Electronic Transactions on Numerical Analysis. ETNA
Volume5, pp. 48-61, June 1997. Kent State University
Copyright O 1997, Kent State University. etna@mcs.kent.edu
ISSN 1068-9613.

ASYNCHRONOUSWEIGHTED ADDITIVE SCHWARZ METHODS"

ANDREAS FROMMER!, HARTMUT SCHWANDT?, AND DANIEL B. SZYLD$

Abstract. A class of asynchronous Schwarz methods for the parallel solution of nonsingular linear systems of
theform Az = f isinvestigated. This classincludes, in particular, an asynchronousalgebraic Schwarz method as
well as asynchronous multisplitting. Theorems are obtained demonstrating convergence for the cases when A—1
is nonnegative and when A is an H-matrix. The results shown are for both the situations with or without overlap
between the domains in which an underlying mesh is divided, if such a mesh exists. Numerical experiments on
systems of up to over ten million variables on up to 256 processors are presented. They illustrate the convergence
properties of the method, as well as the fact that when the domains are not al of the same size, the asynchronous
method can be up to 50% faster than the corresponding synchronousone.
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1. Introduction. Consider the discretization of a linear second order dliptic boundary
value problem (b.v.p.) on adomain Q, and a fixed number of open subdomains Q; C Q,
=1 ..., L, suchtha UQ; = Q. Ingeneral, one may assume that contiguous subdomains
haveanonempty intersectionand, infact, thisintersection may belarger thanjust theboundary
of the subdomains, i.e., there may be some overlap between contiguous subdomains; see
Section 4 for specific examples of these subdomains.

The genera idea of the Schwarz Alternating Procedure (SAP) is to solve the b.v.p.
restricted to each subdomain, using as boundary conditions the function values of the (ap-
proximate) solution of neighboring subdomains. This process is repested and, under certain
conditions, the process converges to the solution of the b.v.p. on Q. In the additive Schwarz
approach, which isthe one considered in this paper, the approximate solutionon Q is obtained
by adding up the solutions on all subdomains. When there is overlap, some weights are
introduced to keep the resulting approximation consistent with the original b.v.p. These ideas
go back to Schwarz [21], and have been revived in the last decade as the basis for domain
decomposition methods, where these procedures are used as a preconditioner for the solution
of the discretized nonsingular linear system

(1.2) Ar=f AcR"™", fecR"

which are solved with a conjugate gradient or another Krylov-type method [6, 14, 15, 22].
Since there is no need for consistency when a preconditioner is used, one usualy takes
unwei ghted sums on the overlaps in these situations.

Weighted additive Schwarz methods can be applied to linear systems of the form (1.1)
even if they are not obtained from discretizations of b.v.p., eg., by consideringlinear systems
Amy™ = fm, andogous to solutionsin a subdomain Q,,, and taking as an approximation
to the solution of (1.1) the vector = = > E,,y™, where the weighting matrices are such
that " F,,, = I. Such agebraic additive Schwarz algorithms have been studied, eg., in
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[8, 18, 19, 20]. In the recent paper [11] a genera framework for both weighted additive
Schwarz and multisplitting methods is developed; see, e.g., [5] for extensive bibliographical
references to multisplitting methods.

One of the advantages of additive Schwarz is that each subdomain can be handled by
a different processor of a parallel computer. Each processor solves a linear system, using
a right hand side which includes information collected from other processors. In two-stage
variants (also called inner/outer or inexact methods), an (inner) iterativemethod isused ineach
processor, until alocal convergence criterionissatisfied. The only synchronization pointisthe
wait for fresh information from the other processors. Inthis paper, we consider asynchronous
(one- or two-stage) weighted additive Schwarz methods, i.e., methods in which the linear
system in each processor is solved (or approximated) anew with whatever information is
available at the moment, without waiting for new information from all other processors.
Intuitively, if thereisalargeload imbalance, i.e., if some processors have substantially more
work to do per iteration than others, one can expect the asynchronous version to converge
faster than the synchronousone; seethe discussion at theend of thissection. Thisisconfirmed
by a series of extensive experiments reported in Section 4.

In the rest of this introduction, we review the weighted additive Schwarz framework
introduced in [11] and formally define the asynchronous method studied in this paper. Some
preliminary results and more notations are introduced in Section 2, while our convergence
theorems are presented in Section 3.

DEFINITION 1.1. Let A € R™*" be nonsingular. A collection of I splittings A =

M;— Ny e R"™ [ =1,... L,and L? nonnegative diagonal matrices E; ,, € R"*" such
L
that > Ei, = Ifor i =1,..., L iscalled a weighted additive Schwarz-type splitting of
m=1
A. Given initial approximations %!, [ = 1,..., L, the corresponding weighted additive
Schwarz method computesiterates %/, 1 = 1,..., L, by

L

k+11 k

phThl — E El,my ,m’ k:O,l,...,
m=1

where
Mpy®™ = Npa®™ + f, m=1,... L.

As was shown in [11], this class of methods comprises the classical multisplittings
from [17] (&1, = E,, for @l {) as well as the agebraic additive Schwarz methods from
[8, 18, 19, 20] (whereall entriesof &l £} ,, are either O or 1).

DEFINITION 1.2. Let A € R™*" be nonsingular. Let a collection of I, splittings A =
M; — N;,l=1,...,Lbegiven. For all k € No := {0,1,.. .} introduce a collection of 1.2

L

k)
,m

such that ZE}Q = [ for all { and k. Moreover, for
m=1
keNoletl, C{1,...,L}and (s1(k),...,s(k)) € N& besuch that
(i) si(k) <k forall k,
(i) limy oo si(k) =00 fori=1,...,L,
(iii) thesets {k | { € I} } areunbounded for [ =1, ..., L.
Then, given initial approximations z%', [ = 1, ..., L, the iterative method which computes

nonnegative diagonal matrices E,(
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iterates 2! according to

l‘k’l if Qé Ik
E+10 _ L
(12) x = ZEl(yizysm(k),m ifl e Ik,
m=1
where
(13) ysm(k‘),m = MT;]-(meSm(k‘),m 4+ f)

istermed an asynchronous weighted additive Schwarz method (AWAS) for solving (1.1).

Note that in this definition the weighting matrices E,(’j,z are alowed to depend on the
iteration level k. Thisisimportant in practice as the following discussion shows.

Weighted additive Schwarz methods provide a convenient framework to study methods
which rely ona(possibly overlapping) block distributionof variables. Inaparallel computing
environment with . processors, each processor P,,, isassigned to compute one intermediate
result y*»™ per iteration and to accumul ate the intermediate results from the other processors
toget ‘itsown’ iterate z*+1™, Thefact that we can have adifferent set of weighting matrices
Eim,l =1 ...,L on each processor alows us to keep different approximations to the
solution on the overlapping parts. Also, an (overlapping) block decomposition means that
most diagonal entries of each £ ,,, are zero so that corresponding entries of y*™ need not
be computed. Typicaly, then, the work of each processor per iteration is basically given
by (approximately) solving a subsystem of the size of the respective block. If the time for
computing the solutions of the subsystems differsfrom processor to processor, weend up with
idletimes during each iterative step if processors are forced to wait for the dowest to finish.
The description of the asynchronous iteration (1.2), together with conditions (i)—(iii), is the
standard description of theiterative process which arises when, instead of waiting, processors
are dlowed to start the next iteration, taking ‘older’ iterates as input from those processors
which have not yet finished computing the current ones; see, eg., [1, 4, 7, 10, 13]. If in such
acontext, there are severa (delayed) approximations available for the same component (due
to overlaps), it appears sensible to privilege the most recent one. Such a choice is made by
setting the corresponding diagonal entry of the appropriate weighting matrix El(’;z to 1, thus
justifying the use of k-dependent weighting matrices in our asynchronous modei.

2. Notation and auxiliary results. InR™ and R"*"” therelation > denotes the natural
componentwise partial ordering. In addition, for =,y € R" wewritex > yif z; > y;, 1 =
1,...,n. Avector x > 0 (z > 0) iscaled nonnegative (positive). Similarly, A € R"*" is
called nonnegativeif A > O.

A nonsingular matrix A = (a;;) € R"*" istermed M-matrix, if a;; < Ofor i £ j and
A1 > 0. Alternatively, instead of A= > O we can equivalently require Au > 0 for some
vector v > 0; see, eg., [3].

For agiven matrix A = (a;;) € R™*", its comparison matrix (4) = (a;;) € R"*" is
defined by

e — |a”| IfZI_]
Y eyl ifi#

Aiscaled an H-matrixif (A} isan M- matrix.
H-matrices are dways nonsingular; see, e.g., [3]. According to our previous remark on
M-matrices, A = (a;;) being an H-matrix is characterized by the existence of a positive
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vector v such that (A}« > 0. Writing this componentwise yields

n

|a“'|ui> Z |ai]'|u]', i:l,...,n.
J=1l5#

Therefore, H-matrices may be viewed as generalized diagonally dominant matrices with
weights u;. Specia families of H-matrices include strictly diagonally dominant matrices
(take v = (1,...,1)") as well as irreducibly diagonally dominant matrices or weskly Q-
diagonally dominant matrices; see [9, 16, 23, 24].

The absolute value |A] of A = (a;;) € R"*" is again defined componentwise, i.e,
Al = (Jai;|) € R™.

Givenu > 0, u € R", we define the weighted max-norm || - ||, in R" by ||z|], =

e o/

LEMMA 2.1. Let A € R™*", uw € R", u > 0,and ¢ > 0 such that
|Alu < bu .

Then, ||A||, < 6. Inparticular, ||Az||, < 6]|z||, for al x € R"™.
Proof. For z € R" we have

(Az); =) ajyzj =) aju (%) )

j=1 ji=1
so that
n T n
(Ax)il < laiju; - u—] <l Y laij|u;
j=1 J j=1
< lelfe -0 - ui
fromwhich we get || Axz|], < 0||#]]w - O

A representation A = M — N, A, M, N € R**" istermed a splitting of A4 if M is
nonsingular. A splitting A = M — N istermed regular if M~1 > O and N > O, weak
regular if M~ > O and M~N > O, and H-compatibleif (4) = (M) — |N|; see [13].
Note that regular impliesweak regular.

3. Convergencetheory. We show that the asynchronous method (1.2) convergesin two
important cases, namely, when the coefficient matrix A is monotone, i.e., when A=1 > O,
and when A isan H-matrix and the splittings are chosen in the appropriate manner. These
results represent asynchronous counterparts of similar convergence theoremsgivenin[11] for
one- and two-stage variants of synchronous agebraic additive Schwarz methods. Our main
result can be summarized as follows.

THEOREM 3.1. Let the conditionsof Definition 1.2 be satisfied. Then, for any set of initial
vectors %! 1 = 1,..., L, the AWAS method (1.2) converges to z*, the solution of (1.1), in
the following two cases.

(@ A~! > O and each splitting A = M,, — N,, isweakregular, m = 1,..., L.
(b) Aisan H-matrixand (4) < (Mp,) — |[Np|,m=1,..., L.

This main result will follow as a specia case of our more general Theorem 3.3 given
later. We point out that cases (a) and (b) have awide range of applicability to discretizations
of dliptic boundary value and other problems[3, 23]. In particular, (a) includesthe case of A
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being an M -matrix with the splittings corresponding to various classical (Jacobi- and Gauss-
Seidel type) point and block iterative methods. Similarly, (b) includes anal ogous situations
where A isan H-matrix. Yet another specia case of (b) arises for H -compatible splittings;
see, e.g., [5, 11, 12], and the references given therein.

Let us collect together the iterates 2>/ from (1.2) into a vector

xF = ((mk’l)T, e (xk’L)T)T c rin
and define
L T L T
BY = ((Z ng“nanglf) (Z Egﬁ;M,;lf) ) R
m=1 m=1

Let us use the notation [ ]; to denote the I-th block component in 2™ of a vector in X", so
that, for example,

L
[ =3 B Mt
m=1

By setting 7}, = M;*N,,, m=1,...,L,and

e - ERTL
Efn o BT

we can rewrite (1.2) as

- [2"]; ifl¢ I,
(3.3) [="7 0 = [H(k)([wsl(k)]f, ce [azsL(k)]%)T + ) ifler.
1

Denotez* = (*,...,2*) € R*™ wherex* = A~1f € R". Itwasshownin[11] that «* is
afixed point of all equations@ = H™ & + ¢*) with H*) of theform (3.2) and ¢(*) of the
form (3.1). The following theorem thereforeis a specia case of Theorem 3.2in [13].

THEOREM 3.2. For [ =1,..., L let||-||; beanormon®", let « € B* a > 0and
denote || - || the weighted max-normon 2" given by

1
a = Max — .
lelo = max, { el }

Assume that there exists a constant ¢ € [0, 1) suchthatfor all k = 1,2, ..,
(3.4) |H® ||, < 0 ||x||, for all @ € RF™ .

Then the asynchronous iteration (3.3) converges to «* for every starting vector «°.

The following new result generalizes the corresponding result for the synchronous case,
given as Theorem 4.3in[11].

THEOREM 3.3. Assumethat there existsu € R”, u > 0 such that

(3.5) [T |u < fu, 6 €[0,1) form=1,..., L.
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Thenlim;,_ ., % = x* for the asynchronous iterates of (3.3).
Proof. Denote by w = (u, . ..,u) € RX™. Then,

L L L
[|H<k>|u]l =S B T u= Y B Tlu< 6> EX)u=6u,
m=1 m=1 m=1

which resultsin |H(k)|u < fu . Thus, by Lemma 2.1 we get
(3.6) ||H® 2||y < 0||@|| foralz e RE™.

But ||#||w = max;=1_. ¢ ||[®]i||«, SO that (3.6) shows that the crucial assumption (3.4) of
Theorem 3.2ismet (witha = (1, ..., 1)T). 0

To prove Theorem 3.1 all that remains to be shown isthat in cases (a) and (b), the basic
assumption (3.5) in Theorem 3.3 isfulfilled. To that end denotee = (1,..., 1) the vector
with al unit entries in R™. A straightforward computation now shows that we can take
u= A~1efor (a) and u = (A)~ e for (b); see dso Corollaries4.4 and 4.5in[11].

Another consequence of Theorem 3.3 is a convergence result for two—stage variants.
In these variants, the solution of (1.3) is approximated using p(m) iterations of an (inner)
iterative method defined by the splittings M,,, = Fi, — G, m = 1,..., L. It can be seen
that after p(m) iterationswith an initial vector x*~(*)™  the result is the vector

p(m)-1
gsm(k),m — (Fn;le)p(m)xsm(k),m + Z (Fn;le)VFn;l(le‘Sm(k)’m +f),
v=0

which can be written in the form (1.3) with the unique splitting A = M,, — N,y,, induced by
theiteration matrix

p(m)-1
(3.7) T = (F 'GP 4 Y (B Go) F,
v=0

namely, M,, = M,, (I — (F,,;le)P(T”))_l, and N,, = A — M,,, satisfying 7,, =
M7IN,,; see eg., [2, 5,11, 13].

Abusing the notation, we drop the hats in these last identities so that two-stage variants
of the AWAS can be described by the same equations (3.1)—(3.3). Thus Theorem 3.3 applies
as long as the hypotheses (3.5) are satisfied. This yieldsthe following result.

THEOREM 3.4. Let the conditionsof Definition 1.2 be satisfied. Then, for any set of initial
vectors 2% [ = 1,..., L, and for any choice of inner iterationsp(m) > 1, m =1,..., L,
the two-stage AWAS method (1.2) with iteration matrices (3.7) converges to z*, the solution
of (1.1), in the following two cases.

(@ A~! > O and each of the splittings A = M,, — N,, and M,, = F,, — G, is weak
regular, with F-1N,, >0,m =1,... L.

(b) A isan H-matrix, (4) < (M) — |Nn|, and the splittings M,,, = F,, — G,,, are
H-compatible, m =1,..., L.

The proof follows again from verifying (3.5) withu = A~1e for (a) and u = (A)~ e for
(b). Details can befound in[11], Corollaries5.2 and 5.3.

Finally, we can aso consider non-stationary two-stage variants where p(m), the number
of inner iterations, also depends on %, the outer iteration level. We thus have p = p(m, k)
instead of p = p(m). Inthiscase, each matrix 7, in (3.7) depends on k. The convergence of
the asynchronous method can be proved under the same hypothesisand in the same manner as
inTheorem 3.4. Werefer thereader to[13], where asimilar result was given for asynchronous
block methods and multisplittings.
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4. Numerical results. Many sets of computational experiments have been carried out
on adistributed memory CRAY T3D (256 processors) and a shared memory CRAY J90 (16
processors) at the Konrad-Zuse-Zentrum fur Informationstechnik (ZIB), Berlin. Detailsabout
these computers and about our implementation of the asynchronous and synchronous codes
are given in an appendix.

The numerical experimentsreported here are based on thefollowing second order lliptic
boundary value problem

—L(u) = (a(x)ug)e + (b(y)uy )y + u =g,

on a rectangle Q = [0, 1] x [0, s] with Dirichlet boundary conditions. We consider the
coefficients

a(z) =1+ 0.02z, b(y) =1+ 0.002y.

The parameter « is chosen from the set {0.01,0.1, 1.0} in order to test different degrees of
difficulty. We prescribe a solution

u(z,y)=ax+y for0<z <1 0<y<s,

and definetherighthand side g := — L(u*), in order to being able to control the quality of the
computed iterates.

The five point discretization with central differencesand amesh sizeof h = 1/(p+ 1)
leadsfors = (¢ + 1) - h tothe¢ x ¢ block tridiagonal coefficient matrix

A= (=Bj-1,4;,-Bj)i_,
of order n = pq with diagona p x p blocks
B =b (ZJT“h) 1

and tridiagona p x p blocks
Ay = (~a(Z7h), a(Z52h) + a(ZE00) + b(EgAh) + b(EEM) + o, —a(2g2n)
Thus, the discretized system is (1.1), where f contains the discretized values of ¢ and the
contributionsof theboundaries. Thematrix A thusconstructedisstrictly diagonally dominant,
and due to the sign of its entries, it is an A/ -matrix, and thus we have A= > O. Since u*
islinear, the solution «* of the discretized system is made up from the discrete values of u*,
i.e,z*(i,j) = u*(ih,jh), 1<i<p,1<j<q.
We introduce a simple domain decomposition of I overlapping rectangles

Qi = [0,1] X [li,ri], 1= l,...,L,

li = fBi—1—ov, ri = B; + 1+ ov,

l1=0rp=q+1
for various choices of the 5; which indicate the ‘raw’ subdomain borders. Every subdomain
isidentified with one processor, i.e., the number 1. of subdomainsisidentical tothe number of
processors used. Each rectangle consistsof »; — I; — 1 grid lines and two additiond artificia
boundaries!;, r;, except for thefirst |eft and last right ‘true’ boundaries. Thus, the number of

grid linesin the overlap between two rectangles (subdomains) is 20v and the number of lines
in each subdomain is as follows.
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¢ subdomain (processor) 1: 31 +ov — 1;
e subdomain (processor) i1 §; — Bi—1+ 20v, 2<i< L -1,
e subdomain (processor) L: ¢ — fBr 4+ ov — 1.

The diagonal blocks of A associated with each subdomain Q; define the matrices M; of
Definition 1.2. With these choices, the matrices AM; are aso strictly diagonaly dominant A -
meatrices and the corresponding splittings A = M; — N; areregular splittings,{ = 1,..., L.
The weighting matrices E,(’? have diagonal entries 1 in al positions corresponding to Q;
and 0 otherwise, independently of k. For the neighboring subdomains Q;_; and Qi1 we

take the diagona entriesin E,(’ﬁl and E,(’L)rl to be 1 on that part of the domain which does
not intersect with Q; and O otherwise, again independently of k. The choice for the other
weighting matrices El(’;z isirrdevant, since y>™ in M;y"™ = N;z'™ + f only depends on
theentriesin /™ belongingto Q;_1 U Q; U Qi41.

q dom. dec. 1t Ca tq Wa 1ts Cs ts W Q
135 11-12-18 | 172-215 86.73 548 1584 | 189 8281 1055 7.85 | 052
136 11-12-19 | 167-215 8788 557 1579 | 189 8331 1069 7.79 | 0.52
137 11-12-20 | 171-227 9167 579 1582 | 189 8350 1087 7.68 | 0.53
138 11-12-21 | 167-229 9261 585 1583 | 189 8424 1077 7.82 | 054
139 11-12-22 | 168-237 9585 6.06 1583 | 189 8451 1101 7.68 | 0.55
140 11-12-23 | 166-239 9692 6.13 1581 | 189 84.87 1113 7.62 | 0.55
141 11-12-24 | 169-251 1016 641 1585 | 189 84.73 1142 7.42 | 0.56
142 11-12-25 | 163-264 106.7 6.74 1584 | 189 8586 1129 7.60 | 0.60
143 11-12-26 | 162-253 1024 647 1583 | 189 8536 1163 7.34 | 0.56
144 12-13-12 | 193-211 8820 555 1588 | 191 8454 979 863 | 057

145 12-13-13 | 194-212 89.16 563 1585 | 191 84.66 995 851 | 057
TABLE 4.1
Moderate load imbalance with larger last domain, CRAY J90, BJ, « = 0.1, . = 16, p = 2000, :tin = 4,
ov=1

We report results of experiments for two-stage synchronous and asynchronous wei ghted
additive Schwarz methods of theform (3.7). WeusetheBlock Jacobi (BJ) method as theinner
iteration with each diagonal block corresponding to variablesfrom onegrid line. Thisimplies
that the inner splittings are also regular splittings, and thus the matrices and splittings used
in the numerical resultsin this section satisfy the hypotheses of the convergence theoremsin
Section 3.

In the tables, we denote by it,, it;, the number of outer iterations in the asynchronous
and synchronouscase, respectively, and by ¢tin that of inner iterations. Thismeansthat p(m)
from Section 3 isaways itin, independently of m, except in Table 4.6. The quantitiest,, ¢
are the computing times (in seconds) for asynchronous and synchronous runs, respectively.
In some exampl es we a so notethe respective CPU times ¢, and ¢, i.e., thetota accumulated
CPU time used by dl processors. The quotient of asynchronous and synchronous times is
defined by @ = t,/t;. By W, = ¢, /t; and W, = ¢,/t,, we denote thework load, i.e, the
efficiency times the number of processors. We indicate the distribution of the grid lines a
processor receives, i.e., the number of gridlinesof the respective subdomain, inthefollowing
form, where for simplicity of the notation we assume 7. iseven.
e domainl- (domain:-domain:—+ 1(ieven, 2 < i < L — 1)) - domain L.
For example, for . = 8, 7-(10-8)-15means 7, 10, 8, 10, 8, 10, 8, 15.
e domainl-domaini (2<i <L —1)-domain L.
For example, for . = 8, 7-3-5means 7, 3, 3, 3, 3, 3, 3, 5.
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Asa convergence criterion we use a modified relative difference of two iterates

E+1

max |x2] xf]| <104
1<i<p1<i<q | max {|zf; |, 10-300} '

All experiments were run with thisstopping criterion and we always observed arel ative error
with respect to the prescribed solution z* of the same order of magnitude, namely, below
10~ on the CRAY T3D and below 10~3 on the CRAY J90.

The first set of results are reported in Table 4.1. Here, we test several rather small
values of ¢ on I. = 16 subdomains (processors). The first 15 subdomains are amost equally
sized while the last one is moderately larger. In this example, the asynchronous version is
significantly better even for dmost equally sized domains (¢ = 144, 145). The mean work
load W inthe synchronous case is limited to less than 9 processors whileit is almost perfect
for the asynchronous version. These results clearly illustrate that asynchronous methods
promiseto be useful in the presence of load imbalance.

dom. dec. it Ca ta Wa it Ce te We Q

1027-5 287-16204 1588 7943 200 | 287 8539 7935 1.08 | 1.00
515-516-5 | 320-9145 1365 4564 299 | 297 8961 4212 213 | 1.08
344-345-6 | 334-6136 1276 3199 399 | 304 9210 2952 312 | 1.08
259-260-5 | 325-4884 1223 2470 495|300 9390 2259 416 | 1.09
207-208-9 | 326-3483 1185 1982 598 | 301 9494 1864 509 | 1.06
173-174-9 | 330-2861 1156 1656 6.98 | 304 9561 1598 598 | 1.04
149-150-7 | 327-2690 1173 1471 797 | 305 99.86 14.74 6.78 | 1.00
131-132-5 | 328-2630 120.6 1343 898 | 302 103.7 1369 757 | 0.98

116-117-12 | 332-1719 1132 1137 995|303 9787 1169 837 | 097
11  105-106-9 | 328-1742 1142 1042 1096 | 302 100.7 1127 894 | 0.92
12 96-97-6 329-1834 1172 980 1196 | 303 1043 1085 9.61 | 0.90
13 88-89-9 338-1584 1232 951 1296 | 307 1087 10.70 10.16 | 0.89
14 81-82-15 340-1219 1265 9.06 1395 | 310 1126 1019 11.05| 0.89
15 76-77-7 328-1546 1321 891 1482 | 309 1156  10.02 1154 | 0.89

16 71-72-9 331-1389 1328 847 1568 | 309 119.1 1061 11.22 | 0.80
TABLE 4.2
Srong load imbalance with small last domain, CRAY J90, BJ, o = 0.01, ¢ = 1026, p = 100, itin = 20,0v = 1

= t~
QO OWoO~NOOUP_,WN

In the experiments reported in Table 4.2, we keep ¢ = 1026 fixed, while we vary the
number of subdomains (processors) from . = 2 to I = 16. As indicated, the domain
decomposition consistsof . — 1 aimost equally sized domains whilethelast domainisrather
small. Asthe domain decompositionsare rather arbitrary, the table should not be interpreted
in the sense of a speedup with respect to the number of processors. The comparison of the
columnsfor theaccumulated CPU timese,, and ¢, yieldsameasure of theamount of work |oad
in both cases. The columns IV, W illustrate again the characteristic effect of asynchronous
methods: all processors are busy almost al the time while in the synchronous case, far less
processors can be used in the mean.

It can be appreciated in Table 4.2 that the asynchronous version becomes more advanta-
geouswith an increasing number of processors and aso asmaller quotient between the size of
the smallest and the largest domain, i.e., a better load balance, which still remains, however,
a strong imbalance. The following explanation has been confirmed by a large number of
other tests. The tests for small numbers of processors are characterized by an extreme load
imbalance (1:200 for . = 2 down to 1:20 for /. = 7). Then, the last, small domain does
not receive frequently enough updates from its much larger neighbor. This effect is enforced



ETNA

Kent State University
etna@mcs.kent.edu

Asynchronous Weighted Additive Schwarz Methods 57

by the number of 20 inner iterations which seems to be too large in this context. A large
number of inner iterations can inhibit afrequent exchange of new datawhich isnecessary for
asynchronous processes to be efficient.

L dom. dec. 1t Ca tq Wa 1ts Cs ts W Q
1 65 11-11 193 192 100 | 11 256 172 149 | 112
2 34-35 24-24 515 257 200 | 17 394 187 211 | 137
3 242524 | 22-23 583 195 299 | 16 439 142 310 | 137
4 181921 | 22-23 682 172 395 | 16 517 130 397 | 132
5 15-16-18 | 22-25 823 167 494 | 16 590 122 483 | 137
6 13-14-16 | 22-23 892 151 592 | 16 661 118 559 | 1.28
7 12-13-12 | 23-24 1028 151 6.80 | 16 725 108 674 | 140
8 10-11-17 | 21-27 1230 156 789 | 17 879 134 656 | 116
9 10-11-10 | 23-24 1239 142 874 | 17 928 112 826 | 127

10 9-10-12 | 2326 1406 144 977 | 17 1016 115 884 | 125

11 8-9-16 21-28 1631 151 1091 | 17 1111 131 848 | 115

12 8-9-11 2325 1641 139 1179 | 17 1174 115 1017 | 121

13 7-8-18 21-30 2016 158 1278 | 18 1365 157 869 | 1.00

14 7-8-14 21-27 1949 142 1377 | 18 1430 139 1031 | 102

15 7-8-10 2528 2172 147 1474 | 18 1506 135 11.16 | 1.09

16 6-7-21 20-31 2520 164 1527 | 21 1911 243 7.85 | 067

TABLE 4.3
Small number of grid lines, more diagonally dominant problem, CRAY J90, BJ, o = 1.0,¢ = 63, p = 2000,
itin = 10,0v = 1

The set of experiments reported in Table 4.3 might appear as a counterexample to the
characteristic effects discussed for the Tables 4.1 and 4.2. Here, in aimost al cases the
synchronous version is clearly better, except for L = 16. Again, the work load is amost
perfect for the asynchronous case and unsatisfactory in the synchronous case, depending on
the degree of load imbalance. The domain decomposition ranges from a satisfactory load
balance (12-13-12, 34-35) to an evident imbal ance (8-9-16, 6-7-21) with alarger last domain.
Obvioudly, the advantage of the synchronous version is reduced by an increasing imbalance.
The explanation for this behavior is given again by the number of inner iterationsitin = 10
which is by far too large with respect to the rather small nhumber of outer iterationsin this
example: thereisnot enough communication for the asynchronous case to be efficient.

For the experiments reported in Table 4.4, we modify two parameters with respect to
those in Table 4.3. We reduce the diagonal dominance from o« = 1.0to « = 0.1, observing
no significant effect (we omit the corresponding results). We further reduce itin to 4. From
the discussion of the previous tables we expect this modification to significantly increase the
efficiency of the asynchronous method and thisis confirmed by Table 4.4. Table 4.5 contains
results for the same example as in Table 4.4, computed on a CRAY T3D. Now, absolute
times are much larger since the T3D processors are slower, but the qualitative behavior is
unchanged. In other experiments with itin = 4, varying values of p and ¢ and various
domain decompositions we have withessed similar results than those in Tables 4.4 and 4.5.
For exampl e, the asynchronous method was about 20% faster than the synchronous method,
using L = 16 processors. For brevity, we do not provide the corresponding timings.

In the experiments reported in Table 4.6, we try to improve the load balance by chosing
the number of inner iterations depending on the subproblem size. Here, the even numbered
domains are roughly three times larger than the odd numbered domains. So, in order to
improve the load balance, the odd numbered processors perform three times as many inner
iterations (12 instead of 4 and 3 instead of 1) as the even numbered processors; cf. [5]. This
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L dom. dec. 1t Ca tq Wa 1ts Cs ts W Q
1 65 171-171 1258 1258 100 | 171 1725 1148 150 | 1.10
2 34-35 183-185 16.81 8.40 200 | 176 18.37 819 224 | 104
3  24-25-24 | 185-191 20.62 6.88 3.00 | 178 21.67 6.87 3.16 | 1.00
4 18-19-21 | 185-198 24.26 6.11 397 | 180 2570 6.35 4.05 | 0.96
5 15-16-18 | 184-200 28.00 5.61 499 | 181 29.26 6.13 4.77 | 0.92
6 13-14-16 | 184-203 31.96 5.35 598 | 182 3261 6.13 532 | 087
7 12-13-12 | 199-205 36.34 5.21 6.98 | 187 36.31 557 652 | 0.94
8 10-11-17 | 177-224 42.00 5.28 795 | 189 4210 6.74 6.25 | 0.78
9 10-11-10 | 208-218 46.12 5.14 8.97 | 189 4387 548 8.01 | 0.94

10 9-10-12 | 198-222 5042 507 995|189 4837 629 7.69 | 081
11 8-9-16 177-234 5655 517 1094 | 196 5479 724 756 | 0.71
12 8-9-11 202-231 6092 511 1193|197 5780 658 878 | 0.78
13 7-8-18 169-245 67.67 524 1291 | 193 6208 802 7.74| 0.65
14 7-8-14 185-237 70.66 508 1392 | 194 6469 826 7.83 | 0.62
15 7-8-10 210-235 7492 503 1488 | 194 6783 728 932 | 0.69

16 6-7-21 170-276 91.53 581 1577 | 206 7740 1101 7.00 | 0.83
TABLE 4.4
Small number of grid lines, less diagonally dominant problem, lessinner iterations, CRAY J90, BJ, o = 0.1,
q = 63,p = 2000, ttin = 4,0v =1

L dom.dec. | ita ta | ite t. | Q
2 34-35 165170 7390 | 160 7153 | 1.03
4 18-19-21 | 159-189 4138 | 163 4223 | 0.98
8
6

10-11-17 | 137-262 28.26 | 170 34.92 | 0.81
6-7-21 136-656 35.37 | 186 47.30 | 0.75
TABLE 4.5
Small number of grid lines, less diagonally dominant problem, less inner iterations, CRAY T3D, BJ, o = 0.1,
q = 63,p = 2000, ttin = 4,0v =1

1

does not seem to have any measurable effect as compared to the case where itin is constant
across the processors (itin = 1 and itin = 4), neither for the synchronous nor for the
asynchronous algorithm. The processors on smaller domains perform almost the same total
number of iterations and, therefore, do not produce faster approximations.

itin | ita ta | 1t ts
1 602-1792 15.00 | 605 14.93
1-3 | 602- 849 1499 | 605 14.89
2 309- 919 1201 | 312 12.06
4 159- 472 1061 | 162 10.77
4-12 | 159- 177 1059 | 159 10.57
TABLE 4.6
Load balance by a different number of inner iterations, CRAY T3D, BJ, dom. dec. 67 — (196 — 66) — 195,
qg=1024,L =8,p =50, = 0.1,5tin = 4,0v =1

In Table 4.7 we illustrate how the algorithms scale with the number of processors. By
scaling we mean that when the problem sizeisincreased in the same proportionas the number
of processors, then thework per processor (and iteration) remainsrelatively constant. The last
processor receives only 3 grid lines. The results amost perfectly scale (except for L = 2) in
both the synchronous and the asynchronous versions. In addition, the asynchronous version
isalways faster. Similar results were obtained by chosing alarge last domain.
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L q 1, ta 1t ts Q
2 38 | 33-1251 10.22 | 34 11.33 | 0.90
4 124 | 26-1283 1087 | 34 1535 | 0.71
8 296 | 26-1287 1088 | 34 1535 | 0.71
16 640 | 26-1328 11.30 | 34 1535 | 0.74
32 1328 | 26-1329 1130 | 34 1535 | 0.74
64 2704 | 26-1332 1131 | 34 1536 | 0.74
128 5656 | 26-1332 11.31 | 34 1536 | 0.74
256 10960 | 26-1332 1131 | 34 1536 | 0.74

TABLE 4.7
Scaling, CRAY T3D, BJ, o = 1.0, dom. dec. 41-(52-42)-3 (39-3for L = 2),p = 1000, itin = 4,0v = 1

Whilewe havereported results on asynchronousweighted additive Schwarz, our theory is
asovalidfor asynchronousmultisplitting methods. Wehave performed extensiveexperiments
with multisplitting methods using a weight of 1/2 in the variables that overlap, and have
found that the results are very similar for Schwarz and multisplitting in the synchronous
case, while asynchronous multisplitting is slower by a factor of sometimes more than two
than synchronous multisplitting. We also point out that the results for the multisplitting
method again scale quite well. Multisplitting with weighting seems to become very sensible
to asynchronous effects; cf. [5] wherethe weightsare al 0 or 1. The weighting with possibly
very old iterates from larger neighboring subdomains seems to slow down considerably the
iteration process.

inner method win it ta it te Q
Block Jacobi 24 59- 63 8011 | 44 5758 | 1.39
Point Jacobi 24 74-79 7549 | 65 66.83 | 1.13

Point Gauss-Seidel 24 57- 61 5569 | 44 4190 | 133

Block Jacobi 4 172-184 46.46 | 165 41.71 | 1.11

Point Jacobi 4 314-335 67.24 | 312 64.24 | 1.05

Point Gauss-Seidel 4 170-182 35.19 | 167 32.20 | 1.09
TABLE 4.8

Different inner iteration methods, CRAY T3D, ¢ = 128, p = 2000, L = 8, o = 0.1, ov = 1, dom. dec. 19-20-19

We close our discussion by a short remark on the use of other inner iteration methods.
Table 4.8 contains a few results for block Jacobi, point Jacobi as well as point Gauss-Seidel
as the inner iteration. Here we have chosen an example with an amost ideal 1oad balance,
an ideal situation for a synchronousiteration. The timings obtained are consistent with what
is expected in these cases. Block Jacobi needs fewer outer iterations than point Jacobi, but a
larger runtime. Point Gauss-Seidel convergesinasimilar number of outer iterationsas Block
Jacobi. Inthiscase, since we have tridiagonal matrices, once the factorization is performed
for Block Jacobi, the arithmetic work for al three methods is comparable. The run time
of point Gauss-Seidel, however, is shortest, since this method is amenable to more efficient
pipelining and caching than Block Jacobi. Even in this case of almost perfect load balance,
the asynchronous versions are only dightly slower, in particular, when the number of inner
iterationsisreduced appropriately (here from itin = 24 to itin = 4).

5. Conclusion. The numerica results presented illustrate that asynchronous versions
of weighted additive Schwarz methods can be advantageous to compensate the effect of
load imbalance in parallel computations. This isimportant for the frequent case of domain
decompositions with subdomains of different size. Unfortunately, it does not seem to be
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possible to indicate a criterion for an appropriate degree of load imbalance or a particular
distribution of subdomains for the asynchronous versions to be always faster. We can note,
however, that in al experiments of asynchronous weighted additive Schwarz methods we
carried out, even inthe case of agood load bal ance, thequotient of wall clock times @ = ¢, /1
never |eft theinterval between roughly 0.5 and 1.5 (larger for asynchronous multisplittings).
The amount of communi cation seem to have amore important (and more plausible) influence
on the computation speed. Reducing the number of inner iterations or changing from a block
method with a larger amount of work per step to a different inner iteration method, can lead
to a noticeable speedup by the use of an asynchronous method. Finally, we note that, at
least in our experiments, asynchronous multisplitting methods with weight 1/2 have not been
competitive.

Appendix: computing environment. We briefly describe the two parallel computers
used inour experiments, namely the CRAY T3D and the CRAY J90, withrelevant information
related to our implementation.

On the T3D processors are alocated exclusively to a job, i.e, ajob is executed in
dedicated mode (possible perturbations mostly result from actions involving the front-end
compulter, i.e., from the operating system, the scheduling or interrupts caused, e.g., by 1/0).

Communication is implemented with the CRAY specific (and therefore fast) shnem
message passing library. This library allows for direct and unsynchronized memory access
between different processors with specific put and get routines. Although, principally,
put isfaster, we only used the get routineas the latter enables usto implement very easily
asynchronous communication: every processor executes a get to the memory of another
processor whenever it needs data

Theasynchronousversionisfully asynchronous, in parti cular with respect to convergence
control which does not need global synchronization: after every iteration, each processor tests
for itslocal convergence criterion and placesthe resultsin alogical variable. If the criterion
is satisfied, it starts to get the corresponding variable from other processors. As soon as it
encounters a variable whose value isfalse, it stops the convergence control and proceeds to
the next iteration.

In the synchronous version, a (synchronizing) global convergence control is carried out
after every iteration, using a global reduction function from the shnemlibrary. In addition,
a barrier is necessary in every iteration in order to synchronize the correct exchange of the
updated artificial boundary values.

The CRAY J90isashared memory computer with 16 vector processors. Parallelizationis
implemented with CRAY autotasking. All tests on the J90 have been carried out in dedicated
mode. In the synchronous version, the iteration loop contains three synchronization points,
in the asynchronous version none.

We conclude with a practical remark. Tests on the J90 in nondedicated — the usua
multiuser —mode suggest that the program usually gets more CPUs in the asynchronous cases
than in the synchronous ones. This is due to the fact that for each parald region in the
program, the J90 dynamically creates anew process for each processor which competes with
any other process on the machine. When apardléel region like aloop isterminated, the CPU
isreleased. The next time, i.e,, in the next step, the competition beginsagain. In other words,
at synchronization points, processors are deallocated immediately in most cases. Thisdiffers
from the T3D (or aso machines like the PowerChallenge/Origin from SGI) where CPUs are
allocated to ajob and not released before the end of the job. The drawback of this effect on
the J90 isthat if ajob does not get the number of CPUsit needs for a specific paralld region,
the whole job ‘starves': on at least one subdomain the iteration is stopped and on the other
subdomains ‘wrong’ problems are solved over and over until apossible time limit.
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