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REVISITING AGGREGATION-BASED MULTIGRID FOR EDGE ELEMENTS∗

ARTEM NAPOV† AND RONAN PERRUSSEL‡

Abstract. We consider a modification of the Reitzinger-Schöberl algebraic multigrid method for the iterative
solution of the curl-curl boundary value problem discretized with edge elements. The Reitzinger-Schöberl method is
attractive for its low memory requirements and moderate cost per iteration, but the number of iterations typically
tends to increase with the problem size. Here we propose several modifications to the method that aim at curing the
size-dependent convergence behavior without significantly affecting the attractive features of the original method.
The comparison with an auxiliary space preconditioner, a state-of-the-art solver for the considered problems, further
indicates that both methods typically require a comparable amount of work to solve a given discretized problem but
that the proposed approach requires less memory.

Key words. algebraic multigrid, edge elements, preconditioning, aggregation

AMS subject classifications. 65N12, 65N22, 65N55

1. Introduction. We consider algebraic multigrid methods for the iterative solution of
large sparse n× n symmetric positive definite (SPD) linear systems

(1.1) Au = b

obtained from the discretization of the boundary value problem

(1.2)

 curl
(
µ−1 curlE

)
+ β E = f in Ω,
E× n = g0 on ΓD ⊂ ∂Ω,

(µ−1 curlE)× n = g1 on ΓN = ∂Ω\ΓD,

with edge elements. Such a boundary value problem arises, for instance, in the computation of
a slowly-varying electromagnetic field with implicit integration in time. Then, E represents
an electric field in a bounded simply connected region Ω of R2 or R3, µ > 0 is the magnetic
permeability, β > 0 is the ratio of the electric conductivity and the integration time step, and n
represents the unit outward normal vector to the boundary surface ∂Ω = ΓD ∪ ΓN [3]. By
edge elements we mean the lowest-order elements of the first family proposed by Nédélec on
simplex and brick meshes [18]; in both cases the degrees of freedom are associated with the
individual edges of the mesh.

An important feature of the resulting system matrix is a large near null space. Its presence
can already be deduced from the original boundary value problem (1.2), in which the leftmost
curl-curl term vanishes for any function of the form gradφ; that is, such functions belong
to the null space of the curl operator. Actually, since Ω is a simply connected domain, the
space of all gradients on Ω exactly corresponds to the null space of the curl operator and
therefore forms the near null space of the continuous boundary value operator in (1.2). In a
similar way, the near null space of the system matrix A corresponds to the null space of the
discrete curl operator, which in turn is formed by all the vectors of the form Gv, where G
is the discrete gradient operator. Moreover, assuming a proper normalization, the discrete
gradient G is then given by the nodes-to-edges incidence matrix of the underlying mesh [6],
and therefore the near null space of A is actually known.
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Now, the presence of a large near null space makes the iterative solution of the resulting
linear systems challenging. This is because the presence of a near null space undermines the
convergence of standard single-level iterative solvers. Regarding multilevel methods, such a
near null space is also a difficulty for the standard multigrid and multilevel methods [8, 27].
Indeed, these latter methods are designed to only cope with a small near null space, typically
composed of one or few given vectors.

Hence, we resort to special multigrid methods which are specifically designed for the
discretizations of (1.2). These methods follow the main multigrid ideas: a single-level iterative
scheme (smoother) is combined with a solution of a smaller linear system (coarse grid
correction), and, if the smaller system is big enough, it is solved only approximately with
a few recursive iterations of the multigrid method, therefore requiring a hierarchy of more
than two systems. However, the special multigrid methods have one of the two following
distinctive features: either the smoother and the coarse grid correction are chosen to properly
handle the large near null space and therefore differ from standard multigrid components,
or the preconditioning of the original system (1.1) amounts to precondition some extended
and/or auxiliary systems with a standard (i.e., not special) multigrid method. The methods
implementing the first feature include those from [1, 9], which consider the discrete boundary
value problem (1.2) on simplex meshes that are obtained by a successive refinement of a
given mesh, that is, in a geometric setting. In such a setting the coarse grid correction is
naturally defined by the resulting mesh hierarchy, whereas each method employs its own
special smoother. When the mesh hierarchy is not available, it should be built by the method
itself during the setup (coarsening) stage; this is done by algebraic multigrid (AMG) methods.
The special AMG methods then typically use one of the smoothers from [1, 9], whereas the
grid hierarchy is deduced from the one built with a standard AMG method for an auxiliary
“nodal” matrix. This approach was proposed in [26] by Reitzinger and Schöberl, further
improvements have been suggested in [4, 5, 11, 24, 26]. Most of the resulting methods require
comparatively little memory and comparatively little work per iteration, but their convergence
often deteriorates with the problem size, albeit the deterioration is sometimes slow. Some
of the methods do actually achieve a level-independent convergence but at the price of a
significant increase in complexity and memory usage.

The special multigrid methods that use a second distinctive feature, namely the precondi-
tioning of some extended/auxiliary systems with standard multigrid, include [2, 10, 12, 13, 14].
Amongst these, auxiliary space preconditioners, some of which are studied in [13, 14] whereas
others are analyzed in [10], are deemed state-of-the-art solvers for the considered problems.
For these problems, they exhibit a level-independent convergence, but due to the use of large
auxiliary matrices, they typically require more memory and perform more work per iteration
than most of the multigrid methods based on the first distinctive feature.

In this work, we revisit the aggregation-based method [26] by Reitzinger and Schöberl.
This is a special multigrid method with the first distinctive feature: it handles the large near null
space by combining a special hybrid smoother from [1, 9] with a properly built aggregation-
based grid hierarchy. The aggregation procedure is designed to yield a prolongation operator
that satisfies an important commutativity property, which is also known to hold in the geometric
setting of [1, 9].

We modify the Reitzinger-Schöberl method so as to achieve a fast and size-independent
convergence, while managing to preserve the attractive memory usage and cost per iteration of
the original method. For this, we follow the ideas from [16, 20, 23], where a proper choice of
multigrid ingredients enables fast and size-independent convergence for the aggregation-based
standard multigrid. More specifically, we use a proper cycling strategy for the multigrid
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recursion, consider a suitable auxiliary matrix for the construction of “nodal” aggregates and
apply a state-of-the-art aggregation scheme to this auxiliary matrix.

The resulting method is then compared with an auxiliary space preconditioner based
on [14]. As said, variants of auxiliary space preconditioners are considered nowadays as
reference solvers for the problems arising from the edge element discretization of (1.2) and
have provably level-independent convergence for these applications. The outcome of the
comparison is that both the proposed method and an auxiliary space preconditioner require
approximately the same amount of work to solve the system (1.1), although the auxiliary space
preconditioner is typically slightly better in this regard. However, the proposed method always
needs substantially less memory.

The remainder of this paper is structured as follows. In Section 2 we review the Reitzinger-
Schöberl multigrid method. In Section 3 we summarize the modifications of the method needed
for a better convergence and robustness. The performance of the resulting method is then
assessed on a set of various problems in Section 4, including problems on unstructured meshes,
with mesh refinement, and with discontinuities in the coefficients µ−1 and β. The method is
compared with an auxiliary space preconditioner based on [14] in Section 5 and the conclusions
are stated in Section 6.

Note that, for the reader’s convenience, in Section 3 the proposed modifications to
the Reitzinger-Schöberl multigrid method are only outlined. The motivation behind these
modifications can, however, be found in the associated report [17], which represents an
earlier and more detailed version of this work. Another significant difference with respect
to the report [17] is the use of a different version of the gmsh mesh generator [7] for the
numerical experiments (version 3.0.6 here versus 2.4.2 in [17]), which produces different
discretization meshes. The fact that this latter change has little impact on the reported results
further highlights the robustness of the considered methods.

2. Reitzinger-Schöberl multigrid method. In this section we review the basic multigrid
components as implemented in the Reitzinger-Schöberl multigrid method. In particular, as
any multigrid method is obtained by a recursive application of a two-grid scheme, we review
the corresponding Reitzinger-Schöberl two-grid scheme first.

2.1. Two-grid scheme. A two-grid scheme is a combination of smoothing iterations and
a coarse grid correction. A smoothing iteration is typically one iteration of a single-level
iterative method; for instance, Gauss-Seidel smoothers are commonly employed within the
standard multigrid methods. The coarse grid correction amounts to solve a smaller problem
on a coarser grid. A proper interplay of the smoothing iterations and the coarse grid correction
is the key to the efficiency of the two-grid scheme.

A two-grid iteration matrix, which combines a pre-smoothing iteration, a coarse grid
correction, and a post-smoothing iteration, is given by

(2.1) I −BTGA = (I −MTA)(I − PA−1
c PTA)(I −MA),

where M is the preconditioner for the smoothing iteration, P is the prolongation matrix, and
Ac = PTAP is the coarse grid matrix. Regarding more specifically the coarse grid correction
step, it proceeds by first transferring the residual vector to the coarse grid by applying the
transpose of the prolongation matrix PT to it, then solving the coarse residual system with
the system matrix Ac, and finally transferring the resulting correction from the coarse grid by
applying the prolongation matrix P to it. Note that, for a given A, the coarse grid correction
step is completely determined by the prolongation matrix P .

Now, we intend to use multigrid methods as preconditioners for the Conjugate Gradient
(CG) iteration. Such a use is typically advised for algebraic multigrid methods as it increases
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their robustness. Regarding the two-grid scheme, the corresponding preconditioner BTG can
be determined from (2.1) and is given by

(2.2) BTG = M + (I −MTA)PA−1
c PT (I −AM),

where

M = M +MT −MTAM.

Of course, in such a setting one needs to make sure that the two-grid preconditioner is SPD.
However, it is then enough to verify that the matrix M is SPD or, equivalently, that the
smoothing iteration based on M is converging [28, Chapter 3].

Now, the two-grid Reitzinger-Schöberl method fits into the above description but requires
a special smoother and coarse grid correction to cope with the large near null space of the
discrete boundary value problem (1.2). This latter space is spanned by the range of the discrete
gradient operator G, which is typically available. In particular, if the degrees of freedom are
properly normalized, as assumed in this work, then the discrete gradient G is given by the
nodes-to-edges incidence matrix of the underlying mesh, that is, each row of G has at most
two nonzero entries 1 and −1, corresponding respectively to the ending node and the starting
node of the associated edge in the mesh.

Regarding the special smoother, in what follows we use the hybrid Gauss-Seidel smoother
from [9]. It corresponds to a combination of one Gauss-Seidel iteration applied to the system
projected into the range of the gradient operator and of one Gauss-Seidel iteration applied to
the original system. The iteration matrix for this smoother is given by

(2.3) I −MA = (I − L−1A)(I −G (L(n))−1GTA),

where L(n) and L represent, respectively, the lower part of GTAG and A. Moreover (as
shown in [17]), the two-grid preconditioner based on such a smoother is SPD and therefore
can precondition the CG iteration.

Regarding the special coarse grid correction, as said, it is determined by the prolongation
matrix, and this matrix is of aggregation type in the Reitzinger-Schöberl method. A prolon-
gation of aggregation type requires the unknowns of the original system to be grouped into
disjoint sets (or aggregates) with each set corresponding to an unknown of the coarse system.
The application of the prolongation matrix then amounts to assign to all the unknowns in the
k-th aggregate the weighted value of the k-th coarse unknown; the non-aggregated unknowns
are set to 0.

The construction of the prolongation matrix within the Reitzinger-Schöberl method is done
in two steps. At first, the preliminary “nodal” aggregates are built from the auxiliary unknowns
that are associated with the nodes of the discretization mesh. Such “nodal” unknowns typically
correspond to the columns of the gradient operator as available on the fine mesh. This means,
in particular, that each original (or “edge”) unknown j correspond to two “nodal” unknowns
j1 and j2, the first being the starting point and the second the ending point of the edge; this
relation is denoted below as j = (j1, j2). This first step is commonly performed by applying a
classical algebraic aggregation method to an auxiliary “nodal” matrix, for example, the matrix
resulting from the discretization of the div-grad operator with Lagrange linear finite elements
on the same mesh as the considered discrete problem.

The second step amounts to building the prolongation matrix out of the auxiliary “nodal”
aggregates, which in what follows we denote Kk, k = 1, . . . , n

(n)
c . Since the prolongation

is of aggregation type, we first explain how the corresponding “edge” aggregates are built,
then specify the prolongation weights, and finally give the prolongation matrix itself. Every
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Kj1 Kj2
j-th “edge”
aggregate

+1

−1

+1

j1 j2
j = (j1, j2)

FIGURE 2.1. Example of the “nodal” and “edge” aggregates on the fine grid with the corresponding prolonga-
tion weights (left) and the associated coarse grid mesh (right).

nonempty “edge” aggregate corresponds to two “nodal” aggregates Kj1 and Kj2 having at
least one connecting edge; the aggregate gathers all the unknowns associated to edges that
have one vertex in Kj1 and another in Kj2 ; see Figure 2.1 for an example. Such an “edge”
aggregate defines a coarse unknown j which corresponds to a coarse edge that relates the
coarse nodes j1 and j2. That is, fixing the orientation, we have a coarse nodes-to-edge relation
j = (j1, j2), which further specifies the coarse gradient Gc. As of the prolongation weights,
they are set to 1 or −1 depending on whether the edge unknown from the aggregate has the
same orientation as its coarse representation. Put together, this defines the Reitzinger-Schöberl
prolongation matrix

(P )ij =

 1 if i1 ∈ Kj1 and i2 ∈ Kj2 ,
−1 if i1 ∈ Kj2 and i2 ∈ Kj1 ,
0 otherwise,

where i = (i1, i2) is a fine unknown and j = (j1, j2) is a coarse unknown. Note that the
above prolongation matrix satisfies an important commutativity relation [26], which is also
known to hold in the geometric multigrid setting.

2.2. Multigrid. A multigrid method is obtained from a two-grid scheme when the coarse
problem is solved approximately with one or few recursive applications of the multigrid
method on a coarse level. More specifically, this means that the exact solution of the coarse
system, as represented by the application of A−1

c in the expressions of the two-grid iteration
matrix (2.1) and the two-grid preconditioner (2.2), is replaced with an approximate solution
obtained with one or few steps of the multigrid preconditioner on the coarse level. Of course,
to define such a preconditioner, an even smaller coarse system is required and so on, resulting
in a hierarchy of increasingly smaller systems; the coarsest system is chosen small enough to
be solved exactly at a negligible cost.

Practical multigrid methods are designed to be optimal solvers in the sense that the cost
of the solution of the linear system (1.1) is proportional to the number nnz(A) of nonzero
entries of the system matrix. Optimality is achieved when, on the one hand, the cost per
preconditioner application is proportional to nnz(A), and, on the other hand, the number
of iterations needed for convergence is bounded independently of the problem size. The
former condition is satisfied if the complexity parameter CW introduced below is also bounded
independently of the problem size.

The Reitzinger-Schöberl method is an algebraic multigrid (AMG) method, which means
that the hierarchy of coarse systems is built based solely on the system matrix A1 = A and the
corresponding discrete gradient operator G1 = G. Note that such a hierarchy is completely
determined by specifying at every level the procedure for the construction of the “nodal”
aggregates. Indeed, as follows from the discussion in Section 2.1, once the “nodal” aggregates
are built at a given level `, ` = 1, . . . , L− 1, the edge prolongation P` and the coarse gradient
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operator G`+1 can be determined. This further yields the system matrix on the next coarse
level via A`+1 = PT

` A`P` and the same procedure can therefore be repeated at this level.

3. Reitzinger-Schöberl revisited. In this section we summarize the considered modifi-
cations of the Reitzinger-Schöberl multigrid method: the use of K-cycle multigrid and a new
algebraic procedure for the construction of “nodal” aggregates. The motivation behind these
modifications is given in [17].

The first modification—the use of K-cycle multigrid—aims at curing the deterioration of
convergence that is typically observed for the Reitzinger-Schöberl multigrid method with the
refinement of the discretization mesh [26]. The source of such a deterioration lies in the fact
that the approximate multigrid solution of the coarse system, as carried out during the coarse
grid correction step, is not accurate enough. Indeed (as observed in [15, 17]) the convergence
of the Reitzinger-Schöberl two-grid method, in which the coarse system is solved exactly, does
not suffer from such a deterioration.

Now, the accuracy of the approximate solution of the coarse system essentially depends
on the multigrid cycle, that is, on the number and nature of the multigrid iterations recursively
used to approximately solve the coarse system. The original Reitzinger-Schöberl multigrid is
used with the V-cycle that is obtained when at every but the last level the solution of the coarse
system is replaced with one application of the multigrid preconditioner. Compared to the other
multigrid cycles, a V-cycle always needs less work per application. On the negative side, an
optimal convergence is not always easy to ensure with the V-cycle multigrid. In particular, it
is known that for optimal convergence, the standard multigrid methods require a prolongation
operator which is at least linear [27], this latter condition being violated by aggregation-based
standard multigrid methods.

Aggregation-based standard multigrid methods are typically used in combination with the
K-cycle [16, 20]. K-cycle multigrid is obtained when at every but the last level the solution of
the coarse system is replaced with two applications of the multigrid preconditioner accelerated
by the Flexible Conjugate Gradient method [19]; the flexible variant is required since the
resulting preconditioner is slightly non-linear. The work for one application of the multigrid
preconditioner is then typically higher than for a V-cycle, but the increase is typically moderate
if the size of the coarse system decreases by a factor of 4 or more from one level to the next.

Regarding the convergence of the resulting K-cycle Reitzinger-Schöberl multigrid, it
can typically be characterized as independent of the problem size. This is also illustrated in
Section 4 below, where we systematically report the number of iterations for three different
sizes of each problem. Further, the overall cost to solution is also typically lower for the
K-cycle variant of the Reitzinger-Schöberl multigrid compared to the V-cycle variant [17].

We now briefly comment on a parallel perspective of the K-cycle multigrid. It is commonly
believed that a scalable multigrid solver on a massively parallel architecture can only be
obtained with the V-cycle multigrid. This is perhaps true if one considers a straightforward
parallelization of the sequential algorithm. However, it is demonstrated in [22] that a properly
redesigned K-cycle multigrid can also be scalable on modern massively parallel machines. As
the ideas behind the approach in [22] are not specific to Poisson-like problems, they can also
be applied for the parallelization of a Reitzinger-Schöberl K-cycle multigrid method.

The second modification—a new procedure for the construction of the “nodal” aggrega-
tes—aims at making the method more robust. Note that such a robustness is considered here
in a rather challenging context of an algebraic multigrid (AMG) method for the discretizations
of (1.2), for which only the original system (1.1) and the associated discrete gradient operator
G are available.

Now, as mentioned above, a construction procedure of the “nodal” aggregates completely
determines the hierarchy of coarse systems in the Reitzinger-Schöberl multigrid method. Here,
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the auxiliary “nodal” aggregates are determined at level `, ` = 1, . . . , L − 1, by applying
a standard aggregation procedure to the auxiliary “nodal” matrix GT

` A`G`. Regarding the
aggregation procedure, we consider the multiple pairwise aggregation with quality control
for symmetric system matrices [16] as implemented in the 3.2.3-aca release of the AGMG
software package [21]. This aggregation algorithm proceeds in several passes: during the first
pass, the “nodal” unknowns are grouped into aggregates of size one or two, and during the
subsequent passes, at each pass some pairs of aggregates are merged into single aggregates.
The resulting aggregates are therefore of size at most 4 after 2 passes, at most 8 after 3 passes,
etc. The choice of a tentative pair of aggregates and the decision to merge them are based on
a measure of the aggregate’s quality, and only aggregates with the quality measure below κ
are accepted. As here we target mostly three-dimensional problems and aim at forming large
enough aggregates to favor low complexities, we use the considered aggregation scheme with
3 passes and with the threshold value κ = 20.0.

Note, however, that the resulting aggregates are only accepted if their average aggregate
size for a given level is larger than 4; in the infrequent case where this condition is not satisfied,
the multiple pairwise aggregation is run again at this level but this time with the auxiliary
matrix GT

` G`. Explanations and numerical experiments are provided in [17] to justify this
latter choice; this particular modification is denoted there (GTAG)∗ to distinguish it from the
use of GTAG alone.

4. Numerical results. In this section we report on numerical experiments with the
variant of the Reitzinger-Schöberl method described in Section 3. Our experiments cover the
discretizations of (1.2) on structured and unstructured meshes in two and three dimensions,
separately considering the effect of local mesh refinement and a discontinuity in either the
magnetic permeability coefficient µ or in the coefficient β. For all the considered problems we
set β = 10−2 and µ−1 = 1 unless stated otherwise. The number of iterations is that of the
preconditioned Flexible Conjugate Gradient method needed to reduce the relative Euclidean
norm of the residual by the factor of 106; the initial residual is chosen as a random vector
generated starting from a fixed seed. The unstructured meshes are generated with the 3.0.6
release of the gmsh package [7], and the corresponding system matrices are assembled with
the 4.1 release of the getfem++ software [25].

Now, to correctly interpret the reported results one needs not only the number of iterations
but also the work per iteration. The work estimate is provided here with the complexity
parameter CW , which corresponds to the number of floating-point multiplications needed
for one application of the preconditioner under consideration normalized by the number of
nonzero entries of the preconditioned system matrix A. For the Reitzinger-Schöberl multigrid
method this parameter is approximately given by

(4.1) CW =

L−1∑
`=1

2`−1 5 nnz(A`) + nnz(A
(n)
` )

nnz(A)
+ 2L−1 nnz(AL)

nnz(A)
,

where A1 = A, A` is the coarse system matrix at level `, ` = 2, . . . , L, and A(n)
` = GT

` A`G`

is the auxiliary “nodal” matrix at level `, ` = 1, . . . , L − 1. The derivation of the above
expression is given in the appendix. Note that in order to keep the complexity parameter CW
bounded, one needs to ensure that nnz(A`) and nnz(A

(n)
` ) decrease by a factor larger than 2

from one level to the next; in practice, the decrease by a factor 4 in the dimension of the coarse
matrix A` is often enough to ensure a proper complexity.
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TABLE 4.1
Convergence, complexity, and memory parameters for the considered method with various boundary value

problems discretized on structured meshes. The parameter h indicates the mesh size. The parameters CW and CM
are, respectively, the estimate (4.1) of the work per one preconditioner application and the estimate (4.2) of the
memory usage, both normalized by nnz(A).

MODB_2D_D MODB_3D_D MODS_2D_N MODS_3D_N

h−1 400 800 1600 20 40 80 400 800 1600 20 40 80
n (105) 3.2 12.8 51.2 0.2 1.7 14.4 4.8 19.1 76.7 0.5 4.3 35.1

nnz/n 7.0 7.0 7.0 30.2 31.7 32.2 5.0 5.0 5.0 15.7 16.1 16.2
#it 4 4 4 16 19 21 52 59 60 22 24 26
CW 7.4 7.5 7.5 8.2 9.5 10.4 7.2 7.2 7.2 6.5 6.7 6.7
CM 1.9 1.9 1.9 1.6 1.7 1.8 1.7 1.6 1.6 1.3 1.3 1.3

Finally we also report the memory consumption via the parameter

(4.2) CM =

L−1∑
`=1

nnz(A`) + nnz(A
(n)
` )

nnz(A)
+

nnz(AL)

nnz(A)
,

which represents the memory used for the storage of all the floating-point data normalized
by the memory required for the system matrix A. This interpretation is stated under the
assumption, made in this work, that the matrices A(n)

` , ` = 1, . . . , L− 1, are stored explicitly
in memory; we also neglect the contribution of G` and P`, ` = 1, . . . , L−1, since the nonzero
entries of these matrices are given by ±1.

4.1. Structured mesh. We begin by examining the performance of the considered
method when applied to the discretizations of (1.2) on structured meshes. The considered
problems are defined on a unit square (2D) or a unit cube (3D), with Dirichlet (ΓD = ∂Ω)
or natural (ΓN = ∂Ω) boundary conditions (D or N, respectively) and discretized on brick
(MODB) or simplex (MODS) meshes.

The results for these problems are reported in Table 4.1. The main observation is that
both the iteration count and the complexity parameter CW seem to be bounded independently
of the problem size, suggesting that the considered Reitzinger-Schöberl method is indeed
optimal for the considered problems. This observation remains valid for the other numerical
experiments in this work, for both brick and simplex meshes. As a side comment, we note that
the parameters CW and CM are slightly higher for brick meshes, meaning that more work per
iteration and memory is required per nonzero entry of A. However, this comes together with
lower iteration counts.

4.2. Unstructured mesh. We now consider the problems discretized on simplex meshes.
The considered problems are both two- and three-dimensional (2D and 3D), and in every case
we consider one boundary value problem (1.2) discretized on a structured (MODS) and an
unstructured (SQR or CUB) mesh. More precisely, problems MODS_2D_N and SQR_2D_N are
defined on a unit square with natural boundary conditions (ΓN = ∂Ω), whereas MODS_3D_D
and CUB_3D_D are defined on a unit cube with Dirichlet (ΓD = ∂Ω) boundary conditions.

The results for the considered problems are reported in Table 4.2. Comparing the re-
spective columns for the two- and the three-dimensional problems, we see that going from
a structured to the corresponding unstructured mesh slightly increases the complexity and
memory parameters and slightly decreases the number of iterations. We therefore conclude
that unstructured meshes do not represent a difficulty for the considered method.
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TABLE 4.2
Convergence, complexity, and memory parameters for the considered method with various boundary value

problems discretized on simplex meshes. The parameter hmax indicates the maximal mesh size for the unstructured
meshes and the actual mesh size for the structured ones.

MODS_2D_N SQR_2D_N MODS_3D_D CUB_3D_D

h−1
max 400 800 1600 20 40 80 40 80 160 20 40 80

n (105) 4.8 19.1 76.7 3.6 14.3 58.1 0.4 4.0 34.0 0.3 3.4 21.3
nnz/n 5.0 5.0 5.0 5.0 5.0 5.0 15.6 16.0 16.2 15.7 16.2 16.4

#it 52 59 60 37 39 42 23 27 29 22 24 26
CW 7.2 7.2 7.2 8.0 8.1 8.1 6.8 6.8 6.8 7.9 8.0 8.0
CM 1.7 1.6 1.6 1.7 1.7 1.8 1.3 1.3 1.3 1.4 1.4 1.4

TABLE 4.3
Convergence, complexity, and memory parameters for the considered method with various boundary value

problems discretized on simplex meshes. The parameter hmax indicates the maximal mesh size.

SQR_2D_N SQR_R_2D_N CUB_3D_D CUB_R_3D_D

h−1
max 20 40 80 20 40 80 20 40 80 20 40 80

n (105) 3.6 14.3 58.1 11.4 45.8 183.1 0.3 3.4 21.3 1.1 6.1 45.2
nnz/n 5.0 5.0 5.0 5.0 5.0 5.0 15.7 16.2 16.4 16.0 16.2 16.3

#it 37 39 42 45 49 54 22 24 26 25 26 27
CW 8.0 8.1 8.1 8.1 8.1 8.1 7.9 8.0 8.0 7.9 7.9 8.0
CM 1.7 1.7 1.8 1.8 1.8 1.8 1.4 1.4 1.4 1.4 1.4 1.4

4.3. Mesh with local refinement. Here we examine the impact of a local mesh refine-
ment on the performance parameters. For this, we modify the problems SQR_2D_N and
CUB_3D_D as introduced in the previous section by refining their mesh, respectively, by a
factor of 20 near the center of the square domain and by a factor of 10 near the center of the
cube domain; the new problems are referred to as SQR_R_3D_N and CUB_R_3D_D.

The results for these problems are reported in Table 4.3. We note that the local mesh
refinement has little impact on the complexity of the considered algorithm. On the other
hand, it typically increases the iteration count. This is probably due to a higher fraction of
poor-shaped simplexes in the meshes with local refinement compared to the meshes without it.

4.4. Discontinuity. Finally we consider the effect of discontinuities in the magnetic
permeability coefficient µ on the complexity and convergence parameters. For this, we report
these parameters for the problems which only differ by the presence of discontinuities in µ.
Regarding the problems on structured brick meshes, we consider the already introduced model
problem MODB_3D_D on a cube with Dirichlet boundary conditions and compare it with the
same problem MODB_J_3D_D in which the coefficient µ−1 varies from 1 to 10−3 through the
x = 0.5 plane. For problems on unstructured simplex meshes, we reconsider the CUB_3D_N
problem on a unit cube with natural boundary conditions and compare it to the same problem
with µ−1 given by

1 for x > 0.5 and y, z < 0.5,
20−1 for x, z > 0.5 and y < 0.5,
20−2 for x, y > 0.5 and z < 0.5,
20−3 for x, y, z > 0.5,


20−4 for x, y, z < 0.5,
20−5 for x, y < 0.5 and z > 0.5,
20−6 for x < 0.5 and y, z > 0.5,
20−7 for x, z < 0.5 and y > 0.5.

The results for these problems are reported in Table 4.4. One may see that there is
practically no difference between the problems with or without discontinuity, be it in the case
of structured brick meshes or in the case of unstructured simplex ones. Moreover, the same
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TABLE 4.4
Convergence, complexity, and memory parameters for the considered method with various three-dimensional

boundary value problems with discontinuities. The parameter hmax indicates the maximal mesh size for the
unstructured meshes and the actual mesh size for the structured ones.

MODB_3D_D MODB_J_3D_D CUB_3D_N CUB_J_3D_N

h−1
max 20 40 80 20 40 80 20 40 80 20 40 80

n (105) 0.2 1.7 14.4 0.2 1.7 14.4 0.4 3.8 22.8 0.4 3.8 22.8
nnz/n 30.2 31.7 32.3 30.2 31.7 32.3 15.3 15.8 16.1 15.3 15.8 16.1

#it 16 19 21 16 19 21 21 24 25 21 22 23
CW 8.2 9.5 10.4 8.2 9.5 10.4 7.4 7.6 7.8 7.4 7.6 7.8
CM 1.6 1.7 1.8 1.6 1.7 1.8 1.4 1.4 1.4 1.4 1.4 1.4

TABLE 4.5
Convergence, complexity, and memory parameters for problems with discontinuities in coefficients µ−1 and β.

The parameter hmax indicates the maximal mesh size.

CUB_3D_N CUB_JA_3D_N CUB_JB_3D_N CUB_JC_3D_N

h−1
max 20 40 80 20 40 80 20 40 80 20 40 80

#it 21 24 25 24 26 27 26 27 29 27 30 32
CW 7.4 7.6 7.8 7.4 7.7 7.8 7.4 7.7 7.8 7.4 7.6 7.8
CM 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

behavior is observed for other test problems with discontinuities, including two-dimensional
problems. Whereas these observations are to be expected for the complexity and memory
parameters since the contribution of the discrete curl-curl term toA vanishes withinGTAG and
so is the dependence on the µ coefficient, the fact that the number of iterations is independent
of the discontinuity seems rather unexpected.

Now, in the above problems only µ−1 is considered discontinuous. Partially, this is
because the contribution of the β-multiplied term (or mass term) in the discretization of (1.2)
is typically small, whereas in some applications this term comes from the regularization of a
singular version of (1.2) corresponding to β = 0 and therefore remains continuous. However,
since the nodal aggregation is only dependent on this term and not on the discrete curl-curl
term, it is still instructive to consider the situation where β is discontinuous. This is done in
Table 4.5, in which the original CUB_3D_N problem with continuous coefficients is compared
with the problems CUB_JA_3D_N, CUB_JB_3D_N and CUB_JC_3D_N. The second (JA)
and the third (JB) problems are the same as the first one except that µ−1 varies from 1 to 10−3

through the plane x = 0.5, whereas β varies from 10−2 to 10−5 through the plane x = 0.5
(for the CUB_JA_3D_N problem) or through the plane y = 0.5 (for the CUB_JB_3D_N
problem). Note that since in the second case the discontinuities in µ−1 and β are located one
perpendicular to another, the CUB_JB_3D_N problem is both artificial and quite challenging.
The fourth problem (JC) correspond to a continuous µ−1 (µ−1 = 1) but discontinuous β, the
latter jumping from 1 to 10−8 when crossing the plane x = 0.5.

Regarding the results, we note that, although the aggregates produced for the three
problems are now different, the results remain comparable. This essentially indicates that the
location of the nodal aggregates with respect to the discontinuity has a limited impact on the
overall convergence of the method.

5. Comparison with an auxiliary space preconditioner.

5.1. Auxiliary space preconditioners. Auxiliary space preconditioners [10, 13, 14] are
considered today as reference methods for the solution of discrete boundary value problems of
the form (1.2). They amount to applying one step of a standard multigrid preconditioner to
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several auxiliary linear systems. This ability to rely on well-established standard multigrid
methods is one of the attractive points of auxiliary space preconditioners.

An auxiliary space preconditioner is only partially algebraic in the aforementioned sense,
since, in addition to A and G, it also requires the user to provide an interpolation matrix Π,
which maps the vector degrees of freedom at the nodes of the discretization mesh to the edge
degrees of freedom. For a three-dimensional problem the interpolation matrix can typically be
represented as

Π =
[
Πx Πy Πz

]
,

where Πx has the same sparsity structure as G with the nonzero entries in the row i (at most
two) being given by (Gx)i/2 with x being the vector of x-coordinates of the nodes of the
mesh; the matrices Πy and Πz are determined similarly. As a result, the matrices Π, Πx, Πy,
and Πz can be deduced from the discrete gradient G and the coordinates of the mesh nodes.

Following the ideas from [13, 14] we consider more specifically a multiplicative variant
of an auxiliary space preconditioner with Galerkin projections on subspaces and with addi-
tive scalar decomposition. Multiplicative variant means that the corrections are performed
successively, not simultaneously; the corresponding iteration matrix is then the product of
the iteration matrices of the individual corrections. The additive scalar decomposition means
that some auxiliary matrices are induced by the scalar components Πx, Πy (and Πz in three
dimensions) and the corresponding corrections are performed simultaneously, not successively.
The iteration matrix of the corresponding preconditioner Basp in three dimensions is given by

I −BaspA = (I −GB(n)GTA)(I − L−TA)

∗

I −
 ∑

i∈{x,y,z}

ΠiBΠiΠ
T
i

A

 (I − L−1A)(I −GB(n)GTA),
(5.1)

where B(n) and BΠi
, i ∈ {x, y, z}, are the standard multigrid preconditioners for the matrices

A(n) = GTAG and AΠi
= ΠT

i AΠi , i ∈ {x, y, z}. Note that although the first two factors
in (5.1) look similar to the iteration matrix (2.3) of the hybrid smoother, here the multigrid
preconditioner B(n) cannot be replaced by a simple Gauss-Seidel relaxation (L(n))−1, with
L(n) = tril(GTAG); such a replacement typically ruins the attractive convergence properties.

To make the comparison of the auxiliary space preconditioner defined by (5.1) and
the Reitzinger-Schöberl method considered here more complete, we introduce below the
complexity and memory parameters which play a similar role as the parameters CW and CM
defined by (4.1) and (4.2), respectively. Regarding the complexity parameter, it reflects the
work per nonzero entry of A needed for one application of the auxiliary space preconditioner
and is approximately given by

(5.2) CW =
5 nnz(A) + 6 nnz(A(n)) C̃(n)

W +
∑

i∈{x,y,z}

(
2 nnz(Πi) + 3 nnz(AΠi

) C̃(i)
W

)
nnz(A)

,

where C̃(n)
W and C̃(i)

W are the weighted complexities of the multigrid preconditioners B(n) and
BΠi , i ∈ {x, y, z}, respectively. This expression is justified in the appendix. As of the memory
parameter, it reflects the memory usage of the auxiliary space preconditioner per nonzero entry
of A and is given by
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CM =
nnz(A) + nnz(A(n)) C̃(n)

M +
∑

i∈{x,y,z}

(
nnz(Πi) + nnz(AΠi) C̃

(i)
M

)
nnz(A)

,

where C̃(n)
M and C̃(i)

M are the so-called operator complexities of the multigrid preconditioners
B(n) and BΠi

, i ∈ {x, y, z}, respectively.
The memory and complexity parameters just defined depend on the weighted and operator

complexities of the multigrid preconditioners B(n) and BΠi
, i ∈ {x, y, z}, for the auxiliary

systems. If these latter complexities are set to their lower bounds (that is, if C̃(n)
M = C̃(n)

W =

C̃(i)
M = C̃(i)

W = 1), then the resulting values of the memory and complexity parameters become
themselves the lower bounds; we shall denote them with CM∗ and CW∗. Such bounds depend
only on the problem at hand and represent minimal requirements for the application of the
auxiliary space preconditioner to this problem.

5.2. Comparison. The comparison with the auxiliary space preconditioner as defined
by (5.1) is performed in the same setting as the previous numerical experiments; see Section 4
for details. In particular, for the preconditioners B(n) and BΠi for the Galerkin matrices
GTAG and ΠT

i AΠi, i ∈ {x, y, z}, we use here as well the 3.2.3-aca release of the AGMG
software package [21], which implements the standard aggregation-based AMG solver. The
software is used as is, except for the aggregation whose parameters are chosen as suggested in
Section 3 for the nodal aggregation scheme: we use 3 passes of pairwise aggregation and set
the aggregate quality threshold value to κ = 20.0; the reasons behind this choice are the same
as in Section 3.

The convergence and complexity results for the two methods are given in Table 5.1 for
various discrete boundary value problems. Note that, apart from the usual parameters, we also
report the overall work to obtain the solution (per nonzero entry of A), which is assessed via
W = #it (CW + 1), where 1 is added to account for the floating-point multiplications needed
for the matrix-vector product in the Flexible Conjugate Gradient method.

Although all the problems have already been introduced, for the reader’s convenience
we briefly summarize their naming convention. All problems are defined on a square or a
cube. The first few letters in the problem characterize the discretization mesh: MODB stands
for the model structured brick mesh, MODS is for model structured simplex mesh, SQR is
for unstructured 2D simplex mesh and CUB is for unstructured 3D simplex mesh; the letters
_R or _J that follow indicate, respectively, that the mesh is refined near the center of the
domain or that there is a jump in the coefficient µ. The name ends up with the indication of
the dimensionality of the problem (_2D or _3D) and the boundary conditions (_N for natural
and _D for Dirichlet). We note that for each problem three problem sizes are presented. The
problems of the largest size correspond to system matrices with 2.9 · 107 – 8 · 107 nonzero
entries, for the medium size we have 5 · 106 – 2 · 107 nonzero entries, and 6 · 105 – 5 · 106

nonzero entries for the smallest problems. The matrix dimensions for consecutive sizes vary
roughly by a factor of 8 for the three-dimensional problems and by a factor of 4 for the
two-dimensional ones.

Comparing the results for the considered auxiliary space preconditioner (ASP) and
Reitzinger-Schöberl multigrid method (RS), we note that the auxiliary space preconditioner
often requires less iterations to converge, although the iteration counts of the two methods
never differ by more than a factor of 2. On the other hand, the considered variant of the
Reitzinger-Schöberl method always has lower complexity parameter CW , that is, lower work
per iteration, although the two work estimates do not differ by more than a factor of 2. Com-
paring the workW to solution, we note that although the auxiliary space preconditioner does
slightly better for most of the problems, the difference with the considered Reitzinger-Schöberl
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TABLE 5.1
Convergence, complexity, and memory parameters for the auxiliary space preconditioner (ASP) and the

considered method (RS) and iteration counts for the AMS preconditioner (AMS) from the hypre package, reported
for various boundary value problems. The superscript a indicates that the results correspond to the auxiliary space
preconditioner for which AΠx and AΠy are each being preconditioned with one iteration of symmetric Gauss-Seidel;
the irrelevant field is then marked with –a.

Problems AMS ASP RS

Name n (105) nnz/n #it #it CW W CM CW∗ CM∗ #it CW W CM

MODB_2D_D
3.2 7.0 3 4a –a –a –a 13.3 3.2 4 7.4 33.8 1.9

12.8 7.0 3 4a –a –a –a 13.3 3.2 4 7.5 33.9 1.9
51.2 7.0 3 4a –a –a –a 13.3 3.2 4 7.5 34.0 1.9

MODB_J_3D_D
0.2 30.2 6 9 13.2 127.7 2.9 8.9 2.1 16 8.2 147.7 1.6
1.7 31.7 7 11 13.7 162.1 3.0 9.1 2.1 19 9.5 200.3 1.7

14.4 32.3 8 12 14.1 180.9 3.0 9.1 2.1 21 10.4 240.0 1.8

MODS_3D_D
0.4 15.6 8 15 8.4 140.3 1.9 7.7 1.8 23 6.8 179.1 1.3
4.0 16.0 9 17 8.1 155.1 1.9 7.5 1.8 27 6.8 211.6 1.3

34.0 16.2 9 19 8.0 171.9 1.8 7.5 1.8 29 6.8 227.4 1.3

MODS_3D_N
0.5 15.7 7 11 8.0 98.8 1.8 7.5 1.8 22 6.5 164.9 1.3
4.3 16.1 8 12 7.9 107.4 1.8 7.4 1.7 24 6.7 175.6 1.3

35.1 16.2 8 13 8.0 116.4 1.8 7.4 1.7 26 6.7 201.3 1.3

SQR_2D_N
3.6 5.0 23 21 14.4 322.9 3.4 12.2 3.2 37 8.0 333.7 1.7

14.3 5.0 23 22 16.0 373.5 3.5 12.2 3.2 39 8.1 353.1 1.7
58.1 5.0 26 25 16.1 428.7 3.5 12.2 3.2 42 8.1 381.5 1.8

SQR_R_2D_N
9.6 5.0 18 23 15.2 373.5 3.5 12.2 3.2 41 8.0 370.4 1.7

39.0 5.0 18 25 15.9 422.2 3.5 12.2 3.2 45 8.1 408.9 1.8
158.7 5.0 24 26 15.9 439.8 3.5 12.2 3.2 49 8.1 445.5 1.8

CUB_3D_D
0.6 15.2 8 14 9.2 143.5 2.2 8.4 2.1 22 7.9 196.0 1.4
5.7 15.8 11 16 8.9 157.7 2.1 8.0 2.0 24 8.0 215.3 1.4

39.1 16.1 12 18 8.7 174.7 2.0 7.9 1.9 26 8.0 233.5 1.4

CUB_J_3D_N
0.7 15.3 13 15 8.8 146.4 2.0 7.8 1.9 21 7.4 176.0 1.4
6.1 15.8 15 16 8.4 151.2 2.0 7.7 1.9 22 7.6 190.2 1.4

40.3 16.1 19 17 8.3 158.7 2.0 7.7 1.9 23 7.8 201.9 1.4

method is never substantial. Moreover, the difference is mostly important for the “easiest”
problem defined on a structured simplex mesh and less striking for more involved situations.

The results for MODB_2D_D deserve a special comment since the nonzero entries of
the matrices ΠT

xAΠx and ΠT
yAΠy are then all positive. As a consequence, the coarsening

of the resulting multigrid preconditioner can be slow, yielding high values for the weighted
and operator complexities. However, the matrices ΠT

xAΠx and ΠT
yAΠy happen to be well

conditioned in this case, and a simple symmetric Gauss-Seidel smoothing iteration can be used
to precondition them. The results for the corresponding preconditioner scheme are therefore
reported in Table 5.1, instead of the considered auxiliary space preconditioner.

Regarding the memory usage of the two methods, as reported through the memory
parameter CM, it is always substantially smaller for the considered variant of the Reitzinger-
Schöberl method. The difference is even more striking if the memory other than the storage
of A is considered, since then the indicator is CM − 1. Most of the storage needed by the
auxiliary space preconditioner actually comes from the auxiliary matrices and not from the
corresponding preconditioners; this is seen from the fact that the values of CM and CM∗ are
almost the same for most of the considered problems.
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We also report in Table 5.1 the iteration counts for the AMS preconditioner from the
2.7 release of the hypre package [13, 14]. More precisely, we use the default AMG
setting except for the cycle_type parameter, which is set to 14; this corresponds to the
expression (5.1), except that the preconditioners B(n) and BΠi , i ∈ {x, y, z}, are now
defined by the BoomerAMG solver, the forward and backward Gauss-Seidel preconditioner
as represented by L−T and L−1, respectively, are replaced by the symmetric Gauss-Seidel
version, and the various components are used in a slightly different order (the two first factors
in (5.1) are permuted, as well as the two last ones). The overall setting is the same as before
and the iteration count is that of the preconditioned Conjugate Gradient method from the
hypre package.

Comparing the results for the considered auxiliary space preconditioner and the AMS
preconditioner, we note that this latter solver often needs less iterations to converge, the ratio
between the iteration counts mostly staying between 1 and 2. This is, however, compensated
by the fact that the AMS solver uses the symmetric Gauss-Seidel smoother as a top-level
smoothing iteration and in the multigrid preconditioners B(n) and BΠi , i ∈ {x, y, z}, instead
of the forward/backward Gauss-Seidel for the considered auxiliary space preconditioner, which
means that the AMS preconditioner requires roughly two times more work per iteration.

6. Conclusions. We have revisited the Reitzinger-Schöberl multigrid method for the
solution of the discrete boundary value problem (1.2). Reitzinger-Schöberl multigrid is of
aggregation type, and we proposed two modifications which are inspired from the standard
state-of-the-art aggregation multigrid: the use of K-cycle multigrid and a variant of algebraic
“nodal” aggregation that relies on multiple pairwise aggregation with quality control. The mo-
difications aim at improving the convergence behavior and robustness of the resulting method.
The resulting Reitzinger-Schöberl method has been observed to be robust on a set of problems
defined on unstructured meshes with possible local refinements and involving possibly dis-
continuous coefficients µ−1 and β. The comparison with a state-of-the-art auxiliary space
preconditioner revealed that the proposed variant of the Reitzinger-Schöberl method, although
requiring slightly more work on the average compared to the auxiliary space preconditioner,
needs significantly less memory to compute the solution of a given problem.

Acknowledgement. The work of the first author was partially supported by the Fonds
de Recherche Scientifique-FNRS (Belgium) under Grant no J.0084.16. The second author ac-
knowledges the Chaire internationale IN program of ULB (Brussels, Belgium) for supporting
his stay in Brussels.

Appendix A. Here we derive the expressions of the complexity parameter CW used in
this work. More specifically, we first obtain such an expression for a generic multiplicative
preconditioner. We then use it to justify the complexity parameters (4.1) and (5.2) for the
Reitzinger-Schöberl multigrid preconditioner and the auxiliary space preconditioner, respec-
tively. To be precise, we define the complexity parameter CW as the number of floating-point
multiplications required per application of the corresponding preconditioner divided by the
number nnz(A) of nonzero entries of the preconditioned system matrix.

The iteration matrix of the generic multiplicative preconditioner B considered here is
given by

(A.1) I −BA = (I − CpA) · · · (I − C2A)(I − C1A),

where the preconditioners Ci, i = 1, . . . , p, are either available explicitly or defined implicitly
through a combination of simpler preconditioners. An application of such a preconditioner
can be written as
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Algorithm 1 (application of B: v = Br )
1. v1 = C1r (application of C1)
2. r1 = r−A v1 (residual update)
3. v2 = C2r1 (application of C2)
4. r2 = r1 −A v2 (residual update)
· · · · · ·

5. vp = Cprp−1 (application of Cp)
6. v = vp + · · ·+ v2 + v1 (final result of the preconditioner application)

The complexity parameter CW associated with this preconditioner application is

CW =
cost(B)

nnz(A)
=

(p− 1)nnz(A) +
∑p

i=1 cost(Ci)

nnz(A)
,

where cost(Ci) is the number of floating-point multiplications required for the application
of the preconditioner Ci. In particular, if the matrix Ci is available explicitly, then we have
cost(Ci) = nnz(Ci), except when the nonzero entries of Ci are given by ±1, in which case
cost(Ci) = 0. If Ci is expressed as a product Ci = D1 · · ·Dk or sum Ci = D1 + · · ·+Dk of
matricesD1, . . . , Dk, then cost(Ci) = cost(D1)+· · ·+cost(Dk). IfCi = L−1 orCi = L−T ,
where L = tril(A) is a lower triangular part of A, then cost(Ci) ≈ nnz(A)/2.

Considering now the Reitzinger-Schöberl two-grid preconditioner defined via equa-
tions (2.1) and (2.3), we note that its iteration matrix can be put in the form (A.1) provided
that

C1 = CT
5 = G (L(n))−1GT , C2 = CT

4 = L−1, and C3 = PA−1
c PT .

Then, since cost(C1) = cost(C5) ≈ nnz(A(n))/2, cost(C2) = cost(C4) ≈ nnz(A)/2, and
cost(C3) = cost(A−1

c ) (the nonzero entries of G and P are ±1), there holds

(A.2) cost(B) ≈ 5 nnz(A) + nnz(A(n)) + cost(A−1
c ).

Regarding the multigrid version of the Reitzinger-Schöberl preconditioner, we recall that
it is obtained from the two-grid method by replacing A−1

c with 2 iteration of a multigrid
preconditioner on the coarse level. It means that in the above expression the term cost(A−1

c )
is replaced by 2 cost(Bc), where cost(Bc) is again given by (A.2) on a coarser level and so on.
This gives, using A = A1, A(n) = A

(n)
1 , and Bc = B2,

cost(B) ≈ 5 nnz(A1) + nnz(A
(n)
1 ) + 2 cost(B2)

≈
L−1∑
`=1

2`−1
(

5 nnz(A`) + nnz(A
(n)
` )
)

+ 2L−1cost(A−1
L ),

which yields (4.1) provided that we approximate cost(A−1
L ) by nnz(AL). This latter approx-

imation is justified here since the coarsest grid size remains below 30 in all the numerical
experiments.

Before going further, let us reuse the above reasoning for an auxiliary result. More
specifically, we consider again the Reitzinger-Schöberl multigrid preconditioner but this time
without the contributions of the “nodal” smoother on all levels. The corresponding complexity
parameter is then the same as the complexity of a standard aggregation-based K-cycle multigrid
preconditioner. Therefore, reusing the above reasoning, one obtains the following expression
for this parameter

CW =

L−1∑
`=1

2`−1 3 nnz(A`)

nnz(A)
+ 2L−1 cost(A−1

L )

nnz(A)
≈ 3

(
L∑

`=1

2`−1 nnz(A`)

nnz(A)

)
=: 3 C̃W ,
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where C̃W is the so-called weighted complexity of the aggregation-based multigrid precondi-
tioner.

Considering now the auxiliary space preconditioner, we note that its iteration matrix (2.1)
can be put in the form (A.1) by setting

C1 = C5 = GB(n)GT , C2 = CT
4 = L−1, and C3 =

∑
i∈{x,y,z}

ΠiBΠi
ΠT

i .

Further, we have cost(C1) = cost(C5) = cost(B(n)) (the nonzero entries of G are ±1),
cost(C2) = cost(C4) ≈ nnz(A)/2, and cost(C3) =

∑
i∈{x,y,z} 2 nnz(Πi) + cost(BΠi). The

identity (5.2) then follows by noting that B(n) and BΠi
, i = x, y, z, are standard aggregation-

based K-cycle multigrid preconditioners, for which the cost is roughly given, as discussed
above, by 3 times the number of nonzero entries in the preconditioned matrix times the
weighted complexity of the preconditioner.
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