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ASYNCHRONOUS WEIGHTED ADDITIVE SCHWARZ METHODS�

ANDREAS FROMMERy, HARTMUT SCHWANDTz, AND DANIEL B. SZYLDx

Abstract. A class of asynchronous Schwarz methods for the parallel solution of nonsingular linear systems of
the form Ax = f is investigated. This class includes, in particular, an asynchronous algebraic Schwarz method as
well as asynchronous multisplitting. Theorems are obtained demonstrating convergence for the cases when A�1

is nonnegative and when A is an H-matrix. The results shown are for both the situations with or without overlap
between the domains in which an underlying mesh is divided, if such a mesh exists. Numerical experiments on
systems of up to over ten million variables on up to 256 processors are presented. They illustrate the convergence
properties of the method, as well as the fact that when the domains are not all of the same size, the asynchronous
method can be up to 50% faster than the corresponding synchronous one.

Key words. Asynchronous methods, monotone matrices, H-matrices, linear system, parallel algorithms, multi-
splittings, additive Schwartz.
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1. Introduction. Consider the discretization of a linear second order elliptic boundary
value problem (b.v.p.) on a domain Ω, and a fixed number of open subdomains Ωl � Ω,
l = 1; : : : ; L, such that [Ωl = Ω. In general, one may assume that contiguous subdomains
have a nonempty intersection and, in fact, this intersection may be larger than just the boundary
of the subdomains, i.e., there may be some overlap between contiguous subdomains; see
Section 4 for specific examples of these subdomains.

The general idea of the Schwarz Alternating Procedure (SAP) is to solve the b.v.p.
restricted to each subdomain, using as boundary conditions the function values of the (ap-
proximate) solution of neighboring subdomains. This process is repeated and, under certain
conditions, the process converges to the solution of the b.v.p. on Ω. In the additive Schwarz
approach, which is the one considered in this paper, the approximate solution on Ω is obtained
by adding up the solutions on all subdomains. When there is overlap, some weights are
introduced to keep the resulting approximation consistent with the original b.v.p. These ideas
go back to Schwarz [21], and have been revived in the last decade as the basis for domain
decomposition methods, where these procedures are used as a preconditioner for the solution
of the discretized nonsingular linear system

Ax = f; A 2 Rn�n; f 2 Rn(1.1)

which are solved with a conjugate gradient or another Krylov-type method [6, 14, 15, 22].
Since there is no need for consistency when a preconditioner is used, one usually takes
unweighted sums on the overlaps in these situations.

Weighted additive Schwarz methods can be applied to linear systems of the form (1.1)
even if they are not obtained from discretizations of b.v.p., e.g., by considering linear systems
Amy

m = fm, analogous to solutions in a subdomain Ωm, and taking as an approximation
to the solution of (1.1) the vector x =

P
Emy

m , where the weighting matrices are such
that

P
Em = I. Such algebraic additive Schwarz algorithms have been studied, e.g., in
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[8, 18, 19, 20]. In the recent paper [11] a general framework for both weighted additive
Schwarz and multisplitting methods is developed; see, e.g., [5] for extensive bibliographical
references to multisplitting methods.

One of the advantages of additive Schwarz is that each subdomain can be handled by
a different processor of a parallel computer. Each processor solves a linear system, using
a right hand side which includes information collected from other processors. In two-stage
variants (also called inner/outeror inexact methods), an (inner) iterative method is used in each
processor, until a local convergence criterion is satisfied. The only synchronization point is the
wait for fresh information from the other processors. In this paper, we consider asynchronous
(one- or two-stage) weighted additive Schwarz methods, i.e., methods in which the linear
system in each processor is solved (or approximated) anew with whatever information is
available at the moment, without waiting for new information from all other processors.
Intuitively, if there is a large load imbalance, i.e., if some processors have substantially more
work to do per iteration than others, one can expect the asynchronous version to converge
faster than the synchronous one; see the discussion at the end of this section. This is confirmed
by a series of extensive experiments reported in Section 4.

In the rest of this introduction, we review the weighted additive Schwarz framework
introduced in [11] and formally define the asynchronous method studied in this paper. Some
preliminary results and more notations are introduced in Section 2, while our convergence
theorems are presented in Section 3.

DEFINITION 1.1. Let A 2 R
n�n be nonsingular. A collection of L splittings A =

Ml �Nl 2 R
n�n; l = 1; : : : ; L; and L2 nonnegative diagonal matrices El;m 2 R

n�n such

that
LX

m=1

El;m = I for l = 1; : : : ; L is called a weighted additive Schwarz-type splitting of

A. Given initial approximations x0;l; l = 1; : : : ; L, the corresponding weighted additive
Schwarz method computes iterates xk;l, l = 1; : : : ; L; by

xk+1;l =

LX
m=1

El;my
k;m; k = 0; 1; : : : ;

where

Mmy
k;m = Nmx

k;m + f; m = 1; : : : ; L:

As was shown in [11], this class of methods comprises the classical multisplittings
from [17] (El;m = Em for all l) as well as the algebraic additive Schwarz methods from
[8, 18, 19, 20] (where all entries of all El;m are either 0 or 1).

DEFINITION 1.2. Let A 2 Rn�n be nonsingular. Let a collection of L splittings A =

Ml � Nl; l = 1; : : : ; L be given. For all k 2 N0 := f0; 1; : : :g introduce a collection of L2

nonnegative diagonal matrices E(k)

l;m
such that

LX
m=1

E
(k)

l;m = I for all l and k. Moreover, for

k 2 N0 let Ik � f1; : : : ; Lg and (s1(k); : : : ; sL(k)) 2 N
L
0 be such that

(i) sl(k) � k for all l; k,
(ii) limk!1 sl(k) = 1 for l = 1; : : : ; L,

(iii) the sets fk j l 2 Ikg are unbounded for l = 1; : : : ; L.

Then, given initial approximations x0;l; l = 1; : : : ; L, the iterative method which computes
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iterates xk;l according to

xk+1;l =

8><
>:

xk;l if l =2 Ik
LX

m=1

E
(k)

l;my
sm(k);m if l 2 Ik;

(1.2)

where

ysm(k);m =M�1
m (Nmx

sm(k);m + f)(1.3)

is termed an asynchronous weighted additive Schwarz method (AWAS) for solving (1.1).
Note that in this definition the weighting matrices E(k)

l;m are allowed to depend on the
iteration level k. This is important in practice as the following discussion shows.

Weighted additive Schwarz methods provide a convenient framework to study methods
which rely on a (possibly overlapping) block distributionof variables. In a parallel computing
environment with L processors, each processor Pm is assigned to compute one intermediate
result yk;m per iteration and to accumulate the intermediate results from the other processors
to get ‘its own’ iterate xk+1;m. The fact that we can have a different set of weighting matrices
El;m; l = 1; : : : ; L on each processor allows us to keep different approximations to the
solution on the overlapping parts. Also, an (overlapping) block decomposition means that
most diagonal entries of each El;m are zero so that corresponding entries of yk;m need not
be computed. Typically, then, the work of each processor per iteration is basically given
by (approximately) solving a subsystem of the size of the respective block. If the time for
computing the solutions of the subsystems differs from processor to processor, we end up with
idle times during each iterative step if processors are forced to wait for the slowest to finish.
The description of the asynchronous iteration (1.2), together with conditions (i)–(iii), is the
standard description of the iterative process which arises when, instead of waiting, processors
are allowed to start the next iteration, taking ‘older’ iterates as input from those processors
which have not yet finished computing the current ones; see, e.g., [1, 4, 7, 10, 13]. If in such
a context, there are several (delayed) approximations available for the same component (due
to overlaps), it appears sensible to privilege the most recent one. Such a choice is made by
setting the corresponding diagonal entry of the appropriate weighting matrix E(k)

l;m to 1, thus
justifying the use of k-dependent weighting matrices in our asynchronous model.

2. Notation and auxiliary results. In Rn and Rn�n the relation � denotes the natural
componentwise partial ordering. In addition, for x; y 2 Rn we write x > y if xi > yi; i =

1; : : : ; n. A vector x � 0 (x > 0) is called nonnegative (positive). Similarly, A 2 Rn�n is
called nonnegative if A � O.

A nonsingular matrix A = (aij) 2 R
n�n is termed M -matrix, if aij � 0 for i 6= j and

A�1 � O. Alternatively, instead of A�1 � O we can equivalently require Au > 0 for some
vector u > 0; see, e.g., [3].

For a given matrix A = (aij) 2 R
n�n, its comparison matrix hAi = (�ij) 2 R

n�n is
defined by

�ij =

�
jaiij if i = j

�jaijj if i 6= j
:

A is called an H-matrix if hAi is an M - matrix.
H-matrices are always nonsingular; see, e.g., [3]. According to our previous remark on

M -matrices, A = (aij) being an H-matrix is characterized by the existence of a positive
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vector u such that hAiu > 0. Writing this componentwise yields

jaiijui >

nX
j=1;j 6=i

jaijjuj ; i = 1; : : : ; n :

Therefore, H-matrices may be viewed as generalized diagonally dominant matrices with
weights ui. Special families of H-matrices include strictly diagonally dominant matrices
(take u = (1; : : : ; 1)T ) as well as irreducibly diagonally dominant matrices or weakly Ω-
diagonally dominant matrices; see [9, 16, 23, 24].

The absolute value jAj of A = (aij) 2 R
n�n is again defined componentwise, i.e.,

jAj = (jaijj) 2 R
n�n.

Given u > 0; u 2 R
n, we define the weighted max-norm jj � jju in Rn by jjxjju =

max
1�i�n

jxi=uij.

LEMMA 2.1. Let A 2 R
n�n, u 2 Rn; u > 0, and � > 0 such that

jAju � �u :

Then, jjAjju � �. In particular, jjAxjju � �jjxjju for all x 2 Rn.
Proof. For x 2 Rn we have

(Ax)i =

nX
j=1

aijxj =

nX
j=1

aijuj

�
xj

uj

�
;

so that

j(Ax)ij �

nX
j=1

jaijjuj �

����xjuj
���� � jjxjju �

nX
j=1

jaijjuj

� jjxjju � � � ui ;

from which we get jjAxjju � �jjxjju :

A representation A = M � N; A;M;N 2 Rn�n is termed a splitting of A if M is
nonsingular. A splitting A = M � N is termed regular if M�1 � O and N � O, weak
regular if M�1 � O and M�1N � O, and H-compatible if hAi = hM i � jN j; see [13].
Note that regular implies weak regular.

3. Convergence theory. We show that the asynchronous method (1.2) converges in two
important cases, namely, when the coefficient matrix A is monotone, i.e., when A�1 � O,
and when A is an H-matrix and the splittings are chosen in the appropriate manner. These
results represent asynchronous counterparts of similar convergence theorems given in [11] for
one- and two-stage variants of synchronous algebraic additive Schwarz methods. Our main
result can be summarized as follows.

THEOREM 3.1. Let the conditions of Definition 1.2 be satisfied. Then, for any set of initial
vectors x0;l; l = 1; : : : ; L, the AWAS method (1.2) converges to x�, the solution of (1.1), in
the following two cases.
(a) A�1 � O and each splittingA = Mm � Nm is weak regular, m = 1; : : : ; L.
(b) A is an H-matrix and hAi � hMmi � jNmj, m = 1; : : : ; L.

This main result will follow as a special case of our more general Theorem 3.3 given
later. We point out that cases (a) and (b) have a wide range of applicability to discretizations
of elliptic boundary value and other problems [3, 23]. In particular, (a) includes the case of A
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being an M -matrix with the splittings corresponding to various classical (Jacobi- and Gauss-
Seidel type) point and block iterative methods. Similarly, (b) includes analogous situations
where A is an H-matrix. Yet another special case of (b) arises for H-compatible splittings;
see, e.g., [5, 11, 12], and the references given therein.

Let us collect together the iterates xk;l from (1.2) into a vector

x
k =

�
(xk;1)T ; : : : ; (xk;L)T

�T
2 RLn

and define

c
(k) =

0
@
 

LX
m=1

E
(k)

1;mM
�1
m f

!T

; : : : ;

 
LX

m=1

E
(k)

L;mM
�1
m f

!T
1
A

T

2 RLn :(3.1)

Let us use the notation [ ]l to denote the l-th block component in Rn of a vector in RLn, so
that, for example,

[c(k)]l =

LX
m=1

E
(k)

l;mM
�1
m f :

By setting Tm = M�1
m Nm; m = 1; : : : ; L; and

H
(k)

=

0
BB@

E
(k)

1;1 T1 � � � E
(k)

1;LTL
...

. . .
...

E
(k)

L;1T1 � � � E
(k)

L;LTL

1
CCA 2 R

Ln�Ln ;(3.2)

we can rewrite (1.2) as

[xk+1]l =

(
[xk]l if l =2 Ikh
H

(k)
([xs1(k)]T1 ; : : : ; [x

sL(k)]TL)
T
i
l
+ [c(k)]l if l 2 Ik :

(3.3)

Denote x� = (x�; : : : ; x�) 2 RLn, where x� = A�1f 2 Rn. It was shown in [11] that x� is
a fixed point of all equations x =H

(k)
x+ c(k), withH(k) of the form (3.2) and c(k) of the

form (3.1). The following theorem therefore is a special case of Theorem 3.2 in [13].
THEOREM 3.2. For l = 1; : : : ; L let jj � jjl be a norm on Rn, let a 2 R

L; a > 0 and
denote jj � jja the weighted max-norm onRLn given by

jjxjja := max
l=1;:::;L

�
1
al
jj[x]ljjl

�
:

Assume that there exists a constant � 2 [0; 1) such that for all k = 1; 2; : : :,

jjH(k)
xjja � � � jjxjja for all x 2 RLn :(3.4)

Then the asynchronous iteration (3.3) converges to x� for every starting vector x0.
The following new result generalizes the corresponding result for the synchronous case,

given as Theorem 4.3 in [11].
THEOREM 3.3. Assume that there exists u 2 Rn; u > 0 such that

jTmju � �u; � 2 [0; 1) for m = 1; : : : ; L:(3.5)
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Then limk!1x
k = x

� for the asynchronous iterates of (3.3).
Proof. Denote by u = (u; : : : ; u) 2 RLn. Then,

h
jH(k)ju

i
l
=

LX
m=1

jE
(k)

l;mTmju =

LX
m=1

E
(k)

l;mjTmju � �

LX
m=1

E
(k)

l;mu = �u ;

which results in jH(k)ju � �u : Thus, by Lemma 2.1 we get

jjH
(k)
xjju � �jjxjju for all x 2 RLn :(3.6)

But jjxjju = maxl=1;:::;L jj[x]ljju, so that (3.6) shows that the crucial assumption (3.4) of
Theorem 3.2 is met (with a = (1; : : : ; 1)T ).

To prove Theorem 3.1 all that remains to be shown is that in cases (a) and (b), the basic
assumption (3.5) in Theorem 3.3 is fulfilled. To that end denote e = (1; : : : ; 1)T the vector
with all unit entries in Rn. A straightforward computation now shows that we can take
u = A�1e for (a) and u = hAi�1e for (b); see also Corollaries 4.4 and 4.5 in [11].

Another consequence of Theorem 3.3 is a convergence result for two–stage variants.
In these variants, the solution of (1.3) is approximated using p(m) iterations of an (inner)
iterative method defined by the splittings Mm = Fm � Gm, m = 1; : : : ; L. It can be seen
that after p(m) iterations with an initial vector xsm(k);m, the result is the vector

ŷsm (k);m = (F�1
m Gm)

p(m)xsm(k);m +

p(m)�1X
�=0

(F�1
m Gm)

�F�1
m (Nmx

sm(k);m + f);

which can be written in the form (1.3) with the unique splittingA = M̂m � N̂m, induced by
the iteration matrix

T̂m = (F�1
m Gm)p(m) +

p(m)�1X
�=0

(F�1
m Gm)�F�1

m ;(3.7)

namely, M̂m = Mm

�
I � (F�1

m Gm)p(m)
��1

, and N̂m = A � M̂m, satisfying T̂m =

M̂�1
m N̂m; see, e.g., [2, 5, 11, 13].

Abusing the notation, we drop the hats in these last identities so that two-stage variants
of the AWAS can be described by the same equations (3.1)–(3.3). Thus Theorem 3.3 applies
as long as the hypotheses (3.5) are satisfied. This yields the following result.

THEOREM 3.4. Let the conditions of Definition 1.2 be satisfied. Then, for any set of initial
vectors x0;l; l = 1; : : : ; L, and for any choice of inner iterations p(m) � 1, m = 1; : : : ; L,
the two-stage AWAS method (1.2) with iteration matrices (3.7) converges to x�, the solution
of (1.1), in the following two cases.
(a) A�1 � O and each of the splittings A = Mm � Nm and Mm = Fm � Gm is weak
regular, with F�1

m Nm � 0, m = 1; : : : ; L.
(b) A is an H-matrix, hAi � hMmi � jNmj, and the splittings Mm = Fm � Gm are
H-compatible,m = 1; : : : ; L.

The proof follows again from verifying (3.5) with u = A�1e for (a) and u = hAi�1e for
(b). Details can be found in [11], Corollaries 5.2 and 5.3.

Finally, we can also consider non-stationary two-stage variants where p(m), the number
of inner iterations, also depends on k, the outer iteration level. We thus have p = p(m; k)

instead of p = p(m). In this case, each matrix T̂m in (3.7) depends on k. The convergence of
the asynchronous method can be proved under the same hypothesis and in the same manner as
in Theorem 3.4. We refer the reader to [13], where a similar result was given for asynchronous
block methods and multisplittings.
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4. Numerical results. Many sets of computational experiments have been carried out
on a distributed memory CRAY T3D (256 processors) and a shared memory CRAY J90 (16
processors) at the Konrad-Zuse-Zentrum für Informationstechnik (ZIB), Berlin. Details about
these computers and about our implementation of the asynchronous and synchronous codes
are given in an appendix.

The numerical experiments reported here are based on the following second order elliptic
boundary value problem

�L(u) := (a(x)ux)x + (b(y)uy)y + �u = g;

on a rectangle Ω = [0; 1] � [0; s] with Dirichlet boundary conditions. We consider the
coefficients

a(x) = 1 + 0:02x; b(y) = 1 + 0:002y :

The parameter � is chosen from the set f0:01; 0:1; 1:0g in order to test different degrees of
difficulty. We prescribe a solution

u�(x; y) = x+ y for 0 � x � 1; 0 � y � s;

and define the righthand side g := �L(u�), in order to being able to control the quality of the
computed iterates.

The five point discretization with central differences and a mesh size of h = 1=(p+ 1)
leads for s = (q + 1) � h to the q � q block tridiagonal coefficient matrix

A = (�Bj�1; Aj;�Bj)
q
j=1

of order n = pq with diagonal p� p blocks

Bj = b
�

2j+1
2 h

�
� I

and tridiagonal p� p blocks

Aj =

�
�a( 2i�1

2 h); a( 2i�1
2 h) + a( 2i+1

2 h) + b( 2j�1
2 h) + b( 2j+1

2 h) + �; �a( 2i+1
2 h)

�p
i=1

:

Thus, the discretized system is (1.1), where f contains the discretized values of g and the
contributionsof the boundaries. The matrixA thus constructed is strictlydiagonallydominant,
and due to the sign of its entries, it is an M -matrix, and thus we have A�1 � O. Since u�

is linear, the solution x� of the discretized system is made up from the discrete values of u�,
i.e., x�(i; j) = u�(ih; jh); 1 � i � p, 1 � j � q.

We introduce a simple domain decomposition of L overlapping rectangles

Ωi = [0; 1]� [li; ri]; i = 1; : : : ; L;

li = �i�1 � ov; ri = �i + 1 + ov;

l1 = 0; rL = q + 1;

for various choices of the �i which indicate the ‘raw’ subdomain borders. Every subdomain
is identified with one processor, i.e., the numberL of subdomains is identical to the number of
processors used. Each rectangle consists of ri � li � 1 grid lines and two additional artificial
boundaries li; ri; except for the first left and last right ‘true’ boundaries. Thus, the number of
grid lines in the overlap between two rectangles (subdomains) is 2ov and the number of lines
in each subdomain is as follows.
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� subdomain (processor) 1: �1 + ov � 1;
� subdomain (processor) i: �i � �i�1 + 2ov, 2 � i � L � 1;
� subdomain (processor) L: q � �L + ov � 1:

The diagonal blocks of A associated with each subdomain Ωl define the matrices Ml of
Definition 1.2. With these choices, the matrices Ml are also strictly diagonally dominant M -
matrices and the corresponding splittings A = Ml � Nl are regular splittings, l = 1; : : : ; L.
The weighting matrices E(k)

l;l have diagonal entries 1 in all positions corresponding to Ωl

and 0 otherwise, independently of k. For the neighboring subdomains Ωl�1 and Ωl+1 we
take the diagonal entries in E

(k)

l;l�1 and E
(k)

l;l+1 to be 1 on that part of the domain which does
not intersect with Ωl and 0 otherwise, again independently of k. The choice for the other
weighting matrices E(k)

l;m is irrelevant, since yl;m in Mly
l;m = Nlx

l;m + f only depends on
the entries in xl;m belonging to Ωl�1 [ Ωl [ Ωl+1.

q dom. dec. ita ca ta Wa its cs ts Ws Q

135 11-12-18 172-215 86.73 5.48 15.84 189 82.81 10.55 7.85 0.52
136 11-12-19 167-215 87.88 5.57 15.79 189 83.31 10.69 7.79 0.52
137 11-12-20 171-227 91.67 5.79 15.82 189 83.50 10.87 7.68 0.53
138 11-12-21 167-229 92.61 5.85 15.83 189 84.24 10.77 7.82 0.54
139 11-12-22 168-237 95.85 6.06 15.83 189 84.51 11.01 7.68 0.55
140 11-12-23 166-239 96.92 6.13 15.81 189 84.87 11.13 7.62 0.55
141 11-12-24 169-251 101.6 6.41 15.85 189 84.73 11.42 7.42 0.56
142 11-12-25 163-264 106.7 6.74 15.84 189 85.86 11.29 7.60 0.60
143 11-12-26 162-253 102.4 6.47 15.83 189 85.36 11.63 7.34 0.56
144 12-13-12 193-211 88.20 5.55 15.88 191 84.54 9.79 8.63 0.57
145 12-13-13 194-212 89.16 5.63 15.85 191 84.66 9.95 8.51 0.57

TABLE 4.1
Moderate load imbalance with larger last domain, CRAY J90, BJ, � = 0:1, L = 16, p = 2000, itin = 4,

ov = 1

We report results of experiments for two-stage synchronous and asynchronous weighted
additive Schwarz methods of the form (3.7). We use the Block Jacobi (BJ) method as the inner
iteration with each diagonal block corresponding to variables from one grid line. This implies
that the inner splittings are also regular splittings, and thus the matrices and splittings used
in the numerical results in this section satisfy the hypotheses of the convergence theorems in
Section 3.

In the tables, we denote by ita, its, the number of outer iterations in the asynchronous
and synchronous case, respectively, and by itin that of inner iterations. This means that p(m)

from Section 3 is always itin, independently of m, except in Table 4.6. The quantities ta, ts
are the computing times (in seconds) for asynchronous and synchronous runs, respectively.
In some examples we also note the respective CPU times ca and cs, i.e., the total accumulated
CPU time used by all processors. The quotient of asynchronous and synchronous times is
defined by Q = ta=ts. By Ws = cs=ts and Wa = ca=ta, we denote the work load, i.e., the
efficiency times the number of processors. We indicate the distribution of the grid lines a
processor receives, i.e., the number of grid lines of the respective subdomain, in the following
form, where for simplicity of the notation we assume L is even.

� domain 1 - (domain i - domain i+ 1 (i even, 2 � i < L � 1)) - domain L.
For example, for L = 8, 7-(10-8)-15 means 7, 10, 8, 10, 8, 10, 8, 15.

� domain 1 - domain i (2 � i � L � 1) - domain L.
For example, for L = 8, 7-3-5 means 7, 3, 3, 3, 3, 3, 3, 5.
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As a convergence criterion we use a modified relative difference of two iterates

max
1�i�p;1�j�q

( ��xk+1
i;j � xki;j

��
max

���xki;j�� ; 10�300
	
)
< 10�14:

All experiments were run with this stopping criterion and we always observed a relative error
with respect to the prescribed solution x� of the same order of magnitude, namely, below
10�14 on the CRAY T3D and below 10�13 on the CRAY J90.

The first set of results are reported in Table 4.1. Here, we test several rather small
values of q on L = 16 subdomains (processors). The first 15 subdomains are almost equally
sized while the last one is moderately larger. In this example, the asynchronous version is
significantly better even for almost equally sized domains (q = 144, 145). The mean work
load Ws in the synchronous case is limited to less than 9 processors while it is almost perfect
for the asynchronous version. These results clearly illustrate that asynchronous methods
promise to be useful in the presence of load imbalance.

L dom. dec. ita ca ta Wa its cs ts Ws Q

2 1027-5 287-16204 158.8 79.43 2.00 287 85.39 79.35 1.08 1.00
3 515-516-5 320-9145 136.5 45.64 2.99 297 89.61 42.12 2.13 1.08
4 344-345-6 334-6136 127.6 31.99 3.99 304 92.10 29.52 3.12 1.08
5 259-260-5 325-4884 122.3 24.70 4.95 300 93.90 22.59 4.16 1.09
6 207-208-9 326-3483 118.5 19.82 5.98 301 94.94 18.64 5.09 1.06
7 173-174-9 330-2861 115.6 16.56 6.98 304 95.61 15.98 5.98 1.04
8 149-150-7 327-2690 117.3 14.71 7.97 305 99.86 14.74 6.78 1.00
9 131-132-5 328-2630 120.6 13.43 8.98 302 103.7 13.69 7.57 0.98

10 116-117-12 332-1719 113.2 11.37 9.95 303 97.87 11.69 8.37 0.97
11 105-106-9 328-1742 114.2 10.42 10.96 302 100.7 11.27 8.94 0.92
12 96-97-6 329-1834 117.2 9.80 11.96 303 104.3 10.85 9.61 0.90
13 88-89-9 338-1584 123.2 9.51 12.96 307 108.7 10.70 10.16 0.89
14 81-82-15 340-1219 126.5 9.06 13.95 310 112.6 10.19 11.05 0.89
15 76-77-7 328-1546 132.1 8.91 14.82 309 115.6 10.02 11.54 0.89
16 71-72-9 331-1389 132.8 8.47 15.68 309 119.1 10.61 11.22 0.80

TABLE 4.2
Strong load imbalance with small last domain, CRAY J90, BJ, � = 0:01, q = 1026, p = 100, itin = 20, ov = 1

In the experiments reported in Table 4.2, we keep q = 1026 fixed, while we vary the
number of subdomains (processors) from L = 2 to L = 16. As indicated, the domain
decomposition consists of L� 1 almost equally sized domains while the last domain is rather
small. As the domain decompositions are rather arbitrary, the table should not be interpreted
in the sense of a speedup with respect to the number of processors. The comparison of the
columns for the accumulated CPU times ca and cs yields a measure of the amount of work load
in both cases. The columns Wa, Ws illustrate again the characteristic effect of asynchronous
methods: all processors are busy almost all the time while in the synchronous case, far less
processors can be used in the mean.

It can be appreciated in Table 4.2 that the asynchronous version becomes more advanta-
geous with an increasing number of processors and also a smaller quotient between the size of
the smallest and the largest domain, i.e., a better load balance, which still remains, however,
a strong imbalance. The following explanation has been confirmed by a large number of
other tests. The tests for small numbers of processors are characterized by an extreme load
imbalance (1:200 for L = 2 down to 1:20 for L = 7). Then, the last, small domain does
not receive frequently enough updates from its much larger neighbor. This effect is enforced
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by the number of 20 inner iterations which seems to be too large in this context. A large
number of inner iterations can inhibit a frequent exchange of new data which is necessary for
asynchronous processes to be efficient.

L dom. dec. ita ca ta Wa its cs ts Ws Q

1 65 11-11 1.93 1.92 1.00 11 2.56 1.72 1.49 1.12
2 34-35 24-24 5.15 2.57 2.00 17 3.94 1.87 2.11 1.37
3 24-25-24 22-23 5.83 1.95 2.99 16 4.39 1.42 3.10 1.37
4 18-19-21 22-23 6.82 1.72 3.95 16 5.17 1.30 3.97 1.32
5 15-16-18 22-25 8.23 1.67 4.94 16 5.90 1.22 4.83 1.37
6 13-14-16 22-23 8.92 1.51 5.92 16 6.61 1.18 5.59 1.28
7 12-13-12 23-24 10.28 1.51 6.80 16 7.25 1.08 6.74 1.40
8 10-11-17 21-27 12.30 1.56 7.89 17 8.79 1.34 6.56 1.16
9 10-11-10 23-24 12.39 1.42 8.74 17 9.28 1.12 8.26 1.27

10 9-10-12 23-26 14.06 1.44 9.77 17 10.16 1.15 8.84 1.25
11 8-9-16 21-28 16.31 1.51 10.91 17 11.11 1.31 8.48 1.15
12 8-9-11 23-25 16.41 1.39 11.79 17 11.74 1.15 10.17 1.21
13 7-8-18 21-30 20.16 1.58 12.78 18 13.65 1.57 8.69 1.00
14 7-8-14 21-27 19.49 1.42 13.77 18 14.30 1.39 10.31 1.02
15 7-8-10 25-28 21.72 1.47 14.74 18 15.06 1.35 11.16 1.09
16 6-7-21 20-31 25.20 1.64 15.27 21 19.11 2.43 7.85 0.67

TABLE 4.3
Small number of grid lines, more diagonally dominant problem, CRAY J90, BJ, � = 1:0, q = 63, p = 2000,

itin = 10, ov = 1

The set of experiments reported in Table 4.3 might appear as a counterexample to the
characteristic effects discussed for the Tables 4.1 and 4.2. Here, in almost all cases the
synchronous version is clearly better, except for L = 16. Again, the work load is almost
perfect for the asynchronous case and unsatisfactory in the synchronous case, depending on
the degree of load imbalance. The domain decomposition ranges from a satisfactory load
balance (12-13-12, 34-35) to an evident imbalance (8-9-16, 6-7-21) with a larger last domain.
Obviously, the advantage of the synchronous version is reduced by an increasing imbalance.
The explanation for this behavior is given again by the number of inner iterations itin = 10
which is by far too large with respect to the rather small number of outer iterations in this
example: there is not enough communication for the asynchronous case to be efficient.

For the experiments reported in Table 4.4, we modify two parameters with respect to
those in Table 4.3. We reduce the diagonal dominance from � = 1:0 to � = 0:1, observing
no significant effect (we omit the corresponding results). We further reduce itin to 4. From
the discussion of the previous tables we expect this modification to significantly increase the
efficiency of the asynchronous method and this is confirmed by Table 4.4. Table 4.5 contains
results for the same example as in Table 4.4, computed on a CRAY T3D. Now, absolute
times are much larger since the T3D processors are slower, but the qualitative behavior is
unchanged. In other experiments with itin = 4, varying values of p and q and various
domain decompositions we have witnessed similar results than those in Tables 4.4 and 4.5.
For example, the asynchronous method was about 20% faster than the synchronous method,
using L = 16 processors. For brevity, we do not provide the corresponding timings.

In the experiments reported in Table 4.6, we try to improve the load balance by chosing
the number of inner iterations depending on the subproblem size. Here, the even numbered
domains are roughly three times larger than the odd numbered domains. So, in order to
improve the load balance, the odd numbered processors perform three times as many inner
iterations (12 instead of 4 and 3 instead of 1) as the even numbered processors; cf. [5]. This
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L dom. dec. ita ca ta Wa its cs ts Ws Q

1 65 171-171 12.58 12.58 1.00 171 17.25 11.48 1.50 1.10
2 34-35 183-185 16.81 8.40 2.00 176 18.37 8.19 2.24 1.04
3 24-25-24 185-191 20.62 6.88 3.00 178 21.67 6.87 3.16 1.00
4 18-19-21 185-198 24.26 6.11 3.97 180 25.70 6.35 4.05 0.96
5 15-16-18 184-200 28.00 5.61 4.99 181 29.26 6.13 4.77 0.92
6 13-14-16 184-203 31.96 5.35 5.98 182 32.61 6.13 5.32 0.87
7 12-13-12 199-205 36.34 5.21 6.98 187 36.31 5.57 6.52 0.94
8 10-11-17 177-224 42.00 5.28 7.95 189 42.10 6.74 6.25 0.78
9 10-11-10 208-218 46.12 5.14 8.97 189 43.87 5.48 8.01 0.94

10 9-10-12 198-222 50.42 5.07 9.95 189 48.37 6.29 7.69 0.81
11 8-9-16 177-234 56.55 5.17 10.94 196 54.79 7.24 7.56 0.71
12 8-9-11 202-231 60.92 5.11 11.93 197 57.80 6.58 8.78 0.78
13 7-8-18 169-245 67.67 5.24 12.91 193 62.08 8.02 7.74 0.65
14 7-8-14 185-237 70.66 5.08 13.92 194 64.69 8.26 7.83 0.62
15 7-8-10 210-235 74.92 5.03 14.88 194 67.83 7.28 9.32 0.69
16 6-7-21 170-276 91.53 5.81 15.77 206 77.40 11.01 7.00 0.83

TABLE 4.4
Small number of grid lines, less diagonally dominant problem, less inner iterations, CRAY J90, BJ, � = 0:1,

q = 63, p = 2000, itin = 4, ov = 1

L dom. dec. ita ta its ts Q

2 34-35 165-170 73.90 160 71.53 1.03
4 18-19-21 159-189 41.38 163 42.23 0.98
8 10-11-17 137-262 28.26 170 34.92 0.81

16 6-7-21 136-656 35.37 186 47.30 0.75
TABLE 4.5

Small number of grid lines, less diagonally dominant problem, less inner iterations, CRAY T3D, BJ, � = 0:1,
q = 63, p = 2000, itin = 4, ov = 1

does not seem to have any measurable effect as compared to the case where itin is constant
across the processors (itin = 1 and itin = 4), neither for the synchronous nor for the
asynchronous algorithm. The processors on smaller domains perform almost the same total
number of iterations and, therefore, do not produce faster approximations.

itin ita ta its ts

1 602-1792 15.00 605 14.93
1-3 602- 849 14.99 605 14.89
2 309- 919 12.01 312 12.06
4 159- 472 10.61 162 10.77

4-12 159- 177 10.59 159 10.57
TABLE 4.6

Load balance by a different number of inner iterations, CRAY T3D, BJ, dom. dec. 67 � (196� 66)� 195,
q = 1024,L = 8, p = 50, � = 0:1, itin = 4, ov = 1

In Table 4.7 we illustrate how the algorithms scale with the number of processors. By
scaling we mean that when the problem size is increased in the same proportionas the number
of processors, then the work per processor (and iteration) remains relatively constant. The last
processor receives only 3 grid lines. The results almost perfectly scale (except for L = 2) in
both the synchronous and the asynchronous versions. In addition, the asynchronous version
is always faster. Similar results were obtained by chosing a large last domain.
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L q ita ta its ts Q

2 38 33-1251 10.22 34 11.33 0.90
4 124 26-1283 10.87 34 15.35 0.71
8 296 26-1287 10.88 34 15.35 0.71

16 640 26-1328 11.30 34 15.35 0.74
32 1328 26-1329 11.30 34 15.35 0.74
64 2704 26-1332 11.31 34 15.36 0.74

128 5656 26-1332 11.31 34 15.36 0.74
256 10960 26-1332 11.31 34 15.36 0.74

TABLE 4.7
Scaling, CRAY T3D, BJ, � = 1:0, dom. dec. 41-(52-42)-3 (39-3 for L = 2), p = 1000, itin = 4, ov = 1

While we have reported results on asynchronous weighted additive Schwarz, our theory is
also valid for asynchronous multisplitting methods. We have performed extensive experiments
with multisplitting methods using a weight of 1=2 in the variables that overlap, and have
found that the results are very similar for Schwarz and multisplitting in the synchronous
case, while asynchronous multisplitting is slower by a factor of sometimes more than two
than synchronous multisplitting. We also point out that the results for the multisplitting
method again scale quite well. Multisplitting with weighting seems to become very sensible
to asynchronous effects; cf. [5] where the weights are all 0 or 1. The weighting with possibly
very old iterates from larger neighboring subdomains seems to slow down considerably the
iteration process.

inner method itin ita ta its ts Q

Block Jacobi 24 59- 63 80.11 44 57.58 1.39
Point Jacobi 24 74- 79 75.49 65 66.83 1.13
Point Gauss-Seidel 24 57- 61 55.69 44 41.90 1.33
Block Jacobi 4 172-184 46.46 165 41.71 1.11
Point Jacobi 4 314-335 67.24 312 64.24 1.05
Point Gauss-Seidel 4 170-182 35.19 167 32.20 1.09

TABLE 4.8
Different inner iteration methods, CRAY T3D, q = 128, p = 2000,L = 8, � = 0:1, ov = 1, dom. dec. 19-20-19

We close our discussion by a short remark on the use of other inner iteration methods.
Table 4.8 contains a few results for block Jacobi, point Jacobi as well as point Gauss-Seidel
as the inner iteration. Here we have chosen an example with an almost ideal load balance,
an ideal situation for a synchronous iteration. The timings obtained are consistent with what
is expected in these cases. Block Jacobi needs fewer outer iterations than point Jacobi, but a
larger run time. Point Gauss-Seidel converges in a similar number of outer iterations as Block
Jacobi. In this case, since we have tridiagonal matrices, once the factorization is performed
for Block Jacobi, the arithmetic work for all three methods is comparable. The run time
of point Gauss-Seidel, however, is shortest, since this method is amenable to more efficient
pipelining and caching than Block Jacobi. Even in this case of almost perfect load balance,
the asynchronous versions are only slightly slower, in particular, when the number of inner
iterations is reduced appropriately (here from itin = 24 to itin = 4).

5. Conclusion. The numerical results presented illustrate that asynchronous versions
of weighted additive Schwarz methods can be advantageous to compensate the effect of
load imbalance in parallel computations. This is important for the frequent case of domain
decompositions with subdomains of different size. Unfortunately, it does not seem to be
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possible to indicate a criterion for an appropriate degree of load imbalance or a particular
distribution of subdomains for the asynchronous versions to be always faster. We can note,
however, that in all experiments of asynchronous weighted additive Schwarz methods we
carried out, even in the case of a good load balance, the quotient of wall clock timesQ = ta=ts
never left the interval between roughly 0.5 and 1.5 (larger for asynchronous multisplittings).
The amount of communication seem to have a more important (and more plausible) influence
on the computation speed. Reducing the number of inner iterations or changing from a block
method with a larger amount of work per step to a different inner iteration method, can lead
to a noticeable speedup by the use of an asynchronous method. Finally, we note that, at
least in our experiments, asynchronous multisplitting methods with weight 1/2 have not been
competitive.

Appendix: computing environment. We briefly describe the two parallel computers
used in our experiments, namely the CRAY T3D and the CRAY J90, with relevant information
related to our implementation.

On the T3D processors are allocated exclusively to a job, i.e., a job is executed in
dedicated mode (possible perturbations mostly result from actions involving the front-end
computer, i.e., from the operating system, the scheduling or interrupts caused, e.g., by I/O).

Communication is implemented with the CRAY specific (and therefore fast) shmem
message passing library. This library allows for direct and unsynchronized memory access
between different processors with specific put and get routines. Although, principally,
put is faster, we only used the get routine as the latter enables us to implement very easily
asynchronous communication: every processor executes a get to the memory of another
processor whenever it needs data.

The asynchronous version is fullyasynchronous, in particular with respect to convergence
control which does not need global synchronization: after every iteration, each processor tests
for its local convergence criterion and places the results in a logical variable. If the criterion
is satisfied, it starts to get the corresponding variable from other processors. As soon as it
encounters a variable whose value is false, it stops the convergence control and proceeds to
the next iteration.

In the synchronous version, a (synchronizing) global convergence control is carried out
after every iteration, using a global reduction function from the shmem library. In addition,
a barrier is necessary in every iteration in order to synchronize the correct exchange of the
updated artificial boundary values.

The CRAY J90 is a shared memory computer with 16 vector processors. Parallelization is
implemented with CRAY autotasking. All tests on the J90 have been carried out in dedicated
mode. In the synchronous version, the iteration loop contains three synchronization points,
in the asynchronous version none.

We conclude with a practical remark. Tests on the J90 in nondedicated – the usual
multiuser – mode suggest that the program usually gets more CPUs in the asynchronous cases
than in the synchronous ones. This is due to the fact that for each parallel region in the
program, the J90 dynamically creates a new process for each processor which competes with
any other process on the machine. When a parallel region like a loop is terminated, the CPU
is released. The next time, i.e., in the next step, the competition begins again. In other words,
at synchronization points, processors are deallocated immediately in most cases. This differs
from the T3D (or also machines like the PowerChallenge/Origin from SGI) where CPUs are
allocated to a job and not released before the end of the job. The drawback of this effect on
the J90 is that if a job does not get the number of CPUs it needs for a specific parallel region,
the whole job ‘starves’: on at least one subdomain the iteration is stopped and on the other
subdomains ‘wrong’ problems are solved over and over until a possible time limit.
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