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BLOCK-PROXIMAL METHODS WITH SPATIALLY ADAPTED
ACCELERATION∗

TUOMO VALKONEN†

Abstract. We study and develop (stochastic) primal-dual block-coordinate descent methods for convex problems
based on the method due to Chambolle and Pock. Our methods have known convergence rates for the iterates and the
ergodic gap of O(1/N2) if each block is strongly convex, O(1/N) if no convexity is present, and more generally a
mixed rate O(1/N2) + O(1/N) for strongly convex blocks if only some blocks are strongly convex. Additional
novelties of our methods include blockwise-adapted step lengths and acceleration as well as the ability to update both
the primal and dual variables randomly in blocks under a very light compatibility condition. In other words, these
variants of our methods are doubly-stochastic. We test the proposed methods on various image processing problems,
where we employ pixelwise-adapted acceleration.
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1. Introduction. We want to efficiently solve optimisation problems of the form

(P0) min
x

G(x) + F (Kx),

arising, in particular, from image processing and inverse problems. We assume G : X → R
and F : Y → R to be convex, proper, and lower semicontinuous on Hilbert spaces X and
Y and K ∈ L(X;Y ) to be a bounded linear operator. We are particularly interested in
block-separable functionals

(GF) G(x) =

m∑
j=1

Gj(Pjx) and F ∗(y) =

n∑
`=1

F ∗` (Q`y),

where F ∗ is the Fenchel conjugate of F . The operators P1, . . . , Pm are projections in X
with

∑m
j=1 Pj = I and PjPi = 0 if i 6= j. Likewise, Q1, . . . , Qn are projection operators

in Y . We assume all the component functions Gj and F ∗` to be convex, proper, and lower
semicontinuous, and the subdifferential sum rule to hold for the expressions (GF).

Several first-order optimisation methods have been developed for (P0) without block-
separable structure, typically for both G and F convex and K linear. Recently also some
non-convexity and non-linearity has been introduced [4, 21, 23, 37]. In applications in image
processing and data science, one of G or F is typically non-smooth. Effective algorithms
operating directly on the primal problem (P0), or its dual, therefore tend to be a form of
classical forward-backward splitting, occasionally called iterative soft-thresholding [1, 12].

In big data optimisation, several forward-backward block-coordinate descent methods
have been developed for (P0) with block-separable G. In each step, the methods update only a
random subset of blocks xj := Pjx in parallel; see the review [39] and the original articles
[2, 9, 11, 16, 22, 25, 28, 29, 30, 31, 42]. Typically F is assumed smooth, and often, each Gj
is strongly convex. Besides parallelism, an advantage of these methods is the exploitation of
blockwise factors of smoothness and strong convexity. These can help convergence by being
better than the global factor.
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Unfortunately, primal-only and dual-only stochastic methods, as discussed above, are
rarely applicable to image processing problems. These and many other problems do not
satisfy the assumed separability and smoothness assumptions. On the other hand, an additional
Moreau-Yosida (aka. Huber, aka. Nesterov) regularisation of the problem, which would
provide the required smoothness, would alter the problem, losing the essential non-smooth
characteristics. Generally, even without the splitting of the problem into blocks and the
introduction of stochasticity, primal-only or dual-only methods can be inefficient on more
complicated problems. Proximal steps, which are typically used to deal with non-smooth
components of the problem, can in particular be as expensive as the original optimisation
problems itself. In order to make these steps cheap, the problem has to be formulated
appropriately. Such a reformulation can often be provided through primal-dual approaches.

With the Fenchel conjugate F ∗, we can write (P0) as

min
x

max
y

G(x) + 〈Kx, y〉 − F ∗(y).

The method of Chambolle and Pock [6, 27] is popular for this formulation. It is also called the
PDHGM (Primal-Dual Hybrid Gradient Method, Modified) in [14] and the PDPS (Primal–Dual
Proximal Splitting) in [34]. It consists of alternating proximal steps in x and y combined
with an over-relaxation step to ensure convergence. The method is closely related to the
classical ADMM and Douglas-Rachford splitting. The acronym PDHGM arises from the
earlier PDHG [43] that is convergent only in special cases [18]. These connections are
discussed in [14].

While early block-coordinate methods only worked with a primal or a dual variable,
recently stochastic primal-dual approaches based on the ADMM and the PDHGM have been
proposed [3, 15, 24, 26, 33, 40, 41]. Moreover, variants of the ADMM that deterministically
update multiple blocks in parallel and afterwards combine the results for the Lagrange mul-
tiplier update have been introduced [20]. As with the primal- or dual-only methods, these
algorithms can improve convergence by exploiting local properties of the problem. Besides
[33, 40, 41], which have restrictive smoothness and strong convexity requirements, little is
known about convergence rates.

In this paper, we will derive block-coordinate descent variants of the PDHGM with known
convergence rates: O(1/N2) if each Gj is strongly convex, O(1/N) without any strong
convexity, and mixed O(1/N2) +O(1/N) if some of the Gj are strongly convex. These rates
apply to an ergodic duality gap and strongly convex blocks of the iterates. Our methods have
the novelty of blockwise-adapted step lengths. In the imaging applications of Section 5 we
will even employ pixelwise-adapted step lengths. Moreover, we can update random subsets of
both primal and dual blocks under a light “nesting condition” on the sampling scheme. Such
“doubly-stochastic” updates have previously been possible only in very limited settings [40].

Our present paper is based on [37] on the acceleration of the PDHGM when G is strongly
convex only on a subspace: the deterministic two-block case m = 2 and n = 1 of (GF).
Besides enabling (doubly-)stochastic updates and an arbitrary number of both primal and dual
blocks, in the present work, we derive simplified step length rules through a more careful
analysis.

The more abstract basis of our present work has been described in [35]. There we study
preconditioning of abstract proximal point methods and “testing” by suitable operators as
means of obtaining convergence rates. We recall the relevant aspects of this theory through the
course of Sections 2 and 3. In the first of these sections, we start by going through the notation
and previous research on the PDHGM in more detail. Then we develop the rough structure
of our proposed method. This will depend on several structural conditions that we introduce
in Section 2. Afterwards in Section 3 we develop convergence estimates based on technical
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conditions on the various step length and testing parameters. These conditions need to be
verified through the development of explicit parameter update rules. We do this in Section 4
along with proving the claimed convergence rates (Theorem 4.5 and its corollaries). We also
present there the final detailed versions of our proposed algorithms: Algorithm 1 (doubly
stochastic) and Algorithm 2 (simplified). We finish with numerical experiments in Section 5.

2. Background and overall structure of the algorithm. To make the notation definite,
we write L(X;Y ) for the space of bounded linear operators between Hilbert spaces X and Y .
The identity operator we denote by I . For T, S ∈ L(X;X), we use T ≥ S to indicate that
T − S is positive semi-definite; in particular T ≥ 0 means that T is positive semi-definite.
Also for possibly non-self-adjoint T , we introduce the inner product and norm-like notations

〈x, z〉T := 〈Tx, z〉 and ‖x‖T :=
√
〈x, x〉T ,

the latter only defined for positive semi-definite T . We write T ' T ′ if 〈x, x〉T ′−T = 0 for
all x.

We denote by C(X) the set of convex, proper, lower semicontinuous functionals from
a Hilbert space X to R := [−∞,∞]. With G ∈ C(X), F ∗ ∈ C(Y ), and K ∈ L(X;Y ), we
then wish to solve the minimax problem

min
x∈X

max
y∈Y

G(x) + 〈Kx, y〉 − F ∗(y),

assuming the existence of a solution û = (x̂, ŷ) that satisfies the optimality conditions

(OC) −K∗ŷ ∈ ∂G(x̂) and Kx̂ ∈ ∂F ∗(ŷ).

For the stochastic aspects of our work, we denote by (Ω,O,P) the probability space
consisting of the set Ω of possible realisation of a random experiment, by O a σ-algebra on Ω,
and by P a probability measure on (Ω,O). We denote the expectation corresponding to P by
E, the conditional probability with respect to a sub-σ-algebra O′ ⊂ O by P[ · |O′], and the
conditional expectation by E[ · |O′]. We refer to [32] for more details.

We also use the following non-standard notation: If O is a σ-algebra on the space Ω,
we denote by R(O;V ) the space of V -valued random variables A such that A : Ω → V is
O-measurable.

2.1. Preconditioned proximal point methods. Testing for rates. We use the notation

u = (x, y)

to combine the primal variable x and the dual variable y into a single variable u. Following
[19, 37], the primal-dual method of Chambolle and Pock [6] (PDHGM) may then be written
in proximal point form as

(PP0) 0 ∈ H(ui+1) + Li(u
i+1 − ui)

for a monotone operator H encoding the optimality conditions (OC) as 0 ∈ H(û) and a
preconditioning or step length operator Li = L0

i . These are

H(u) :=

[
∂G(x) +K∗y
∂F ∗(y)−Kx

]
and L0

i :=

[
τ−1
i −K∗
−ωiK σ−1

i+1

]
.

Here τi, σi+1 > 0 are step length parameters, and ωi > 0 are over-relaxation parameters.
In the basic version of the algorithm we set ωi = 1, τi ≡ τ0, and σi ≡ σ0, assuming
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τ0σ0‖K‖2 < 1. Observe that we may equivalently parametrise the algorithm by τ0 and
δ = 1− ‖K‖2τ0σ0 > 0. The method has O(1/N) rate for the ergodic duality gap, which we
will return to in Section 3.1.

If G is strongly convex with factor γ > 0, we may, for γ̃ ∈ (0, γ], accelerate

(2.1) ωi := 1/
√

1 + 2γ̃τi, τi+1 := τiωi, and σi+1 := σi/ωi.

This gives O(1/N2) convergence of ‖xN − x̂‖2 to zero. If γ̃ ∈ (0, γ/2], we also obtain
O(1/N2) convergence of an ergodic duality gap.

In [37], we extended the PDHGM to partially strongly convex problems: in (GF) this
corresponded to the primal two-block and dual single-block case m = 2 and n = 1 with only
G1 assumed strongly convex. This extension was based on taking in (PP0) the preconditioner

(2.2) Li =

[
T−1
i −K∗

−ωiK Σ−1
i+1

]
for invertible Ti = τ1,iP1 + τ2,iP2 ∈ L(X;X) and Σi+1 = σi+1I ∈ L(Y ;Y ). After simple
rearrangements of (PP0), the resulting algorithm could be written more explicitly as

xi+1 := (I + Ti∂G)−1(xi − TiK∗yi),(2.3a)

yi+1 := (I + Σi+1∂F
∗)−1(yi + Σi+1K((1 + ωi)x

i+1 − ωixi)).(2.3b)

Since G is assumed separable, the first, primal update splits into separate updates for
xi+1

1 := P1x
i+1 and xi+1

2 := P2x
i+1. Note that this explicit form of the algorithm does

not require Ti and Σi+1 to be invertible unlike (PP0) with the choice (2.2), so this suggests
that we could develop stochastic methods that randomly choose one, two, or no primal blocks
to update.

To study convergence, it is, however, more practical to work with implicit formulations
such as (PP0). We will shortly see how this works. To make (PP0) work with non-invertible
Ti and Σi+1, let us reformulate it slightly. In fact, let us define

Wi+1 :=

[
Ti 0
0 Σi+1

]
and (for the moment)

Mi+1 =

[
I −TiK∗

−ω̃iΣi+1K I

]
.

(2.4)

With this, whether or not Ti and Σi+1 are invertible, (2.3) can be written as the preconditioned
proximal point iteration

(PP) Wi+1H(ui+1) +Mi+1(ui+1 − ui) 3 0.

This will be the abstract form of the algorithms that we will develop, however, with the exact
form of Ti+1, Σi+1, and Mi+1 still to be refined.

To study the convergence of (PP), we apply to the testing framework introduced in [35, 37].
The idea is to apply 〈 · , ui+1 − û〉Zi+1

with a testing operator Zi+1 to (PP) to “test” it. Thus

(2.5) 0 ∈ 〈Wi+1H(ui+1) +Mi+1(ui+1 − ui), ui+1 − û〉Zi+1
.

We need Zi+1Mi+1 to be self-adjoint and positive semi-definite. This guarantees that
Zi+1Mi+1 can be used to form the local semi-norm ‖ · ‖Zi+1Mi+1

. Indeed, assuming for
some linear operator Ξi+1 that H has the operator-relative (strong) monotonicity property

(2.6) 〈H(u′)−H(u), u′ − u〉Zi+1Wi+1
≥ ‖u− u′‖2Zi+1Ξi+1

(u, u′ ∈ X × Y ),
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then a simple application of the Pythagoras identity

〈ui+1 − ui, ui+1 − û〉Zi+1Mi+1
=

1

2
‖ui+1 − ui‖2Zi+1Mi+1

− 1

2
‖ui − û‖2Zi+1Mi+1

+
1

2
‖ui+1 − û‖2Zi+1Mi+1

yields

1

2
‖ui+1 − û‖2Zi+1(Mi+1+2Ξi+1) +

1

2
‖ui+1 − ui‖2Zi+1Mi+1

≤ 1

2
‖ui − û‖2Zi+1Mi+1

.

If Zi+2Mi+2 ≤ Zi+1(Mi+1 + 2Ξi+1) for all i, then summing over i = 0, . . . , N − 1 gives

(2.7)
1

2
‖uN − û‖2ZN+1MN+1

+

N−1∑
i=0

1

2
‖ui+1 − ui‖2Zi+1Mi+1

≤ 1

2
‖u0 − û‖2Z1M1

.

We therefore see that Zi+1Mi+1 measures the rates of convergence of the iterates. If our itera-
tions are stochastic, then to obtain deterministic estimates, we can simply take the expectation
in (2.7). However, to obtain estimates on a duality gap, we need to work significantly more.
We will, therefore, in the beginning of Section 3, after introducing all the relevant concepts
and finalising the setup for the present work, quote the appropriate results from [35].

2.2. Stochastic and deterministic block updates. We want to update any subset of any
number of primal and dual blocks stochastically. Compatible with the separable structure
(GF) of G and F ∗, we therefore construct—from individual (possibly random) step length
and testing parameters τj,i, σ`,i+1 ≥ 0 and φj,i, ψ`,i+1 > 0 as well as random subsets
S(i) ⊂ {1, . . . ,m} and V (i+ 1) ⊂ {1, . . . , n}—the step length and testing operators

Wi+1 :=

[
Ti 0
0 Σi+1

]
and Zi+1 :=

[
Φi 0
0 Ψi+1

]
for(S.a)

Ti :=
∑
j∈S(i)

τj,iPj , Σi+1 :=
∑

`∈V (i+1)

σ`,i+1Q`,(S.b)

Φi :=

m∑
j=1

φj,iPj , Ψi+1 :=

n∑
`=1

ψ`,i+1Q` (i ≥ 0).(S.c)

We moreover take as the preconditioner

Mi+1 :=

[
I −Φ−1

i Λ∗i
−Ψ−1

i+1Λi I

]
for Λi := KT̊ ∗i Φ∗i −Ψi+1Σ̊i+1K with(S.d)

T̊i :=
∑
j∈S̊(i)

τj,iPj , S̊(i) ⊂ S(i),(S.e)

Σ̊i+1 :=
∑

`∈V̊ (i+1)

σ`,i+1Q`, V̊ (i+ 1) ⊂ V (i+ 1).(S.f)

The subsets S(i) and V (i+ 1) are the indices of the blocks

(2.8) xj := Pjx and y` := Q`y
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of the variables x and y that are to be updated at iteration i.1 Hence Ti and Σi+1 will not be
invertible unless we update all the blocks. Clearly Φi, Ψi+1, Ti, and Σi+1 are self-adjoint and
positive semi-definite with Φi and Ψi+1 invertible. The subsets S̊(i) and V̊ (i+ 1) indicate
those blocks of xi+1 and of yi+1 that are to be updated “independently” of the other variable.
We will explain these subsets and the choice of Λi in more detail in Section 2.3.

The iterate ui+1 = (xi+1, yi+1) has to be computable based on a random sampling at
iteration i and the information gathered (random variable realisations) before commencing the
iteration. For the algorithm to be realisable, it cannot depend on the future. We therefore need
to be explicit about the space of each random variable. We model the information available
just before commencing iteration i by the σ-algebra Oi−1. Thus Oi−1 ⊂ Oi. More precisely,
Oi is the smallest sub-σ-algebra of O satisfying for all k = 0, . . . , i, j = 1, . . . ,m, and
` = 1, . . . , n that

τj,k, σ`,k+1 ∈ R(Oi; [0,∞)), φj,k, ψ`,k+1 ∈ R(Oi; (0,∞)),(R.a)

S(k) ∈ R(Oi;P({1, . . . ,m})), V (k + 1) ∈ R(Oi;P({1, . . . , n})),(R.b)

S̊(k) ∈ R(Oi;P({1, . . . ,m})), V̊ (k + 1) ∈ R(Oi;P({1, . . . , n})).(R.c)

Here and only here P denotes the power set. Any other variables can only be random by being
constructed from these variables. We thus deduce from (S) and (PP) that

Tk ∈ R(Oi;L(X;X)), Φk ∈ R(Oi;L(X;X)), xi+1 ∈ R(Oi;X),

Σk+1 ∈ R(Oi;L(Y ;Y )), Ψk+1 ∈ R(Oi;L(Y ;Y )), yi+1 ∈ R(Oi;Y ).

We will also need to assume the nesting conditions on sampling,

V(S̊(i)) ∩ V̊ (i+ 1) = ∅, V(S(i) \ S̊(i)) ∩ (V (i+ 1) \ V̊ (i+ 1)) = ∅,(V .a)

S̊(i) ∪ V−1(V̊ (i+ 1)) ⊂ S(i), V̊ (i+ 1) ∪ V(S̊(i)) ⊂ V (i+ 1),(V .b)

where the set

V(j) := {` ∈ {1, . . . , n} | Q`KPj 6= 0}

consists of the dual blocks that are “connected” by K to the primal block with index j. Vice
versa, V−1(`) consists of the primal blocks that are “connected” by K to the dual block with
index `. Thus (V .b) states that the independent updates (i.e., S̊(i) and V̊ (i+1)) must propagate
from primal to dual and vice versa as non-independent updates (i.e., S(i) and V (i+ 1)). The
condition (V .a) restricts connections between primal and dual updates: the first part means
that the independently updated blocks cannot be connected and by the second part, neither
can the non-independent updates. If we use (V .b) as an equality to define S(i) and V (i+ 1),
then the second part of (V .a) holds if V(V−1(V̊ (i+ 1))) ∩ V(S̊(i)) = ∅, that is, the condition
restricts second-degree connections between the independently updated blocks.

To facilitate referring to all the above structural conditions, we introduce:
ASSUMPTION 2.1 (main structural condition). We assume the structure (GF) and (S) with
the limitations (R) and (V) on randomness.

Clearly,

(2.9) Zi+1Mi+1 =

[
Φi −Λ∗i
−Λi Ψi+1

]
1The iteration index is off-by-one for σ`,i+1 and ψ`,i+1 for reasons of the historical development of the

Chambolle-Pock method, when it was not written as a preconditioned proximal point method.
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is self-adjoint. We need to prove that it is positive semi-definite. We will do this in Section 4
using the functions κ` introduced next. We show afterwards in Example 2.3 that these functions
are a block structure-adapted generalisation of the simple bound K ≤ ‖K‖I .
DEFINITION 2.2 LetP := {P1, . . . , Pm} andQ := {Q1, . . . , Qn}. We write (κ1, . . . , κn) ∈
K(K,P,Q) if each κ` : [0,∞)m → [0,∞) is monotone (` = 1, . . . , n) and the following
hold:

(i) (Estimation) For all (z`,1, . . . , z`,m) ⊂ [0,∞)m and ` = 1, . . . , n,

m∑
j=1

n∑
`,k=1

z
1/2
`,j z

1/2
k,j Q`KPjK

∗Qk ≤
n∑
`=1

κ`(z`,1, . . . , z`,m)Q`.

(ii) (Boundedness) For some κ > 0 and all (z1, . . . , zm) ⊂ [0,∞)m,

κ`(z1, . . . , zm) ≤ κ
m∑
j=1

zj .

(iii) (Non-degeneracy) There exists κ > 0, and for all j = 1, . . . ,m a choice of
`∗(j) ∈ {1, . . . , n} exists such that for all (z1, . . . , zm) ⊂ [0,∞)m,

κzj ≤ κ`∗(j)(z1, . . . , zm) (j = 1, . . . ,m).

The choice of κ allows us to construct different algorithms. Here we consider a few
possibilities, first a simple one, and then a more optimal one.
EXAMPLE 2.3 (Worst-case κ). We may estimate

m∑
j=1

n∑
`,k=1

z
1/2
`,j z

1/2
k,j Q`KPjK

∗Qk ≤
n∑

`,k=1

z
1/2
` z

1/2
k Q`KK

∗Qk ≤
n∑
`=1

z`‖K‖2Q`.

Therefore Definition 2.2(i) and (ii) hold with κ = ‖K‖2 for the monotone choice

κ`(z1, . . . , zm) := ‖K‖2 max{z1, . . . , zm}.

Clearly also κ = κ for any choice of `∗(j) ∈ {1, . . . , n}. This choice of κ` corresponds to the
rule τσ‖K‖2 < 1 in the PDHGM method.
EXAMPLE 2.4 (Balanced κ). Take minimal κ` that satisfy Definition 2.2 and the balancing
condition κ`(z`,1, . . . , z`,m) = κk(zk,1, . . . , zk,m), `, k = 1, . . . , n. This requires problem-
specific analysis but tends to perform well as we will see in Section 5.

2.3. Justification of the preconditioner and sampling restrictions. With Mi+1 of the
form (S.d) for any Λi, the implicit method (PP) expands as

0 ∈ Ti∂G(xi+1) + TiK
∗yi+1 + (xi+1 − xi)− Φ−1

i Λ∗i (y
i+1 − yi),(2.10a)

0 ∈ Σi+1∂F
∗(yi+1)− Σi+1Kx

i+1 −Ψ−1
i+1Λi(x

i+1 − xi) + (yi+1 − yi).(2.10b)

This can easily be rearranged as

xi+1 := (I + Ti∂G)−1(xi + Φ−1
i Λ∗i (y

i+1 − yi)− TiK∗yi+1),(2.11a)

yi+1 := (I + Σi+1∂F
∗)−1(yi + Ψ−1

i+1Λi(x
i+1 − xi) + Σi+1Kx

i+1).(2.11b)

This method is still not explicit as the primal and dual updates potentially depend on each other.
We will now show how the removal of this dependency leads to our choice of Λi in (S.d).
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Indeed, due to the compatible block-separable structures (S) and (GF), multiplying (2.10a)
by Pj , for j = 1, . . . ,m, and (2.10b) by Q`, for ` = 1, . . . , n, (2.11) can be split blockwise as

xi+1
j = (I + χS(i)(j)τj,i∂Gj)

−1(xij + Pj [Φ
−1
i Λ∗i (y

i+1 − yi)− TiK∗yi+1]),

yi+1
` = (I + χV (i+1)(`)σ`,i+1∂F

∗
` )−1(yi` +Q`[Ψ

−1
i+1Λi(x

i+1 − xi) + Σi+1Kx
i+1]).

For S(i) and V (i+ 1) to have the intended meaning that only the corresponding blocks are
updated, we need to choose Λi such that

xi+1
j = xij (j 6∈ S(i)) and yi+1

` = yi` (` 6∈ V (i+ 1)).(2.12)

Since PjTi = 0, for j 6∈ S(i), and Q`Σi+1 = 0, for ` 6∈ V (i+ 1), this is to say that

PjΦ
−1
i Λ∗i (y

i+1 − yi) = 0 (j 6∈ S(i)) and(2.13a)

Q`Ψ
−1
i+1Λi(x

i+1 − xi) = 0 (` 6∈ V (i+ 1)).(2.13b)

Taking Λi = KT ∗i Φ∗i would allow computing xi+1 before yi+1 and to satisfy (2.13a).
If we further had KT ∗i Φ∗i = ωiΨi+1Σi+1K, then also (2.13b) would hold and (S.d) would
reproduce Mi+1 of (2.4). Symmetrically, Λi = −Σi+1Ψi+1K would make yi+1 indepen-
dent of xi+1. Such conditions will, however, rarely be satisfiable unless, deterministically,
S(i) ≡ {1, . . . ,m} and V (i+1) ≡ {1, . . . , n}. Nevertheless, motivated by this, we designate
subsets of blocks of xi+1 and yi+1 to be updated independently of the other variable. These
are the subsets S̊(i) and V̊ (i+ 1) in (S.e) and (S.f). Then picking Λi as in (S.d) achieves our
objective:
LEMMA 2.5 Suppose Assumption 2.1 holds. Then (2.12) and (2.13) hold.

Proof. We already know that (2.13) implies (2.12). Using (S.d), (2.13) can be rewritten as

PjΦ
−1
i [ΦiT̊iK

∗ −K∗Σ̊∗i+1Ψ∗i+1](yi+1 − yi) = 0 (j 6∈ S(i)) and

Q`Ψ
−1
i+1[KT̊ ∗i Φ∗i −Ψi+1Σ̊i+1K](xi+1 − xi) = 0 (` 6∈ V (i+ 1)).

Clearly Pj T̊iK∗ = 0 for j 6∈ S(i). Therefore, the first condition holds if PjK∗Σ̊∗i+1 = 0 for
j 6∈ S(i). This is to say that j 6∈ V−1(V̊ (i+ 1)), which is guaranteed by (V .b). Likewise, the
second condition holds if Q`KT̊ ∗i = 0 for ` 6∈ V (i+ 1), which is also guaranteed by (V .b).

2.4. Overall structure of the proposed method. Defining the operators T⊥i := Ti− T̊i,
and Σ⊥i+1 := Σi+1 − Σ̊i+1, we can now rewrite (2.11) as

qi+1 := Φ−1
i K∗Σ̊∗i+1Ψ∗i+1(yi+1 − yi) + T⊥i K

∗yi+1,(2.14a)

xi+1 := (I + Ti∂G)−1(xi − T̊iK∗yi − qi+1),(2.14b)

zi+1 := Ψ−1
i+1KT̊

∗
i Φ∗i (x

i+1 − xi) + Σ⊥i+1Kx
i+1,(2.14c)

yi+1 := (I + Σi+1∂F
∗)−1(yi + Σ̊i+1Kx

i + zi+1).(2.14d)

Due to the first part of (V .a), Pjqi+1 = 0 and Q`zi+1 = 0 for j ∈ S̊(i) and ` ∈ V̊ (i + 1).
The second part of (V .a) implies

T⊥i K
∗Q` = 0 and Σ⊥i+1KPj , for ` ∈ V (i+ 1) \ V̊ (i+ 1) and j ∈ S(i) \ S̊(i).
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The first part of (V .a) and (V .b) moreover imply Σ⊥i+1Θi+1 = Σi+1Θi+1 = Ψ−1
i+1KT̊

∗
i Φ∗i

and T⊥i B
∗
i+1 = TiB

∗
i+1 = Φ−1

i K∗Σ̊i+1Ψi+1 for

Θi :=
∑
j∈S̊(i)

∑
`∈V(j)

θ`,j,iQ`KPj with θ`,j,i+1 :=
τj,iφj,i

σ`,i+1ψ`,i+1
and

Bi :=
∑

`∈V̊ (i+1)

∑
j∈V−1(`)

b`,j,iQ`KPj with b`,j,i+1 :=
σ`,i+1ψ`,i+1

τj,iφj,i
.

Letting x̊i+1 :=
∑
j∈S̊(i) Pjx

i+1 and ẙi+1 :=
∑
`∈V̊ (i+1)Q`x

i+1 we therefore obtain

qi+1 := Φ−1
i K∗Σ̊∗i+1Ψ∗i+1(ẙi+1 − yi) + T⊥i K

∗ẙi+1

= T⊥i [B∗i+1(ẙi+1 − yi) + ẙi+1],
(2.15a)

zi+1 := Ψ−1
i+1KT̊

∗
i Φ∗i (̊x

i+1 − xi) + Σ⊥i+1Kx̊
i+1

= Σ⊥i+1[Θi+1(̊xi+1 − xi) + x̊i+1].
(2.15b)

Introducing wi+1 and vi+1 such that Ψ⊥i+1w
i+1 = zi+1 and Φ⊥i v

i+1 = qi+1 and us-
ing (GF), we can write the method given by (2.14) and (2.15) as

x̊i+1 := (I + T̊i∂G)−1(xi − T̊iK∗yi),(2.16a)

ẙi+1 := (I + Σ̊i+1∂F
∗)−1(yi + Σ̊i+1Kx

i),(2.16b)

wi+1 := Θi+1(̊xi+1 − xi) + x̊i+1,(2.16c)

vi+1 := B∗i+1(ẙi+1 − yi) + ẙi+1,(2.16d)

xi+1 := (I + T⊥i ∂G)−1(̊xi+1 − T⊥i vi+1),(2.16e)

yi+1 := (I + Σ⊥i+1∂F
∗)−1(ẙi+1 + Σ⊥i+1w

i+1).(2.16f)

Due to (GF), these operations can further be split into blockwise operations with no depen-
dencies on so far uncomputed blocks. We delay making this explicitly until we are ready to
present our final Algorithms 1 and 2 towards the end of the theoretical part of the paper.

We conclude the present structural development by explicitly stating what we have proved
in the preceding paragraphs:
LEMMA 2.6 Suppose that Assumption 2.1 holds. Then (2.16) is equivalent to (PP).

3. A basic convergence estimate. Now that we have established the overall structure of
the proposed algorithms in (2.16), we need to develop rules for the step length and testing
parameters that yield a convergent method. This will require, in particular, the positive semi-
definiteness of Zi+1Mi+1 as we recall from the discussion leading up to (2.7). Indeed, since
in general, without any strong convexity, we can only obtain gap (and weak) convergence, we
need to refine that argument.

In Sections 3.1–3.5, we will derive some quite technical conditions that the step length
parameters, testing parameters, and block selection probabilities need to satisfy. From these
basic estimates, we then develop explicit convergence rates in the next section. In the final
Section 3.6, we will also discuss permissible sampling patterns.

3.1. A bound on ergodic duality gaps. Recall the basis of the testing technique (2.5).
In the single-block case (Ti = τiI , Σi+1 = σi+1I , Φi+1 = φi+1I , and Ψi+1 = ψi+1I),
instead of using û ∈ H−1(0) and the operator-relative monotonicity (2.6) to eliminate H ,
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using the convexity of G and F ∗ we can also estimate

〈H(ui+1), ui+1 − û〉Zi+1Wi+1

≥ φiτi[G(xi+1)−G(x̂)] + ψi+1σi+1[F ∗(yi+1)− F ∗(ŷ)]

+ φiτi〈K∗yi+1, xi+1 − x̂〉 − ψi+1σi〈Kxi+1, yi+1 − ŷ〉

=: G̃i+1.

(3.1)

With this, (2.7) can be improved to

1

2
‖uN − û‖2ZN+1MN+1

+

N−1∑
i=0

(
G̃i+1 +

1

2
‖ui+1 − ui‖2Zi+1Mi+1

)
≤ 1

2
‖u0 − û‖2Z1M1

.

We would like to develop the “preliminary gaps” G̃i+1 into a (Lagrangian) duality gap

G(x, y) :=
(
G(x) + 〈ŷ, Kx〉 − F ∗(ŷ)

)
−
(
G(x̂) + 〈y,Kx̂〉 − F ∗(y)

)
.

The first obstacle we face are the differing factors in front ofG and F ∗. This suggests to impose
φiτi = ψi+1σi+1. For the PDHGM, it, however, turns out that φiτi = ψiσi. After taking care
of some technical details, this can be dealt with by an index realignment argument [35].

With multiple blocks, we can get a similar estimate as (3.1) with the factors φj,iτj,i in
front of Gj and ψ`,i+1σ`,i+1 in front of F ∗` . To derive a gap estimate, the preceding discussion
suggests to impose TiΦi = η̄iI and Σi+1Ψi+1 = η̄iI or ΣiΨi = η̄iI for some scalar η̄i > 0.
This kind of coupling between the blocks will be one of the main restrictions that we are faced
with in the development of our method. In the stochastic setting, it turns out [35] that we can
relax the coupling slightly: do it in expectation. Correspondingly, we assume for some η̄i > 0
either

E[T ∗i Φ∗i ] = η̄iI and E[Ψi+1Σi+1] = η̄iI (i ≥ 1) or(3.2a)
E[T ∗i Φ∗i ] = η̄iI and E[ΨiΣi] = η̄iI (i ≥ 1).(3.2b)

The second condition is an extension of what we saw the standard PDHGM to satisfy. The first
condition, which is off-by-one compared to the second, will, however, be the only alternative
that doubly-stochastic methods can satisfy.

A further difficulty with developing (3.1) into a gap estimate are the remaining terms
involving K. Even after rearrangements we can only get an ergodic estimate [35]. To express
such estimates, corresponding to the conditions (3.2a) and (3.2b), we introduce

(3.3) ζN :=

N−1∑
i=0

η̄i and ζ∗,N :=

N−1∑
i=1

η̄i

and the ergodic sequences

x̃N := ζ−1
N E

[
N−1∑
i=0

T ∗i Φ∗i x
i+1

]
, ỹN := ζ−1

N E

[
N−1∑
i=0

Σ∗i+1Ψ∗i+1y
i+1

]
,

x̃∗,N := ζ−1
∗,NE

[
N−1∑
i=1

T ∗i Φ∗i x
i+1

]
, ỹ∗,N := ζ−1

∗,NE

[
N−1∑
i=1

Σ∗iΨ
∗
i y
i

]
.

The coupling conditions (3.2a) and (3.2b) then produce two different ergodic gaps, G(x̃N , ỹN )
and G(x̃∗,N , ỹ∗,N ). We demonstrate this in the next theorem from [35]. It forms the basis for
our work in the remaining sections. The fundamental arguments for the proof are those that
led to (2.7), however, the gap estimate requires significant additional technical work.
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THEOREM 3.1 Suppose Assumption 2.1 (main structural condition) holds with Zi+1Mi+1

positive semi-definite. Write Γ :=
∑m
j=1 γjPj for γj ≥ 0 the factor of (strong) convexity of

Gj . With Γ̃ =
∑m
j=1 γ̃jPj ∈ L(X;X), assuming one of the following alternatives to hold, let

g̃N :=


0, 0 ≤ Γ̃ ≤ Γ,

ζNG(x̃N , ỹN ), 0 ≤ Γ̃ ≤ Γ/2, (3.2a) holds,
ζ∗,NG(x̃∗,N , ỹ∗,N ), 0 ≤ Γ̃ ≤ Γ/2, (3.2b) holds.

Also define

Ξi+1(Γ̃) :=

[
2TiΓ̃ 2TiK

∗

−2Σi+1K 0

]
,

Di+1(Γ̃) := Zi+2Mi+2 − Zi+1(Ξi+1(Γ̃) +Mi+1).

Then the iterates ui = (xi, yi) of (PP) satisfy for any û ∈ H−1(0) the estimate

1

2
E
[
‖uN − û‖2ZNMN

]
+ g̃N

≤ 1

2
‖u0 − û‖2Z1M1

+

N−1∑
i=0

1

2
E
[
‖ui+1 − û‖2

Di+1(Γ̃)
− ‖ui+1 − ui‖2Zi+1Mi+1

]
.

(3.4)

Proof. This is [35, Theorem 5.5] with

∆i+1(Γ̃) :=
1

2
‖ui+1 − û‖2

Di+1(Γ̃)
− 1

2
‖ui+1 − ui‖2Zi+1Mi+1

and the condition Γ̃ = Γ relaxed to 0 ≤ Γ̃ ≤ Γ, which is possible because if gj is strongly
convex with factor γj > 0, then it is strongly convex with any smaller non-negative factor.
Moreover, [35, Example 5.1] shows that the blockwise structure (GF), (S) has an ergodic
convexity property that produces the gaps G(x̃N , ỹN ) and G(x̃∗,N , ỹ∗,N ).

In the standard PDHGM we can ensure that Di+1(Γ̃) ' 0 [35]. However, in our present
setting, we will not generally be able to enforce this, so these operators will introduce a penalty
in (3.4). A lot of our remaining work will consist of controlling this penalty. We also need to
estimate from below and show that ZNMN is positive semi-definite.

3.2. Notations and assumptions. For convenience, we introduce

τ̂j,i := τj,iχS(i)(j), σ̂`,i := σ`,iχV (i)(`),

πj,i := P[j ∈ S(i) | Oi−1], ν`,i+1 := P[` ∈ V (i+ 1) | Oi−1],

π̊j,i := P[j ∈ S̊(i) | Oi−1], ν̊`,i+1 := P[` ∈ V̊ (i+ 1) | Oi−1].

The first two denote “effective” step lengths at iteration i, while the rest is shorthand for the
probabilities of the primal block j or the dual block ` being contained in the corresponding set
at iteration i. Recalling (S.d), we also write

Λi =

m∑
j=1

∑
`∈V(j)

λ`,j,iQ`KPj with

λ`,j,i := φj,iτ̂j,iχS̊(i)(j)− ψ`,i+1σ̂`,i+1χV̊ (i+1)(`).

(3.5)

We require the following technical assumption, which we will verify through explicit step
length and a testing parameter update rules development in the next section. We indicate the
rough intended use of each condition in parentheses after the statement.
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ASSUMPTION 3.2 (step length parameter restrictions). We assume for each i ∈ N the fol-
lowing, with constants independent of i, and the same alternatives holding for each i:

(a) We are given (κ1, . . . , κn) ∈ K(K,P,Q) (see Definition 2.2), and for some δ ∈ (0, 1),

(1− δ)ψ`,i+1 ≥ κ`(λ2
`,1,iφ

−1
1,i , . . . , λ

2
`,m,iφ

−1
m,i) (` = 1, . . . , n).

(This condition generalises the condition τσ‖K‖2 < 1 for the standard PDHGM,
needed to ensure the positivity of the local metric Zi+1Mi+1.)

(b) We are given ηi ∈ R(Oi−1; (0,∞)) and η⊥τ,i, η
⊥
σ,i ∈ R(Oi−1; [0,∞)) such that

ηi+1 ≥ ηi, ηi ·min
j

(πj,i− π̊j,i) ≥ η⊥τ,i, and ηi+1 ·min
`

(ν`,i+1− ν̊`,i+1) ≥ η⊥σ,i.

(This is needed to annihilate the off-diagonal of Di+1 in the penalty term.)
(c) Either

(c-i) E[η⊥τ,i − η⊥σ,i] = constant or (c-ii) η⊥τ,i = 0 and η⊥σ,i = ηi+1.

(These are needed to ensure the coupling conditions (3.2a) or (3.2b), respectively.)
(d) The step lengths parameters satisfy

τj,i =


ηi−φj,i−1τj,i−1χS(i−1)\S̊(i−1)(j)

φj,iπ̊j,i
, j ∈ S̊(i),

η⊥τ,i
φj,i(πj,i−π̊j,i) , j ∈ S(i) \ S̊(i),

(3.6a)

σj,i+1 =


ηi−ψj,iσj,iχV (i)\V̊ (i)(j)

ψj,i+1ν̊`,i+1
, j ∈ V̊ (i+ 1),

η⊥σ,i
ψj,i+1(ν`,i+1−ν̊`,i+1) , j ∈ V (i+ 1) \ V̊ (i+ 1).

(3.6b)

For i = 0 we take τj,−1 := 0 and σj,0 := 0.
(This rule is also needed to annihilate the off-diagonal of Di+1 in the penalty term.)

(e) Let γj ≥ 0 be the factor of (strong) convexity of Gj and γ̃j ∈ [0, γj ], j = 1, . . . ,m.
Also let αi > 0 and define

qj,i+2(γ̃j) :=
(
E[φj,i+1 − φj,i(1 + 2τ̂j,iγ̃j)|Oi](3.7a)

+ αi|E[φj,i+1 − φj,i(1 + 2τ̂j,iγ̃j)|Oi]| − δφj,i
)
χS(i)(j),

hj,i+2(γ̃j) := E[φj,i+1 − φj,i(1 + 2τ̂j,iγ̃j)|Oi−1](3.7b)

+ α−1
i |E[φj,i+1 − φj,i(1 + 2τ̂j,iγ̃j)|Oi]|.

Then for some Cx > 0 either

‖xi+1
j − x̂j‖2 ≤ Cx (j = 1, . . . ,m) or(3.8a)

hj,i+2(γ̃j) ≤ 0 and qj,i+2(γ̃j) ≤ 0 (j = 1, . . . ,m).(3.8b)

(This is needed to bound the primal components in the penalty term.)
(f) For some Cy > 0 either

E[ψ`,i+2 − ψ`,i+1|Oi] ≥ 0, ‖yi+1
` − ŷ`‖2 ≤ Cy (` = 1, . . . , n) or(3.9a)

E[ψ`,i+2 − ψ`,i+1|Oi] = 0 (` = 1, . . . , n).(3.9b)

(This is needed to bound the dual components in the penalty term.)
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It is important that Assumption 3.2 is consistent with Assumption 2.1, in particular that
the step lengths generated by the former are non-negative. We will prove this in Lemma 3.5.
Before this, we state the main goal of the present section, the following specialisation of
Theorem 3.1.
PROPOSITION 3.3 Suppose Assumption 2.1 (main structural condition) and Assumption 3.2
(step length restrictions) hold. Then the iterates of (PP) satisfy for any û ∈ H−1(0) the
estimate

(3.10)
m∑
j=1

δ

2E[φ−1
j,N ]
·E
[
‖xNj −x̂j‖

]2
+g̃N ≤

1

2
‖u0−û‖2Z0M0

+

m∑
j=1

1

2
dxj,N (γ̃j)+

n∑
`=1

1

2
dy`,N ,

where

g̃N :=


ζNG(x̃N , ỹN ), case (c-i) and γ̃j ≤ γj/2 for all j,
ζ∗,NG(x̃∗,N , ỹ∗,N ), case (c-ii) and γ̃j ≤ γj/2 for all j,
0, otherwise,

(3.11a)

dxj,N (γ̃j) :=

N−1∑
i=0

δxj,i+2(γ̃j), dy`,N :=

N−1∑
i=0

δy`,i+2,(3.11b)

δxj,i+2(γ̃j) := 4CxE[max{0, qj,i+2(γ̃j)}] + CxE[max{0, hj,i+2(γ̃j)}], and(3.11c)

δy`,i+2 := 9CyE[ψ`,i+2 − ψ`,i+1].(3.11d)

Proof. We use Lemma 3.9 or Lemma 3.10 (see below) to verify one of the coupling
conditions (3.2a) or (3.2b). Then we obtain (3.4) from Theorem 3.1. Next, we use Lemmas 3.4
and 3.7 (see below) to estimate ZN+1MN+1 ≥

(
δΦN 0

0 0

)
and

E
[
‖ui+1 − û‖2

Di+1(Γ̃)
− ‖ui+1 − ui‖2Zi+1Mi+1

]
≤

m∑
j=1

δxj,i+2(γ̃j) +

n∑
`=1

δy`,i+2.

Therefore (3.4) yields

δ

2
E
[
‖xN − x̂‖2ΦN

]
+ g̃N ≤

1

2
‖u0 − û‖2Z0M0

+
1

2

N−1∑
i=0

( m∑
j=1

δxj,i+2(γ̃j) +

n∑
`=1

δy`,i+2

)
.

By Hölder’s inequality it follows that

E
[
‖xN − x̂‖2ΦN

]
=

m∑
j=1

E
[
φj,N‖xNj − x̂j‖2

]
≥

m∑
j=1

E
[
‖xNj − x̂j‖

]2
/E[φ−1

j,N ].

The estimate (3.10) is now immediate.

3.3. A lower bound on the local metric.
LEMMA 3.4 Suppose that Assumption 2.1 (main structural condition) and Assumption 3.2(a)
hold. Then Zi+1Mi+1 ≥

(
δΦi 0
0 0

)
.

Proof. Since Φi+1 is self-adjoint and positive definite, using (2.9) and Cauchy’s inequality,
for any δ ∈ (0, 1), we deduce

Zi+1Mi+1 =

[
Φi −Λ∗i
−Λi Ψi+1

]
≥
[
δΦi 0
0 Ψi+1 − 1

1−δΛiΦ
−1
i Λ∗i

]
.
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We therefore require (1− δ)Ψi+1 ≥ ΛiΦ
−1
i Λ∗i , which can be expanded as

(1− δ)
n∑
`=1

ψ`,i+1Q` ≥
m∑
j=1

n∑
`,k=1

λ`,j,iλk,j,iφ
−1
j,iQ`KPjK

∗Qk.

This follows from Definition 2.2(i) with z`,j := λ2
`,j,iφ

−1
j,i .

3.4. Bounds on the penalty terms. The structural setup (S) gives

Di+1(Γ̃) =

[
Φi+1 − Φi(I + 2TiΓ̃) Λ∗i − Λ∗i+1 − 2ΦiTiK

∗

2Ψi+1Σi+1K + Λi − Λi+1 Ψi+2 −Ψi+1

]
(3.12)

'
[
Φi+1 − Φi(I + 2TiΓ̃) A∗i+2

Ai+2 Ψi+2 −Ψi+1

]
for

Ai+2 := (Ψi+1Σi+1K − Λi+1) + (Λi −KT ∗i Φ∗i ).

LEMMA 3.5 Suppose that Assumption 2.1 (main structural condition) and Assumptions 3.2(b)
and 3.2(d) hold. Then

(3.13) E[Ai+2|Oi](xi+1 − xi) = 0, E[A∗i+2|Oi](yi+1 − yi) = 0, E[A∗i+2|Oi−1] = 0.

Moreover, if φj,i, ψ`,i+1 > 0 for all ∈ N, then τj,i, σ`,i+1 ≥ 0 for all i ∈ N. In particular, As-
sumption 3.2 is consistent with Assumption 2.1 requiring τj,i, σ`,i+1 ≥ 0 and φj,i, ψ`,i+1 > 0
for all i ∈ N, j = 1, . . . ,m and ` = 1, . . . , n.

Proof. We start by claiming that

(3.14) E[λ`,j,i+1|Oi] = ψ`,i+1σ̂`,i+1(1− χV̊ (i+1)(`))− φj,iτ̂j,i(1− χS̊(i)(j))

whenever ` ∈ V(j). Indeed, inserting (3.5) into (3.14), we see the former to be satisfied if (for
any given ηi+1)

E[φj,i+1τ̂j,i+1χS̊(i+1)(j)|Oi] = ηi+1 − φj,iτ̂j,i(1− χS̊(i)(j)) ≥ 0 and(3.15a)

E[ψ`,i+2σ̂`,i+2χV̊ (i+2)(`)|Oi] = ηi+1 − ψ`,i+1σ̂`,i+1(1− χV̊ (i+1)(`)) ≥ 0(3.15b)

over j = 1, . . . ,m, ` = 1, . . . , n, and i ≥ −1, taking S̊(−1) = {1, . . . ,m} and
V̊ (0) = {1, . . . , n}.

We can also write (3.15a) as

(3.16) E[φj,i+1τ̂j,i+1χS̊(i+1)(j)|Oi] = ηi+1 − φj,iτj,iχS(i)\S̊(i)(j) ≥ 0.

If j 6∈ S(i) \ S̊(i), since ηi+1 ≥ 0 by Assumption 3.2(b), it is clear that the inequality in
(3.16) holds. If j ∈ S(i) \ S̊(i), using the corresponding case of (3.6a), we rewrite the
inequality as ηi+1 ≥ η⊥τ,i/(πj,i − π̊j,i). This is verified by Assumption 3.2(b). Comparing to
Assumption 3.2(d), the inequality in (3.16) now inductively verifies, as claimed, τj,i+1 ≥ 0
for all i ∈ N provided that φj,i > 0 for all i ∈ N.

To verify the equality in (3.16), let O+
i ⊃ Oi be the smallest σ-algebra also containing

the set {ω ∈ Ω | j ∈ S̊(ω)(i + 1)} (now not abusing notation for random variables, with
ω standing for the random realisation that we typically omit). By Assumption 3.2(d), more
precisely (3.6b) shifted from i to i+ 1, we see that φj,i+1τj,i+1 is O+

i -measurable. Therefore,
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by standard properties of conditional expectations (see, e.g., [32])

E[φj,i+1τ̂j,i+1χS̊(i+1)(j)|Oi] = E[E[φj,i+1τ̂j,i+1χS̊(i+1)(j)|O
+
i ]|Oi]

= E[E[φj,i+1τj,i+1|O+
i ]|Oi]

= E[E[1|O+
i ]φj,i+1τj,i+1|Oi]

= E[̊πj,i+1φj,i+1τj,i+1|Oi].

(3.17)

Further expanding with (3.6b) shifted from i to i+ 1 and using ηi+1 ∈ R(Oi; (0,∞)) from
Assumption 3.2(b), we obtain

E[̊πj,i+1φj,i+1τj,i+1|Oi] = E[ηi+1 − φj,iτj,iχS(i)\S̊(i)(j)|Oi]

= ηi+1 − φj,iτj,iχS(i)\S̊(i)(j).
(3.18)

This verifies the equality in (3.16). Thus (3.15a) holds. Similarly we can verify (3.15b) and
σ`,i+1 ≥ 0. Thus (3.14) holds, as does the non-negativity claim on the dual step lengths.

Using (V .b) and (3.14), we now observe that λ`,j,i satisfies

λ`,j,i = 0 (j 6∈ S(i) or ` 6∈ V (i+ 1)) and(3.19a)

E[λ`,j,i+1|Oi] = λ̃`,j,i+1 (j = 1, . . . ,m; ` ∈ V(j)),(3.19b)

for λ̃`,j,i+1 := ψ`,i+1σ̂`,i+1 + λ`,j,i − φj,iτ̂j,i. Using (2.12), which follows from Lemma 2.5,
(3.13) expands as

E[λ`,j,i+1|Oi] = λ̃`,j,i+1 (j ∈ S(i), ` ∈ V(j)),(3.20a)

E[λ`,j,i+1|Oi] = λ̃`,j,i+1 (` ∈ V (i+ 1), j ∈ V−1(`)), and(3.20b)

E[λ`,j,i+1|Oi−1] = E[λ̃`,j,i+1|Oi−1] (j = 1, . . . ,m; ` ∈ V(j)).(3.20c)

Clearly (3.19b) implies (3.20a) and (3.20b). Moreover, applying E[ · |Oi−1] to (3.19b) and
using standard properties of nested conditional expectations we obtain (3.20c). We have
therefore verified (3.13).
COROLLARY 3.6 Suppose that Assumptions 3.2(b) and 3.2(d) hold. Then

E[φj,i+1τ̂j,i+1|Oi] = ηi+1 + η⊥τ,i+1 − η⊥τ,i and

E[ψ`,i+2σ̂`,i+2|Oi] = ηi+1 + η⊥σ,i+1 − η⊥σ,i.

Proof. Arguing analogously to (3.17) and (3.18) with the cases j ∈ S(i) \ S̊(i) and
` ∈ V (i+ 1) \ V̊ (i+ 1) of Assumption 3.2(d), we deduce that

E[φj,i+1τ̂j,i+1(1− χS̊(i+1)(j))|Oi] = η⊥τ,i+1 and

E[ψ`,i+2σ̂`,i+2(1− χV̊ (i+2)(`))|Oi] = η⊥σ,i+1.

Combined with (3.15) (in the proof of Lemma 3.5) these imply the claim.
For the next lemma we recall the coordinate notation xj and y` from (2.8).

LEMMA 3.7 Suppose Assumption 2.1 (main structural condition) and Assumption 3.2 (step
length parameter restrictions) hold. Then

E[‖ui+1 − û‖2
Di+1(Γ̃)

− ‖ui+1 − ui‖2Zi+1Mi+1
] ≤

m∑
j=1

δxj,i+2(γ̃j) +

n∑
`=1

δy`,i+2,

where δxj,i+2(γ̃j) and δy`,i+2 are given in (3.11c) and (3.11d), respectively.
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Proof. Since ui+1 ∈ R(Oi;X × Y ) and ui ∈ R(Oi−1;X × Y ), standard nesting
properties of conditional expectations show

E[‖ui+1 − û‖2
Di+1(Γ̃)

] = E
[
‖ui+1 − ui‖2E[Di+1(Γ̃)|Oi]

+ ‖ui − û‖2E[Di+1(Γ̃)|Oi−1]

+ 2〈ui+1 − ui, ui − û〉E[Di+1(Γ̃)|Oi]
]
.

(3.21)

By Lemma 3.5, (3.13) holds. Using (3.12), we therefore expand (3.21) into

E[‖ui+1 − û‖2
Di+1(Γ̃)

] = E
[
‖xi+1 − xi‖2E[Φi+1−Φi(I+2TiΓ̃)|Oi]

+ ‖xi − x̂‖2E[Φi+1−Φi(I+2TiΓ̃)|Oi−1]

+ ‖yi+1 − yi‖2E[Ψi+2−Ψi+1|Oi] + ‖yi − ŷ‖2E[Ψi+2−Ψi+1|Oi−1]

+ 2〈xi+1 − xi, xi − x̂〉E[Φi+1−Φi(I+2TiΓ̃)|Oi]

+ 2〈yi+1 − yi, yi − ŷ〉E[Ψi+2−Ψi+1|Oi]
]
.

By Assumption 3.2(f), E[Ψi+2 −Ψi+1|Oi] ≥ 0. Standard properties of conditional expecta-
tions guarantee that E[E[Ψi+2 −Ψi+1|Oi]|Oi−1] = E[Ψi+2 −Ψi+1|Oi−1]. By Lemma 3.4,
moreover, it holds that

−‖ui+1 − ui‖2Zi+1Mi+1
≤ −δ‖xi+1 − xi‖Φi .

The use of Cauchy’s inequality for arbitrary factors αi, βi > 0 therefore yields

E
[
‖ui+1 − û‖2

Di+1(Γ̃)
− ‖ui+1 − ui‖2Zi+1Mi+1

]
= E

[
‖xi+1 − xi‖2E[Φi+1−Φi(I+2TiΓ̃)|Oi]+αi|E[Φi+1−Φi(I+2TiΓ̃)|Oi]|−δΦi

+ ‖xi − x̂‖2E[Φi+1−Φi(I+2TiΓ̃)|Oi−1]+α−1
i |E[Φi+1−Φi(I+2TiΓ̃)|Oi]|

+ (1 + βi)‖yi+1 − yi‖2E[Ψi+2−Ψi+1|Oi]

+ (1 + β−1
i )‖yi − ŷ‖2E[Ψi+2−Ψi+1|Oi−1]

]
.

Here we write |
∑m
j=1 cjPj | :=

∑m
j=1 |cj |Pj . Therefore, by choosing βi = 1/2, splitting the

estimates into blocks, and using Assumptions 3.2(e) and 3.2(f), we obtain the claim.
It is relatively easy to satisfy Assumption 3.2(f) and to bound δy`,i+2. To estimate

δxj,i+2(γ̃j), we need to derive more involved update rules. We next construct one example.
EXAMPLE 3.8 (Random primal test updates). If (3.8a) holds, then take ρj ≥ 0, otherwise
take ρj = 0 (j = 1, . . . ,m). Set

(3.22) φj,i+1 := φj,i(1 + 2γ̃j τ̂j,i) + 2ρjπ
−1
j,i χS(i)(j) (j = 1, . . . ,m; i ∈ N).

Then it is not difficult to show that φj,i+1 ∈ R(Oi; (0,∞)) and δxj,i+2(γ̃j) = 18Cxρj .

If we set ρj = 0 and have just a single deterministically updated block, then (3.22) is the
standard rule (2.1) with φi = τ−2

i . The role of ρj > 0 is to ensure some (slower) acceleration
on non-strongly-convex blocks with γ̃j = 0. This is necessary for convergence rate estimates.

The difficulty with (3.22) is that the coupling parameter ηi+1 will depend on the random
realisations of S(i) through φj,i+1. This will require communication in a parallel implementa-
tion of the algorithm. We therefore desire to update φj,i+1 deterministically. We delay the
introduction of an appropriate update rule to Section 4.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK-PROXIMAL METHODS WITH SPATIALLY ADAPTED ACCELERATION 31

3.5. Satisfying the coupling conditions. We still need to satisfy either one of the cou-
pling conditions (3.2) to obtain gap estimates.
LEMMA 3.9 Suppose that Assumption 2.1 (main structural condition), Assumptions 3.2(d),
3.2(b), and (c-i) hold. Then the coupling condition (3.2a) holds.

Proof. The condition (3.2a) holds if E[φj,i+1τ̂j,i+1] = η̄i+1 = E[ψ`,i+2σ̂`,i+2] for some
η̄i+1 for all j = 1, . . . ,m and ` = 1, . . . , n. Taking η̄i+1 := E[ηi+1 + η⊥τ,i+1 − η⊥τ,i], the
claim follows from Corollary 3.6 and Assumption 3.2 (c-i).

The alternative coupling condition (3.2b) requires

E[φj,i+1τ̂j,i+1] = η̄i+1 = E[ψ`,i+1σ̂`,i+1]

for some η̄i+1. By Corollary 3.6, this holds when

(3.23) E[ηi+1 + η⊥τ,i+1 − η⊥τ,i] = η̄i = E[ηi + η⊥σ,i − η⊥σ,i−1].

It is not clear how to satisfy this simultaneously with Assumption 3.2 (c-i), so we use (c-ii).
LEMMA 3.10 Suppose that Assumption 2.1 (main structural condition), Assumptions 3.2(d)
and (c-ii) hold. Then Assumption 3.2(b) holds if and only if V̊ (i + 1) = ∅ and
V (i+ 1) = {1, . . . , n}. When this is the case, the coupling condition (3.2b) holds, necessarily
S(i) = S̊(i), and

τj,i = ηi/(φj,iπ̊j,i) (j ∈ S(i)),(3.24a)
σj,i+1 = ηi+1/ψj,i+1 (j ∈ V(S(i))).(3.24b)

Proof. Assumption 3.2 (c-ii), i.e., η⊥τ,i = 0 and η⊥σ,i = ηi+1 reduces Assumption 3.2(b) to
min`(ν`,i+1 − ν̊`,i+1) ≥ 1. This holds if and only hold if ν`,i+1 ≡ 1 and ν̊`,i+1 ≡ 0 for all
` = 1, . . . ,m. This holds, as claimed, if and only if V̊ (i + 1) = ∅, V (i + 1) = {1, . . . , n}.
Clearly in this case (V) holds if and only if S(i) = S̊(i). With Assumption 3.2(b) verified,
Corollary 3.6 now rewrites (3.2b) as (3.23). This is clearly verified by η⊥τ,i = 0 and η⊥σ,i = ηi+1.
Finally, (3.24) is a specialisation of Assumption 3.2(d) to the choices of (c-ii).

REMARK 3.11 We had to impose full dual updates to satisfy (3.2b). This is akin to most
existing primal-dual coordinate descent methods [3, 15, 33]. The algorithms in [24, 26, 40]
are more closely related to our method, however, only [40] provides convergence rates for
single-block sampling schemes under full strong convexity of both G and F ∗.

3.6. Sampling patterns. There are not many possible fully deterministic sampling pat-
terns allowed by (V) with Assumption 3.2. Indeed, (3.15a) reads in the deterministic setting

φj,i+1τj,i+1χS̊(i+1)(j) + φj,iτ̂j,iχS(i)\S̊(i)(j)) = ηi+1.

Since ηi+1 > 0, j 6∈ S(i) \ S̊(i) implies j ∈ S̊(i+ 1), which implies j 6∈ S(i+ i) \ S̊(i+ 1).
Therefore, once in the independently updated set, the block j will always stay there. Due
to (V .b), if V̊ (i + 1) 6= ∅ consistently, for most K, the set S(i) will grow. Therefore, after
a small number of iterations N , either j ∈ S̊(i), for i ≥ N , or j ∈ S(i) = {1, . . . , n}.
Similar considerations hold for the dual blocks. Therefore, the way each block is updated in
deterministic methods is, after a small number of iterations, fixed. There does not, therefore,
appear to be significant improvements possible over consistently taking

S(i) = S̊(i) = {1, . . . ,m}, V̊ (i+ 1) = ∅, and V (i+ 1) = {1, . . . ,m}

(or the converse dual-first order).
Regarding stochastic algorithms, we start with a few options for the sampling of S(i) in

Algorithm 2 with iteration-independent probabilities πj,i ≡ πj .
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EXAMPLE 3.12 (Independent probabilities). If all the blocks {1, . . . ,m} are chosen inde-
pendently, we have P({j, k} ⊂ S(i)) = πjπk for j 6= k, where πj ∈ (0, 1].
EXAMPLE 3.13 (Fixed number of random blocks). If we have a fixed number M of proces-
sors, then we may want to choose a subset S(i) ⊂ {1, . . . ,m} such that #S(i) = M .

The next example gives a simple way to satisfy (V .a) for Algorithm 1.
EXAMPLE 3.14 (Alternating x-y and y-x steps). Let us randomly alternate between
S̊(i) = ∅ and V̊ (i + 1) = ∅. That is, with some probability px, we choose to take an
x-y step that omits lines 9 and 8 in Algorithm 1 and with probability 1− px, an y-x step that
omits the lines 7 and 10. If π̃j = P[j ∈ S̊|S̊ 6= ∅] and ν̃` = P[` ∈ V̊ |V̊ 6= ∅] denote the
probabilities of the rule used to sample S̊ = S̊(i) and V̊ = V̊ (i+ 1) when non-empty, then
(V) gives

π̊j = pxπ̃j , πj = pxπ̃j + (1− px)P[j ∈ V−1(V̊ )|V̊ 6= ∅],
ν̊` = (1− px)ν̃`, ν` = (1− px)ν̃j + pxP[` ∈ V(S̊)|S̊ 6= ∅].

To compute πj and ν` we thus need to know V and the exact sampling pattern.
REMARK 3.15 Based on Example 3.14, we can derive an algorithm where the only random-
ness comes from alternating between full x-y and full y-x steps.

4. Rates of convergence. We now need to satisfy Assumption 3.2. This involves choos-
ing update rules for ηi+1, η⊥τ,i+1, η⊥σ,i+1, φj,i+1, and ψ`,i+1. At the same time, to obtain good
convergence rates, we need to make dxj,N (γ̃j) and dy`,N small in (3.10). We perform these tasks
here, including stating two final versions of our algorithms, Algorithm 1 (doubly stochastic)
and Algorithm 2 (full dual updates). Specifically, in Section 4.1 we introduce and study a
deterministic alternative to the example random update rule for φj,i+1 in Example 3.8. The
analysis of the new rule is easier, and it allows the computation of ηi, which will also be deter-
ministic, without communication in parallel implementations of our algorithms. Afterwards,
in Section 4.2 we look at possible choices for the parameters η⊥τ,i and η⊥σ,i, which are only
needed in stochastic variants of Algorithm 1. In Sections 4.3–4.6 we then give various useful
choices of ηi and ψ`,i that yield concrete convergence rates.

We assume for simplicity that the sampling pattern is independent of the iteration,

π̊j,i ≡ π̊j > 0, ν̊`,i ≡ ν̊`, πj,i ≡ πj , and ν`,i ≡ ν`.(4.1)

4.1. Deterministic primal test updates. The next lemma gives a deterministic alterna-
tive to Example 3.8. We recall that γj ≥ 0 is the factor of (strong) convexity of Gj .
LEMMA 4.1 Suppose that Assumptions 3.2(b) and 3.2(d) and also (4.1) hold and that i 7→ η⊥τ,i
is non-decreasing. Suppose, moreover, that either (3.8a) holds or supj=1,...,m ρj = 0. Also
take τj,0, φj,0 > 0, and γ̄j ≥ 0 such that ρj + γ̄j > 0, and set

(4.2) φj,i+1 := φj,i + 2(γ̄jηi + ρj) (j = 1, . . . ,m; i ∈ N).

Then for some cj > 0 and all N ≥ 1 it holds that

φj,N+1 ∈ R(ON−1; (0,∞)),(4.3a)

E[φj,N ] = φj,0 + 2ρjN + 2γ̄j

N−1∑
i=0

E[ηi],(4.3b)

E[φ−1
j,N ] ≤ cjN−1 (N ≥ 1).(4.3c)

If γ̃j ∈ [γ̄j , γj ], j = 1, . . . ,m, satisfy

2γ̃j γ̄jηi ≤ (γ̃j − γ̄j)δφj,i (j ∈ S(i), i ∈ N),(4.3d)
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then Assumption 3.2(e) holds, and

dxj,N (γ̃j) = 18ρjCxN.(4.3e)

Finally, if ηi ≥ bj minj φ
p
j,i for some p, bj > 0, then for some c̃j > 0 it holds that

1 ≥ γ̄j c̃jNp+1E[φ−1
j,N ] (N ≥ 4).(4.3f)

Proof. Since Assumption 3.2(b) guarantees that ηi ∈ R(Oi−1; (0,∞)), we deduce (4.3a)
from (4.2). In fact, φj,i+1 is deterministic as long as ηi is deterministic.

The claim (4.3b) follows immediate from (4.2) and

(4.4) φj,N = φj,N−1 + 2(γ̄jηN−1 + ρj) = φj,0 + 2ρjN + 2γ̄j

N−1∑
i=0

ηi.

Since i 7→ ηi is non-decreasing, clearly φj,N ≥ 2Nρ̃j for ρ̃j := ρj + γ̄jη0 > 0. Then
φ−1
j,N ≤

1
2ρ̃jN

. Taking the expectation proves (4.3c).
Clearly (4.3f) holds if γ̄j = 0, so assume that γ̄j > 0. Using the assumption

ηi ≥ bj minj φ
p
j,i and φj,i ≥ 2iρ̃j , which we just proved in (4.4), we estimate

φj,N ≥ φj,0+bj(2ρ̃j)
p
N∑
i=1

ip ≥ φj,0+bj(2ρ̃j)
p

∫ N

2

xp dx ≥ φj,0+p−1bj(2ρ̃j)
p(Np+1−2).

Thus φ−1
j,N ≤ 1/(γ̄j c̃jN

1+p) for some c̃j > 0. Taking the expectation proves (4.3f).
It remains to prove (4.3e) and Assumption 3.2(e). Abbreviating γj,i := γ̄j + ρjη

−1
i , we

write φj,i+1 = φj,i + 2γj,iηi. Since i 7→ η⊥τ,i is non-decreasing, Corollary 3.6 gives

(4.5) E[φj,iτ̂j,i|Oi−1] = ηi + η⊥τ,i − η⊥i−1,τ ≥ ηi.

Expanding the defining equation (3.7b) of hj,i+2(γ̃j) with the help of (4.5) we estimate

hj,i+2(γ̃j) = 2E[γj,iηi − γ̃jφj,iτ̂j,i|Oi−1] + 2α−1
i |E[γj,iηi − γ̃jφj,iτ̂j,i|Oi]|

≤ 2(γj,i − γ̃j)ηi + 2α−1
i |γj,iηi − γ̃jφj,iτ̂j,i|

≤ 2(1 + α−1
i )ρj + 2(γ̄j − γ̃j)ηi + 2α−1

i |γ̄jηi − γ̃jφj,iτ̂j,i|.

Since (4.3d) implies γ̄j ≤ γ̃j , if also

α−1
i |γ̄jηi − γ̃jφj,iτ̂j,i| ≤ (γ̃j − γ̄j)ηi,(4.6)

then

E[max{0, hj,i+2(γ̃j)}] ≤ 2(1 + α−1
i )ρj .(4.7)

We claim (4.6) to hold for

(4.8) αi :=

{
minj γ̄j/(γ̃j − γ̄j), γ̄jηi > γ̃jφj,iτ̂j,i,

minj(γ̃j π̊
−1
j + γ̄j)/(γ̃j − γ̄j), γ̄jηi ≤ γ̃jφj,iτ̂j,i.

The case γ̄jηi > γ̃jφj,iτ̂j,i is clear. Otherwise, to justify the case γ̄jηi ≤ γ̃jφj,iτ̂j,i, we
observe that (4.6) can in this case be rewritten as γ̃jφj,iτ̂j,i ≤ (αi(γ̃j − γ̄j)− γ̄j)ηi. With the
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choice of αi in (4.8), we see this to hold if φj,iτ̂j,i ≤ π̊−1
j ηi. We consider the cases j ∈ S̊(i)

and j ∈ S(i) \ S̊(i) separately. In the case j ∈ S̊(i), this inequality is immediate from (3.6a)
in Assumption 3.2(d) and Lemma 3.5. If j ∈ S(i) \ S̊(i), then (3.6a) and Assumption 3.2(b)
give

φj,iτ̂j,i(πj − π̊j) ≤ η⊥τ,i ≤ min
j′

(πj′ − π̊j′)ηi ≤ (πj − π̊j)ηi ≤ (πj − π̊j )̊π−1
j ηi.

In the last step we have used that π̊j ∈ (0, 1] by (4.1). This finishes verifying (4.7).
Next, we expand (3.7a), obtaining

qj,i+2(γ̃j)=
(
2E[γj,iηi − γ̃jφj,iτ̂j,i|Oi] + 2αi|E[γj,iηi − γ̃jφj,iτ̂j,i|Oi]| − δφj,i

)
χS(i)(j)

=
(
2(γj,iηi − γ̃jφj,iτ̂j,i) + 2αi|γj,iηi − γ̃jφj,iτ̂j,i| − δφj,i

)
χS(i)(j)

≤
(
2(1 + αi)ρj + 2(γ̄jηi − γ̃jφj,iτ̂j,i) + 2αi|γ̄jηi − γ̃jφj,iτ̂j,i| − δφj,i

)
χS(i)(j).

Since ηi and φj,iτj,i are increasing, if also

2(γ̄jηi − γ̃jφj,iτ̂j,i) + 2αi|γ̄jηi − γ̃jφj,iτ̂j,i| ≤ δφj,i (j ∈ S(i)),(4.9)

then

E[qj,i+2(γ̃j)] ≤ 2(1 + αi)ρj .(4.10)

Inserting αi from (4.8), we see (4.9) to follow from (4.3d). Finally, (4.7) and (4.10) show that
(3.8b) holds with ρj = 0. Thus Assumption 3.2(e) holds. From Proposition 3.3 we find now

δxj,i+2(γ̃j) = 8(1 + αi)ρjCx + 2(1 + α−1
i )ρjCx.

Clearly αi defined in (4.8) is bounded above and below, so we obtain (4.3e).

4.2. The parameters η⊥
τ,i and η⊥

σ,i. We now want to satisfy Assumption 3.2 (c-i) for
doubly-stochastic methods. As it turns out, the parameters η⊥τ,i and η⊥σ,i do not have any effect
on convergence rates. Here are a few options.
LEMMA 4.2 Assume (4.1) and that i 7→ ηi is non-decreasing with ηi ∈ R(Oi−1; (0,∞)).
Then Assumption 3.2(b) and (c-i) hold and both i 7→ η⊥τ,i and i 7→ η⊥σ,i are non-decreasing if
either:

(i) (Constant rule) We take η⊥τ,i ≡ η⊥τ and η⊥σ,i ≡ η⊥σ for constant η⊥σ , η
⊥
τ > 0 satisfying

η0 ·min
j

(πj − π̊j) ≥ η⊥τ and η0 ·min
`

(ν` − ν̊`) ≥ η⊥σ .

(ii) (Proportional rule) For some α ∈ (0, 1) we take η⊥τ,i := η⊥σ,i := αηi satisfying

min
j

(πj − π̊j) ≥ α and min
`

(ν` − ν̊`) ≥ α.

Proof. Clearly both rules satisfy Assumption 3.2(b) and (c-i). That i 7→ η⊥τ,i and i 7→ η⊥σ,i
are non-decreasing and belong toR(Oi−1; [0,∞)) is obvious.

4.3. Worst-case rules for ηi. To verify Assumption 3.2(a) we take deterministic worst-
case bounds Wj ,Wj,` ≥ 0 such that

(4.11) Wj := max
`

W`,j and W`,j ≥ π̊−1
j χS̊(i)(j) + ν̊−1

` χV̊ (i+1)(`) (i ∈ N).

Since we assume iteration-independent probabilities (4.1), such bounds exist.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK-PROXIMAL METHODS WITH SPATIALLY ADAPTED ACCELERATION 35

LEMMA 4.3 Suppose Assumption 3.2(d) and (4.1) hold. With (κ1, . . . , κn) ∈ K(K,P,Q)
take

(4.12) ηi := min
`=1,...,n

√
(1− δ)ψ`,i+1

κ`(W2
`,1φ

−1
1,i , . . . ,W2

`,mφ
−1
m,i)

(i ≥ 0).

Then Assumption 3.2(a) holds. Moreover, we have ηi ∈ R(Oi−1; (0,∞)) provided that
ψi+1 ∈ R(Oi−1; (0,∞)).

Proof. Recalling the expression for λ`,j,i in (3.5), Assumption 3.2(d) and (4.1) imply
λ`,j,i ≤ ηiW`,j for ` ∈ V(j). By the monotonicity of κ` (assumed in Definition 2.2),
Assumption 3.2(a) will therefore hold if

ψ`,i+1 ≥
η2
i

1− δ
κ`(W2

`,1φ
−1
1,i , . . . ,W

2
`,mφ

−1
m,i).

This is verified by inserting ηi from (4.12). Clearly (4.12) also verifies ηi ∈ R(Oi−1; (0,∞))
when ψi+1 ∈ R(Oi−1; (0,∞)).

The next lemma provides a choice of ψi+1 ∈ R(Oi−1; (0,∞)) that also satisfies Assump-
tion 3.2(f). The resulting ηi we express below in (4.13) to collect all rules in one place.
LEMMA 4.4 Let (κ1, . . . , κn) ∈ K(K,P,Q) and take ηi according to (4.12) with
ψ`,i+1 = η

2−1/p
i ψ`,0 for some ψ`,0 > 0 and p ∈ (0, 1]. If φj,i ∈ R(Oi−1; (0,∞)),

then ηi, ψi+1 ∈ R(Oi−1; (0,∞)). If, moreover, (4.3c) holds, then E[ηi] ≥ cpηi
p and

ηi ≥ bpη minj φ
p
j,i for some constants cη, bη > 0 independent of p.

Proof. That ηi, ψi+1 ∈ R(Oi−1; (0,∞)) is clear from (4.12) and φj,i ∈ R(Oi−1; (0,∞)).
With ψ

0
:= min`=1,...,n ψ`,0 from (4.12) also

η
1/p
i ≥

(1− δ)ψ0

max`=1,...,n κ`(W2
`,1φ

−1
1,i , . . . ,W2

`,mφ
−1
m,i)

.

Since µ̂`,j,i = 0 for ` 6∈ V(j), using Definition 2.2(ii), we get

η
1/p
i ≥

(1− δ)ψ0

κ
∑n
j=1 max`W2

`,jφ
−1
j,i

≥ 1∑n
j=1 b

−1
j φ−1

j,i

for bj := (1− δ)ψ0/(κW2
j ). This shows that ηi ≥ minj b

p
jφ
p
j,i. Since x 7→ 1/x and x 7→ xq

are convex on [0,∞) for q ≥ 1, Jensen’s inequality gives

E[ηi] ≥
1

E
[
(
∑n
j=1 b

−1
j φ−1

j,i )p
] ≥ 1(∑n

j=1 b
−1
j E[φ−1

j,i ]
)p .

By an application of (4.3c) we obtain E[ηi] ≥ cpηip for cη := 1/
∑m
j=1 b

−1
j cj .

4.4. Mixed rates under partial strong convexity. We are finally ready to state our main
result and algorithms. We recall that by Lemma 2.6, (PP) is equivalent to (2.16) under the
structural conditions of Assumption 2.1. Dividing the updates of (2.16) into individual block
updates and taking the step length rules from Assumption 3.2(d), we obtain the steps of the
doubly-stochastic method Algorithm 1. If we perform full dual updates, i.e., force Assump-
tion 3.2 (c-ii) and following Lemma 3.10 taking V̊ (i+ 1) = {1, . . . , n} and S̊(i) = S(i), we
get the simpler steps of Algorithm 2. Regarding the updates of the remaining parameters that
are not specified directly in the algorithm skeletons, we start with:
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THEOREM 4.5 Assume the block-separable structure (GF), writing γj ≥ 0 for the factor of
(strong) convexity of Gj . Let δ ∈ (0, 1) and (κ1, . . . , κn) ∈ K(K,P,Q) (see Definition 2.2).
In Algorithm 1 or Algorithm 2, take

(i) φj,0 > 0 freely and φj,i+1 := φj,i + 2(γ̄jηi + ρj) for some ρj ≥ 0 and γ̄j ∈ [0, γj ]
with ρj + γ̄j > 0.

(ii) ψ`,0 > 0 freely and ψ`,i := ψ`,0η
2−1/p
i for some fixed p ∈ [1/2, 1].

(iii) η⊥τ,i, η
⊥
σ,i > 0 (in Algorithm 1) following Lemma 4.2, and with Wj given by (4.11)

(4.13) ηi := min
`=1,...,n

(
(1− δ)ψ`,0

κ`(W2
`,1φ

−1
1,i , . . . ,W2

`,mφ
−1
m,i)

)p
.

Let û ∈ H−1(0), i.e., solve (OC), and suppose the following hold:
(A) supj=1,...,m ρj = 0 or supj=1,...,m; i∈N ‖xi+1

j − x̂j‖2 ≤ Cx for a constant Cx > 0.
(B) p = 1

2 or both sup`=1,...,n; i∈N ‖yi+1
` − ŷ`‖2 ≤ Cy and γ̄j∗ = 0 for some

j∗ ∈ {1, . . . ,m}.
(C) With `∗(j) and κ given by Definition 2.2, for some γ̃j ∈ [γ̄j , γj ] for all j = 1, . . . ,m,

we have the initialisation bound

γ̃j = γ̄j = 0 or
2γ̃j γ̄j
γ̃j − γ̄j

(
1− δ
κWj

)p
≤ δψ−p`∗(j),0φ

1−p
j,0 .

Then
m∑
j=1

δc̃j γ̄j
2

E
[
‖xNj − x̂j‖

]2
+ gp,N

≤
‖u0 − û‖2Z0M0

+ 18Cx(
∑m
j=1 ρj)N +

∑n
`=1 ψ`,0

(
C∗N

2p−1 + δ∗
)

2Np+1 ,

(4.14)

when N ≥ 4 and with the weighted gap on the ergodic variables,

gp,N :=


cpG(x̃N , ỹN ), Algorithm 1, γ̃j ≤ γj/2 for all j,
c∗,pG(x̃∗,N , ỹ∗,N ), Algorithm 2, γ̃j ≤ γj/2 for all j,
0, otherwise.

The constants C∗, δ∗ ≥ 0 are zero if p = 1/2 while the constants cp, c∗,p > 0.
REMARK 4.6 If p = 1/2, (4.14) yields a mixed O(1/N3/2) +O(1/N1/2) convergence rate.
If p = 1, we get a mixed O(1/N2) +O(1/N) convergence rate.
REMARK 4.7 Theorem 4.5 is valid (with suitable constants) for general primal update rules
as long as (4.3) holds and i 7→ φj,i is non-decreasing. This is the case for the deterministic
rule of Lemma 4.1. For the random rule of Example 3.8, the rest of the conditions hold, but we
have not been able to verify (4.3f). This has the implication that only the gap estimates hold.

Proof. We use Proposition 3.3, so we need to verify Assumptions 2.1 and 3.2. First of all,
(R) follows from the updates rules for the testing and step length parameters that only depend
on previous realisations of S(i) and V (i+ 1). The rest of the conditions of Assumption 2.1
are clear from Lemma 2.6, the derivation of Algorithms 1 and 2 from (2.16), and the requisite
nesting condition (V) within the algorithms themselves.

Regarding the requirements (a)–(f) of Assumption 3.2, we proceed as follows:
(a) The choice ψ`,i+1 := η

2−1/p
i ψ`,0 in (ii) shows that (4.13) is equivalent to the formula

(4.12) for ηi. Thus Lemma 4.3 verifies (a).
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Algorithm 1 Doubly-stochastic primal-dual method.

Require: K ∈ L(X;Y ), G ∈ C(X), and F ∗ ∈ C(Y ) with the separable structures (GF).
Require: Rules for φj,i, ψ`,i+1, ηi+1, η

⊥
τ,i+1, η

⊥
σ,i+1 > 0 (Theorem 4.5, Corollary 4.8, or

4.9).
Require: Sampling patterns for S(i), S̊(i), V (i + 1), and V̊ (i + 1) (i ∈ N) subject to the

nesting condition (V) (p. 20) with iteration-independent probabilities (4.1); see Section 3.6.

1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: Initialise τj,−1, σ`,0 := 0, (j = 1, . . . ,m; ` = 1, . . . ,m).
3: for all i ≥ 0 until a stopping criterion is satisfied do
4: Sample S̊(i) ⊂ S(i) ⊂ {1, . . . ,m} and V̊ (i+ 1) ⊂ V (i+ 1) ⊂ {1, . . . , n}.
5: For each j ∈ S̊(i), compute

τj,i :=
ηi−φj,i−1τj,i−1χS(i−1)\S̊(i−1)(j)

φj,iπ̊j,i
and

xi+1
j := (I + τj,i∂Gj)

−1
(
xij − τj,i

∑
`∈V(j)K

∗
`,jy

i
`

)
, where K`,j := Q`KPj .

6: For each ` ∈ V̊ (i+ 1), compute

σj,i+1 :=
ηi−ψj,iσj,iχV (i)\V̊ (i)(j)

ψj,i+1ν̊`,i+1
and

yi+1
` := (I + σ`,i+1∂F

∗
` )−1

(
yi` + σ`,i+1

∑
j∈V−1(`)K`,jx

i
j

)
.

7: For each j ∈ S̊(i) and ` ∈ V(j), set

w̃i+1
`,j := θ`,j,i+1(xi+1

j − xij) + xi+1
j with θ`,j,i+1 :=

τj,iφj,i
σ`,i+1ψ`,i+1

.

8: For each ` ∈ V̊ (i+ 1) and j ∈ V−1(`), set

ṽi+1
`,j := b`,j,i+1(yi+1

` − yi`) + yi` with b`,j,i+1 :=
σ`,i+1ψ`,i+1

τj,iφj,i
.

9: For each j ∈ S(i) \ S̊(i), compute

τj,i :=
η⊥τ,i

φj,i(πj,i−π̊j,i) and

xi+1
j := (I + τj,i∂Gj)

−1
(
xij − τj,i

∑
`∈V(j)K

∗
`,j ṽ

i+1
`,j

)
.

10: For each ` ∈ V (i+ 1) \ V̊ (i+ 1) compute

σj,i+1 :=
η⊥σ,i

ψj,i+1(ν`,i+1−ν̊`,i+1) and

yi+1
` := (I + σ`,i+1∂F

∗
` )−1

(
yi` + σ`,i+1

∑
j∈V−1(`)K`,jw̃

i+1
`,j

)
.

11: end for

(b) It is clear that i 7→ φj,i and i 7→ ψ`,i are non-decreasing. Therefore (4.12) shows that
i 7→ ηi is non-decreasing. Moreover, Lemma 4.4 verifies that ηi ∈ R(Oi−1; (0,∞)).
Algorithm 2 by construction satisfies Assumption 3.2 (c-ii) and has both V̊ (i+1) = ∅
and V (i+ 1) = {1, . . . , n}. It therefore suffices to refer to Lemma 3.10.
Algorithm 1, by its own statement, satisfies (4.1). Therefore, Lemma 4.2 shows
Assumption 3.2(b) and (c-i) and that also i 7→ η⊥τ,i is non-decreasing.

(c) Proved together with (b) above.
(d) These choices are encoded into Algorithm 1. For Algorithm 2 we recall Lemma 3.10.
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Algorithm 2 Block-stochastic primal-dual method, primal randomisation only

Require: K ∈ L(X;Y ), G ∈ C(X), and F ∗ ∈ C(Y ) with the separable structures (GF).
Require: Rules for φj,i, ψ`,i+1, ηi+1 ∈ R(Oi; (0,∞)) (Theorem 4.5, Corollary 4.8, or 4.9).
Require: Iteration-independent (4.1) sampling pattern for the set S(i) (i ∈ N); see Sec-

tion 3.6.
1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: for all i ≥ 0 until a stopping criterion is satisfied do
3: Sample S(i) ⊂ {1, . . . ,m}.
4: For each j 6∈ S(i), set xi+1

j := xij .
5: For each j ∈ S(i), with τj,i := ηiπ

−1
j,i φ

−1
j,i , compute

xi+1
j := (I + τj,i∂Gj)

−1
(
xij − τj,i

∑
`∈V(j)K

∗
`,jy

i
`

)
, where K`,j := Q`KPj .

6: For each j ∈ S(i) set

x̄i+1
j := θj,i+1(xi+1

j − xij) + xi+1
j with θj,i+1 :=

ηi
πj,iηi+1

.

7: For each ` ∈ {1, . . . , n} using σ`,i+1 := ηi+1ψ
−1
`,i+1, compute

yi+1
` := (I + σ`,i+1∂F

∗
` )−1

(
yi` + σ`,i+1

∑
j∈V−1(`)K`,j x̄

i+1
j

)
.

8: end for

(e) We use Lemma 4.1. We have already showed Assumption 3.2(b) and (d). Moreover,
the algorithms satisfy the iteration-independent probability assumption (4.1). By
(A), either supj ρj = 0 or (3.8a) holds. We still need to satisfy (4.3d). Using
Definition 2.2(iii) in (4.13), we estimate

(4.15) ηi ≤
(

(1− δ)ψ`∗(j),0
κWj

φj,i

)p
.

By (C), therefore, either γ̃j = γ̄j = 0 or 2γ̃j γ̄jηi ≤ δ(γ̃j − γ̄j)φ1−p
j,0 φpj,i. By (i),

i 7→ φj,i, so this gives (4.3d). Lemma 4.1 now shows Assumption 3.2(e).
(f) If p = 1/2, by Remark 4.6, ψ`,i ≡ ψ`,0. Therefore (3.9b) holds. If p 6= 1/2, the

same remark and (A) guarantee (3.9a).
With Assumptions 2.1 and 3.2 now verified, Proposition 3.3 provides the estimate

m∑
k=1

δ

2E[φ−1
k,N ]

· E
[
‖xNk − x̂k‖

]2
+ g̃N

≤ 1

2
‖u0 − û‖2Z0M0

+

m∑
j=1

1

2
dxj,N (γ̃j) +

n∑
`=1

1

2
dy`,N ,

(4.16)

where g̃N , dxj,N (γ̃j), and dy`,N are given in (3.11) To obtain convergence rates, we still need to
further analyse this estimate, mainly ζN and ζ∗,N within g̃N .

We start with ζN and ζ∗,N . By Lemma 4.2 for Algorithm 1 and directly by Assump-
tion 3.2 (c-ii) for Algorithm 2, i 7→ η⊥τ,i is non-decreasing (as is i 7→ η⊥σ,i). We recall the
coupling variable η̄i from (3.2). Observe that (4.3c) holds as we have verified the conditions
of Lemma 4.1 above. By Corollary 3.6 and Lemma 4.4, therefore, in both cases, (3.2a) and
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(3.2b), for some constant cη > 0,

η̄i = E[ηi + η⊥τ,i − η⊥τ,i−1] ≥ E[ηi] ≥ cpηip.

Thus we estimate ζN from (3.3) as

ζN =

N−1∑
i=0

η̄i ≥
N−1∑
i=0

E[ηi] ≥ cpη
N−1∑
i=0

ip ≥ cpη
∫ N−2

0

xp dx

≥
cpη

p+ 1
(N − 2)p+1 ≥

cpη
2p+1(p+ 1)

Np+1 =: cpN
p+1 (N ≥ 4).

(4.17)

Similarly, for some c∗,p > 0, the quantity ζ∗,N defined in (3.3) satisfies

(4.18) ζ∗,N ≥
N−1∑
i=1

E[ηi] ≥
cpη

p+ 1
((N − 2)p+1 − 1) ≥ c∗,pNp+1 (N ≥ 4).

If p = 1/2, (ii) clearly implies dy`,N = E[ψ`,N − ψ`,0] ≡ 0. Therefore, we can take
C∗, δ∗ = 0. Otherwise, since 0 ≤ 2− 1/p ≤ 1, the map t 7→ t2−1/p is concave. Therefore,
using (3.11), (ii), and Jensen’s inequality, we deduce

dNy,` =

N−1∑
i=0

9CyE[ψ`,i+2 − ψ`,i+1] = 9Cyψ`,0(E[η
2−1/p
N+1 ]− E[η

2−1/p
1 ])

≤ 9Cyψ`,0E[ηN+1]2−1/p.

The condition (B) provides j∗ ∈ {1, . . . ,m} with γj∗ = 0, so that a referral to (4.3b) shows
E[φj∗,N ] = φj∗,0 + 2Nρj∗ . By (4.15) for some C∗, δ∗ > 0 then

(4.19) dNy,` ≤ 9Cyψ`,0

(
(1− δ)ψ`∗(j∗),0

κWj∗
E[φj∗,i]

)2p−1

≤ ψ`,0(C∗N
2p−1 + δ∗).

Finally, Lemma 4.4 shows ηi ≥ bpη minj φ
p
j,i, (j = 1, . . . ,m). Thus (4.3f) and (4.3e) in

Lemma 4.1 give 1/E[φ−1
j,N ] ≥ γ̄j c̃jNp+1, for N ≥ 4, and dxj,N (γ̃j) = 18ρjCxN . Now (4.14)

is immediate by applying these estimates and (4.17)–(4.19) to (4.16).

4.5. Unaccelerated algorithm. If ρj = 0 and γ̄j = γ̃j = 0 for all j = 1, . . . ,m, then
φj,i ≡ φj,0. Consequently Lemma 4.3 gives ηi ≡ η0. Recalling ζN from (3.3), we see that
ζN = Nη0. Likewise ζ∗,N from (3.3) satisfies ζ∗,N = (N − 1)η0. Clearly also dy`,N = 0 and
dxj,N (γ̃j) = 0. Inserting this information into (4.16), we immediately obtain:
COROLLARY 4.8 Assume the block-separable structure (GF). Moroever, let δ ∈ (0, 1) and
(κ1, . . . , κn) ∈ K(K,P,Q). In Algorithms 1 or 2, take

(i) φj,i ≡ φj,0 for some fixed φj,0 > 0.
(ii) ψ`,i ≡ ψ`,0 for some fixed ψ`,0 > 0.

(iii) ηi ≡ η0 given by (4.12) and (in Algorithm 1) η⊥τ,i, η
⊥
σ,i > 0 following Lemma 4.2.

Then
(I) The iterates of Algorithm 1 satisfy G(x̃N , ỹN ) ≤ C0η

−1
0 /(2N), for N ≥ 1.

(II) The iterates of Algorithm 2 satisfy G(x̃∗,N , ỹ∗,N ) ≤ C0/[2η0(N − 1)], for N ≥ 2.
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4.6. Full primal strong convexity. IfG is fully strongly convex, we can naturally derive
an O(1/N2) algorithm.
COROLLARY 4.9 Assume the block-separable structure (GF), assuming each Gj ,
j = 1, . . . ,m, strongly convex with the corresponding factor γj > 0. Let δ ∈ (0, 1) and
(κ1, . . . , κn) ∈ K(K,P,Q). In Algorithm 1 or Algorithm 2, take

(i) φj,0 > 0 freely and φj,i+1 := φj,i(1 + 2γ̄jτj,i) for some fixed γ̄j ∈ (0, γj).
(ii) ψ`,0 > 0 freely and ψ`,i := ψ`,0.

(iii) ηi according to (4.12), and (in Algorithm 1) η⊥τ,i, η
⊥
σ,i > 0 following Lemma 4.2.

Suppose the initialisation bound in Theorem 4.5(C) holds. Then
m∑
j=1

δc̃j γ̄j
2

E
[
‖xNj − x̂j‖

]2
+ g̃1,N ≤

‖u0 − û‖2Z0M0

2N2
(N ≥ 4)

for

g̃1,N :=


q1G(x̃N , ỹN ), Algorithm 1, γ̃j ≤ γj/2 for all j,
q∗,1G(x̃∗,N , ỹ∗,N ), Algorithm 2, γ̃j ≤ γj/2 for all j,
0, otherwise.

The constants c̃j > 0 are provided by Lemma 4.1 while q1, q∗,1 > 0.
Proof. We adapt the argumentation of Theorem 4.5 for the case p = 1/2. Indeed, with

this choice, our present assumptions satisfy the conditions of that theorem:
(i) With ρj = 0 this becomes the present one. Since we take γ̄j > 0, ρj + γ̄j > 0 as

required.
(ii) This reduces to the present one with p = 1/2.

(iii) This becomes the present one since (4.13) with p = 1/2 equals (4.12).
(A) This condition trivially holds since ρj = 0 for all j = 1, . . . ,m.
(B) This trivially holds when p = 1/2.
(C) This we have assumed.

Since C∗, δ∗ = 0 when p = 1/2, the estimate (4.14) therefore holds with the right-hand side
C0/(2N

1+1/2). We need to improve this to C0/(2N
2) by improving the testing variable

estimates.
Indeed, the update rule (4.2) now gives

φj,N ≥ φ0
+ γ

N−1∑
i=0

ηi ≥ φ0
+ γ

N−1∑
i=0

ηi with φ
0

:= min
j
φj,0 > 0.

Lemma 4.4 shows η2
i ≥ bminj φj,i for some b. Therefore η2

N ≥ bφ0
+ bγ

∑N−1
i=0 ηi. Written

in another way this says η2
N ≥ η̃2

N , where

η̃2
N = bφ

0
+ bγ

N−1∑
i=0

η̃i = η̃2
N−1 + c2γη̃N−1 = η̃2

N−1 + bγη̃−1
N−1.

This implies ηi ≥ η̃i ≥ c′ηi for some c′η > 0; cf. the estimates for (2.1) in [6, 37]. Working
through the final estimation stage of the proof of Theorem 4.5 with p = 1/2, we can now use
in (4.17) and (4.18) the estimate ηi ≥ c′ηi that would otherwise correspond to p = 1. In our
final result, we write the constants cp and c∗,p from the proof as q1, q∗,1 > 0.
REMARK 4.10 (Linear rates). If both G and F ∗ are strongly convex, then it is possible to
derive linear rates. We refer to [35] for the single-block deterministic case.
REMARK 4.11 (Variance estimates). The variance can be estimated as in [35, Remark 3.4].
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(a) True image. (b) Noisy image. (c) Blurry image. (d) Dimmed image.

FIG. 5.1. Sample images for denoising, deblurring, and undimming experiments.

TABLE 5.1
Algorithm variant name construction.

Letter: 1st 2nd 3rd 4th
Randomisation φ rule η and ψ rules κ choice

A- D: Deterministic R: Random, Lem. 3.8 B: Bounded: p = 1
2

O: Balanc., Ex. 2.4
P: Primal only D: Determ., Lem. 4.1 I: Increasing: p = 1 M: Max., Ex. 2.3
B: Primal & Dual C: Constant

5. Numerical experience. We now apply several variants of the proposed algorithms
to image processing problems. We consider discretisations, as our methods are formulated
in Hilbert spaces, but the space of functions of bounded variation—where image processing
problems are typically formulated—is only a Banach space. Our specific example problems
will be TGV2 denoising, TV deblurring, and TV undimming.

We present the corrupt and ground-truth images in Figure 5.1, with values in the range
[0, 255]. We use the images both at the original resolution of n1× n2 = 768× 512 and scaled
down to 192 × 128 pixels. To the noisy high-resolution test image in Figure 5.1b, we have
added Gaussian noise with a standard deviation of 29.6 (12dB). In the downscaled image, this
becomes 6.15 (25.7dB). The image in Figure 5.1c is distorted by Gaussian blur of standard
deviation 4. To avoid inverse crimes, we have added Gaussian noise of standard deviation
2.5. The dimmed image in Figure 5.1d is distorted by multiplying the image with a sinusoidal
mask γ; see Figure 5.1c. Again, we have added the small amount of noise.

Besides the unaccelerated PDHGM—our examples lack strong convexity for the acceler-
ation of the basic methods—we compare our algorithms to the relaxed PDHGM of [7, 19].
In our precursor work [37], we have also compared these two algorithms to the mixed-rate
method of [8] and the adaptive PDHGM of [17]. To keep our tables and figures easily legible,
we do not include the algorithms of [37] in our evaluations. It is worth noting that even in the
two-block case, the algorithms presented in this paper will not reduce to those of that paper:
our rules for σ`,i are very different from the rules for the single σi therein.

We define abbreviations of our algorithm variants in Table 5.1. We do not report the
results or apply all variants to all example problems as this would not be informative. We
demonstrate the performance of the stochastic variants on TGV2 denoising only. This merely
serves as an example as our problems are not large enough to benefit from being split on a
computer cluster, where the benefits of stochastic approaches would be apparent.

To rely on Theorem 4.5 for convergence, we still need to satisfy (3.9a) and (3.8a) or take
ρj = 0. The bound Cy in Assumption 3.2(f) is easily calculated, as in all of our example
problems the functional F ∗ will restrict the dual variable to lie in a ball of known size. The
primal variable, on the other hand, is not explicitly bounded. It is, however, possible to prove
data-based conservative bounds on the optimal solution; see, e.g., [36, Appendix A]. We can
therefore add an artificial bound to the problem to force all iterates to be bounded, replacing G
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by G̃(x) := G(x) + δB(0,Cx)(x). In practice, to avoid figuring out the exact magnitude of Cx,
we update it dynamically. This avoids the constraint from ever becoming active and affecting
the algorithm at all. In [36] a “pseudo duality gap” based on this idea was introduced to avoid
problems with numerically infinite duality gaps. We will also use them in our reporting: we
take the bound Cx as the maximum over all iterations of all tested algorithms and report the
duality gap for the problem with G̃ replacing G. We always report the pseudo-duality gap in
decibels 10 log10(gap2/gap2

0) relative to the initial iterate.
In addition to the pseudo-duality gap, we report for each algorithm the distance to a target

solution and function value. We report the distance in decibels 10 log10(‖vi − v̂‖2/‖v̂‖2)
and the primal objective value val(x) := G(x) + F (Kx) relative to the target as
10 log10((val(x)− val(x̂))2/val(x̂)2). The target solution x̂ we compute by taking one mil-
lion iterations of the PDHGM. We performed our computations with Matlab+C-MEX on a
MacBook Pro with 16GB RAM and a 2.8 GHz Intel Core i5 CPU. The initial iterates are
x0 = 0 and y0 = 0.

5.1. TGV2 denoising. In this problem, we write x = (v, w) and y = (φ, ψ), where v is
the image of interest, and take

G(x) =
1

2
‖f −v‖2, K =

[
∇ −I
0 E

]
, and F ∗(y) = δB(0,α)n1n2 (φ)+δB(0,β)n1n2 (ψ).

Here α, β > 0 are regularisation parameters, E is the symmetrised gradient, and the balls are
pixelwise Euclidean with the product Π over image pixels. Since there is no further spatial
non-uniformity in this problem, it is natural to take as our projections P1x = v, P2x = w,
Q1y = φ, and Q2y = ψ. It is then not difficult to calculate the optimal κ` of Example 2.4, so
we use only the ‘xxxO’ variants of the algorithms in Table 5.1.

As the regularisation parameters (β, α), we choose (4.4, 4) for the downscaled image. For
the original image we scale these parameters by (0.25−2, 0.25−1) corresponding to the image
downscaling factor [13]. Since G is not strongly convex with respect to w, we have γ̃2 = 0.
For v we take γ̃1 = 1/2, corresponding to the gap versions of our convergence estimates.

We take δ = 0.01, and parametrise the standard PDHGM with σ0 = 1.9/‖K‖ and
τ0 ≈ 0.52/‖K‖ solved from τ0σ0 = (1− δ)‖K‖2. These are values that typically work well.
For forward-differences discretisation of TGV2 with cell width h = 1, we have ‖K‖2 ≤ 11.4
[36]. For the ‘Relax’ method from [7], we use the same σ0 and τ0, as well as the value
1.5 for the inertial ρ parameter. For the increasing-ψ ‘xxIx’ variants of our algorithms, we
take ρ1 = ρ2 = 5, τ1,0 = τ0, and τ2,0 = 3τ0. For the bounded-ψ ‘xxBx’ variants we take
ρ1 = ρ2 = 5, τ1,0 = τ0, and τ2,0 = 8τ0. For both methods we also take η0 = 1/τ0,1. These
parametrisations force φ1,0 = 1/τ2

1,0 and keep the initial step length τ1,0 for v consistent
with the basic PDHGM. This justifies our algorithm comparisons using just a single set of
parameters. We plot the step length evolution for the A-DDBO variant in Figure 5.3a.

The results for deterministic variants of our algorithm are in Table 5.2 and Figure 5.2. We
display the first 5000 iterations in a logarithmic fashion. To reduce computational overheads,
we compute the reported quantities only every 10 iterations. To reduce the effects of other
processes occasionally occupying the computer, the CPU times reported are the average
iteration_time = total_time/total_iterations, excluding time spent initialising the algorithm.

Our first observation is that the variants ‘xDxx’ based on the deterministic φ rule perform
better than the “random” rule ‘xRxx’. Presently, with no randomisation, the only difference is
the value of γ̄. The value 0.0105 from the initialisation bound in Theorem 4.5(C), for p = 1/2,
and the value 0.0090, for p = 1, appear to give better performance than the maximal value
γ̃1 = 0.5. Generally, the A-DDBO seems to have the best asymptotic performance, with
A-DRBO close. A-DDIO has good initial performance, although especially on the higher
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FIG. 5.2. TGV2 denoising, deterministic variants of our algorithms with pixelwise step lengths, 5000 iterations,
high (hi-res) and low (lo-res) resolution images.

TABLE 5.2
TGV2 denoising performance: CPU time and number of iterations (at a resolution of 10) to reach a given

duality gap, distance to target, or primal objective value.

low resolution
gap ≤ −60dB tgt ≤ −60dB val ≤ −60dB

Method iter time iter time iter time
PDHGM 30 0.21s 100 0.72s 110 0.79s
Relax 20 0.20s 70 0.71s 70 0.71s
A-DRIO 40 0.26s 230 1.55s 180 1.22s
A-DRBO 80 0.54s 890 6.07s 500 3.41s
A-DDIO 20 0.14s 50 0.36s 110 0.80s
A-DDBO 30 0.19s 50 0.32s 90 0.58s

high resolution
gap ≤ −50dB tgt ≤ −50dB val ≤ −50dB
iter time iter time iter time
50 6.31s 870 111.83s 370 47.49s
40 6.93s 580 102.89s 250 44.25s
70 9.17s 2750 365.52s 1050 139.48s
80 10.56s 860 114.81s 420 56.00s
60 7.37s 2140 267.29s 900 112.34s
60 7.85s 600 79.67s 340 45.09s

resolution image, the PDHGM and ‘Relax’ perform initially the best. Overall, however, the
question of the best performer seems to be a rather fair competition between ‘Relax’ and
A-DDBO.

5.2. TGV2 denoising with stochastic algorithm variants. We also test stochastic vari-
ants of our algorithms based on the alternating sampling of Example 3.13 with M = 1 and,
when appropriate, Example 3.14. We take all probabilities equal to 0.5, that is px = π̃1 =
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FIG. 5.3. Step length evolution (logarithmic from initialisation). A-DDBO TGV2 denoising and A-DDIM TV
deblurring. The τ plots of the latter are images in the Fourier domain, lighter colour means smaller value of τ relative
to initialisation (for that specific Fourier component). Note that the images depict logarithm change, not absolute
values.

π̃2 = ν̃1 = ν̃2 = 0.5. In the doubly-stochastic ‘Bxxx’ variants of the algorithms, we take
η⊥τ,i = η⊥σ,i = 0.9 · 0.5ηi following the proportional rule Lemma 4.2(ii).

The results are given in Figure 5.4. To conserve space, we have only included a few
descriptive algorithm variants. On the x axis, to better describe to the amount of actual work
performed by the stochastic methods, the “iteration” count refers to the expected number of
full primal-dual updates. For all the displayed stochastic variants, with the present choice of
probabilities, the expected number of full updates in each iteration is 0.75.

We run each algorithm 50 times and plot for each iteration the 90% confidence interval
according to Student’s t-distribution. Towards the 5000th iteration, these generally become
very narrow, indicating reliability of the random method. Overall, the full-dual-update ‘Pxxx’
variants perform better than the doubly-stochastic ‘Bxxx’ variants. In particular, A-PDBO has
a performance comparable to or even better than the PDHGM.

5.3. TV deblurring. We want to remove the blur in Figure 5.1c. We do this by taking

G(x) =
1

2
‖f −F∗(aFx)‖2, K = ∇, and F ∗(y) = δB(0,α)n1n2 (y),

where the balls are again pixelwise Euclidean and with F the discrete Fourier transform. The
factors a = (a1, . . . , am) model the blurring operation in the Fourier basis.
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FIG. 5.4. TGV2 denoising, stochastic variants of our algorithms: 5000 iterations, low resolution images.
Iteration number scaled by the fraction of blocks updated on average. For each iteration, 90% confidence interval
according to the t-distribution over 50 random runs.
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FIG. 5.5. TV deblurring, deterministic variants of our algorithms with pixelwise step lengths, first 5000
iterations, high (hi-res) and low (lo-res) resolution images.

We take α = 2.55 for the high resolution image and scale this to α = 2.55 ∗ 0.15 for
the low resolution image. We parametrise the PDHGM and ‘Relax’ algorithms exactly as
for TGV2 denoising above, taking into account the estimate 8 ≥ ‖K‖2 [5]. We take Q1 = I
and Pj as the projection to the jth Fourier component, so m = n1n2 and n = 1. Thus,
each primal Fourier component has its own step length parameter. We initialise the latter as
τj,0 = τ0/(λ+ (1−λ)γj) with the componentwise factor of strong convexity γj = |aj |2. For
the bounded-ψ ‘xxBx‘ algorithm variants we take λ = 0.01 and for the increasing-ψ ‘xxIx’
variants λ = 0.1. We illustrate the step length evolution of the variant A-DDIM in Figure 5.3.

We only experiment with deterministic algorithms as we do not expect small-scale
randomisation to be beneficial. We also use the maximal κ ‘xxxM’ variants, as a more
optimal κ would be difficult to compute. The results are presented in Table 5.3 and Figure 5.5.
Similarly to A-DDBO in our TGV2 denoising experiments, A-DDBM performs reliably well,
indeed better than the PDHGM or ‘Relax’. However, in many cases, A-DRBM and A-DDIM
are even faster.
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TABLE 5.3
TV deblurring performance: CPU time and number of iterations (at a resolution of 10) to reach a given duality

gap, distance to target, or primal objective value.

low resolution
gap ≤ −60dB tgt ≤ −60dB val ≤ −60dB

Method iter time iter time iter time
PDHGM 30 0.18s 330 2.05s 70 0.43s
Relax 20 0.11s 220 1.30s 50 0.29s
A-DRIM 20 0.14s 280 2.08s 80 0.59s
A-DRBM 20 0.14s 490 3.58s 90 0.65s
A-DDIM 20 0.14s 170 1.25s 70 0.51s
A-DDBM 20 0.15s 180 1.37s 60 0.45s

high resolution
gap ≤ −50dB tgt ≤ −40dB val ≤ −40dB
iter time iter time iter time
60 5.04s 330 28.12s 110 9.31s
50 4.32s 220 19.30s 90 7.84s
30 3.27s 280 31.41s 320 35.92s
60 6.48s 240 26.27s 220 24.07s
30 3.17s 260 28.35s 230 25.06s
50 5.56s 230 25.98s 150 16.90s
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FIG. 5.6. TV undimming, deterministic variants of our algorithms with pixelwise step lengths, 5000 iterations,
high (hi-res) and low (lo-res) resolution images.

5.4. TV undimming. We takeK and F ∗ as for TV deblurring butG(u) := 1
2‖f−γ ·u‖

2

for the sinusoidal dimming mask γ : Ω→ R. Our experimental setup is also nearly the same
as for TV deblurring with the natural difference that the projections Pj are no longer to the
Fourier basis but to individual image pixels. The results are presented in Figure 5.6 and
Table 5.4. They tell roughly the same story as TV deblurring with A-DDBM performing well
and reliably.
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TABLE 5.4
TV undimming performance: CPU time and number of iterations (at a resolution of 10) to reach a given duality

gap, distance to target, or primal objective value.

low resolution
gap ≤ −80dB tgt ≤ −60dB val ≤ −60dB

Method iter time iter time iter time
PDHGM 70 0.18s 200 0.51s 120 0.30s
Relax 50 0.16s 130 0.41s 80 0.25s
A-DRIM 30 0.10s 160 0.57s 80 0.28s
A-DRBM 20 0.05s 170 0.47s 60 0.16s
A-DDIM 30 0.08s 110 0.30s 60 0.16s
A-DDBM 20 0.05s 70 0.18s 40 0.10s

high resolution
gap ≤ −80dB tgt ≤ −60dB val ≤ −60dB
iter time iter time iter time
100 3.41s 300 10.31s 210 7.21s

70 3.03s 200 8.73s 140 6.10s
80 3.52s 760 33.82s 640 28.48s
90 3.95s 370 16.39s 380 16.84s
70 3.05s 580 25.57s 430 18.94s
60 2.63s 230 10.22s 200 8.88s

Conclusions. We have derived several accelerated block-proximal primal-dual methods,
both stochastic and deterministic. We have concentrated on applying them deterministically,
taking advantage of blockwise—indeed pixelwise—factors of strong convexity to obtain im-
proved performance compared to standard methods. In future work, it will be interesting to
evaluate the methods on real large scale problems to other state-of-the-art stochastic optimisa-
tion methods. Moreover, interesting questions include heuristics and other mechanisms for
optimal initialisation of the pixelwise parameters as well as combinations with over-relaxation
and inertial schemes such as the extensions of the PDHGM considered in [10, 18, 34, 38].
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