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PRECONDITIONED GRADIENT ITERATIONS FOR THE EIGENPROBLEM OF
DEFINITE MATRIX PAIRS∗

MARIJA MILOLOŽA PANDUR†

Abstract. Preconditioned gradient iterations for large and sparse Hermitian generalized eigenvalue problems
Ax = λBx, with positive definite B, are efficient methods for computing a few extremal eigenpairs. In this paper
we give a unifying framework of preconditioned gradient iterations for definite generalized eigenvalue problems
with indefinite B. More precisely, these iterations compute a few eigenvalues closest to the definiteness interval,
which can be in the middle of the spectrum, and the corresponding eigenvectors of definite matrix pairs (A,B), that
is, pairs having a positive definite linear combination. Sharp convergence theorems for the simplest variants are
given. This framework includes an indefinite locally optimal block preconditioned conjugate gradient (LOBPCG)
algorithm derived by Kressner, Miloloža Pandur, and Shao [Numer. Algorithms, 66 (2014), pp. 681–703]. We
also give a generic algorithm for constructing new “indefinite extensions” of standard (with positive definite B)
eigensolvers. Numerical experiments demonstrate the use of our algorithm for solving a product and a hyperbolic
quadratic eigenvalue problem. With excellent preconditioners, the indefinite variant of LOBPCG is the most efficient
method. Finally, we derive some ideas on how to use our indefinite eigensolver to compute a few eigenvalues around
any spectral gap and the corresponding eigenvectors of definite matrix pairs.

Key words. eigenpair, definite matrix pair, definitizing shift, definiteness interval, spectral gap, preconditioned
steepest descent/ascent iteration, indefinite LOBPCG
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1. Introduction. The generalized eigenvalue problem (GEP) for two given matrices
A,B ∈ Cn×n is to find scalars λ and nonzero vectors x ∈ Cn such that

(1.1) Ax = λBx.

The pair (λ, x) is called an eigenpair, where λ is an eigenvalue and x is a corresponding
eigenvector. The GEP (1.1) where A and B are both Hermitian or real symmetric occurs
in many applications of mathematics. A very important case is when B (and A) is positive
definite, which appears, for example, in the finite element discretization of self-adjoint and
elliptic PDE-eigenvalue problems [19]. Another very important case is when B (and A)
is indefinite, but the matrix pair (A,B) is definite, meaning that there exist real scalars α
and β such that the matrix αA + βB is positive definite. This case appears, for example,
in mechanics [58] and computational quantum chemistry [3]. Many theoretical properties,
such as variational principles, perturbation theory, etc., and eigenvalue solvers for Hermitian
matrices have been extended to definite matrix pairs [49, 55, 58].

Suppose A and B are both Hermitian and the pair (A,B) is definite. This excludes
singular pairs (A,B), for which αA+ βB is a singular matrix independent of the choice of α
and β. In this paper, we are interested in solving the partial definite GEP (1.1), whereB (andA)
is indefinite. Even ifA andB are both singular, the pair (A,B) can be definite. However, since
a definite pair is regular (i.e., it is not a singular pair), the intersection of the nullspaces of such
A and B must be trivial [55, Example VI.1.3]. Some of the existing eigenvalue solvers that
operate with the indefinite inner product induced byB are indefinite Jacobi algorithms [24, 57],
the Rayleigh quotient method [40], and indefinite Lanczos methods [2, 40]. Specifically, in this
paper, we are interested in an iterative algorithm that computes a small number of eigenvalues
closest to the definiteness interval, see Definition 3.4, and the corresponding eigenvectors.
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These eigenvalues are themselves relevant in some applications such as computational quantum
chemistry [3, 53]. Moreover, as we shall see, every spectral gap can be viewed as the
definiteness interval of a related matrix pair. In this way, we devise an algorithm to compute
the eigenvalues in an arbitrary interval of the spectrum. The class of algorithms we deal with
are preconditioned gradient-type iterations, in single vector or block form, suitable for large and
sparse matrices, previously studied for the case in which A and/or B are known to be positive
definite; for a survey of preconditioned iterations we refer to [2, 32]. An indefinite variant of
the locally optimal block preconditioned conjugate gradient method (the LOBPCG method
proposed by Knyazev in [33]) is suggested by Kressner, Miloloža Pandur, and Shao in [38]. In
this paper, we propose some new preconditioned eigensolvers [43, Section 3] suitable for a
definite matrix pair with indefinite matrices that can be interpreted as a truncated and extended
version of the indefinite LOBPCG [38]. For the truncated version of the indefinite locally
optimal preconditioned conjugate gradient (LOPCG) method,1 which we call the indefinite
preconditioned steepest descent/ascent (PSD/A), we derive sharp convergence estimates.

This paper is organized as follows. In Section 2, we give a short review of two important
preconditioned gradient iterations for a GEP Ax = λBx with A positive definite. In Section 3,
we present a unifying framework of preconditioned gradient iterations for a definite GEP (1.1)
with indefinite B called an indefinite variant of the (m)-scheme. Section 4 contains sharp
convergence estimates for the simplest variants of the indefinite variant of the (m)-scheme. In
Section 5, we devise some possibilities of using our algorithm to compute a modest number of
eigenvalues around any spectral gap of a definite matrix pair. Numerical examples are given
in Section 6. Section 7 contains some concluding remarks.

Notation. The matrix In denotes the n× n identity matrix. When the dimension is clear
from the context we use simply I . We write A � 0 (A � 0) when A is a Hermitian positive
(semi)definite matrix. We also use A ≺ 0 (A � 0) if −A � 0 (−A � 0). For a given A � 0,
‖ · ‖A denotes a matrix norm induced by the vector norm ‖x‖A =

√
xHAx. The inertia of

a Hermitian matrix B is denoted by In(B), that is, the ordered triple containing the number
of positive, negative, and zero eigenvalues of B. A sub- and superscript +, − of some scalar,
vector or an iteration name refer to the corresponding B-positive and B-negative property,
respectively.

2. Preliminaries. Let A,B ∈ Cn×n be Hermitian and let A be positive definite. We
briefly review two known preconditioned gradient iterations for finding the smallest eigenvalue
and the corresponding eigenvector of the GEP

(2.1) Ax = λBx.

Let

ρ(x) =
xHAx

xHBx
, xHBx 6= 0,

denote the Rayleigh quotient associated with the matrix pair (A,B). When B is indefinite, it is
convenient [33, 46] to consider the dual GEP Bx = µAx with µ = 1/λ and to find the largest
eigenvalue and the corresponding eigenvector. Let x(i) denote the current approximation of the
eigenvector corresponding to the smallest eigenvalue of (2.1). For a given Hermitian matrix
T ∈ Cn×n, called the preconditioner (usually, T = A−1 or T ≈ A−1), the preconditioned
steepest descent (PSD) [20, 29, 30] iteration takes the following form

(2.2) x(i+1) = x(i) − τ (i)T (Ax(i) − ρ(x(i))Bx(i)),

1LOPCG is the method LOBPCG run with block size one, that is, the single vector variant.
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where the scalar iteration parameter τ (i) is chosen such that ρ(x(i+1)) is minimized. The
LOPCG iteration [31] takes the following form

(2.3) x(i+1) = x(i) − γ(i)x(i−1) − τ (i)T (Ax(i) − ρ(x(i))Bx(i)),

where the scalar iteration parameters γ(i) and τ (i) are chosen such that ρ(x(i+1)) is minimized.
The preconditioned residualw(i) := Tr(i), where r(i) := Ax(i)−ρ(x(i))Bx(i), is obtained by
solving the linear system T−1w(i) = r(i). In the finite element discretization of a self-adjoint
and elliptic partial differential operator, a symmetric positive definite geometric or algebraic
multigrid V-cycle preconditioner is commonly used. According to Neymeyr, “typically,
symmetric positive definite multigrid preconditioners can be realized with only linearly
increasing computational costs (optimal complexity) and, at best, convergence rates can be
guaranteed which do not depend on the mesh size” [45, p. 1042]. Also, see [35].

PSD and LOPCG iterations are preconditioned gradient iterations since for the given
preconditioner T they use the T -gradient of ρ. The T -gradient reads

∇T ρ(x) := T∇ρ(x), where ∇ρ(x) =
2(Ax− ρ(x)Bx)

xHBx
.

The current residual Ax− ρ(x)Bx is collinear with the gradient ∇ρ(x), which explains the
term “gradient” in gradient iteration. Therefore, the PSD iteration computes a sequence of
iterates with decreasing Rayleigh quotients by successive corrections in the negative T -gradient
direction of the current iterate. LOPCG additionally contains the optimal direction of the
previous iterate.

The connection between a three-term recurrence of the LOPCG iteration (2.3) and a three-
term recurrence of the standard linear preconditioned conjugate gradient method (PCG) [50],
is pointed out in [33, p. 523]. Numerical experiments in [33, Section 7] demonstrate a similar
behavior of the two mentioned methods when the preconditioners and initial approximations
are the same for both methods.

REMARK 2.1. The best possible scalar iteration parameters τ (i) and γ(i) in PSD itera-
tion (2.2) and LOPCG iteration (2.3) are not found by using some optimization method. They
are given only implicitly. If x is an eigenvector, then so is αx, α 6= 0; so what we really want
to find is the direction of the next iterate. From (2.2) and (2.3) we see that the next iterate
x(i+1) is in the subspace span[x(i), w(i)] and span[x(i), x(i−1), w(i)], respectively. Therefore,
the best approximations for eigenpairs from the subspace are given through the Rayleigh–Ritz
procedure [49]. Therefore, (x(i+1), ρ(x(i+1))) is a Ritz pair of the matrix pair (A,B) with
respect to the given subspace. As PSD (LOPCG) aims at minimizing the Rayleigh quotient,
ρ(x(i+1)) is a smaller (the smallest) Ritz value and x(i+1) is the associated Ritz vector.

If we want to find several smallest eigenpairs of GEP (2.1), then we can use the block (or
subspace) versions of iterations (2.2) and (2.3): block preconditioned steepest descent (BPSD)
and LOBPCG [32, 33], respectively. Standard preconditioned gradient iterations, such as
BPSD and LOBPCG, operate with an inner product induced by a positive definite matrix and
aim to compute the smallest or largest eigenvalues (i.e., the extremal eigenvalues) and the
corresponding eigenvectors. These iterations can be modified in a natural way to compute the
eigenvalues around the definiteness interval, which can be in the middle of the spectrum, and
the corresponding eigenvectors of a definite matrix pair with indefinite matrices. Therefore,
they operate with an indefinite inner product. Indefinite variants of LOBPCG are suggested
in [38]. Here we propose the whole class of indefinite variants of preconditioned gradient
iterations in Section 3, which includes indefinite LOBPCG methods [38, Algorithms 1 and 2].

3. An indefinite variant of the (m)-scheme of preconditioned gradient iterations.
In this section, we propose a new class of preconditioned gradient iterations [43, Sections 3.2.2
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and 3.2.3] for definite matrix pairs (A,B) with indefinite B. Therefore, we use the indefinite
inner product induced by B. A vector x ∈ Cn is called B-positive, B-negative, and B-neutral
if xHBx > 0, xHBx < 0, and xHBx = 0, respectively. A vector x is B-normalized if
|xHBx| = 1. We call vectors xi and xj B-orthogonal if xHi Bxj = 0 and B-orthonormal if
|xHi Bxj | = δij , where δij is the Kronecker delta symbol.

DEFINITION 3.1. Let A,B ∈ Cn×n. A matrix pair (A,B) is called a Hermitian matrix
pair if both A and B are Hermitian. A Hermitian matrix pair (A,B) is called positive
(negative) definite if there exists a real λ0 such that A− λ0B is positive (negative) definite.

REMARK 3.2. Recall that a Hermitian matrix pair (A,B) is definite (e.g., [40]) if there
exist real constants α, β such that αA+ βB is a positive definite matrix. In this case, if α 6= 0,
then (A,B) is a positive or negative definite pair with λ0 = −β

α ; if α = 0, then β 6= 0, and B
is either a positive or negative definite matrix. If the pair (A,B) is positive definite, then the
pair (−A,B) is negative definite, so from now on we deal only with positive definite matrix
pairs.

A definite matrix pair can be diagonalized by a congruence transformation. The following
theorem reveals the natural structure of a positive definite matrix pair.

THEOREM 3.3 ([39, 42]). Let (A,B) be a positive definite matrix pair of order n such
that B has inertia In(B) = (n+, n−, n0).

i) There exists a nonsingular W such that

WHAW =

Λ+

−Λ−
In0

 , WHBW =

In+

−In−

0n0

 ,
where Λ+ := diag(λ+1 , . . . , λ

+
n+

), Λ− := diag(λ−1 , . . . , λ
−
n−

) with

(3.1) λ−n−
≤ · · · ≤ λ−1 < λ+1 ≤ · · · ≤ λ+n+

.

ii) The matrix pair (A,B) has only real finite eigenvalues and the number of finite
eigenvalues is rank(B) = n+ + n−. Each eigenvalue λ+j , λ−j has an eigenvector x
that satisfies xHBx = 1 and xHBx = −1, respectively.

iii) The matrix A− λ0B is positive definite for every λ0 ∈ (λ−1 , λ
+
1 ) and nowhere else.

Note that the definiteness of the pair (A,B) precludes defective eigenvalues. Therefore,
since every eigenvalue λ+j has a B-positive eigenvector, λ+j is called a B-positive eigenvalue.
Similar holds for λ−j . Any eigenvector x belonging to a finite eigenvalue of (A,B) cannot be
B-neutral, so we can always B-normalize x. Eigenvectors belonging to different eigenvalues
are B-orthogonal. Theorem 3.3 justifies the following definition.

DEFINITION 3.4. Let A− λ0B be positive definite, where (A,B) is a given Hermitian
pair. The set of all such λ0 is an open interval called the definiteness interval [58], and every
such λ0 is called a definitizing shift.

The following lemma guarantees a basic property of our algorithm.
LEMMA 3.5 ([38, Section 2]). Let B ∈ Cn×n be Hermitian, and consider a parti-

tioned matrix U = [X, Y ] ∈ Cn×p. Moreover, let In(XHBX) =: (k+, k−, k0) and also
In(UHBU) =: (p+, p−, p0). Then

k+ ≤ p+, k− ≤ p−.

Now we briefly present the theoretical background for our algorithm [38, Section 2]. Let
A,B ∈ Cn×n be Hermitian such that B has inertia In(B) = (n+, n−, n0) and let (A,B) be
a positive definite matrix pair with finite eigenvalues (3.1) and infinite eigenvalues

(3.2) λ∞i :=∞ for i = 1, . . . , n0.
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Now, the definiteness interval equals (λ−1 , λ
+
1 ). Let U ∈ Cn×p have full column rank. Then

the projected matrix pair (UHAU,UHBU) is also positive definite [38, Theorem 2.3]; hence
its finite eigenvalues are real and can be ordered as follows:

θ−p− ≤ · · · ≤ θ
−
1 < θ+1 ≤ · · · ≤ θ+p+ ,

with In(UHBU) = (p+, p−, p0). The eigenvalue interlacing properties [38, Theorem 2.3]
hold

λ+i ≤ θ
+
i ≤ λ

+
i+n−p for i = 1, . . . , p+,(3.3a)

λ−j ≥ θ
−
j ≥ λ

−
j+n−p for j = 1, . . . , p−,(3.3b)

where we formally set λ+i =∞ for i > n+ and λ−j = −∞ for j > n−. Let

Jk :=

[
Ik+

−Ik−

]
for some integers k+ and k− satisfying (k+, k−, 0) ≤ In(B), where the inequality is un-
derstood elementwise. Now assume (k+, k−, 0) ≤ In(UHBU). Then applying the trace
minimization principle [37, 42] to (A,B) and (UHAU,UHBU), and using the eigenvalue
interlacing properties (3.3) we have

min
X ∈ Cn×k

XHBX = Jk

trace (XHAX) =

k+∑
i=1

λ+
i −

k−∑
j=1

λ−j(3.4a)

≤
k+∑
i=1

θ+i −
k−∑
j=1

θ−j(3.4b)

= min
Y ∈ Cp×k

Y H(UHBU)Y = Jk

trace
(
Y H(UHAU)Y

)
,(3.4c)

with equality if and only if U is spanned by the eigenvectors of the pair (A,B) belonging to
λ+1 , . . . , λ+k+ and λ−1 , . . . , λ−k− . These eigenvectors are columns in the minimizing matrix
Xmin of the function in (3.4a).

For small given integers k±, our aim is to determine the minimum and the minimizing
matrixXmin of the function given in (3.4a), that is, to find the k+ smallestB-positive eigenval-
ues λ+1 , . . . , λ+k+ , the k− largest B-negative eigenvalues λ−1 , . . . , λ−k− , and the corresponding
eigenvectors of the positive definite pair (A,B). Considering (3.4), we find approximations
of the wanted eigenpairs from the chosen subspace U = spanU by using the Rayleigh–Ritz
procedure. We compute all eigenpairs of the small projected pair (UHAU,UHBU) and
extract only those around its definiteness interval θ±j , j = 1, . . . , k± and the corresponding
eigenvectors y±j , j = 1, . . . , k±. These eigenvectors are assumed to be normalized such that

Y H(UHBU)Y = Jk, where Y = [y+k+ , . . . , y
+
1 , y

−
1 , . . . , y

−
k−

].

The Ritz pairs of the matrix pair (A,B) with respect to the subspace U are then given
by (θ±j , Uy

±
j ), j = 1, . . . , k±. Therefore, the matrix X := UY of the Ritz vectors has

B-orthonormal columns.
Now we need to specify a subspace U , which can be chosen in many ways. An indefinite

variant of the (m)-scheme with one preconditioner is presented in Algorithm 3.1, similarly
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Algorithm 3.1 An indefinite variant of the (m)-scheme with one preconditioner, m ≥ 2.
Input: A, B ∈ Cn×n: coefficients of a positive definite pair (A,B) with indefinite B;

T ∈ Cn×n: Hermitian positive definite preconditioner;
X(0) ∈ Cn×k: initial guess such that (k+, k−, 0) ≤ In

[
(X(0))HBX(0)

]
.

Output: `+ ≤ k+ smallest B-positive eigenpairs and `− ≤ k− largest B-negative eigenpairs.
1: B-orthonormalize X(0).
2: Apply the Rayleigh–Ritz procedure to (A,B) with respect to the subspace spanX(0),

and let Θ(0) be the diagonal matrix containing the wanted Ritz values.
3: Initialization: If m ≥ 3, then compute an initial sequence of m − 2 matrices
X(1), . . . , X(m−2) by executing single steps of the (j)-scheme with the initial sequence
X(0), . . . , X(j−2) for j = 2, . . . ,m− 1.

4: for i = m− 2, m− 1, m, . . . do
5: Compute preconditioned residual W (i) ← T (AX(i) −BX(i)Θ(i)).
6: if all desired eigenvalues are converged then Exit loop. end if
7: Set the subspace U (i) ← spanU (i) = span

[
X(i),W (i), X(i−1), . . . , X(i−m+2)

]
.

8: B-orthonormalize U (i).
9: Apply the Rayleigh–Ritz procedure to (A,B) with respect to the subspace U (i) and let

X(i+1) be the matrix of the Ritz vectors corresponding to k+ smallest B-positive and
k− largest B-negative Ritz values and let Θ(i+1) be the diagonal matrix containing the
wanted Ritz values.

10: end for

to a unifying framework suggested in [44, 45] for a class of preconditioned gradient type
eigensolvers for computing the smallest eigenpair of a GEP with real symmetric positive
definite matrices. Let

X(0), . . . , X(m−2) ∈ Cn×k, k = k+ + k−,

be an initial sequence of matrices of approximations of the wanted eigenvectors with m ≥ 2 a
small fixed integer. In the ith (i ≥ m− 2) iteration of Algorithm 3.1 we consider the subspace

(3.5) U (i) = spanU (i) := span
[
X(i),W (i), X(i−1), X(i−2), . . . , X(i−m+2)

]
,

(a matrix X(−j) is a zero matrix) with the preconditioned residual matrix

W (i) := T ·R(i) = T ·
(
AX(i) −BX(i)Θ(i)

)
for some Hermitian positive definite matrix T ∈ Cn×n and

Θ(i) :=
(
(X(i))HBX(i)

)−1
(X(i))HAX(i).

Notice that the dimension of the subspace U (i) does not exceed mk for all i = 0, 1, 2, . . . .
Every new subspace U (i) in Algorithm 3.1 contains column vectors of the current iteration

matrix X(i) containing Ritz vectors. Therefore, the eigenvalue interlacing properties guarantee
θ
+(i+1)
j ≤ θ+(i)

j , j = 1, . . . , k+, and θ−(i)j ≤ θ−(i+1)
j , j = 1, . . . , k−, that is, the B-positive

Ritz values are monotonically decreasing and the B-negative Ritz values are monotonically
increasing for any preconditioner, not necessarily positive definite. Therefore, our iteration
method is trace-reducing and robust with respect to the choice of the preconditioner.

An indefinite LOBPCG method with one preconditioner [38, Algorithm 1] coincides with
Algorithm 3.1 with m = 3.

We now give some remarks on the use and implementation of Algorithm 3.1, similarly to
[38, Section 3.1]. The user chooses m ≥ 2 determining the dimension of the search subspace.
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Initial guess. The user needs to give an initial guess X(0) such that

In
(
(X(0))HBX(0)

)
= (k+, k−, k0) ≥ (`+, `−, 0)

holds (the inequality is understood elementwise), where `+ (`−) denotes the number of
the wanted smallest B-positive (largest B-negative) eigenpairs. The inequality k± ≤ p±
for In

(
(U (i))HBU (i)

)
= (p+, p−, p0) holds for all iterations; this follows by induction

from Lemma 3.5. Notice that p+ and p− may vary during the iterative process. Hence, we
need precise information about the number of eigenvalues for both types in the projected
problem in order to extract the desired Ritz values. This is quite different compared to
the standard LOBPCG algorithm, in which the desired Ritz values are always the smallest
ones. Fortunately, we have knowledge about p+ and p− since the inertia of (U (i))HBU (i) is
available as a byproduct of the B-orthogonalization procedure; see below.

When B has a particular structure, as in many applications, choosing such an initial guess
is straightforward; see Examples 6.1–6.3.

We allow X(i) to have more than `+ B-positive and more than `− B-negative columns,
which can be useful when we have a cluster of eigenvalues. In this way, the dimension of the
search subspace is bigger, which can lead to faster convergence.

Initialization. The current subspace U (i) depends on the span of m − 2 matrices of
the previous Ritz vectors. Therefore, if m ≥ 3, we need to compute these matrices before
proceeding with the iteration. For example, if m = 4, we need to compute an initial sequence
of two matricesX(1), X(2) by executing single steps of the indefinite variant of the (j)-scheme
with the initial sequence X(0), X(j−2) for j = 2, 3. This means that we execute only the first
iteration step (i = 0) of the (2)-scheme to get X(1) from span[X(0),W (0)]. Then, we execute
only the first iteration step (i = 1) of the (3)-scheme to get X(2) from span[X(1),W (1), X(0)].
Finally, we can proceed with the iteration in the (4)-scheme, where in the first iteration step
(i = 2) we have span[X(2),W (2), X(1), X(0)].

Choosing the basis. The natural basis [X(i),W (i), X(i−1)] for U (i) in the indefinite
LOBPCG method (as in the standard LOBPCG method) is ill-conditioned. To improve numer-
ical stability a new basis is chosen [33, 38]: the matrix X(i−1) is replaced by the matrix P (i).
The columns of the matrix P (i) are given as an implicit difference of the corresponding
columns of the matrices X(i) and X(i−1). More precisely, let the 3k × k matrix Y (i+1)

containing the desired eigenvectors of the projected pair ((U (i))HAU (i), (U (i))HBU (i)) be
partitioned as

Y (i+1) =

[
Y

(i+1)
1

Y
(i+1)
2

]
, Y

(i+1)
1 ∈ Ck×k, Y

(i+1)
2 ∈ C2k×k.

Update (P (0) ← [])

P (i+1) ← [W (i), X(i−1)]Y
(i+1)
2 , X(i+1) ← X(i)Y

(i+1)
1 + P (i+1).

Since P (i+1) = X(i+1) − X(i)Y
(i+1)
1 , then in the indefinite variant of the (m)-scheme

we use the new basis [X(i),W (i), P (i), P (i−1), . . . , P (i−m+3)] instead of the natural basis
[X(i),W (i), X(i−1), X(i−2), . . . , X(i−m+2)].

B-orthonormality. The Ritz pairs extracted from the subspace U (i) do not depend on
the choice of the basis. For the standard LOBPCG method it has been observed that choosing
an orthonormal basis leads to improved numerical stability [17, 25]. In [38], the authors made
a similar observation when choosing a B-orthonormal basis in the indefinite LOBPCG method.
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We prefer B-orthonormalization rather than standard orthonormalization (in the Euclidean
inner product) in our algorithm for the following reasons. The first reason is the natural
structure of the GEP we are interested in: since the eigenvectors corresponding to different
eigenvalues of a definite matrix pair are B-orthogonal, we would like the approximations
of the wanted eigenvectors (in our algorithm, these are Ritz vectors) to be B-orthogonal as
well. Furthermore, we want to solve the trace minimization problem (3.4), where we have the
B-orthonormality property XHBX = diag(±1). Once the basis has been constructed, we
form the projected pair ((U (i))HAU (i), (U (i))HBU (i)), where, in general, (U (i))HAU (i) is
a full matrix, and in theory (U (i))HBU (i) = diag(±1). Therefore, we can apply the J-Jacobi
method of Veselić [57] to the small projected pair.

The B-orthonormalization process [38, Section 3.1] needs to be implemented carefully to
avoid numerical instability. Notice that this process in not always possible due to the existence
of B-neutral vectors. Further, for a vector close to a B-neutral vector, forcing B-normalization
will lead to a large growth factor. To avoid that, we can use a preprocessing step [38, Sec-
tion 3.1] and drop the problematic vectors from the basis; see also the discussion in [17,
Section 4.1] for the standard LOBPCG. By Lemma 3.5, when orthogonalizing U (i) from (3.5)
with (X(i))HBX(i) = diag(±1), the output U (i)

drop can be chosen of the form [X(i), Z(i)] (con-
sequently, we have rank(X(i)) ≤ rank(U

(i)
drop) ≤ rank(U (i))), which is enough for a search

subspace as long as Z(i) contains some columns to keep the algorithm working. If too many
columns must be dropped, the basis can be padded with randomly generated B-orthogonalized
columns.

Deflation. A Ritz pair is deflated after it has converged to the desired accuracy. In our
algorithm, we use a “deflate from the middle” strategy: a Ritz value θ±j (here we drop the
superscript (i) for clarity) is deflatable if and only if all Ritz values θ±i , with 1 ≤ i ≤ j − 1,
are deflatable and2

(3.6) ‖r±j ‖2 := ‖Ax±j − θ
±
j Bx

±
j ‖2 ≤ tol · |θ±j | ‖B‖2‖x

±
j ‖2,

where x±j := Uy±j is the corresponding Ritz vector and tol is a tolerance specified by the
user. Deflated Ritz vectors, as in the standard LOBPCG method [34], do not participate in
the computation of W (i) or P (j), j = i − m + 3, . . . , i, but they still need to part of the
B-orthonormalization process to avoid repeated convergence to the same eigenvalue. The
bound (3.6) is used in a backward error analysis of approximate eigenpairs [38, Section 3.4].
For large sparse matrices an estimate of the 2-norm is used. We refer to [17, Section 4] for
this issue. The 1-norm of the matrix can also be used; see, e.g., [41] for a hyperbolic quadratic
eigenvalue problem.

Preconditioner. The preconditioned residuals (here we drop the superscript (i) for
clarity) w±j := Tr±j are obtained by solving linear systems T−1w±j = r±j for j = 1, . . . , k±.
Usually, these systems are solved only approximately by some iterative method such as the
linear conjugate gradient method (CG) [16] with a low drop tolerance. Ideally, one application
of a preconditioner to a residual vector has the same costs as one matrix-vector product.
We use a Hermitian positive definite preconditioner T for three reasons. Since we want to
compute the interior eigenvalues around the definiteness interval, we use a definitizing shift
λ0 for which the matrix A− λ0B is positive definite. Therefore we use a Hermitian positive
definite preconditioner T = (A− λ0B)−1 or T ≈ (A− λ0B)−1. The second reason is the
efficiency of a positive definite preconditioner such as a symmetric positive definite multigrid

2Although we use a superscript + (−) in a residual r+j (r−j ), this does not imply that r+j (r−j ) is B-positive
(B-negative). Similar holds for a preconditioned residual w±j .
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preconditioner used in the discretization of an elliptic PDE-eigenproblem. The third reason
lies in the fact that the convergence analysis (see Section 4.1) is given only for a symmetric
positive definite preconditioner. Since our Algorithm 3.1 is robust with the choice of the
preconditioner, we can even choose the shift λ0 outside of the definiteness interval, which
results in an indefinite preconditioner [33], [38, Example 5.2].

TABLE 3.1
An indefinite variant of the (m)-scheme for m = 2 and m = 3.

m k− k+ Eigensolver m k− k+ Eigensolver
2 1 0 PSA− 2 0 1 PSD+

2 > 1 0 BPSA− 2 0 > 1 BPSD+

3 1 0 LOPCG− 3 0 1 LOPCG+

3 > 1 0 LOBPCG− 3 0 > 1 LOBPCG+

2 1 1 indefinite PSD/A 3 1 1 indefinite LOPCG
2 > 1 > 1 indefinite BPSD/A 3 > 1 > 1 indefinite LOBPCG

In Table 3.1, we appoint an eigensolver for m = 2 and m = 3 from our algorithm. The
names of our methods point to a strong relationship with existing methods for the partial GEP
for a matrix pair (A,B) with positive definite B. The abbreviation BPSA stands for the block
(or subspace) preconditioned steepest ascent iteration. In our methods, superscripts + and −
mean that iterations operate not on the whole Euclidean space, but only on the B-positive and
B-negative subsets, respectively.

During the past few years several variants of extended (B)PSD/A and LO(B)PCG type
methods were proposed for nonlinear Hermitian eigenvalue problems with variational charac-
terizations [7, 41, 56]. The mentioned eigenvalue problems include definite matrix pairs. A
so-called interval of definite type: positive3 or negative [56, Definition 2.1, Proposition 2.4] is
chosen. Then, in a single vector version, the algorithms in [7, 41, 56] compute the smallest
(or largest) eigenvalue in that interval and the corresponding eigenvector. In block versions,
the algorithms compute a few of the smallest (or largest) eigenvalues in that interval and the
corresponding eigenvectors. Our Algorithm 3.1 with k± ≥ 1 simultaneously computes the
eigenvalues on both sides of the definiteness interval and the corresponding eigenvectors of
a positive definite matrix pair. Algorithm 3.1 with m = 2, 3 and k+ ≥ 1 and k− = 0, or
k+ = 0 and k− ≥ 1, coincides with the corresponding algorithms in [7, 56]. For example, our
LOPCG+ with k+ = 1 coincides with [7, Algorithm 2.1, LOCG(1,2), with a fixed precondi-
tioner and F (λ) = λB −A]. The mentioned extended variants of (B)PSD/A and LO(B)PCG
type methods in [7, 41], as discussed in [21, 51, 52], mean that, for example in PSD (2.2),
the search subspace span[x(i), T (A− ρ(x(i))B)x(i)] is replaced with the mth order Krylov
subspace (usually with a small m; here ρ(i) := ρ(x(i)))

Km(T (A− ρ(i)B);x(i)) := span
[
x(i), T (A− ρ(i)B)x(i), . . . , (T (A− ρ(i)B))m−1x(i)

]
.

The global convergence of the method using Km(T (A− ρ(i)B);x(i)) as a search subspace
with T = I to some eigenvalue of a definite matrix pair (A,B) with B � 0 has been proven
in [21, Theorem 1]. The global convergence of the LOPCG type method to the extremal
eigenpair, for a general Hermitian matrix polynomial with variational characterizations, with-
out any assumption on a preconditioner (including variable preconditioners), is proven in [7,
Theorem 2.1]. In particular, an asymptotic estimate for our indefinite LOPCG+ method with a
fixed positive definite preconditioner is given in [7, Theorem 3.1, LOCG(1,2)].

3E.g., (λ0,∞) is an interval of positive type of a positive definite matrix pair, where λ0 is a definitizing shift.
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It is natural to expect, as confirmed by our convergence analysis from Section 4.1, that the
eigenvalues closest to the definitizing shift λ0 converge first. Since we want to compute the
eigenvalues around the definiteness interval, to be more efficient, we can use two definitizing
shifts, i.e., λ+0 close to λ+1 and λ−0 close to λ−1 . Therefore, we can use two preconditioners
T+ ≈ (A− λ+0 B)−1 and T− ≈ (A− λ−0 B)−1, exactly as in [38, Algorithm 2], and get an
indefinite variant of the (m)-scheme with two preconditioners. To preserve the dimension of
the search subspace, we use

U (i) := span
[
X(i), T+ ·R(i)

+ , T− ·R(i)
− , X

(i−1), . . . , X(i−m+2)
]

as a new subspace, where we split the residual matrix R(i) into two parts R(i)
+ and R(i)

−
associated with B-positive Ritz values and B-negative Ritz values, respectively.

4. The simplest variants: PSD+ and PSA−. In this section, we consider the simplest
variants in Algorithm 3.1, namely PSD+ and PSA−. When B is positive definite, then the
PSD (PSA) iteration aims to compute the smallest (the largest) eigenvalue and the corre-
sponding eigenvector of a matrix pair (A,B). If B � 0, then PSD = PSD+; if B ≺ 0,
then PSA = PSA−. Therefore, when B is indefinite, as in our case, the PSD+ (PSA−)
iteration aims to compute the smallest (the largest) B-positive (B-negative) eigenvalue and
the corresponding eigenvector. To give convergence theorems for our methods PSD+ and
PSA− [43, Section 3.2.2], we use the convergence theorem [46] derived for the PSD iteration
that is proven only for real symmetric matrices. Therefore, only in this section we assume that
A and B are real and symmetric.

Let

ρ(x) =
xTAx

xTBx
, xTBx 6= 0,

denote the Rayleigh quotient associated with a positive definite matrix pair (A,B). The single
vector iteration PSD+ (replacing X(i), W (i), and X(i+1) by x+, w+, and x′+, respectively)
uses the subspace U (i) = span[x+, w+] in the ith iteration step.4 A Ritz pair of (A,B) with
respect to the subspace U (i) is (x′+, ρ(x′+)), where ρ(x′+) is the smaller B-positive Ritz value.
Similar holds for the PSA− iteration.

REMARK 4.1. The indefinite PSD/A iteration combines the PSD+ and the PSA− it-
erations into one iteration method by using the subspace U (i) = span[X(i),W (i)], where
X(i) = [x+, x−] contains the current approximations of the wanted eigenvectors correspond-
ing to λ+1 and λ−1 . The subspace U (i) in Algorithm 3.1 with m = 3 and k± = 1, that is, the
indefinite LOPCG iteration, additionally contains the column space of the previous iterate.
Therefore, the indefinite PSD/A iteration can be interpreted as a truncated version of the
indefinite LOPCG iteration. Similarly, higher order schemes in Algorithm 3.1 with m > 3 and
k± = 1, can be interpreted as an extended version of the indefinite LOPCG method. Similar
holds for the block versions.

4.1. Convergence theorems for PSD+ and PSA−. A sharp convergence theorem for
the standard PSD iteration applied to a real symmetric matrix pair (Ã, B), where Ã is positive
definite, is given in [46], using the dual matrix pair (B, Ã). To give corresponding convergence
theorems for eigenvalues around the definiteness interval of a positive definite matrix pair
(A,B) with indefinite B computed by PSD+ and PSA−, we need to present them as the
extremal eigenvalues of some auxiliary matrix pair.

4If x+ and w+ are linearly dependent, then the iteration terminates in the current iterate x+.
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Consider a positive definite matrix pair (A,B) with eigenvalues (3.1) and (3.2). Let λ0
be a given definitizing shift and let

Ã = A− λ0B � 0, λ̃ = λ− λ0 6= 0.

Hence for the eigenproblem

Bx = µ̃Ãx(4.1)

the eigenvalues {µ̃} are given by

µ̃ = 1/λ̃ = 1/(λ− λ0)

and arranged in the order:

1/λ̃−1 ≤ · · · ≤ 1/λ̃−n−
< 0 = 1/λ̃∞1 = · · · = 1/λ̃∞n0

< 1/λ̃+n+
≤ · · · ≤ 1/λ̃+1

q q q q
µ̃−1 ≤ · · · ≤ µ̃−n−

< 0 = µ̃∞1 = · · · = µ̃∞n0
< µ̃+

n+
≤ · · · ≤ µ̃+

1 .

Let

(4.2) µ̃(x) =
1

ρ̃(x)
=
xTBx

xT Ãx
=

1

ρ(x)− λ0
∈ R, x 6= 0,

denote the Rayleigh quotient associated with the matrix pair (B, Ã) from (4.1). Therefore, the
goal of the PSD+ iteration is equivalent to computing the largest eigenvalue µ̃+

1 by maximizing
µ̃(x) from (4.2), and their corresponding eigenvector. Similar holds for the PSA− iteration.
Since we want to compute extremal eigenvalues µ̃+

1 and µ̃−1 , we can use the PSDµ̃ (4.3)
iteration and then apply [46, Theorem 2.2] to the matrix pairs (B, Ã) and (−B, Ã) from (4.1),
respectively. The transformation of the PSD iteration (2.2) (after multiplication by µ̃(x),
replacing A, ρ, x(i+1), x(i), and τ (i) by Ã, ρ̃, x′, x, and τopt, respectively) is

(4.3a) (PSDµ̃) µ̃(x)x′ = µ̃(x)x+ τoptT (Bx− µ̃(x)Ãx)

with the optimal step length

(4.3b) τopt := arg max
τ∈R

µ̃
(
µ̃(x)x+ τT (Bx− µ̃(x)Ãx)

)
.

For a symmetric positive definite matrix T , a preconditioner that approximates the inverse of
the positive definite Ã, one assumes [46, Section 1.1]

(4.4) ‖I − TÃ‖Ã ≤ γ, γ ∈ [0, 1).

Neymeyr gives a convergence estimate of the poorest possible convergence of the PSD
iteration (2.2) in [46, Theorem 1.2]; the proof of that theorem takes 12 pages. That estimate is
sharp in the sense that an initial guess and a preconditioner T satisfying the inequality (4.4)
can be chosen such that the bound is attained. [46, Theorem 1.2] guarantees the monotone
convergence of a sequence of the Ritz values to some eigenvalue; to the smallest eigenvalue
only if the Ritz values have reached the final interval [λ1, λ2), but, due to roundoff, in practice
that sequence almost surely converge to the smallest eigenvalue. A similar convergence
theorem for the PSD+ and PSA− iteration is as follows:
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THEOREM 4.2. Let x+ ∈ Rn and x′+ be the PSD+ iterate. The preconditioner T is
assumed to satisfy (4.4). If λ+i ≤ ρ(x+) < λ+i+1, i = 1, . . . , n+ − 1, then ρ(x′+) ≤ ρ(x+)

and either ρ(x′+) ≤ λ+i or

ρ(x′+)− λ+i
λ+i+1 − ρ(x′+)

≤ σ2
i,+

ρ(x+)− λ+i
λ+i+1 − ρ(x+)

(4.5)

with σi,+ :=
κi,+ + γ(2− κi,+)

(2− κi,+) + γκi,+
and κi,+ :=

(λ+i − λ0)(λ−1 − λ
+
i+1)

(λ+i+1 − λ0)(λ−1 − λ
+
i )

.

The estimate is sharp and can be attained for ρ(x+)→ λ+i in the three-dimensional invariant
subspace associated with the eigenvalues λ+i , λ+i+1, and λ−1 .

Proof. The proof follows from [46, Theorem 2.2] applied to the matrix pair (B, Ã)
from (4.1) with associated substitutions σ → σi,+, µ(x) → µ̃(x+) = 1/(ρ(x+) − λ0),
(µn, µi+1, µi, µ1)→ (µ̃−1 , µ̃

+
i+1, µ̃

+
i , µ̃

+
1 ), µj → µ̃±j = 1/(λ±j − λ0), and κ→ κi,+.

THEOREM 4.3. Let x− ∈ Rn and x′− be the PSA− iterate. The preconditioner T is
assumed to satisfy (4.4). If λ−i+1 < ρ(x−) ≤ λ−i , i = 1, . . . , n− − 1, then ρ(x′−) ≥ ρ(x−)

and either ρ(x′−) ≥ λ−i or

λ−i − ρ(x′−)

ρ(x′−)− λ−i+1

≤ σ2
i,−

λ−i − ρ(x−)

ρ(x−)− λ−i+1

(4.6)

with σi,− :=
κi,− + γ(2− κi,−)

(2− κi,−) + γκi,−
and κi,− :=

(λ−i − λ0)(λ+1 − λ
−
i+1)

(λ−i+1 − λ0)(λ+1 − λ
−
i )

.

The estimate is sharp and can be attained for ρ(x−)→ λ−i in the three-dimensional invariant
subspace associated with the eigenvalues λ−i , λ−i+1, and λ+1 .

Proof. The proof follows from [46, Theorem 2.2] applied to the matrix pair (−B, Ã)
from (4.1) with associated substitutions σ → σi,−, µ(x)→ −µ̃(x−) = −1/(ρ(x−)− λ0),
(µn, µi+1, µi, µ1)→ (−µ̃+

1 ,−µ̃
−
i+1,−µ̃

−
i ,−µ̃

−
1 ), µj → −µ̃±j = −1/(λ±j − λ0), and

κ→ κi,−.
For κ from [46, Theorem 2.2] holds κ ∈ (0, 1), which implies κi,± ∈ (0, 1). Since

σi,+ = σi,+(γ, κi,+) is a monotone increasing function in both variables, choosing smaller γ
(meaning a preconditioner T approaches to the exact inverse of Ã) and/or smaller κi,+ will
lead to a faster convergence of the PSD+ iteration. Similar holds for the PSA− iteration.

We now give an asymptotic estimate for (4.5). Provided that λ+1 ≤ ρ(x+) < λ+2 and (4.4)
holds, asymptotically, as ρ(x+) → λ+1 , we have (λ+2 − ρ(x′+))/(λ+2 − ρ(x+)) → 1 and
therefore

ρ(x′+)− λ+1
ρ(x+)− λ+1

. σ2
+

with σ+ := σ1,+ =
κ+ + γ(2− κ+)

(2− κ+) + γκ+
and κ+ := κ1,+ =

(λ+1 − λ0)(λ−1 − λ
+
2 )

(λ+2 − λ0)(λ−1 − λ
+
1 )

.

Accordingly, our PSD+ iteration converges at least linearly with the asymptotic convergence
factor σ2

+ that depends on the gap between λ+1 and λ0 relative to the gap between λ+2 and λ0,
and of course on γ: the quality measure of the preconditioner T . If λ+2 ≈ λ+1 , then κ+ ≈ 1
leads to a slower convergence of the PSD+ iteration. Asymptotically, when λ0 → λ+1 , then
κ+ → 0 and therefore σ+ → γ. Similar conclusions hold for (4.6).
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Corresponding convergence theorems for the block iterations BPSD+ and BPSA− can be
derived from [48]. For practically important (indefinite) LO(B)PCG type methods there are still
no sharp convergence estimates. Convergence theorems proven for the preconditioned inverse
iteration (PINVIT) [36], PSD/A [46, 47, 48], and our convergence theorems for the indefinite
case can serve only as upper (non-sharp) estimates. Namely, the eigenvalue interlacing property
implies that the Ritz value θ+1 (θ−1 ) computed in Algorithm 3.1 with m = 3 and k+ = 1,
k− = 0 (k+ = 0, k− = 1) is at least as close to λ+1 (λ−1 ) as the Ritz value ρ(x′+) (ρ(x′−))
computed by PSD+ (PSA−) since the subspace of PSD+ and/or PSA− is contained in the
subspace of Algorithm 3.1 withm = 3. Thus, Algorithm 3.1 withm = 3 and k+ = 1, k− = 0
(k+ = 0, k− = 1) converges at least linearly with the asymptotic convergence factor σ2

+ (σ2
−).

5. Arbitrary spectral gaps. Algorithm 3.1 (and its extension derived at the end of
Section 3) simultaneously computes a few eigenvalues around the definiteness interval and the
corresponding eigenvectors of a given positive definite matrix pair. However, the definiteness
interval is just one special spectral gap. In this section, we derive some ideas [43, Section 3.4]
how to use the trace-reducing Algorithm 3.1 to compute a few eigenvalues around any spectral
gap and the corresponding eigenvectors of a definite pair (A,B).

Let λmin denote the smallest and λmax the largest finite eigenvalue of some positive
definite matrix pair (A,B) with finite eigenvalues (3.1) and let I0 denote its definiteness
interval.5 For the given arbitrary shift λa ∈ (λmin, λmax) \ I0 that is not an eigenvalue of
(A,B), let Ia be the spectral gap around λa, that is, λa ∈ Ia and either Ia = (λ+i , λ

+
i+1),

for some i ∈ {1, . . . , n+ − 1} or Ia = (λ−j+1, λ
−
j ), for some j ∈ {1, . . . , n− − 1}. The

spectral gap around λa is defined analogously for a negative definite matrix pair. We want
to simultaneously compute a small number of eigenvalues around the given shift λa, more
precisely, the first jb eigenvalues that are bigger than λa and the first js eigenvalues that
are smaller than λa, as well as the corresponding eigenvectors of a definite pair (A,B). We
transform the pair (A,B) into some auxiliary positive definite matrix pair with the definiteness
interval around zero and then use Algorithm 3.1 to compute jb + js eigenvalues around
zero and the corresponding eigenvectors of that auxiliary pair, and consequently, the wanted
eigenvalues around λa and the corresponding eigenvectors of the pair (A,B). We propose
two ways to transform the given definite pair to some auxiliary one.6

Suppose first that B is positive definite and λa is from any desired spectral gap Ia. Now
the matrix pair (A− λaB,B) has the desired spectral gap I := Ia − λa around zero and its
eigenpair (µ, x) corresponds to the eigenpair (µ+λa, x) of the pair (A,B). As is immediately
verified, I is the definiteness interval of the positive definite pair

(5.1) (B−1, (A− λaB)−1),

which has the same eigenvalues as the pair (A− λaB,B), the eigenvectors are just multiplied
by B. Therefore, we can run Algorithm 3.1 with `+ = jb, `− = js on the pair (5.1). Here,
the preconditioned residual is obtained by a matrix vector product since T = B. This case
can be extended to any definite pair with indefinite matrices and with the known definiteness
interval, or, at least part of it. Let λ0 be a definitizing shift of a positive definite pair
(A,B) with indefinite A and B. Let λa be from any desired spectral gap Ia of (A,B).
We assume that λ0 and λa are not relatively close. Then A − λ0B is positive definite and
the eigenpair (λ, x) of the pair (A,B) corresponds to the eigenpair (λ − λ0, x) of the pair
(A− λ0B,B). Now we can apply the previous case to the matrix pair (B,A− λ0B) in which

5If B � 0, then I0 = (λmax,∞). If B � 0, then I0 = (−∞, λmin).
6The author is indebted to Professor Krešimir Veselić for suggesting some of the ideas in the following, in

particular for using (5.1) and providing Theorem 5.1 below.
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the eigenpair (1/(λ − λ0), x) corresponds to the eigenpair (λ, x) of the pair (A,B). First,
move the spectrum of (B,A − λ0B) to the left by 1/(λa − λ0) , and then use the inverses.
Therefore, I := 1/(Ia − λ0) − 1/(λa − λ0) is the definiteness interval around zero of the
positive definite pair

(5.2)
(

(A− λ0B)−1,
(
B − (λa − λ0)−1(A− λ0B)

)−1)
,

in which the eigenpair ( 1
λ−λ0

− 1
λa−λ0

, (A− λ0B)x) corresponds to the eigenpair (λ, x) of
the pair (A,B). Here, the preconditioned residual is obtained by a matrix vector product since
T = A− λ0B. After running Algorithm 3.1 with `+ = js, `− = jb (notice the change of the
roles of js and jb with this spectral transformation) on the pair (5.2), the computed eigenpair
(µ, y) of the pair (5.2) corresponds to the eigenpair( 1

µ+ (λa − λ0)−1
+ λ0, (A− λ0B)−1y

)
of the positive definite matrix pair (A,B) with indefinite A and B. A shortcoming of this way
is that we must know the inverses or at least be able to easily solve linear systems of the type

Bx = c and (A− λaB)x = c

for matrices in (5.1); and similarly for (5.2). There is another way, i.e., by using corresponding
decompositions of the matrices appearing in (5.1) and (5.2). We assume first for simplicity
B = I . Now make the indefinite decomposition7

(5.3) A− λaI = GJGH ,

where λa is taken from any spectral gap Ia of A and J is Hermitian nonsingular, that is,

(5.4) JH = J−1 = J

and G is a nonsingular lower block-triangular matrix with diagonal blocks of order 1 or 2. If
J = I or J = −I , then λa < λmin and λa > λmax, respectively, that is, λa is not from any
spectral gap. In this case, we can proceed, and at the end, compute the extremal eigenvalues,
i.e., λmin or λmax and the ones closest to them. However, we are really interested in an
indefinite J = diag(±1).

Consider the auxiliary matrix pair (GHG, J). Due to (5.4), this pair has the same
eigenvalues as the matrix A− λaI and it possesses a set of J-orthonormal eigenvectors. More
precisely, we have the following theorem; cf. [57, Section 3].

THEOREM 5.1. Let A ∈ Cn×n be the given Hermitian matrix and let U ∈ Cn×p, p ≤ n,
have orthonormal columns spanning a spectral subspace of Aa := A− λaI , that is,

(5.5) AaU = UΛa,

7An indefinite decomposition of a Hermitian matrix H is a decomposition of the form PHPH = LDLH ,
where L is a unit lower triangular matrix, D = DH is a block-diagonal matrix with diagonal blocks of order
1 or 2, and P is a permutation matrix. This decomposition is obtained by the variants of the Bunch–Parlett
decomposition [1, 10, 11, 12, 13, 15]. An additional diagonalization of the diagonal blocks in D and an appropriate
scaling of the columns of L results in a new decomposition PHPH = GJGH , where G is a nonsingular lower
block-triangular matrix with diagonal blocks of order 1 or 2, and J is a diagonal matrix of signs of the eigenvalues of
D (or, equivalently, of H) on its diagonal. We must pay attention to which pivoting strategy to use when performing
an indefinite decomposition; for a banded matrix a pivoting strategy needs to preserve the bandwidth during the
process [12, 14, 28].
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where Λa := Λ− λaIp, Λ ∈ Rp×p is a diagonal matrix containing some of the eigenvalues
of A. Set

F = G−1U |Λa|1/2 or, equivalently, U = GF |Λa|−1/2

with G, J from (5.3). Then

(5.6) FHJF = J ,

with J := sign(Λa) and

(5.7) GHGF = JFΛa,

that is, F spans the corresponding spectral subspace of the pair (GHG, J). Conversely, (5.7)
and (5.6) imply (5.5) and the fact that U has orthonormal columns.

Proof. Premultiply AaU = UΛa by A−1a and postmultiply by Λ−1a to obtain

(5.8) UΛ−1a = A−1a U.

Now,

FHJF = |Λa|1/2UHG−HJG−1U |Λa|1/2

= |Λa|1/2UHA−1a U |Λa|1/2

= |Λa|1/2UHUΛ−1a |Λa|1/2(5.9)

= |Λa|1/2Λ−1a |Λa|1/2 = J ,

with J = sign(Λa). Equation (5.9) follows from (5.8). Further, premultiply (5.3) by JG−1

to obtain

(5.10) GH = JG−1Aa.

Now,

GHGF = GHGG−1U |Λa|1/2 = GHU |Λa|1/2

= JG−1AaU |Λa|1/2 = JG−1UΛa|Λa|1/2(5.11)

= JG−1U |Λa|1/2|Λa|−1/2Λa|Λa|1/2

= JFΛa.

Equation (5.11) follows from (5.10) and (5.5).
Conversely, using (5.3), (5.7) and J2 = I we have

AaU = GJGHGF |Λa|−1/2

= GJJFΛa|Λa|−1/2

= GF |Λa|−1/2|Λa|1/2Λa|Λa|−1/2

= UΛa.

Now,

UHU = |Λa|−1/2FHGHGF |Λa|−1/2

= |Λa|−1/2FHJFΛa|Λa|−1/2(5.12)

= |Λa|−1/2 sign(Λa)Λa|Λa|−1/2 = Ip.(5.13)

Equation (5.12) follows from (5.7) and (5.13) follows from (5.6).
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Moreover, I := Ia − λa is the definiteness interval around zero of the positive definite
pair (GHG, J). After running Algorithm 3.1 with `+ = jb, `− = js on the pair (GHG, J),
we get the diagonal matrix Λa of the wanted Ritz values and the matrix F of the corresponding
Ritz vectors. Then the diagonal matrix Λ = Λa + λaIp contains the wanted eigenvalues
around λa and U = GF |Λa|−1/2 contains the corresponding eigenvectors of the Hermitian
matrix A. Instead of multiplying GH by G, we modify Algorithm 3.1 to work with factor G
in a way that GHGx is implemented by GH(Gx) and a preconditioned residual w = Tr with
T = (GHG)−1 is implemented by solving two linear systems GHz = r and Gw = z. The
first matrix (U (i))HGHGU (i) in a projected pair can be implemented by (S(i))HS(i), where
S(i) := GU (i).

If we have a pair (A,B) with B positive definite, then by making the Cholesky decompo-
sition B = LLH the matrix G in the preceding theorem has to be replaced by L−1G. More
precisely, we have the following proposition.

PROPOSITION 5.2. Let (A,B) be the given Hermitian matrix pair with B ∈ Cn×n
positive definite. Consider the indefinite decomposition

(5.14) A− λaB = CJCH ,

where λa is taken from any spectral gap Ia of the pair (A,B); J is as in (5.4) and the
Cholesky decompositionB = LLH . Let V ∈ Cn×p, p ≤ n, beB-orthonormal: V HBV = Ip,
spanning a spectral subspace of the pair (A− λaB,B), that is,

(5.15) (A− λaB)V = BV Λa,

where

(5.16) Λa := Λ− λaIp,

Λ is a diagonal matrix containing some of the eigenvalues of the pair (A,B). Set

F = C−1LLHV |Λa|1/2 or, equivalently, V = L−HL−1CF |Λa|−1/2.

Then

(5.17) FHJF = J ,

with J := sign(Λa) and

(5.18) (L−1C)H(L−1C)F = JFΛa,

that is, F spans the corresponding spectral subspace of the pair ((L−1C)H(L−1C), J).
Conversely, (5.18) and (5.17) imply (5.15) and the fact that V is B-orthonormal.

Proof. Set A1 = L−1AL−H , U = LHV and G = L−1C. Premultiply (5.14) by L−1

and postmultiply by L−H , use G = L−1C to obtain

A1 − λaI = GJGH .

Premultiply (5.15) by L−1 and use U = LHV to obtain

(A1 − λaI)U = UΛa.

Now, UHU = V HLHLV = V HBV = Ip, set F = G−1U |Λa|1/2 and apply Theorem 5.1
with Λa from (5.16) and substituting A→ A1.
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Moreover, I := Ia − λa is the definiteness interval around zero of the positive definite
pair ((L−1C)H(L−1C), J). After running Algorithm 3.1 with `+ = jb, `− = js on this pair,
we get the diagonal matrix Λa of the wanted Ritz values and the matrix F of the corresponding
Ritz vectors. Then the diagonal matrix Λ = Λa + λaIp contains the wanted eigenvalues
around λa and V = L−HL−1CF |Λa|−1/2 contains the corresponding eigenvectors of the
matrix pair (A,B) with B positive definite. Here we modify Algorithm 3.1 to work with
factors L and C in a way that t = (L−1C)H(L−1C)x is implemented by

y = Cx matrix-vector multiplication,
Lz = y solving a linear system,
LHv = z solving a linear system,
CHv = t matrix-vector multiplication;

and similarly for preconditioned residuals with the preconditioner T =
(
(L−1C)H(L−1C)

)−1
.

REMARK 5.3. If we have a matrix pair (A,B) withB negative definite, then an analogous
proposition holds; consider the auxiliary pair (A− λaB,−B).

Finally, we give the proposition for a definite matrix pair (A,B) with indefinite B and λa
from any spectral gap.

PROPOSITION 5.4. Let (A,B) be the given positive definite matrix pair with B ∈ Cn×n
indefinite. Let λ0 be an arbitrary definitizing shift and set Ã = A− λ0B, which is positive
definite. Consider the indefinite decomposition B − (λa − λ0)−1Ã = CJCH , where λa
is taken from any spectral gap Ia, of the pair (A,B); J is as in (5.4) and the Cholesky
decomposition Ã = LLH . Let V ∈ Cn×p, p ≤ n, be Ã-orthonormal: V HÃV = Ip,
spanning a spectral subspace of the pair (B − (λa − λ0)−1Ã, Ã), that is,

(B − (λa − λ0)−1Ã)V = ÃV Λ0a,(5.19)

where

Λ0a := (Λ− λ0Ip)−1 − (λa − λ0)−1Ip,

Λ ∈ Rp×p is a diagonal matrix containing some of the eigenvalues of the pair (A,B). Set

F = C−1LLHV |Λ0a|1/2 or, equivalently, V = L−HL−1CF |Λ0a|−1/2.

Then

(5.20) FHJF = J ,

with J := sign(Λ0a) and

(5.21) (L−1C)H(L−1C)F = JFΛ0a,

that is, F spans the corresponding spectral subspace of the pair ((L−1C)H(L−1C), J).
Conversely, (5.21) and (5.20) imply (5.19) and the fact that V is Ã-orthonormal.

Proof. The proof follows immediately from Theorem 5.2 by substituting A− λaB with
B − (λa − λ0)−1Ã, B with Ã and Λa with Λ0a.

Moreover, I := 1/(Ia − λ0) − 1/(λa − λ0) is the definiteness interval around zero
of the positive definite pair ((L−1C)H(L−1C), J), and we can use Algorithm 3.1 with
`+ = js, `− = jb; notice the change of the indices ± compared to the previous cases. After
running Algorithm 3.1, Λ = (Λ0a+(λa−λ0)−1Ip)

−1+λ0Ip contains the wanted eigenvalues
around λa and V = L−HL−1CF |Λ0a|−1/2 contains the corresponding eigenvectors of
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the positive definite matrix pair (A,B) with indefinite B. Although V HÃV = Ip, after
premultiplication (5.19) by V H we get V HBV = Λ0a + (λa − λ0)−1Ip. Therefore, V is
B-orthogonal and after normalization it becomes B-orthonormal.

REMARK 5.5. If a matrix pair (A,B) is negative definite with B indefinite, then an
analogous proposition holds; consider the auxiliary pair (B − (λa − λ0)−1Ã,−Ã).

REMARK 5.6. When applying Algorithm 3.1 to the corresponding pair from (5.7)
or (5.21), an initial guess X(0) needs to have at least k+ J-positive columns and k− J-
negative columns. This is easily achieved by choosing appropriate columns of the identity
matrix. However, when using inverses, the initial guess needs to have at least k+ B̃−1-positive
columns and k− B̃−1-negative columns. For the corresponding pair (5.1), B̃ = A−λaB, and
for (5.2), B̃ = B−(λa−λ0)−1(A−λ0B). Assume Y HJY = Jk for some matrix Y ∈ Cn×k,
where Jk = diag(±1) and k = k+ + k−. Then for X := CY we have XHB̃−1X = Jk,
where B̃ = CJCH . Therefore, CX(0) can be used as an initial guess for our algorithm
applied to the corresponding pair (5.1) or (5.2).

6. Numerical experiments. In this section, we consider some numerical experiments
illustrating the performance of Algorithm 3.1 for different k± = `±, the number of wanted
eigenpairs, and different m; the dimension of the search subspace is then (k+ + k−)m. In
some experiments we compare different preconditioners for the same initial guess, k±, and
m. In all experiments we use tol = 10−7 in the convergence criterion (3.6); unless otherwise
stated. Sometimes our algorithm fails to converge within the allowed number of iterations.
Such failure is marked with∞ in the results. We have two sets of experiments. In the first
set we apply Algorithm 3.1 to the original matrix pair to compute eigenpairs around the
definiteness interval. In the second set we apply Algorithm 3.1 to the transformed matrix
pair to compute eigenpairs around some arbitrary spectral gap. All experiments8 have been
performed in MATLAB R2014a on Intel Core i3-4150 CPU 3.50GHz, 6 GB RAM, with the
exception of Example 6.2, which has been performed in MATLAB R2014a on Intel i5 760 @
2.80GHz, 8 GB RAM.

6.1. The definiteness interval. In this section, we consider one product eigenvalue
problem and two hyperbolic quadratic eigenvalue problems. We apply Algorithm 3.1 to the
corresponding definite matrix pair. A comparison is made between Algorithm 3.1 for several
values of m and the corresponding algorithm that uses all previous iteration matrices X(j),
that is, P (j) for all j ≤ i denoted by “w.h.” in the results; meaning the whole history.

EXAMPLE 6.1. Consider the product eigenvalue problem

(6.1) MKx = λ2x, KMy = λ2y, 0 6= x, y ∈ Cn,

where M,K ∈ Cn×n are Hermitian positive semidefinite and one of them is positive definite.
This problem appears in computational quantum chemistry [3], where it is of interest to find
a few smallest eigenvalues and the corresponding eigenvectors. Bai and Li developed the
corresponding theory (Cauchy-like interlacing inequalities, the trace minimization principle)
for this problem in [3]. The BPSD-like method for the product eigenvalue problem is proposed
in [53] and LOBPCG-like methods in [4, 5, 6]. It is well known that (6.1) is equivalent to the
GEP for the pair (A,B), where

(6.2) A =

[
K 0
0 M

]
, B =

[
0 I
I 0

]
.

8The codes are available on the personal website of the author with the url: https://www.mathos.unios.
hr/index.php/kadrovi/nastavnici-i-suradnici/130 under Software.
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Therefore, λ2 is an eigenvalue of MK if and only if ±λ are the eigenvalues of (A,B), the
corresponding eigenvectors of (A,B) are given by

[
x
y

]
,

[
x
−y

]
,

where x, y are from (6.1). If both K and M are positive definite, then the pair (A,B)
from (6.2) is trivially positive definite, and finding the smallest eigenvalues of the product
eigenvalue problem (6.1) is equivalent to finding the eigenvalues around the definiteness
interval of the pair (A,B). The direct application of our Algorithm 3.1 to the pair (A,B)
would imply working with matrices of double order. Therefore, a specialized LOBPCG-
type algorithm has been proposed in [38, Algorithm 3]. This algorithm is mathematically
equivalent to [4, Algorithm 4.1] and the experiment [38, Example 5.1] demonstrates that these
two algorithms have similar convergence behavior. Here we want to compare the behavior of
the specialized Algorithm 3.1 for different values of m. This specialized algorithm reduces
memory requirements, computational cost, and CPU time, and preserves the symmetry of the
computed eigenpairs, compared with the direct application of Algorithm 3.1 to the product
eigenvalue problem. For brevity, we will not present this algorithm, but we refer the reader
to [38, Algorithm 3], where this specialized algorithm is shown for m = 3. As a concrete
example we pick the linear response analysis of the density matrix in electronic structure
calculations using the same matrices as in [6], [38, Example 5.1]. Thus, the matrices K, M
are real, symmetric positive definite, and of order 5660. We refer to [6, Section 5] for more
information about these matrices and the natural preconditioner for this concrete example.

TABLE 6.1
Product eigenvalue problem from Example 6.1 with a zero shift using exact and CG preconditioners.

m 2 3 4 5 w.h.
k+ = 1

exact # iter 107 41 35 35 35

CG
# iter 108 41 38 37 35

# in.iter 725, 737 355, 353 327, 325 319, 319 302, 298
av.# in.iter 6.78, 6.89 8.88, 8.23 8.84, 8.78 8.86, 8.86 8.88, 8.76

k+ = 2

exact # iter 97, 116 38, 47 34, 39 34, 34 33, 33

CG
# iter 98, 119 38, 48 35, 40 34, 34 32, 33

# in.iter 1411, 1440 741, 728 642, 625 578, 561 550, 538
av.# in.iter 6.56, 6.7 8.82, 8.67 8.79, 8.56 8.76, 8.50 8.73, 8.54

k+ = 3

exact # iter 96, 103, 107 37, 38, 47 34, 36, 40 33, 34, 36 30, 32, 33

CG
# iter 96, 103, 120 37, 39, 49 35, 36, 42 34, 35, 37 29, 31, 34

# in.iter 2042, 1990 1063, 1039 972, 959 912, 904 794, 782
av.# in.iter 6.46, 6.3 8.71, 8.52 8.84, 8.72 8.85, 8.78 8.73, 8.59

k+ = 4

exact # iter 95, 96, 104, 227 36, 37, 39, 70 33, 34, 35, 69 32, 33, 33, 67 29, 29, 30, 36

CG
# iter 98, 98, 102, 222 35, 38, 40, 67 34, 35, 35, 71 33, 33, 34, 65 29, 30, 30, 36

# in.iter 3355, 3306 1549, 1506 1518, 1479 1424, 1406 1029, 1018
av.# in.iter 6.50, 6.41 8.80, 8.56 8.88, 8.65 8.84, 8.73 8.50, 8.41
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The four smallest positive eigenvalues are given by

λ+1 ≈ 0.541812517132466, λ+2 ≈ 0.541812517132473,

λ+3 ≈ 0.541812517132498, λ+4 ≈ 0.615143209274579.

A comparison is made between the specialized Algorithm 3.1 with m = 2, 3, 4, 5, and the
corresponding algorithm in which the whole history is included. Results are reported in
Table 6.1. The rows in this table correspond to one value of k+ for k+ = 1, 2, 3, 4, and the
columns correspond to one value ofm. Here we use zero as a definitizing shift and two different
ways for computing preconditioned residuals, i.e., the MATLAB backslash operator, and
the linear conjugate gradient method with stopping tolerance 10−2 and a maximum of 20
iterations; the rows in the table starting with “exact” and “CG,” respectively. Since we use a
zero shift, the preconditioner T equals A−1 for A from (6.2). Hence, we apply the CG method
twice: once for K and once for M . The total number of CG iterations is denoted by “# in.iter”
in Table 6.1; the first number corresponds to the total number for K and the second for M .
We also put the average number of CG iterations per iteration of the specialized Algorithm 3.1
denoted by “av.# in.iter,” first for K and then for M . The total number of required iterations of
the specialized Algorithm 3.1 until all k+ desired eigenvalues have converged is denoted by “#
iter.” For example, we explain the field bym = 2 and k+ = 3 from Table 6.1: All three wanted
eigenvalues converge after 107 iterations of Algorithm 3.1 when using the exact preconditioner,
and after 120 iterations when using CG-based preconditioners. The first smallest positive
eigenvalue converges after 96 iterations, and the second smallest positive converges after 103
iterations. The total number of inner CG iterations forK andM is 2042 and 1990, respectively.
The average number of inner CG iterations per iteration of the specialized Algorithm 3.1 for
K and M is 6.46 and 6.3, respectively.

The findings of Table 6.1 are as follows. The total number of required iterations of the
specialized Algorithm 3.1, and also the total number of inner CG iterations, is reduced by
increasing the dimension of the search subspace. The most important difference is between
m = 2 and m = 3; specialized indefinite BPSD/A and specialized indefinite LOBPCG,
respectively. The total number of required iterations of the specialized variant of Algorithm 3.1
for m = 3, 4, 5, and when using the whole history is very similar, the largest difference is
for the fourth Ritz value. The first three positive eigenvalues are clustered, therefore the
convergence for the first three Ritz pairs is much faster than for the fourth one. Moreover,
by enlarging the block size k+ we can get a faster convergence to the smallest eigenpair, but
with more numerical cost per iteration of the specialized Algorithm 3.1. It is very important
to note that the results for CG-based preconditioners with very crude approximations of the
preconditioned residuals are very similar, in some cases the same, to the results for exact
preconditioned residuals. The maximum number of inner CG iterations per iteration of the
specialized Algorithm 3.1 is 10 for all values of k+ andm including the case in which the whole
history is included. We have repeated the experiment with CG-based preconditioners with
stopping tolerance 10−1 and 10−3; the total number of required iterations of the specialized
Algorithm 3.1 is quite similar to the presented case.

Now we choose a relatively close definitizing shift λ0 = 0.54 so we make use of the
preconditioners T± = (A∓ λ0B)−1. We apply the linear CG method with stopping tolerance
10−2 and a maximum of 50 iterations. Table 6.2 gives the total number of required iterations
of the specialized Algorithm 3.1 until all k+ = 1, 2, 3, 4 desired eigenpairs have converged,
including the total and the average number of CG iterations for m = 2, 3, 4, 5, and when using
the whole history. For example, the total number of inner CG iterations for k+ = 1 is 158 for
m = 2 and in all other cases it is 161. The average number of inner CG iterations per iteration
of the specialized Algorithm 3.1 for k+ = 1 is 31.6 for m = 2 and it is 32.2 in all other cases.
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TABLE 6.2
Product eigenvalue problem from Example 6.1 with a nonzero shift using CG preconditioners.

k+ = 1 k+ = 2 k+ = 3

m 2 3, 4, 5, w.h. 2 3, 4, 5, w.h. 2 3, 4, 5, w.h.
# iter 6 6 6, 6 6, 6 6, 6, 6 6, 6, 6

# in.iter 158 161 310 311 471 476
av.# in.iter 31.6 32.2 31.0 31.1 31.4 31.73

k+ = 4

m 2 3 4 5 w.h.
# iter 6, 6, 6, 46 6, 6, 6, 18 6, 6, 6, 18 6, 6, 6, 18 6, 6, 6, 17

# in.iter 1, 251 908 908 911 881
av.# in.iter 20.85 28.38 28.38 28.47 28.42

The maximum number of inner CG iterations per iteration of the specialized Algorithm 3.1 is
reached in some cases. When an excellent shift is used, there is no significant difference in the
convergence of the fourth Ritz value by enlarging the dimension of the search subspace.

EXAMPLE 6.2. Consider a quadratic eigenvalue problem (QEP)

(6.3) (λ2M + λD +K)x = 0, 0 6= x ∈ Cn,

where M , D, K ∈ Cn×n are Hermitian and M is positive definite. A Hermitian linearization
of (6.3) yields the Hermitian pair (A,B) with

(6.4) A =

[
M 0
0 −K

]
, B =

[
0 M
M D

]
.

The positive definiteness of this matrix pair is equivalent to the hyperbolicity of the original
QEP [26, 57].

Here we consider a simple scalable example as in [38, Example 5.2]:

(6.5) K = (n+ 1)2


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 , M = In, D = 2K.

This QEP is hyperbolic; its eigenvalues are given by

λ±j = −αj ±
√
α2
j − αj , where αj = 4(n+ 1)2 sin2 jπ

2(n+ 1)
,

for j = 1, . . . , n. As n increases, the definiteness interval of (A,B) converges to around
(−19.2258,−0.5134). Considering that ‖D‖2 = 2‖K‖2 = O(n2), while ‖M‖2 = 1, we
propose to rescale the pair (A,B) as follows:

(A,B)←
[
I

1
n+1I

]
(A,B)

[
I

1
n+1I

]
.
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TABLE 6.3
QEP from Example 6.2 with AMG preconditioners.

m 2 3 4 5 w.h.
n one shift, without deflation

2000 ∞ (7.36) 221 (7.18) 153 (7.79) 172 (11.25) 214 (6020)
4000 ∞ (12.73) ∞ (18.55) 245 (25.65) 192 (23.23) 16 (4.06)
6000 ∞ (19.09) 240 (21.32) 206 (29.81) 132 (22.17) 17 (7.91)
8000 ∞ (24.78) 234 (26.77) 196 (36.72) 63 (12.89) 12 (3.57)
n two shifts, without deflation

2000 81 (1.69) 21 (0.55) 21 (0.94) 19 (1.07) 14 (1.86)
4000 68 (2.70) 22 (1.15) 23 (1.60) 23 (2.35) 24 (14.1)
6000 53 (3.16) 26 (2.29) 20 (2.28) 18 (2.20) 14 (4.83)
8000 37 (3.12) 18 (2.09) 20 (2.65) 21 (3.64) 61 (335)
n two shifts, with deflation

2000 ∞ (1.69) ∞ (1.41) 24 (0.58) 17 (0.63) 18 (1.63)
4000 ∞ (2.83) 19 (0.70) ∞ (3.25) 22 (1.11) 16 (2.21)
6000 ∞ (3.43) 25 (1.27) 27 (1.53) 21 (1.55) 15 (2.77)
8000 ∞ (4.63) 20 (1.44) 20 (1.87) 21 (2.10) 17 (6.37)

We aim at computing the eigenvalues λ±j for j = 1, 2, 3, that is, k± = 3 in Algorithm 3.1
and the variant of Algorithm 3.1 with two preconditioners; see the end of Section 3. A
comparison is made between Algorithm 3.1 with m = 2, 3, 4, 5, and the corresponding
algorithm in which the whole history is included. The number of total iterations for B-positive
and B-negative eigenpairs for n = 2000, 4000, 6000, 8000 is reported in Table 6.3. Notice
that the order of the linearized pair (A,B) is doubled, so n = 8000 means that we work with
matrices A,B of order 16, 000. The maximum number of allowed iterations of Algorithm 3.1
is 300 for one shift and 100 for two shifts. The CPU time is given in brackets in Table 6.3.
An algebraic multigrid (AMG) V-cycle preconditioner can be used as a black box for solving
linear systems for the preconditioned residuals in this example since we consider the scalable
pair (A,B). Therefore, we use the implementation HSL_MI20 [27] with the default settings.
Since D in (6.5) is positive definite, for fixed n and B given in (6.4), the initial B-positive
and B-negative vectors are chosen as corresponding columns from [0; I] and [M−1D; −I],
respectively. We use the same initial guess for fixed n and fixed shifts.

The findings of Table 6.3 are as follows. Enlarging the dimension of the search subspace
significantly reduces, in almost all cases, the number of total iterations of Algorithm 3.1
when the shift is not good (in this case, λ0 = −5), but when using two excellent shifts (here,
λ+0 = −0.514 and λ−0 = −19.22), there is no such significant reduction in the number of total
iterations in the indefinite (m)-scheme when m is increased. Although in almost all cases the
use of all previous iteration matrices gives the smallest number of total iterations, there is an
increase in the numerical cost and memory requirements per iteration. When the dimension
of the search subspace is fixed, like in Algorithm 3.1, there is a fixed numerical cost and
memory requirements per iteration. When two excellent shifts are used, we see that enlarging
the dimension of the search subspace increases CPU time. Again, the indefinite (m)-scheme
with m = 3, i.e., indefinite LOBPCG, is more efficient than the indefinite (m)-scheme with
m = 2, i.e., indefinite BPSD/A. We notice that the number of total iterations of Algorithm 3.1
with two shifts for fixed m is very similar for different values of n.
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EXAMPLE 6.3. Consider another hyperbolic quadratic eigenvalue problem with matrices

(6.6) K =


15 −5

−5
. . . . . .
. . . . . . −5

−5 15

 , M = In, D = 2K.

These matrices can be produced by the command nlevp(’spring’,n,1,10,5,10,5)
from the NLEVP collection [8] and the eigenvalues are given by

λ±j = −αj ±
√
α2
j − αj , where αj = 5

(
3− 2 cos

jπ

n+ 1

)
,

for j = 1, . . . , n. As n increases, the definiteness interval of the linearized pair (A,B)
from (6.4) converges to around (−9.4721,−0.52786). Moreover, the gaps between eigenval-
ues become arbitrarily small as n→∞. The illustration for n = 1000 is given in Fig. 6.1.

eigenvalue index j
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FIG. 6.1. Eigenvalues of Example 6.3 for n = 1000. The definiteness interval of the pair (A,B), when n
increases, is around (−9.4721,−0.52786). 1000B-negative eigenvalues are in the interval (−49.4948,−9.4721)
and 1000 B-positive eigenvalues are in the interval (−0.52786,−0.5051).

The inefficiency of Algorithm 3.1 with m = 3 (since it uses only one preconditioner)
is illustrated in [38, Example 5.3] caused by a decrease in the eigenvalue gaps; illustration
was made using the exact preconditioner with shift λ0 = −5, nearly in the middle of the
definiteness interval. However, exact tailored preconditioners T± perform very well. Here we
want to compare Algorithm 3.1 with two shifts and with m = 2, 3, 4, 5, 10, and when using
the whole history. Here we use λ−0 = −9.47 and λ+0 = −0.528 as definitizing shifts and two
different ways for computing preconditioned residuals: the MATLAB backslash operator
and the linear CG method with stopping tolerance 10−2 and a maximum of 50 iterations.
The obtained results for exact preconditioners and CG-based preconditioners are reported in
Table 6.4 and Table 6.5, respectively. We aim at computing the eigenvalues λ±j for j = 1, 2, 3,
that is, k± = 3 in the variant of Algorithm 3.1 with two preconditioners. We list the number of
required iterations for B-positive and B-negative eigenpairs to converge separately, denoted
by “# iter B-pos” and “# iter B-neg”, respectively, in Tables 6.4 and 6.5 for n = 1000 and
n = 2000; note that the order of the pair (A,B) is doubled. The CPU time is also given
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TABLE 6.4
QEP from Example 6.3 with two shifts and exact inverse preconditioners.

m 2 3 4 5 10 w.h.
n = 1000

# iter B-pos 227 37 30 28 23 20
# iter B-neg 19 10 10 9 9 9
CPU time (1.74) (0.35) (0.36) (0.39) (0.48) (0.84)

n = 2000
# iter B-pos 720 73 62 61 49 36
# iter B-neg 54 17 16 15 14 14
CPU time (11.9) (1.30) (1.63) (1.76) (2.62) (7.35)

TABLE 6.5
QEP from Example 6.3 with two shifts and CG-based preconditioners.

m 2 3 4 5 10 w.h.
n = 1000

# iter B-pos 239 51 47 42 37 35
# iter B-neg 288 79 79 79 80 77

# in.iter B-pos 23, 942 6950 6400 6000 5300 5100
# in.iter B-neg 34, 350 11, 550 11, 500 11, 500 11, 600 11, 350

CPU time (8.06) (1.22) (1.54) (1.70) (2.55) (7.38)
n = 2000

# iter B-pos 716 89 86 77 72 67
# iter B-neg 941 151 151 151 151 113

# in.iter B-pos 71, 696 12, 750 11, 800 11, 200 10, 500 9900
# in.iter B-neg 90, 050 24, 450 22, 450 22, 450 22, 400 16, 800

CPU time (26.56) (5.93) (8.39) (8.70) (14.38) (271.9)

in both tables. The total number of inner CG-iterations is given in Table 6.5, separately for
preconditioned residuals corresponding to B-positive and B-negative Ritz vectors, denoted by
“# in.iter B-pos” and “# in.iter B-neg”, respectively.

The findings of Tables 6.4 and 6.5 are as follows. The total number of required iterations
of Algorithm 3.1 with two shifts, and also the total number of inner CG iterations, are reduced
by increasing the dimension of the search subspace. The most important difference is again
between m = 2 and m = 3. Significant savings in CPU time are achieved by switching from
m = 2 to m = 3. Algorithm 3.1 needs more CPU time by a further increase in the dimension
of the search subspace, especially when using the whole history. The effectiveness of the
tailored preconditioners (A− λ±0 B)−1 deteriorates as n increases, due to the decrease in the
eigenvalue gaps. In this example, in contrast to Example 6.1, the exact preconditioners (note
that matrices A, B are sparse) have outperformed the CG-based preconditioners.

Finally, we demonstrate that using a shift λ+0 that is very close to the eigenvalue λ+1
accelerates the convergence of Algorithm 3.1, as observed in Section 4.1. We list the required
number of iterations for all six eigenpairs separately in Table 6.6.

6.2. The arbitrary gaps. In this section, we consider ordinary eigenvalue problems
with indefinite and positive definite matrices, as well as a definite generalized eigenvalue
problem with both matrices indefinite. A comparison is made between Algorithm 3.1 applied
to the corresponding pair (5.1) or (5.2), and to the corresponding pair from (5.7) or (5.21).
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TABLE 6.6
QEP from Example 6.3 with two exact inverse preconditioners with shifts λ−0 = −9.47 and λ+0 = −0.528,

(λ+0 = −0.5279) for n = 1000.

m λ−3 λ−2 λ−1 λ+1 λ+2 λ+3 CPU time

2 19 13 11 133 (41) 157 (49) 227 (71) 1.74 (0.66)
3 10 9 8 35 (19) 36 (21) 37 (24) 0.35 (0.27)
10 9 8 8 22 (14) 22 (15) 23 (15) 0.48 (0.37)

In our results, the former is denoted by “using (an) inverse(s)” and the latter by “using (a)
decomposition(s).” An indefinite decomposition of a particular matrix is obtained by [54,
pp. 1–2]. A maximum number of allowed iterations is 100 in all experiments. All our results
are reported in tables, where for a fixed k±:

(i) the first column corresponds to the total number of iterations of Algorithm 3.1,
(ii) the second column corresponds to the 2-norm of the absolute error AV − BV Λ,

where Λ is a diagonal matrix of approximations of the wanted eigenvalues, and V is
a matrix of approximations of the corresponding eigenvectors,

(iii) the third column corresponds to CPU time; the execution time of Algorithm 3.1
applied to the transformed matrix pair.

Although the initial guesses when using inverses and decompositions are connected (see
Remark 5.6), due to roundoff, we can expect a different total number of iterations of our
algorithm when using inverses and decompositions. Notice that T = I , when applying our
algorithm to the pair (I, (A− λaI)−1), while T = (GHG)−1, when applying our algorithm
to the pair (GHG, J).

EXAMPLE 6.4. We first consider two sparse ordinary eigenvalue problems with real
symmetric indefinite matrices originating from Platzman’s oceanographic models. These
problems are part of the Harwell-Boeing collection [18]. We obtain them from the Matrix
Market [9]. All eigenvalues occur in pairs, with the exception of an isolated singleton at zero.
The eigenvalues of interest are interior eigenvalues, located in the interval (0.0001, 0.024).
Numerical experiments with these matrices can be found, for example, in [22, Section 5.1]
and [51, Example 4.4.2].

TABLE 6.7
The Atlantic Ocean model from Example 6.4 with the convergence criterion (3.6) and tol = 10−7.

m k± = 2 k± = 6 k+ = 0, k− = 6
using an inverse

3 25 10−13 (0.30) 28 10−12 (0.78) 34 10−12 (0.61)
5 15 10−13 (0.22) 21 10−12 (0.96) 31 10−12 (0.76)
10 15 10−12 (0.30) 21 10−11 (2.88) 21 10−12 (1.15)

using a decomposition

3 15 10−10 (0.14) 22 10−9 (0.40) 58 10−9 (0.62)
5 13 10−10 (0.15) ∞ 10−1 (3.30) ∞ 10−2 (2.08)
10 11 10−9 (0.17) ∞ 10−2 (7.10) ∞ 10−2 (3.50)

First, we consider a finite-difference model for the shallow wave equations for the At-
lantic Ocean. The corresponding matrix A is of order 362 with λmin ≈ −3.55 · 10−12 and
λmax ≈ 0.77. Here we want to compute the eigenpairs around the shift λa = 0.024. There-
fore, we apply Algorithm 3.1 to the pair (I, (A− λaI)−1) and to the pair (GHG, J), where
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TABLE 6.8
The Atlantic Ocean model from Example 6.4 with m = 10 and the convergence criterion (6.7).

tol k± = 6 k+ = 0, k− = 6
using an inverse

10−7 14 10−10 (1.51) 16 10−10 (0.32)
10−8 16 10−11 (1.62) 19 10−11 (0.40)

using a decomposition

10−7 8 10−4 (0.22) 10 10−5 (0.14)
10−8 11 10−5 (0.34) 11 10−6 (0.16)

A− λaI = GJGH . In our implementation we have ‖(A− λaI)−GJGH‖2 ≈ 10−15. The
results are reported in Table 6.7. For example, Algorithm 3.1 with m = 10 applied to the
matrix pair (I, (A − λaI)−1) needs 21 iterations to compute approximations for the first
6 eigenpairs on both sides of λa. The corresponding absolute error is of order 10−11 and
Algorithm 3.1 runs 2.88 seconds. However, Algorithm 3.1 applied to the decomposition of
A− λaI does not converge within the allowed number of iterations. A possible way to avoid
such a non-convergence is to use another convergence criterion (see the discussion in [17,
Section 4]), such as

(6.7) ‖r±j ‖2 ≤ tol ·
(
‖A‖2 + |θ±j | ‖B‖2

)
‖x±j ‖2.

For large sparse matrices estimates of the 2-norms are used; in this exampleB = I . The results
with m = 10 and the new convergence criterion are reported in Table 6.8. The convergence
is now achieved in all cases when using a decomposition. When applying Algorithm 3.1
to the pair (I, (A− λaI)−1), the algorithm takes fewer iterations by using the convergence
criterion (6.7) than by using (3.6), but with larger absolute error. By decreasing the tolerance
tol (for example, from 10−7 to 10−8) we can achieve a smaller absolute error.

TABLE 6.9
The Atlantic and Indian Ocean model from Example 6.4. For every fixedm, the first row refers to the convergence

criterion (3.6) and the second row to the convergence criterion (6.7).

m k± = 2 k± = 6 k± = 20
using an inverse

3 33 10−12 (0.91) 41 10−12 (2.23) 43 10−11 (10.89)
20 10−10 (0.55) 25 10−9 (1.31) 36 10−9 (9.06)

5 24 10−13 (0.79) 25 10−11 (2.58) 41 10−11 (31.16)
18 10−10 (0.49) 18 10−9 (1.53) 31 10−9 (23.51)

10 21 10−13 (1.06) 21 10−13 (4.88) 38 10−12 (133.7)
14 10−10 (0.49) 14 10−10 (2.31) 27 10−9 (88.49)

using a decomposition

3 21 10−9 (1.36) ∞ 10−2 (8.70) ∞ 10−1 (30.36)
9 10−3 (0.59) 12 10−4 (0.98) 25 10−4 (7.15)

5 ∞ 10−2 (7.53) ∞ 10−2 (13.91) ∞ 10−1 (60.41)
8 10−3 (0.47) 9 10−4 (1.01) ∞ 10−1 (60.21)

10 21 10−9 (1.44) ∞ 10−2 (26.60) ∞ 10−2 (184.7)
8 10−3 (0.47) 8 10−4 (0.95) 11 10−4 (10.04)
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TABLE 6.10
The Laplacian eigenvalue problem on the 115× 115 uniform mesh from Example 6.5. For every fixed m, the

first row refers to the convergence criterion (3.6) and the second row to the convergence criterion (6.7).

m k± = 1 k± = 5 k± = 10
using an inverse

3 10 10−14 (0.77) 27 10−12 (7.99) 41 10−10 (24.68)
8 10−11 (0.51) 19 10−9 (4.51) 33 10−9 (19.26)

5 10 10−15 (0.82) 19 10−12 (9.10) 41 10−10 (118.7)
8 10−11 (0.63) 15 10−10 (5.55) 22 10−9 (47.72)

10 10 10−14 (0.99) 20 10−12 (21.24) 21 10−11 (100.0)
8 10−11 (0.53) 12 10−9 (10.35) 15 10−10 (49.37)

using a decomposition

3 9 10−11 (1.70) 52 10−9 (17.81) ∞ 10−1 (64.61)
3 10−2 (0.62) 6 10−2 (1.92) 7 10−2 (3.99)

5 9 10−11 (1.89) ∞ 10−1 (55.28) ∞ 10−1 (114.5)
3 10−2 (0.67) 41 10−2 (20.41) 7 10−3 (5.28)

10 9 10−11 (1.72) ∞ 10−1 (96.29) ∞ 10−1 (265.2)
3 10−2 (0.56) 6 10−2 (2.30) 7 10−3 (5.93)

Next, we consider a finite-difference model for the shallow wave equations for the Atlantic
and Indian Ocean. The corresponding matrix A is of order 1919 with λmin ≈ −3.40 · 10−16

and λmax ≈ 2.92. Here we want to compute the eigenpairs around the shift 0.0121 in the
middle of the interval of interest. We have ‖(A − 0.0121I) − GJGH‖2 ≈ 10−14 in our
implementation. The results are reported in Table 6.9. For m = 10 and k± = 2 by using the
convergence criterion (3.6), Algorithm 3.1 applied to the inverse and Algorithm 3.1 applied
to the decomposition terminate after 21 iterations, but the former is faster and more accurate
than the latter. In all cases when our algorithm terminates within the allowed number of
iterations, it takes fewer iterations by using the convergence criterion (6.7) than by using (3.6),
but with larger absolute error. Algorithm 3.1 applied to the decomposition is quite sensitive to
a convergence criterion. In many cases, it does not converge within the allowed number of
iterations when using (3.6).

By observing the results from Tables 6.7–6.9, we can see that Algorithm 3.1 applied to
the inverse is more accurate than Algorithm 3.1 applied to the decomposition regardless of a
convergence criterion.

EXAMPLE 6.5. In this example, we consider a sparse ordinary eigenvalue problem with
a real symmetric positive definite matrix. More precisely, we consider a five-point finite
difference discretization of the Laplace operator on a 115 × 115 uniform mesh of the unit
square without the circle with radius 0.5 centered in the left vertex. The corresponding matrix
A is of order 10, 279. We want to detect first k± = 1, 5, 10 eigenvalues around the shift λa = 7.
Therefore, we apply Algorithm 3.1 to the pair (I, (A − λaI)−1) and to the pair (GHG, J),
where A−λaI = GJGH . In our implementation we have ‖(A−λaI)−GJGH‖2 ≈ 10−14.
The results are reported in Table 6.10.

As in the previous example, in all cases when our algorithm terminates within the allowed
number of iterations, it takes fewer iterations by using the convergence criterion (6.7) than by
using (3.6), but with larger absolute error. When using the decomposition the absolute error is
satisfactory with (3.6) (in the cases when the algorithm terminated within the allowed number
of iterations), but is very unsatisfactory with (6.7). In the latter case the algorithm terminates
too quickly with very poor approximations of the wanted eigenpairs.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

358 M. MILOLOŽA PANDUR

EXAMPLE 6.6. In the last example, we consider a quadratic eigenvalue problem (6.3)
with matrices M,D,K from the spring example (6.6). The positive definiteness of M,D,K
implies both A,B from (6.4) to be indefinite. Therefore, in detecting an arbitrary spectral gap
we need to use the pair (5.2) or Proposition 5.4. First, we apply “perfect shuffling” [58, p. 104]
to the matrix pair (A,B), that is, we use auxiliary matrices A1 = PHAP , B1 = PHBP,
where P is a permutation matrix given by Pe2j−1 = ej , Pe2j = ej+n, j = 1, . . . , n and ej
is the jth column of the identity matrix I2n. This is a trick that transforms both matrices A,B
to pentadiagonal matrices A1, B1:

A1 =



1 0 0
−15 0 5

1 0 0
−15 0 5

. . . . . . . . .
sym 5

0
−15


,

B1 =



0 1 0
30 0 −10

0 1 0
30 0 −10

. . . . . . . . .
sym −10

1
30


.

The matrix pair (A,B) is congruent to (A1, B1): the eigenvalues are the same, and the eigen-
vectors are multiplied by P . Let λ0 be an arbitrary definitizing shift and λa the given
shift from any spectral gap of the positive definite matrix pair (A,B) from (6.4). Set
Ã1 = A1 − λ0B1 � 0.

TABLE 6.11
QEP from Example 6.6 using inverses. For every fixed m, the first row refers to the convergence criterion (3.6)

and the second row to the convergence criterion (6.7).

m k± = 1 k± = 5 k± = 10

3 15 10−11 (0.37) 24 10−10 (0.89) 28 10−10 (1.72)
11 10−9 (0.36) 19 10−8 (0.63) 22 10−8 (1.30)

5 14 10−12 (0.41) 55 10−10 (4.04) 25 10−9 (4.94)
10 10−8 (0.31) 21 10−8 (1.33) 21 10−8 (3.39)

10 14 10−12 (0.49) 31 10−10 (7.34) 30 10−11 (18.2)
12 10−9 (0.39) 19 10−8 (3.91) 17 10−8 (8.70)

Consider the indefinite decomposition B̃1 = B1 − (λa − λ0)−1Ã1 = CJCH obtained
by [54], but with a pivoting strategy given in [12, Algorithm E]. That pivoting strategy is
designed for pentadiagonal real symmetric or Hermitian matrices and preserves the pentadiag-
onal structure during the process. In our implementation we have ‖B̃1 − CJCH‖2 ≈ 10−14.
Let L be the Cholesky factor of Ã1; cf. Theorem 5.4. Set n = 1000 in (6.6) and λ0 = −5.
We want to detect first k± = 1, 5, 10 eigenvalues around the shift λa = −30; in the middle
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Algorithm 7.1 Generic indefinite eigensolver.
Input: A, B ∈ Cn×n: coefficients of positive definite pair (A,B) with indefinite B;
Output: k+ smallest B-positive eigenpairs and k− largest B-negative eigenpairs.

1: for i = 1, 2, . . . do
2: Construct a subspace U (i) of dimension m� n such that

(k+, k−, 0) ≤ In
[
(U (i))HBU (i)

]
holds for any basis matrix U (i).

3: Apply the Rayleigh–Ritz procedure to (A,B) with respect to the subspace U (i) and
extract k+ smallest B-positive and k− largest B-negative Ritz pairs.

4: end for

of B-negative eigenvalues: see Figure 6.1. Therefore, we apply Algorithm 3.1 to the pair
(Ã−11 , B̃−11 ) and to the pair (CHC, J). The results are reported in Table 6.11. We omit the
results when using decompositions since, in almost all cases, either the algorithm does not
converge within the allowed number of iterations or the absolute error is O(10−3) or larger.

7. Conclusions. Numerical experiments [35] for a generalized eigenvalue problem with
both symmetric positive definite matrices demonstrate that a (k)-scheme of preconditioned
gradient iterations [44, 45] for k ≥ 4 is of minor importance and that the locally optimal
block preconditioned conjugate gradient (LOBPCG) iteration is an optimal eigensolver within
that (k)-scheme. In our experiments, we noticed that indefinite LOBPCG is much faster
than indefinite block preconditioned steepest descent/ascent (BPSD/A). A further increase
in the dimension of the search subspaces often leads to a decrease in the total number of
iterations of our Algorithm 3.1; it is especially significant when a preconditioner is poor (when
a definitizing shift is not close to the boundaries of the definiteness interval), although it is more
memory- and time-consuming. When excellent preconditioners are used, we can conclude
that indefinite LOBPCG is an optimal eigensolver within our indefinite (m)-scheme, that is,
Algorithm 3.1. In some cases, very crude approximations of the preconditioned residuals can
be used.

There is an important difference between LOBPCG type algorithms designed for a
hyperbolic quadratic eigenvalue problem [7, 41, 56] and our indefinite LOBPCG type algorithm
applied to the matrix pair from the linearization: the former can use any initial guess, the
latter needs to contain at least as many B-positive and B-negative vectors as we want to
compute. Many new indefinite eigensolvers can be proposed using some appropriate search
subspace and applying the Rayleigh–Ritz projection method that extracts interior eigenpairs.
The generic indefinite algorithm (cf. [51, Algorithm 2.1]) is given in Algorithm 7.1. If the
column space of every iteration matrix of the Ritz vectors is included in the subspace U (i),
then choosing a valid initial guess will provide enough B-positive and B-negative vectors
in any basis matrix U (i) of U (i) for all i = 1, 2, . . . . Some choices of the subspace U (i)

of Algorithm 7.1 can, with a good separation of the desired eigenvalues, lead to the fast
convergence without preconditioning. However, if preconditioning is used, then we propose
to add the column space of the preconditioned residual of the current iteration matrix to the
subspace U (i). The crucial thing is to know at least one definitizing shift; it is trivial if A is
positive definite. For finding such a shift, we can use the algorithms given in [23] or [43,
Section 2.2]. For some examples in applications, knowing only one definitizing shift is not
enough, two are necessary. Not just any two definitizing shifts, but those shifts that are close
to the boundaries of the definiteness interval. Finding an algorithm to compute two such
definitizing shifts is a matter for future work.

Finally, we derived some ideas on how to use an indefinite eigensolver (for example,
Algorithm 3.1) to compute a few eigenvalues around any spectral gap and the corresponding
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eigenvectors of a definite matrix pair. The proposed spectral transformations can be applied
to those definite matrix pairs for which solving the corresponding linear systems is easy or
performing decompositions is inexpensive and can be done very accurately. Our experiments
demonstrate that the application of Algorithm 3.1 to a transformed pair with inverses is
more efficient than the application to a transformed pair with decompositions. Enlarging the
dimension of the search subspaces can reduce the total number of iterations of Algorithm 3.1,
but often increases CPU time. Therefore, we can recommend to use m = 3 in our indefinite
m-scheme, that is, to use the indefinite LOBPCG iteration.

Acknowledgments. Some basic ideas of this paper emerged during the author’s study
visit to the ANCHP, MATHICSE, EPF Lausanne, Switzerland, under the direction of Professor
Daniel Kressner to whom the author is indebted for his illuminating discussions and comments,
as well as for kind hospitality. The author also thanks Dr. Meiyue Shao for all the patience
and support during the formation of paper [38], the predecessor of this paper, and for the
discussion of B-orthonormality. The author thanks Professors Krešimir Veselić and Ninoslav
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