sections 3 and 4, we describe three
different approximate BDDC preconditioners in a common framework. Namely, we consider
an approximate BDDC preconditioner using AMG, a three-level BDDC method, and a vertex-
based BDDC preconditioner using a Gauss-Seidel method. Section 5 gives the theory and the
condition number bounds for all three approximate BDDC preconditioners. In Section 6, we
provide some details of our parallel implementation. In particular, we have implemented all
three approximate preconditioners with the same building blocks, which allows us to directly
compare the methods with each other regarding their computing time and parallel scalability.
Finally, in Section 7, we present and compare results in three spatial dimensions. For all our
numerical tests, we consider linear elasticity problems as a model problem since, within our
SPPEXA project EXASTEEL, we are particularly interested in problems from solid mechanics.
The comparison presented here therefore applies to linear elasticity problems. Note that there
are different versions of the vertex-based coarse space, which are also tested for scalar elliptic
problems in [9, Section 7].

2. Exact BDDC preconditioner and model problem.

2.1. Linear elasticity and finite elements. We consider an elastic domain Ω ⊂ R3. We
denote by u : Ω→ R3 the displacement of the domain, by f a given volume force, and by g a
given surface force, respectively. In particular, we assume that one part of the boundary of the
domain, ∂ΩD, is clamped, i.e., has homogeneous Dirichlet boundary conditions, and that the
rest, ∂ΩN := ∂Ω \ ∂ΩD, is subject to the surface force g, i.e., a natural boundary condition.

With H1(Ω) := (H1(Ω))3, the appropriate space for a variational formulation is the
Sobolev space H1

0(Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The problem of linear
elasticity then consists in finding the displacement u ∈ H1

0(Ω, ∂ΩD) such that
ż

Ω

G(x) ε(u) : ε(v) dx +

ż

Ω

G(x)β(x) divu divv dx = 〈F, v〉,

for all v ∈ H1
0(Ω, ∂ΩD) for given material parameters G and β and the right-hand side

〈F, v〉 =

ż

Ω

fT v dx +

ż

∂ΩN

gT v dσ.

The material parameters G and β depend on the Young modulus E > 0 and the Poisson ratio
ν ∈ (0, 1/2) given by G = E/(1 +ν) and β = ν/(1−2ν). Furthermore, the linearized strain
tensor ε = (εij)ij is defined by εij(u) := 1

2 ( ∂ui

∂xj
+

∂uj

∂xi
), and we use the notation

ε(u) : ε(v) :=
3

ÿ

i,j=1

εij(u)εij(v) and (ε(u), ε(v))L2(Ω) :=

ż

Ω

ε(u) : ε(v) dx.

The corresponding bilinear form associated with linear elasticity can then be written as

a(u, v) = (G ε(u), ε(v))L2(Ω) + (Gβ divu, divv)L2(Ω).
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We discretize our elliptic problem of linear elasticity by low-order, conforming finite elements
and thus obtain the linear system of equations

(2.1) Kgu = fg.

2.2. Exact BDDC preconditioner for the assembled system. The exact BDDC pre-
conditioner formulation from [19] is applied directly to the system (2.1).

Given is a nonoverlapping domain decomposition Ωi, i = 1, . . . , N, of Ω such that
Ω =

ŤN
i=1 Ωi. The interface between the subdomains is defined as Γ :=

ŤN
i=1 ∂Ωi \ ∂Ω.

Each subdomain Ωi is a union of finite elements, the spaces Wi, i = 1, . . . , N , are the
local finite element spaces, and the product space is defined by W = W1 × · · · ×WN . The
global finite element space V h corresponds to the triangulation of Ω, and we assume to have
an assembly operator RT , where RT : W → V h. By a discretization of the given partial
differential equation restricted to Ωi, we obtain a set of local problems

Kiui = fi, i = 1, · · · , N.

Defining the block operators and right-hand sides

K =

K1

. . .
KN

 , f =

 f1

...
fN

 ,
we can write Kg := RTKR and fg := RT f .

We use the index Γ for degrees of freedom on Γ and the index I for the remaining degrees
of freedom except for those on the Dirichlet boundary ∂ΩD. For the construction of a BDDC
preconditioner directly applicable to the assembled linear system Kgu = fg, the interface
set of variables on Γ is split into primal (Π) and the remaining dual (∆) degrees of freedom.
Usually, vertex variables are chosen as primal variables, and the primal space is augmented by
averages over edges and/or faces.

Let us introduce the space ĂW ⊂ W of functions which are continuous in all primal
variables and the assembly operators qRT and rRT with qRT : W → ĂW and rRT : ĂW → V h.
Using qR, we can form the partially assembled system

rK := qRTK qR,

and we can also obtain the globally assembled finite element matrix Kg from rK by

(2.2) Kg = rRT
rK rR.

We denote the interior and interface variables with the indices I and Γ, respectively. Ordering
the interior variables first and the interface variables last, we obtain

rK =

[
KII

rKT
ΓI

rKΓI
rKΓΓ

]
.

The matrix KII is block-diagonal and applications of K−1
II only require local solves on the

interior parts of the subdomains and are thus easily parallelizable. We further introduce the
union of subdomain interior (I) and dual (∆) interface degrees of freedom as an extra set of
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degrees of freedom denoted by the index B, and we obtain an alternative representation of the
partially assembled system rK as

rK =

[
KBB

rKT
ΠB

rKΠB
rKΠΠ

]
.

Like KII , the matrix KBB is a block-diagonal matrix, and applications of K−1
BB only require

local solves.
Introducing a scaling, e.g., ρ-scaling [16] or deluxe-scaling [7], to the prolongation

operators and thereby defining rRD : V h → ĂW , we obtain the BDDC preconditioner for Kg

by

(2.3) M−1
BDDC :=

(
rRT
D −HPD

)
rK−1

(
rRD − PT

DHT
)

;

see [19]. Here, the operatorH : ĂW → V h is the discrete harmonic extension to the interior of
the subdomains given by

H :=

[
0 − (KII)

−1
rKT

ΓI

0 0

]
.

Finally, PD : ĂW → ĂW is a scaled jump operator defined by

PD = I − ED := I − rR rRT
D.

The original definition often used in the literature is PD := BT
DB; see [23, Chapter 6] and [19]

for more details. There, B is the jump matrix used in FETI-type methods. Please note that
in the standard definition, the BDDC preconditioner is formulated for the reduced interface
problem, i.e., as

(2.4) M−1
BDDC–ΓSΓΓ := rRT

D,Γ
rS−1

ΓΓ
rRD,ΓSΓΓ.

Here, the prolongation operator rRD,Γ is formed in the same way as rRD but is restricted to the
interface variables on Γ, and SΓΓ and rSΓΓ are the subdomain interface Schur complements
of the matrices Kg and rK, respectively. Let us remark that the preconditioned system
M−1

BDDCKg has, except for some eigenvalues equal to 1, the same spectrum as the standard
BDDC preconditioner formulated using the Schur complement; see [19, Theorem 1]. Here,
we provide a related but slightly more direct proof: we first explicitly write the BDDC
preconditioner M−1

BDDC as

M−1
BDDC : =

(
rRT
D −HPD

)
rK−1

(
rRD − PT

DHT
)

=

[
I K−1

II
rKT

ΓI(I − rRΓ
rRT
D,Γ)

0 rRT
D,Γ

]
rK−1

[
I 0

(I − rRD,Γ
rRT

Γ ) rKΓIK
−1
II

rRD,Γ

]

=

[
I K−1

II
rKT

ΓI(I − ED,Γ)

0 rRT
D,Γ

]
rK−1

[
I 0

(I − ET
D,Γ) rKΓIK

−1
II

rRD,Γ

]
.

Using the block factorization

rK−1 =

[
I −K−1

II
rKT

ΓI

0 I

] [
K−1

II 0

0 rS−1
ΓΓ

] [
I 0

− rKΓIK
−1
II I

]
,
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we obtain by direct computation the alternative representation

M−1
BDDC =

[
K−1

II +K−1
II

rKT
ΓIED,Γ

rS−1
ΓΓE

T
D,Γ

rKΓIK
−1
II −K−1

II
rKT

ΓIED,Γ
rS−1

ΓΓ
rRD,Γ

− rRT
D,Γ

rS−1
ΓΓE

T
D,Γ

rKΓIK
−1
II

rRT
D,Γ

rS−1
ΓΓ

rRD,Γ

]
.

Forming M−1
BDDCKg finally yields

M−1
BDDCKg =

[
I U
0 M−1

BDDC−ΓSΓΓ

]
with U = K−1

II KIΓ − K−1
II K

T
ΓI

rRT
D,Γ

rS−1
ΓΓ

rRD,ΓSΓΓ, using that ED,Γ = rRΓ
rRT
D,Γ and that

KΓI = rRT
Γ

rKΓI . Here, M−1
BDDC−Γ is the classical BDDC preconditioner for the Schur comple-

ment; see equation (2.4). The result then follows from the fact that the set of eigenvalues of a
block-triangular matrix equals the union of the sets of eigenvalues of the diagonal blocks.

3. Approximate BDDC preconditioners. All approximate BDDC methods considered
in this paper are based on an approximate solution of the coarse problem of BDDC. To ensure a
simple comparison, all approximate preconditioners are implemented using the same software
framework; see also [12, 13].

By block factorization we obtain

(3.1) rK−1 =

[
K−1

BB 0
0 0

]
+

[
−K−1

BB
rKT

ΠB

I

]
rS−1

ΠΠ

[
− rKΠBK

−1
BB I

]
,

where rSΠΠ is the Schur complement

rSΠΠ = rKΠΠ − rKΠB K
−1
BB

rKT
ΠB .

Note that rSΠΠ represents the coarse BDDC operator.
Replacing rS−1

ΠΠ by an approximation pS−1
ΠΠ in (3.1), we obtain an approximation for rK−1

by

(3.2) pK−1 =

[
K−1

BB 0
0 0

]
+

[
−K−1

BB
rKT

ΠB

I

]
pS−1

ΠΠ

[
− rKΠBK

−1
BB I

]
.

Replacing rK−1 in (2.3) by pK−1, we define an approximation to the BDDC preconditioner,
i.e.,

(3.3) xM−1 :=
(

rRT
D −HPD

)
pK−1

(
rRD − PT

DHT
)
.

For the remainder of the article, all approximate BDDC preconditioners are marked with
a hat. In the following sections, we compare three different approaches to form pS−1

ΠΠ for the
approximation of the coarse solve:

a) using AMG (algebraic multigrid) denoted by xM−1
BDDC, AMG ;

b) using exact BDDC recursively denoted by xM−1
BDDC, 3L;

c) using an exact solution of a smaller vertex-based coarse space denoted by xM−1
BDDC, VB.

Let us remark that xM−1
BDDC, AMG was denoted as xM−1

3 in [13].

4. Examples of approximate BDDC preconditioners. In this section, we give three
examples of approximate BDDC preconditioners presented by adopting the notation intro-
duced in Section 3. First, we consider an approximate BDDC preconditioner using AMG to
precondition rSΠΠ, second, a three-level BDDC method using BDDC itself to precondition
rSΠΠ, and third, a vertex-based BDDC preconditioner using a Jacobi/Gauss-Seidel method in
combination with a vertex-based coarse space to precondition rSΠΠ.
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4.1. BDDC preconditioner with AMG coarse preconditioner. Let us denote the ap-
plication of a fixed number of V-cycles of an AMG method to rSΠΠ by M−1

AMG. By choosing
M−1

AMG in (3.2) as an approximation of rSΠΠ, i.e., by choosing pS−1
ΠΠ := M−1

AMG, we obtain

pK−1
AMG =

[
K−1

BB 0
0 0

]
+

[
−K−1

BB
rKT

ΠB

I

]
M−1

AMG

[
− rKΠBK

−1
BB I

]
.

Again, by using pK−1
AMG as an approximation for rK−1 in (3.3), we obtain the inexact reduced

preconditioner xM−1
BDDC, AMG.

4.2. A three-level BDDC. Alternatively, if we construct an exact BDDC preconditioner
pS−1

ΠΠ for the Schur complement matrix rSΠΠ, then (3.3) will become a three-level BDDC
preconditioner xM−1

BDDC, 3L. This approach is equivalent to the three-level preconditioner in-
troduced in [24] but formulated for the original matrix Kg. In [24], the BDDC formulation
for the Schur complement system on the interface is used and applied recursively. Since we
use the BDDC formulation for the complete system matrix Kg, we consequently apply this
approach to form the third level. We thus follow Section 2.2 and mark all operators and spaces
defined for the third level with bars, e.g., I represents the interior variables of the third level,
while I represent those on the second level. In Section 5, we derive the same condition number
bound as in [24, 25].

Let us now describe the application of BDDC to rSΠΠ in some more details. The basic
idea of the three-level BDDC preconditioner is to recursively introduce a further level of the
decomposition of the domain Ω into N subregions Ω1, ...,ΩN . Each subregion is built from a
given number of subdomains. All primal variables Π on the subdomain level are then again
partitioned into interior, primal, and dual variables, denoted by I,Π, and ∆, with respect
to the subregions; see also Figure 4.1 for a possible selection in 2D. Now, in principle, the
subdomains take over the role of finite elements on the third level and the subregions the role
of the subdomains. The basis functions of the third level are the coarse basis functions of the
second level, localized to the subregions.

We therefore first define the space V
h

, which is spanned by all coarse basis functions
of the second level and denote by W i, i = 1, ..., N , the spaces which are spanned by the
restrictions of the coarse basis functions to the subregions Ωi, i = 1, ..., N . The product space
W is now defined as W = W 1 × ...×WN .

Using local Schur complements S(i)
ΠΠ = K

(i)
ΠΠ −K

(i)
ΠBK

(i)−1
BB K

(i)T
ΠB on the subdomains

and the block matrix SΠΠ = diag(S
(1)
ΠΠ, ..., S

(N)
ΠΠ ), we can redefine

rSΠΠ =
N
ÿ

i=1

R
(i)T
Π S

(i)
ΠΠR

(i)
Π ,

where RT =
(
R(1)T , ..., R(N)T

)
and R(i) = diag

(
R

(i)
B , R

(i)
Π

)
, i = 1, ..., N . We can now

perform this assembly process only on the subregions, i.e.,

Sj =

Nj
ÿ

i=1

R
(i)T
Π S

(i)
ΠΠR

(i)
Π , ∀j = 1, ..., N,

where Nj is the number of subdomains belonging to the subregion Ωj . Obviously, rSΠΠ takes
over the role of Kg on the third level, while Sj takes over the role of Ki. Consequently,

defining a prolongation R : V
h →W , we can also write

rSΠΠ = R
T
S R,
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with S = diag(S1, ..., SN ).

Let us introduce the space ĂW ⊂ W of functions which are continuous in all primal

variables Π on the third level and the assembly operators qR
T

: W → ĂW and rR
T

: ĂW → V
h

.
Using qR, we can form the partially assembled system

rS := qR
T

S qR .

Adding scalings to the prolongations as before and thus defining rRD : V
h → ĂW , we obtain

the BDDC preconditioner for the third level by

M
−1

BDDC :=

(
rR
T

D −HPD

)
rS
−1 (

rRD − P
T

DH
T
)
.

The operatorH : ĂW → V
h

is the discrete harmonic extension to the interior of the subregions
and writes

H :=

[
0 −

(
SII

)−1
rS
T

ΓI

0 0

]
,

with the blocks SII and rSΓI of the partially assembled matrix

rS =

[
SII

rS
T

ΓI
rSΓI

rSΓΓ

]

and the jump operator defined as PD := I − rRrR
T

D.
Now, by choosing pS−1

ΠΠ := M
−1

BDDC as an approximation for rS−1
ΠΠ in (3.2), we obtain

pK−1
3L =

[
K−1

BB 0
0 0

]
+

[
−K−1

BB
rKT

ΠB

I

]
M

−1

BDDC

[
− rKΠBK

−1
BB I

]
and can define

xM−1
BDDC, 3L :=

(
rRT
D −HPD

)
pK−1

3L

(
rRD − PT

DHT
)
.

Instead of inverting rS directly, we again can use a block factorization

rS
−1

=

[
S
−1

BB 0
0 0

]
+

[
−S−1

BB
rS
T

ΠB

I

]
rT
−1

ΠΠ

[
−rSΠBS

−1

BB I

]
,

where the primal Schur complement on the subregion level is

rTΠΠ = rSΠΠ −
rSΠBS

−1

BB
rS
T

ΠB .

Note that, following [19, Theorem 1], the preconditioned system M
−1

BDDC
rSΠΠ on the subregion

level has the same eigenvalues as rR
T

D,Γ
rT
−1

ΓΓ
rRD,Γ

rTΓΓ except for some eigenvalues equal to 1.

Here, we have the Schur complement rTΓΓ of rSΠΠ on the interface of the subregions, the

primally assembled Schur complement rTΓΓ of rS on the interface of the subregions, and the

splitting rRD = diag(II
rRD,Γ). Therefore, we can use the condition number estimates

provided in [24, 25] as in Section 5.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

PRECONDITIONING THE COARSE PROBLEM OF BDDC 439

Γ

I

Γ

Ω, V h

Ω1 Ω2 Ω5 Ω6

Ω3 Ω4 Ω7 Ω8

Ω9 Ω10 Ω13 Ω14

Ω11 Ω12 Ω15 Ω16

Ω1 Ω2

Ω3 Ω4

FIG. 4.1. Example of a domain decomposition in 2D into 16 subdomains and 4 subregions recursively. We mark
in blue the interface Γ between subdomains and in red the interface Γ between subregions. Primal nodes Π w.r.t.
the subregions are depicted as red circles, while primal nodes Π w.r.t. the subdomains are depicted as blue circles.
Inner or dual nodes w.r.t the subregions, i.e., I or, respectively, ∆ are depicted as green triangles or, respectively, red
squares.

4.3. Vertex-based BDDC preconditioner. We finally describe the vertex-based precon-
ditioner for the coarse problem as introduced by Dohrmann, Pierson, and Widlund [9] in
our framework—denoting it as the vertex-based preconditioner xM−1

BDDC, VB. Here the pre-
conditioner for the coarse problem can be interpreted as a standard two-level additive or
multiplicative Schwarz algorithm. In particular, the direct solution of the coarse problem rS−1

ΠΠ

is replaced by a preconditioner M−1
VB based on a smaller vertex-based coarse space.

It was shown early in the history of FETI-DP and BDDC that vertex nodes alone as coarse
nodes do not give us competitive algorithms [10, 16]. Instead, coarse degrees of freedom for
BDDC or FETI-DP are often associated with average values over certain equivalence classes,
i.e., edges and/or faces. The basic idea of the coarse component of the preconditioner M−1

VB is
to approximate the averages over edges or faces using adjacent vertex values. This technique
allows to delay the point when a new level has to be introduced, and, in a multilevel context,
may help to reduce the number of levels.

We denote the vertex-based coarse space by ĂWΨ and the original coarse space by ĂWΠ.
Then as in [9] we define Ψ : ĂWΨ → ĂWΠ as the coarse interpolant between the coarse space
based on vertices and the original coarse space based on certain equivalence classes. It is
important that the coarse basis functions of ĂWΨ, i.e., the columns of Ψ, provide a partition of
unity in the original coarse space ĂWΠ. This is fulfilled, e.g., for the following definition of Ψ

suggested in [9]. Let us first assume that ĂWΠ consists of edge averages only. Then, each row
of Ψ corresponds to a single edge constraint and has, in the case of an inner edge, two entries
of 1/2 in the two columns corresponding to the two vertices located at the endpoints of the
edge. All other entries of the row are zero. In case of an edge touching the Dirichlet boundary
with one endpoint, the corresponding row has a single entry of 1 in the column corresponding
to the vertex located at the other end of the edge. Analogously, a partition of unity can be
formed for the coarse spaces ĂWΠ consisting of face constraints.

Again as in [9], we define rSΠΠ,r := ΨT
rSΠΠΨ as the reduced coarse matrix. Note that

the number of rows and columns of rSΠΠ,r equals the number of vertices for scalar problems.
The preconditioner M−1

VB for the coarse matrix rSΠΠ is then given as

(4.1) M−1
VB = Ψ rS−1

ΠΠ,rΨT + GS( rSΠΠ),
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where GS denotes the application of a Gauss-Seidel preconditioner. In fact, M−1
VB is simply a

Gauss-Seidel preconditioner with an additive coarse correction.
In [9], only edge averages or solely face averages are used which are each reduced to

vertex-based coarse spaces as described above. In general, also the combination of vertices,
edge, and face averages as coarse components can be considered and can be reduced to a
solely vertex-based coarse space.

Now we can define the vertex-based approximate BDDC preconditioner by choosing
pS−1

ΠΠ := M−1
VB as an approximation for rS−1

ΠΠ in (3.2). We then obtain the approximation pK−1
VB

of rK−1 as

pK−1
VB =

[
K−1

BB 0
0 0

]
+

[
−K−1

BB
rKT

ΠB

I

]
M−1

VB

[
− rKΠBK

−1
BB I

]
,

and finally

xM−1
BDDC, VB =

(
rRT
D −HPD

)
pK−1

VB

(
rRD − PT

DHT
)

using the notation from (3.3); see also [9].

5. Condition number bounds. First, we need to make two assumptions, which are
equivalent to Assumptions 1 and 2 in [19].

ASSUMPTION 1. For the averaging operator ED,2 := rR( rRT
D −HPD) we have

|ED,2|2
ĂK
≤ Φ(H,h)|w|2

ĂK
, ∀w ∈ ĂW,

with Φ(H,h) being a function of the mesh size h and the subdomain diameter H .
Under Assumption 1, the condition number of the exactly preconditioned system is

bounded by

(5.1) κ(M−1
BDDCKg) ≤ Φ(H,h);

see, e.g., Theorem 3 in [19].
If appropriate primal constraints, e.g., edge averages and vertex constraints, are chosen,

then we obtain the condition number bound with Φ(H,h) = C(1 + log(H/h))2 for our
homogeneous linear elasticity test case; see Section 6.

ASSUMPTION 2. There are positive constants c̃ and rC, which might depend on h and H ,
such that

c̃uT rKu ≤ uT pKu ≤ rCuT rKu, ∀u ∈ ĂW.

We can now prove a result, Theorem 5.1, for the preconditioned operator xM−1Kg. In
the proof, we basically follow the arguments in the proof of Theorem 4 in [19], but here
we use exact discrete harmonic extension operators, i.e., an exact ED,2. This is in contrast
to Theorem 4 in [19], where inexact discrete harmonic extensions are used, which is not
necessary in our case. Although large parts of the proof are identical, we include the complete
line of arguments here for the convenience of the reader.

THEOREM 5.1. Let Assumptions 1 and 2 hold. Then the preconditioned operator xM−1Kg

is symmetric, positive definite with respect to the bilinear form 〈·, ·〉Kg
, and we have

1

rC
〈u, u〉Kg ≤ 〈xM−1Kgu, u〉Kg ≤

Φ(H,h)

c̃
〈u, u〉Kg , ∀u ∈ V h.

Therefore, we obtain the condition number bound κ(xM−1Kg) ≤ rC
c̃ Φ(H,h).
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Proof. Let u ∈ V h be given. We define

(5.2) w = pK−1( rRD − PT
DHT )Kgu ∈ ĂW

and thus also have

pKw = ( rRD − PT
DHT )Kgu.

Using rRT
rRD = I yields rRTPT

D = rRT (I − rRD
rRT ) = 0 and thus range(PT

D)⊂null( rRT ).
Hence, we obtain

(5.3) 〈u, u〉Kg
= uT rRT ( rRD − PT

DHT )Kgu = uT rRT
pKw = 〈w, rRu〉

xK
.

Using the Cauchy-Schwarz inequality and Assumption 2, we can further estimate

〈w, rRu〉
xK
≤ 〈w,w〉1/2

xK
〈 rRu, rRu〉1/2

xK

Asm. 2
≤

a

rC〈w,w〉1/2
xK
〈 rRu, rRu〉1/2

ĂK

(2.2)
=

a

rC〈w,w〉1/2
xK
〈u, u〉1/2

Kg
.(5.4)

Combining equations (5.3) and (5.4), we have 〈u, u〉Kg
≤ rC〈w,w〉

xK
. Using (5.2) and (3.3),

we can prove the lower bound.

1

rC
〈u, u〉Kg

≤ 〈w,w〉
xK

(5.2)
= uTKg( rRT

D −HPD) pK−1
pK pK−1( rRD − PT

DHT )Kg)u

= 〈u, ( rRT
D −HPD) pK−1( rRD − PT

DHT )Kgu〉Kg

(3.3)
= 〈u, xM−1Kgu〉Kg .(5.5)

Let us now prove the upper bound using Assumption 1, (5.2), and (3.3).

〈xM−1Kgu, xM−1Kgu〉Kg
= 〈( rRT

D −HPD)w, ( rRT
D −HPD)w〉Kg

= 〈 rR( rRT
D −HPD)w, rR( rRT

D −HPD)w〉
ĂK

= 〈ED,2w,ED,2w〉
ĂK

= |ED,2w|2
ĂK

Asm. 1
≤ Φ(H,h)|w|2

ĂK
.(5.6)

Together with Assumption 2, we obtain

〈xM−1Kgu, xM−1Kgu〉Kg

(5.6)

≤ Φ(H,h)|w|2
ĂK

Asm.2
≤ 1

c̃
Φ(H,h)|w|2

xK

(5.5)
=

1

c̃
Φ(H,h)〈u, xM−1Kgu〉Kg .(5.7)

Using the Cauchy-Schwarz inequality in combination with (5.7), we finally obtain

〈u, xM−1Kgu〉Kg
≤ Φ(H,h)

c̃
〈u, u〉Kg

.

For the preconditioners considered here, we replace the inverse operator of the Schur
complement in the primal variables rS−1

ΠΠ by an approximation pS−1
ΠΠ. Therefore, we have to
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show that Assumption 2 used in the proof of Theorem 5.1 is still relevant and holds under
certain assumptions.

ASSUMPTION 3. There are positive constants ĉ and pC, which might depend on h and H ,
such that

ĉũTΠ
rSΠΠũΠ ≤ ũTΠ pSΠΠũΠ ≤ pCũTΠ

rSΠΠũΠ, ∀ũΠ ∈ ĂWΠ.

We can now prove the following lemma.
LEMMA 5.2. Let Assumption 3 hold and pK−1 be defined as in equation (3.2). Then

Assumption 2 holds with c̃ := min(ĉ, 1) and rC := max( pC, 1).
Proof. We first split pK−1 = A1 +A2 into its two additive parts

A1 :=

[
K−1

BB 0
0 0

]
and A2 :=

[
−K−1

BB
rKT

ΠB

I

]
pS−1

ΠΠ

[
− rKΠBK

−1
BB I

]
.

The product A1
rK yields

(5.8) A1
rK =

[
K−1

BB 0
0 0

][
KBB

rKT
ΠB

rKΠB
rKΠΠ

]
=

[
I K−1

BB
rKT

ΠB

0 0

]
.

By a direct computation we obtain

A2
rK =

[
−K−1

BB
rKT

ΠB

I

]
pS−1

ΠΠ

[
− rKΠBK

−1
BB I

] [KBB
rKT

ΠB
rKΠB

rKΠΠ

]

=

[
−K−1

BB
rKT

ΠB

I

]
pS−1

ΠΠ

[
0 rSΠΠ

]
=

[
−K−1

BB
rKT

ΠB

I

] [
0 pS−1

ΠΠ
rSΠΠ

]
=

[
0 −K−1

BB
rKT

ΠB
pS−1

ΠΠ
rSΠΠ

0 pS−1
ΠΠ

rSΠΠ

]
.(5.9)

Adding (5.8) and (5.9) yields the final result

pK−1
rK =

[
I G

0 pS−1
ΠΠ

rSΠΠ

]
with G = K−1

BB
rKT

ΠB(I − pS−1
ΠΠ

rSΠΠ). Therefore, except for additional eigenvalues equal to 1,
pK−1

rK and pS−1
ΠΠ

rSΠΠ have the same spectrum, and we have

λmin( pK−1
rK)=min

(
λmin( pS−1

ΠΠ
rSΠΠ), 1

)
, λmax( pK−1

rK)=max
(
λmax( pS−1

ΠΠ
rSΠΠ), 1

)
.

Consequently, Assumption 2 holds with c̃ := min(ĉ, 1) and rC := max( pC, 1).
For the preconditioner xM−1

BDDC, AMG, we now find that pC and ĉ depend on the properties of
the AMG V-cycle used and therefore

(5.10) κ(xM−1
BDDC, AMGKg) ≤

rC

c̃
Φ(H,h) =

max( pC, 1)

min(ĉ, 1)
Φ(H,h).

For the three-level BDDC preconditioner xM−1
BDDC, 3L we obtain with [25, Lemma 4.6] in two

spatial dimensions and [24, Lemma 4.7] in three spatial dimensions that ĉ = 1

C3L

(
1+log( Ĥ

H )
)2
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and pC = 1. Here, Ĥ is the maximum diameter of a subregion, and of course, depending
on the problem and dimension, sufficient primal constraints on the second level have to be
chosen; see [24, 25]. Let us note that the results in [24, 25] are only proven for scalar diffusion
problems. To the best of our knowledge an extension to linear elasticity has not been published
so far and might still be an open problem. Using Lemma 5.2 and Theorem 5.1, we obtain for
scalar elliptic problems the condition number bound

(5.11) κ(xM−1
BDDC, 3LKg) ≤

rC

c̃
Φ(H,h) = C3L

(
1 + log

(
Ĥ

H

))2

Φ(H,h);

see also [24, 25].
For the vertex-based BDDC preconditioner xM−1

BDDC, VB we obtain, with [9, Theorem 3]
for edge-based or face-based coarse spaces and quasi-monotone face-connected paths that
pc ≥ 1

C1
,max( pC, 1) ≤ CC and Φ(H,h) = C

(
1 + log(H

h )
)2

; see [9, Theorem 3]. Here, CC

is obtained by a coloring argument and therefore usually CC ≥ 1. The constant C1 depends
on geometric constants, e.g., the maximum number of subdomains connected by an edge
(see [9, Lemma 2]), the maximum number of neighbors of a subdomain (see [9, (4.3)]), or
typical subdomain sizes (see [9, Assumption 3]). Additionally, C1 depends on a tolerance for
the lowest coefficient along an acceptable path; see [9, Assumption 1 and 2]; cf. also [18]. The
results in [9] are proven for scalar diffusion and linear elasticity problems. All together, with
another constant CVB, we obtain

max( pC, 1)

min(ĉ, 1)
≤ CVB;

see also [9, Theorem 1 and 3] where pc = β1 and pC = β2 for the constants β1 and β2 used
in [9]. Typically, we have C1 ≥ 1, and we can then define CVB = C1 ·CC . Using Theorem 5.1,
we thus obtain the condition number bound

(5.12) κ(xM−1
BDDC, VBKg) ≤

rC

c̃
Φ(H,h) ≤ CVBΦ(H,h);

see also [9, Theorem 3].

5.1. The GM (Global Matrix) interpolation. Good constants c̃, rC in Assumption 2 or,
respectively, ĉ, pC in Assumption 3 are important for a small condition number and therefore a
fast convergence of the approximate BDDC method. It is well known that for scalability of
multigrid methods, the preconditioner should preserve nullspace or near-nullspace vectors
of the operator. Therefore, the AMG method should preserve the nullspace of the operator
on all levels, and these nullspace vectors have to be in the range of the AMG interpolation.
While classical AMG guarantees this property only for constant vectors, the global matrix
approach (GM), introduced in [3], allows the user to specify certain near-nullspace vectors,
which are interpolated exactly from the coarsest to the finest level; details on the method and its
scalability for linear elasticity problems can be found in [2, 3]. Since we are interested in linear
elasticity problems, we choose the rotational rigid body modes for the exact interpolation.
All translations of the body are already interpolated exactly in classical AMG approaches
for systems of PDEs since they use classical interpolation applied component-by-component.
In xM−1

BDDC, AMG, AMG is applied to rSΠΠ, and thus we need the three rotations in the space
ĂWΠ, which is the restriction of ĂW to the primal constraints. Therefore, we first assemble the
rotations of the subdomains Ωi locally, extract the primal components, and finally insert them

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

444 A. KLAWONN, O. RHEINBACH, M. LANSER, AND J. WEBER

into three global vectors in ĂWΠ. In our implementation, we always use BoomerAMG from
the HYPRE package [11], where a highly scalable implementation of the GM2 approach is
implemented; see [2]. Let us remark that BoomerAMG provides two variants of interpolations,
and GM2 is recommended for use instead of GM1. In [2] it also showed a better scalability
than GM1. We will compare the use of the GM2 approach with a hybrid AMG approach for
systems of PDEs. By hybrid AMG approaches, we refer to methods where the coarsening is
based on the physical nodes (nodal coarsening) but the interpolation is based on the degrees of
freedom. In general, a nodal coarsening approach is beneficial for the solution of systems of
PDEs, and all degrees of freedom belonging to the same physical node are either all coarse or
fine on each level. The latter is also mandatory for the GM2 approach. Therefore, GM2 is
based on the same nodal coarsening and can also be considered as a hybrid approach.

6. Implementation and model problems. Our parallel implementation uses C/C++ and
PETSc version 3.9.2 [6]. All matrices are completely local to the computational cores. All
assemblies and prolongations are performed using PETSc VecScatter and VecGather operations.
A more detailed description of the parallel data structures of our implementation of the linear
BDDC preconditioner can be found in [13], where different nonlinear BDDC methods are
applied to hyperelasticity and elasto-plasticity problems.

Since the preconditioners for the coarse problem are the focus of this paper, we include
some details on the implementation of the different variants. In general, the coarse problem
rSΠΠ is assembled on a subset of the available cores. The number of cores can be chosen
arbitrarily and should depend on the size of the coarse problem to obtain a good performance.
While BoomerAMG and BDDC themselves can be applied to rSΠΠ in parallel, for exact BDDC
(M−1

BDDC), a sequential copy of rSΠΠ is sent to each computational core and a sparse direct
solver is applied. The coarse problem is thus solved redundantly on all cores. Alternatively,
one could just create a single sequential copy on a single core.

When constructing xM−1
BDDC, VB, we always build Ψ and rSΠΠ as parallel matrices on the

same subset of cores and perform a parallel Galerkin product to build rSΠΠ,r := ΨT
rSΠΠΨ.

Afterwards, sequential copies of rSΠΠ and rSΠΠ,r := ΨT
rSΠΠΨ are created in order to perform

a redundant sparse factorization of rSΠΠ,r and a redundant Gauss-Seidel procedure for rSΠΠ.
When using a sequential Gauss-Seidel implementation with xM−1

BDDC, VB, for simplicity, we also
create a sequential copy of Ψ, which could be avoided.

When using PETSc’s parallel SOR/Gauss-Seidel with xM−1
BDDC, VB, no sequential copies

of Ψ are created in our implementation. Since the parallel SOR/Gauss-Seidel in PETSc is in
fact a block Jacobi preconditioner in between the local blocks associated with the different
MPI ranks and an SOR/Gauss-Seidel preconditioner on the local blocks themselves, its use
can obviously decrease the convergence rate of the method. As an advantage, we only have
to build a sequential copy of rSΠΠ,r, which is much smaller compared to rSΠΠ. The matrices
rSΠΠ and Ψ are kept in a distributed fashion as described above. Let us finally remark that we
can apply the Gauss-Seidel preconditioner additively as described in equation (4.1) as well as
multiplicatively, which is of course more robust.

7. Numerical results. In this paper, we restrict ourselves to homogeneous linear elastic-
ity problems, i.e., with constant coefficients. For heterogeneous examples or different model
problems, we refer to [13] for xM−1

BDDC, AMG and to [9] for xM−1
BDDC, VB. All computations are

performed on the magnitUDE supercomputer (University of Duisburg-Essen) or on JUWELS
(FZ Juelich).

7.1. Three-level BDDC and BDDC with an AMG coarse preconditioner. We first
concentrate on a comparison between xM−1

BDDC, 3L and xM−1
BDDC, AMG, which clearly have the
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largest parallel potential, especially due to the large coarsening ratio from the second to
the coarsest level. Also xM−1

BDDC, 3L can be easily extended to a multilevel preconditioner,
while xM−1

BDDC, AMG already consists of several levels. The alternative xM−1
BDDC, VB is limited in

scalability by construction since the vertex-based coarse space is always solved by a sparse
direct solver in our implementation. We therefore analyze and compare xM−1

BDDC, VB separately
in Section 7.2.

To have a theoretical baseline, we always include the exact BDDC preconditioner M−1
BDDC

in all figures. To verify the quadratic dependence of the condition number on the logarithm of
H/h, which can be seen as a measure of the subdomain size, we provide Figure 7.1. There,
we consider a linear elastic cube decomposed into 512 subdomains with Young modulus
E = 210 GPa and different Poisson ratios. As a coarse space we enforce continuity of
the values at all subdomain vertices and in all edge averages. With a Poisson ratio of 0.3
(Figure 7.1 (top)), all methods show the expected logarithmic dependency of the condition
number on the subdomain size. All in all, xM−1

BDDC, AMG has slightly higher condition numbers
than the competing methods. For xM−1

BDDC, AMG it is useful to include the GM approach. For
xM−1

BDDC, 3L, both tested setups, i.e., 8 or 64 subdomains per subregion, have nearly the same
condition number. Choosing a larger Poisson ratio of 0.49 (Figure 7.1 (bottom)), xM−1

BDDC, AMG
has higher condition numbers especially for small subdomain sizes. For larger subdomain
sizes and using GM, xM−1

BDDC, AMG is again competitive with the three-level BDDC. Let us
remark that xM−1

BDDC, AMG for this example shows the logarithmic dependency of the condition
number only for H/h larger than 16, and the condition numbers are larger. Let us remark that
we always use a highly scalable AMG setup, i.e., aggressive HMIS coarsening, ext+ i long
range interpolation, nodal coarsening, a threshold of 0.3, and a maximum of three entries per
row in the AMG interpolation matrices. Less aggressive strategies might show lower condition
numbers, but we explicitly choose the parameters to obtain good parallel scalability; see [2].

For the same setup with a Poisson ratio of 0.3 but fixed H/h = 24, we perform a weak
scaling study in Figure 7.2 up to 4096 cores. Considering the number of CG iterations until
convergence (Figure 7.2 (top)), the GM approach is necessary in xM−1

BDDC, AMG to obtain results
of similar quality as xM−1

BDDC, 3L. The same can be observed considering the time to solution;
see Figure 7.2 (bottom). The time to solution is always the complete runtime measured
from the program start to finish. This especially includes the assembly of the linear system,
the setup of the preconditioner, and the iteration/solution. For detailed timings we refer
to Figure 7.3, where the assembly of the stiffness matrix, the BDDC setup, and the CG
iteration are shown separately for the largest experiment from Figure 7.2. Of course, the exact
BDDC preconditioner does not scale due to the sequential coarse solve.

7.2. Vertex-based BDDC. We have implemented an “economic” variant of the edge-
based coarse space [9, Section 6], i.e., three translational degrees of freedom on edges are
reduced to three translational degrees of freedom of an adjacent vertex. We provide a weak
scaling test up to 5 832 cores for xM−1

BDDC, VB for a similar model problem, i.e., linear elasticity
with a Poisson ratio of 0.3 and a Young modulus of 210 GPa. In Figure 7.4, we provide
CG iterations and time to solution for exact BDDC and xM−1

BDDC, AMG using GM. We also
provide more detailed timings in Figure 7.5, where the assembly of the stiffness matrix, the
BDDC setup, and the CG iteration are shown for the largest experiment from Figure 7.4
separately. For xM−1

BDDC, VB, a multiplicative combination of Gauss-Seidel applied to rSΠΠ and
the direct solve of the vertex-based coarse problem is always a better choice than an additive
variant. The parallel Gauss-Seidel method, which—as implemented in PETSc—is in fact a
block Jacobi with SOR/Gauss-Seidel blocks, always results in more CG iterations but faster
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runtimes. With respect to parallel scalability, the best variant of xM−1
BDDC, VB is competitive

with xM−1
BDDC, AMG at least up to the moderate core count of 5 832. For an increasing number of

cores, we expect xM−1
BDDC, AMG to outperform xM−1

BDDC, VB due to its inherent multilevel structure.
Here, a three-level extension of xM−1

BDDC, VB would be needed. Instead, xM−1
BDDC, VB could be

used to precondition the coarsest level of a three-level BDDC method.

8. Conclusion. We have presented different approaches to approximate the coarse solve
in BDDC and compared them with respect to theory and parallel scalability for the first time.
If an appropriate AMG approach is available, e.g., the GM approach in the case of linear
elasticity problems, then xM−1

BDDC, AMG and xM−1
BDDC, 3L show a very similar behavior and both

variants can be recommended. Up to a moderate number of computing cores, also xM−1
BDDC, VB

can be an adequate alternative. An advantage of xM−1
BDDC, VB is the fact that neither a further

decomposition into subregions is necessary nor an appropriate AMG method has to be chosen.
On the other hand, the parallel potential of xM−1

BDDC, VB as a two-level method is limited. For
a large number of subdomains, a three-level extension of xM−1

BDDC, VB would be necessary but
is not available yet. However, instead, xM−1

BDDC, VB could be used on the coarsest level of a
three-level BDDC method.
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FIG. 7.1. Homogeneous linear elastic cube decomposed into 512 subdomains with H/h = 4, 6, ..., 26.
Top: E = 210.0 and ν = 0.3; Bottom: E = 210.0 and ν = 0.49. We vary the number of subdomains per
subregion in xM−1

BDDC, 3L, and we compare nodal AMG and AMG-GM in xM−1
BDDC, AMG. Computed on the magnitUDE

supercomputer.
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FIG. 7.2. Comparison of M−1
BDDC, xM−1

BDDC, 3L with 8 or 64 subregions and xM−1
BDDC, AMG with and without GM.

Using vertex and edge constraints. Homogeneous linear elastic cube decomposed into 64,512, and 4 096 subdomains
with H/h = 24. Top: Number of CG iterations; Bottom: Total time to solution including assembly of stiffness
matrices, setup of the preconditioner, and solution phase. See also Figure 7.3 for the detailed setup and solve times
for the largest experiment. Computed on JUWELS.

FIG. 7.3. Comparison of BDDC setup and solve times of M−1
BDDC, xM−1

BDDC, 3L with 8 or 64 subregions and
xM−1

BDDC, AMG with and without GM. Using vertex and edge constraints. Homogeneous linear elastic cube decomposed
into 4 096 subdomains with H/h = 24. Corresponding weak scaling experiments can be found in Figure 7.2.
Computed on JUWELS.
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FIG. 7.4. Comparison of M−1
BDDC, xM−1

BDDC, VB using additive/multiplicative sequential/parallel Gauss-Seidel

and xM−1
BDDC, AMG with GM. Using only edge constraints. Homogeneous linear elastic cube with H/h = 22. Top:

Number of CG iterations; Bottom: Total time to solution including assembly of stiffness matrices, setup of the
preconditioner, and solution phase. See also Figure 7.5 for the detailed setup and solve times for the largest
experiment. Computed on the magnitUDE supercomputer.

FIG. 7.5. Comparison of BDDC setup and solve times ofM−1
BDDC, xM−1

BDDC, VB with different Gauß-Seidel setups

and xM−1
BDDC, AMG with GM. Using edge translations as constraints. Homogeneous linear elastic cube decomposed

into 5 832 subdomains with H/h = 22. Corresponding weak scaling experiments can be found in Figure 7.4.
Computed on magnitUDE supercomputer.
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