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Abstract. Lyapunov exponents can be estimated by accurately computing the singular values of long products
of matrices, with perhaps 1000 or more factor matrices. These products have extremely large ratios between the
largest and smallest eigenvalues. A variant of Rutishauser’s Cholesky LR algorithm for computing eigenvalues
of symmetric matrices is used to obtain a new algorithm for computing the singular values and vectors of long
products of matrices with small backward error in the factor matrices. The basic product SVD algorithm can also
be accelerated using hyperbolic Givens' rotations. The method is competitive with Jacobi-based methodsfor certain
problems as numerical resultsindicate.

Some properties of the product SVD factorization are also discussed, including uniqueness and stability. The
concept of a stable product is introduced; for such products, all singular values can be computed to high relative
accuracy.

1. Introduction. Algorithms have been developed to compute the singular vaues of
products of matrices without explicitly computing the products. Some of these algorithms
can only computed the SVD of a product of two matrices, such as the algorithms in Heath,
Laub, Paigeand Ward [14], Fernando and Hammarling [11], or for aproduct of three matrices
(the H K SVD) by Ewerbringand Luk [9], [10]. Algorithmsfor computing the SVD of longer
products are discussed in Bojanczyk, Ewerbring, Luk and Van Dooren [3], and Abarbandl,
Brown and Kenndl [1]. All of the above methods, except the last, use Jacobi methods for
computing the SVD.

Another approach is to use product versions of rank-revealing factorizations. This is
pursued by G.W. Stewart in [23], where a generadization of QR factorizations with column
pivoting is devel oped.

The above a gorithms use only orthogonal transformations. In contrast, there have also
been some other forms of product SVD’s (in fact, a whole tree of such decompositions)
described by De Moor [4], H. Zha [25], and De Moor and Zha [5]. For each factor in the
product SVD’s in De Maoor’s and Zha's family of decompositions, they assign a “P’ or a
“Q" depending on whether the product involvesthe matrix as afactor directly, or theinverse
adjoint of the matrix as afactor. That is, whilea PP-SVD for factors A and B givesthe SVD
of AB, the PQ-SVD givesthe SVD of A(B~1)*.

These decompositions of De Moor and Zha use non-orthogonal transformations in the
same spiritasthegeneralized SV D aspresented in Golub and Van Loan[13], §8.7.3. However,
here, as in the paper by Bojanczyk et al., the product SVD is a factorization of A = A .
A@ ... AP) of theform

A=UDRD .. RE)(UEHINT

where R™*) = (U)T AU 7 (k+1) js upper triangular, and the matrices U(*) are orthogonal,
and the product RV - - - R(?) isdiagonal.
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Here the emphasis is on obtaining backward error analysisin terms of the factors of the
product rather than the product itself. As has often been noted, backward error analysis gives
the best possible result for any numerical computation, since the dataisinvariably corrupted
by noise with magnitude of the order of machine epsilon or unit roundoff. Also, the data for
the product SVD problem consists of the sequence of factor matrices, not the product itself.

Anam of thiswork isto accurately compute Lyapunov exponents. To do thisdirectly in
terms of singular val ue computationsrequires high rel ative accuracy rather than high absolute
accuracy. Thisis only sometimes possible, as a counterexample given in this paper shows.
In this paper we introduce the concept of a stable product, for which singular values can be
computed to high relative accuracy.

One application of these algorithms is to accurately compute Lyapunov exponents for
dynamical systems[2]. Thisinvolves computing the SVD of a matrix defined either through
differentia equations

(1.1) () = A()®(t),  ®0) =1,
or through difference equations
(1.2) Opp1 = Ap Py, = 1.

The ith Lyapunov exponent is related to the ¢th singular values of ®(¢) or ®;, by the

relation
(1.3) A = lim log(e:(®(1)) or X = lim M’

t—o00 k—o0

depending on whether the system is a differential or difference equation. Unfortunately
from the numerical point of view, these matrices become increasingly ill-conditioned; distinct
Lyapunov exponents imply exponentialy diverging singular values. High relative accuracy
of thesingular values rather than high absol ute accuracy isdesired for obtai ning good absolute
accuracy in the estimates for the A;, even if the ratio of largest to smallest singular values
is much greater than 1/u where u is the unit roundoff. High accuracy relative to ||®;]| is
not sufficient as the smaller singular values can be easily swamped by noise from the larger
singular values. With exponentially large and exponentially small singular values, there are
also dangers of over- and under-flow. For example, in Lyapunov exponent cal culations, the
singular values of productsof hundreds or thousands of matrices are wanted, and the singular
values can easily exceed the range 10100,

While there are aready methods to estimate the Lyapunov exponents of a dynamical
system by forming the QR factorization of a product of matrices, with a modest multiple
of the work needed to compute this product QR factorization, the entire singular value
decomposition can be computed. As the singular values are more directly related to the
definition of the Lyapunov exponents, and the QR factorization only gives results that are
asymptotically correct, it might be expected that this will give more quickly converging
estimates of these exponents.

Theaim is, therefore, to compute the singular val ues of a product of matrices

(1.4) A= AW . 42 4@

while avoiding forming the product (at least in the conventional way), or making the A(*)
matrices ill-conditioned. The agorithm developed here is based on the LRCH agorithm of
Rutishauser and Schwartz [21] for finding the eigenvalues of A” A by using treppeniteration,
without forming either A or AT A. This method is guaranteed to converge [21], but may do
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so rather dowly if some eigenvalues are close. In practice, for problems of the sort that come
from dynamical systems, convergence is usually very rapid. Where convergence is dow, a
shifting method based on hyperbolic rotations can accel erate convergence, as is described in
section 8.

This approach based on the LRCH algorithmisin fact equivalent in exact arithmetic to
implementing the QR a gorithm for the product A” A asimplemented by Abarbanel, Brown
and Kennel [1], by a result of Wilkinson [24, p. 535]. However, Abarbanel, Brown and
Kennel [1] do not perform any error analysis for their method under roundoff error, and it
does not appear possibleto perform backward error analysis on their method. Backward error
results are proven in this paper for the LRCH method devel oped here.

Most previous product SVD agorithms, such as in [3], [8], and [14], are essentidly
Jacobi methods.

In this paper only real matrices are considered. The complex case is an easy extension
of thereal case.

The remainder of the paper is divided as follows. In section 2 the LRCH agorithm
as applied to computing the singular values of a product of matrices is described; section 3
describes the convergence and deflation theory for the product LRCH agorithm; section 4
gives the backward error analysis for the algorithm, with some discussion of the stability
properties of the problem; section 5 describes how non-square factors can be made square in
the algorithm (which simplifies the analysis for testing rank deficiency); section 6 discusses
the stability of the product SV D problem, and described stable products; section 7 discusses
numerical rank deficiency in the context of products of matrices; section 8 describes the use
of hyperbolic rotations to accelerate the convergence of the main agorithm; and section 9
givessome numerical resultsto indicate the competitiveness of the algorithm, at least for long
products.

2. The LRCH algorithm for computing singular values of products. The LRCH
algorithm for computing the singular val ue decomposition of along product of matricesis

U1, Vi1
fori=121,2 ...
Q(.p+l) — 1
fork=p,p—1,...,1
ot At gle+1)
) = QMRM  (QR factorization)
if 7 odd then
Uiy — Ungl)
else
Vi+l — Vngl)
fork=212,...,p
Y
Ay = (R

2.1)

Notethat ¢ isthe iteration counter.

Thisagorithmisbased on Rutishauser’sLRCH agorithm [21] for computing the eigen-
values of a symmetric positive semi-definite matrix. The basic LRCH agorithm without
shiftsis[21]:

fori=1,2 ...
(2.2 B; = L; LT (Cholesky factorization)
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Computing the singular values of A is equivaent to computing the square roots of the
eigenvalues of the matrix B = AT A. Note that forming the Cholesky factorization of
B; = AT A; = L; LT is equivalent to forming the QR factorization of A;: A; = Q;R;
impliesthat R; = D; LY where D; isadiagona matrix with +1's on the diagonal. The basic
LRCH iteration for computing singular valuesisthus

fori=1,2 ...
(2.3) A; = Q; R; (QR factorization)
AH_]_ — RZT

(The updatesfor U; and V; have been dropped here.) It should aso be noted that if A; isrank
deficient, there is till afactorization AT A; = L; LT, though this may not be computable by
the standard Cholesky algorithm.

The QR factorization of A; = Agl) . A§2> X ~A§p ) can be computed without forming A;
by using a variant of treppeniteration as follows:

QY — 1
fork=p,p—1,...,1
(2.9) o) A(k)Q(k+1)

c = @WMRF)  (QRfactorization).

Then 4; = QWRMRP ... RV = Q'Y R, where each factor R\", and therefore R;, is
upper triangular. This version of treppeniteration is used by Eckmann and Ruelle [7] for
estimating Lyapunov exponents. It is also discussed as a method of computing product QR
factorizations by Geist, Parlitz and Lautersborn [12] in their survey of different methods for
computing Lyapunov exponents.

If each of the A(*) are n x n, then one iteration of treppeniteration would take about
4n3p/3 flops for the QR factorizations using Househol der transformations [13, p. 212], and
2n3(p— 1) flopsfor thematrix multiplications(which could be reduced to about n3(p— 1) flops
by using thefact that the R(*) aretriangular). Thetotal cost of an iteration of treppeniteration
isthen about n3(7p/3 — 2) flops.

Sincein (2.2) B; convergesto adiagona matrix asi — oo, R} R; approaches adiagonal
matrix of eigenvalues of A” A4, and so R; must converge to a diagonal matrix containing
the singular values of A. Let Q; = le). Note that (2.3) can also give the singular
vectors as shown below. One cycle of (2.3) gives A;11 = (QF A;))T = AT(Q;. Hence
Aiy2 = (AT Q)" Qiy1 = QF A;Q;41, and sO

Agiy1= Q%1 QFQT A1Q2Q4 - - Q2
(2.5) = (Q1Q3 - Q2-1)" A(Q2Q4 - Q)
= UL AV;.

Note that Agk)ng“) = QE“RE“ and so the singular values of Agk) and ng) are
identical. This means that ng) isaswell conditioned as Agk) in the 2-norm.

It should also be noted that the “product QR” factorization that is produced by treppen-
iteration is unique up to the signs of the entries if only red arithmetic is used. (If complex
arithmetic is used, then the entries are unique up to unit factors ¢*? for somered 6.) Thisis
shown more precisaly in the following lemma.

LEMMA 1. Suppose that

A= le)Rgl) . Rg_p)(Qg_p-l—l))T — Q(Zl)R(Zl) . R(Zp)(Q(ZP+1))T



ETNA

Kent State University
etna@mcs.kent.edu

SVD oF A LONG PRODUCT 33

are two product QR factorizationsof A = A ... A®) with A®) = Q¥ plF) (@ F+D)T
for k = 1,2,...,p,i =12 1f Q¥ = Q™ then there are diagonal matrices D(*)
of the form diag(+1, . .., +1) where Q{*) = Q¥ D*) and R{Y) = D) R pUi+D) for
k=12,...,p.
Proof. Since Q"™ = Q¥ *Y wecan take DP+D = I,

Now, we proceed by induction backwards from £ = p + 1 downto & = 1. Suppose that
the induction hypothesis has been established for & + 1 > 1. Since

AW = QU R QUHINT — o) gl QUE+DyT
by the induction hypothesis,
O HIDIQY T — 0 QY
Premultiplying by ( <1’“>)T and postmultiplying by Q(zk“)(R(zk))—l gives
RO = @

The left hand side is an upper triangular matrix, whilethe right hand sideisareal orthogona
matrix. Thus they must both be diagonal matrices with entries +1 on the diagonal. Let
D) = (Q{NTQY)T = (@47 QL. Premutiplying by Q4 gives Q1) = @4/ D(h.
Then R{") = DM R DU+ follows directly, and the induction hypothesis holdsfor .
Thus by induction the result follows. O

Notethat if the factorization is performed so asto ensure that the diagonal entries of the
R™) matrices are positive, then it can also be established that D*) = T for dl k, and the
product QR factorization is unique.

This uniqueness result gives an efficient method for computing the “graded QR decom-
position” of Stewart [23]: First form the QR factorization with column pivoting A®) =
QP R®NT of A®), Then form the product QR factorization of Al by treppeniteration.
Since G.W. Stewart’sgraded QR factorization isaproduct QR factorization of AN, thisisthe
the result of the above procedure up to signs.

3. Convergence and deflation. It iseasy to show that with suitable choice of signsin
D; = diag(+1, +1,...,+1), D; R; converges to the diagona matrix of singular values of

A asi — oo [21]. However, this does not imply that ng) converges as: — oo, for any %.
Wheat can be said isthat, using | 4| to denote the matrix with entries |a;; |,

(3.) | diag R:| = | diag (R(" -+ R(P)| = |diag(R()| - | diag (R{")]

converges to the diagonal matrix of singular values asi — oo. The strictly upper triangular
parts of ng ) generaly do not converge to zero. (Counterexamples using a pair of 2 x 2
matrices can be easily found.)

To test for convergence, write

_[ R # (k) _
R R

ng) ~(k)
0 (k)*

Then some arithmeticusing R; R} = RY, | Ri11 gives

(3.2) (rip)® + [[Fialls = ()%
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The convergence rate with which R, — diag can be estimated in the case of distinct
singular values to be geometric with rate at least max (oy41/0%)2. The above andysis,
however, shows that there must still be convergence even if ¢41 = oy in the sense that
7; — 0. Once 7; is sufficiently small, the matrix can be deflated by setting #; < 0, and the
argument can be recursively applied to the principal sub-matrix ;.

For many applications with long products, the singular values diverge exponentially
quickly, sotheratios o1/ 0y are very small. If theseratiosare all significantly smaller than
u, then only asmall number of iterations are needed to obtain convergence. It has been found
that for most Lyapunov exponent cal cul ations with hundreds or thousands of factors, that only
two iterations are needed.

Rank deficient matrices. Rank deficiency isno barrier to fast convergence. If the rank
of R; isr, theno,41 = 0 < o,, and so the convergence rate for the separation of the rank
deficient part of R; isfaster than geometric convergence.

For R; to be rank deficient, it must have a zero on the diagona. This means that one
of the factor matrices RE’” must also have a zero on its diagonal. For there to be a zero
on the diagonal in that position at the end of the next iteration, it can be shown that the
row corresponding to that diagonal entry must also be zero. If that is not so, then the zero
entry will be pushed further down the diagonal. For there to be a zero entry in that diagonal
position after two iterations, not only does the corresponding row need to be zero, but also
the corresponding column will be zero after the iterations. Once thisis done, standard QR
factorization techniques (such as Householder transformations and Givens' rotations) will
preserve the zeros in thisrow and this column.

Deflation. Deflation can be carried out when [r?, ,/r}| is sufficiently close to one, as
IFizallz = ripq4/(rf/ri 1)? — L Thismay giveriseto numerica difficultiesas r; /r; | =
1+ O(u) impliesthat ||7i1+1]2 = O(v/u). Fortunately, there is a better test which relates
directly to the backward error.

Essentially deflation isjust amatter of zeroing the #; vector. This can be doneby zeroing
the nth column of each R(*) matrix above the diagonal. Thisgives an exact decoupling of the
last singular vaue, which will not be destroyed by later computations.

The deflation also results in small backward error if ||(R;)~ 7|2 is small. Provided
(R;)x isnot small relativetothemagnitudeof thekth row for each k, thequantity [|(R; )~ 17|
can be computed to high absolute accuracy. Thisis because rows of R; can be computed to
high accuracy relativetothe size of that row. Further, as R; — diag the diagona entrieswill
come to dominate the other entries in each row, so the assumption that “(R; )z is not small
relative to the magnitude of the kth row for each &” will become true after some iterations.

Once||(R;)~ 7|2 isof thesameorder asu, defl ation can proceed sincefor p = (R;) =17,

RZ’ 772' I -0 _ RZ 0

0 rf O 1] |0 |
Thus zeroing the last column above the diagona gives a multiplicative backward error, and
hence a relative error in the singular vaues of size ||7||2, by the resultsin §6. Note that

(R;)~#; can be computed to high absolute accuracy by using diagonal scaling.

4. Nonsguare factors. Nonsguare matrices can make the cal culations seem somewhat
awkward. However, the product can be reduced, in a finite number of steps, to a product of
square matrices. Consider an adjacent pair of factors A*) A(*+1)_ Thefirst pass of the above
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algorithm computes

Q) RUDRUHD — () AL (k+2)

where both R**) and R(*+1 are upper triangular. Suppose that A%) is m(*) x n*) and
AGHD jsm+D) « p(k+1D) For the product to be meaningful, n(*) = m(*+1),

If mE+D > nd) = (k+2) then as R(*+1) is upper triangular, the bottom m(F+1) —
n*+1 rows of R+ are zero. Thus, in the product R(*) R*+1) | the right-most m(*+1) —
n(®+1D columns of R(*) are multiplied by a zero submatrix. Thus the product R(*) R(i+1) js
unchanged if thelast m*+ — p(*+1 rowsof R(*+1) and thelast m*+1 — n(*+1) columns
of R*) are deleted. Also notethat if m(Y > n(V, then the bottom m(1) — n(1) rows of R
can be deleted without changing the singular values or rank of the product.

If we say that after i passes, RE’” isan mgk) X n§k> matrix after deleting irrel evant rows
and columns, then
4.2 mgl) < ngl) = mgz) < ngz) = m§3) <. < ngp).

Since the second step involves a trangposition that reverses the order of the factors, and
transposes each factor,

k p—k+1 k p—k+1
e

Thus mgf?z < m§k> and ngf?z < ngk). Since these quantities are non-negetive integers, they
must eventually be constant for even i, with m{*) = " ~* 1 and n{*) = m{F~** Using
thisin (4.1) for sufficiently large j givesthereversed inequalities:

-1 -1 -2 1
(42) ni < mifh = w30 <mfP =R <<l

Combining (4.1) and (4.2) showsthat thefactor matrices will eventually become square under
this process of deleting irrelevant rows.

5. Error analysis. The main result of this section is that the computed singular values
of A =AW ... AP) gre exact singular values for a perturbed matrix

A+ FE= (A(l) + E(l)) ) ..(A(p) + E(p)).

In terms of the number of iterations of LRCH used (), the maximum number of rows or
columnsin afactor matrix (n), and machine roundoff (u), these perturbations|| £(*)|| can be
bounded by quantities of order un®2N||A%*)|| if no deflation is used. The backward error
that occurs in deflating can be made quite smal as is shown below, and can be bounded by
easily computable quantities. In what follows we use matrices with carets (7) to indicate
the corresponding quantities computed using finite precision arithmetic, as opposed to exact
arithmetic. The function fI(- - -) will be used to denote the results of a computation. The
error analysis is based on that given in Wilkinson [24], and Golub and Van Loan [13]. Itis
assumed throughout that Househol der operationsare used to computed the QR factori zations,
and that a standard matrix multiplication procedure is used (and not, for example, Strassen’s
method), and that n%/?u < 0.01. Larger constants than 0.01 can be used here, provided the
values of the constants X; in the proof below are increased accordingly. The|| - || normis
the Frobenius norm: || A||p = \/trace( AT A).

THEOREM 1. If S = R ... R(®) jsthe matrix of computed singular valuesin N steps
without deflation, then Z containsthe exact singular values of a matrix product

€y Wy AP @y...4a® (p)
(A + B4 + B2y (AW 4 BV,
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where | E@||p = O(Nn ) provided N n®2umax; ||AD||p < 1.
Proof.  In what follows, K; will denote an appropriate absolute quantity (for example,
Ko = 1.01and K; = 12.36). The precise value of these constants is not important, and all
are of modest size.

The lowest level operations in (2.4) are matrix multiplications and QR factorizations.
From Golub and Van Loan [13, §2.4.8, p. 66],

fl(AB) = AB+ E, where |E| < Konu|A||B].
Fromthisit isevident that, using Frobenius norms,
IfI(AB) — AB||r < Konu||A||r||B|F

The matrix @ computed by the QR factorization of a matrix A with A= @f% is nearly
orthogonal in that there is an exactly orthogona matrix ¢}, where

1Q = Qllr < (n— D(1+ K1) 2Kqu| Al < Kon*?u
and
IR =Q"Allr < (n = 1)(1+ K1u)"~*Kyul|Allp < Konul| A p.
Now,
6O = AP = A0 + ),

where | £ » < Konul| A" ¢ [|Q5* ]| . Since

10l < QY1 4 QLY — QY15
< VN4 Kon®%a < (14 Kaun)y/n,

thisgives || B ||r < Kzn¥2u|| A" 5.
Now write

O = AWQIHY 4 g = ARQEHY 4 ph)
where £1%) = AP(Q Y — Qi) + 5. Then
1ES|1p < |AP)p(Jn® 20 + K3n®2u) = Kan®2a)| AV p.
Thus,
O = (AW 4 B QY

with ||| < Kan®2ul| A" since £5) = £ )T
The QR factorization step in (2.4) computes the QR factorization of C*). Then

IC = QR e < Konul|CH1p .
(5.1 < Konu(1+ Kan®2w)||AP)||p
< K5nu||ﬁgk)||p,
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and || — QM llr < Kan®2u. S0 QMR = ) 4 B where

NES1p < Konu(1+ Kan¥2u)[|AY)|| 5.

4
Hence,

RO =P+ 0+ 5 = 0T 4 E

where ng) and ng“) are exactly orthogonal, and
1ES N < 1B5 117 + 1B e < (Ks + Kav/mynu|| A p.

Thisisthefirst step of (2.3); the second step of (2.3) simply involvesatranspose, which
involves transposing and reordering the ng ) matrices. Neither of these operations in the
second step of (2.3) involves roundoff error.

Thus, A, = R ™HHDT = Qip =W (A =FH1) 4 plr=FHT o=+ it

(52) IS4 o < (Ko + Kav/mynu | A8 .
Thisimpliesthat
JAS P < (14 Ken®2)|| APV p < Kl APV 5.

So two applications of LRCH gives
(63) A, =RV = QUTPT QM (A 4+ BTV,

where

k)
i

(5.4) IES NIp < (Ko + Kev/m)nu|| A||p < (Kg + Ko)n®2u|| AL 5.

If no deflation isused then it is straightforward to see that N applications of LRCH givesthe
same singular values as a perturbation to each factor of A of size
O(n¥/?uN||A™)||p) in the Frobenius norm. m

6. Stability. The question of stahility of the problem cannot be answered completely
here. However, a partial indication can be given by the following result.

THEOREM 2. If A € R™*” and E € R™*”, then |o;((I + E)A4)/c:(4) — 1] < ||E|)2
fori=1,..., rank(4).

Thisfollowsfromastandard result for multiplicativeboundsof singular values: o;4;_1(AB) <
oi(A)o;(B). See[15, p. 423, Ex. 18], and [16, p. 178, Thm. 3.3.16(d)]. Thisisan example
of an outer multiplicative perturbation. Note that the deflation operations are considered in
section 3.

The problemwithtryingto provestability of the problem of computing thesingular values
to high relative precision is that of turning a perturbation of each factor into a multiplicative
perturbation of the product. Notefirstly that for aparticular factor, A+ F = A(I + F') where
F = A7E.If |E|]2 = O(ul|Al]2), then || F||2 = O(ura(A)). A similar result will give
multiplicative perturbations of each factor on theleft with the same bounds. Provided none of
the factorsisill-conditioned, this gives small multiplicative backward errorsfor each factor.

The relative stability of the singular values to multiplicative perturbations does not hold
in general as the following example shows. Supposethat 0 < 7 = 27% < ¢, ¢, < 1 are



ETNA

Kent State University
etna@mcs.kent.edu

38 DAVID E. STEWART

chosenand A = diag(1/2,1) and B = diag(1,1/2). Then 5 istherepesated singular vaue

of the product
kpk _ | m O 1.0|_
A*B _[O 1][0 n]_nz.

1 61] Then

LetI—i—E:[
€2 1
2 1 €
AT R = | T e | 177]
e F A R

, which hasa singular value of size = e5.

On the other hand, the singular values of some products are not changed excessively
by perturbations of the factors. For example, consider the product of & factors B* =
diag(1,1/2)*. Thenforany 0 < [ < k,

1 1 €1 k-1 _ 1 0 k 1 2_(k_l)€]_
B [62 1:|B _|:2_l€2 1 B 0 1—e¢160 ’

Clearly the ill-conditioning of the product does not necessarily make the singular values
sensitive to perturbations of the factors.

The product B* = diag(1,1/2)* isan example of a stable product. The above result
can be generalized to replace any collection of inner multiplicative perturbations

B(I + EMYB(I + E?)B ... (I + E®)B
with apair of outer multiplicative perturbations
(I4+ F)BM(I+F.),

where F, and F_ have asize comparable to max; || E()||. More formally,
DEFINITION 1. An infinite product - - - A~ A(® A(D) ... js a stable product if there are
constants C' and o > 0 such that for any i < j and matrices E(*) with || E®)|| < e,

AT + BOYACHD (4 BUDYAU) = (1 4 F_)ADAUHD . 401 4 )

for some matrices F_, Fy, where || F_||, || F4|| < C max;<r<; [|EX)].

A finite product AV A2 ... A(?) js gtable if the above holds for a modest constant
(which does not grow exponentially in p).

If aproduct AW AR ... A() s astable product in this sense, and each factor is well
conditioned, then the perturbed product

(A(l) + E(l))(A(Z) + E(Z)) .. .(A(p) + E(p))
can be represented in terms of inner and outer multiplicative perturbations
(I+ E(l)(A(l))—l)A(l)([ + E(Z)(A(Z))—l)A(Z) (T4 E(p)(A(p))—l)A(p)’
which can then be represented in terms of outer multiplicative perturbationsonly:

(I+ F_)AWAR o A®(] 4 L),



ETNA

Kent State University
etna@mcs.kent.edu

SVD oF A LONG PRODUCT 39

where || Fy||, [|F_|] < C max; ||E®]|]|(A%)~1|| for a modest constant C', and where the
perturbations £(*) are al sufficiently small.

There are results showing the backward stability of Lyapunov exponentsunder hyperbol-
icity assumptions. See, for example, Dieci, Russdll and Van Vleck [6] which shows stability
of the Lyapunov exponents under the assumption that the linear system

63k+1 = 6_7A(k)63k

ishyperbolicwhenever v isnot aLyapunov exponent. That is, thereisapair of (possibly non-
orthogonal) projectors P and £ for each &, modest constants ' > 0 and 0 < « < 1where
P+ P = I,||P¢|| and || P{|| are bounded independently of k, range P;_, = A¥)range P}
and similarly for P}, and for [ > k,

e—(l—k)v||p]§_lA(k)A(k+l) .. .A(l—l)A(l)pISH < Kal™k,
e—(l—k)v||(pél_1A(k)A(k+l) . .A(l—l)A(l)pIU)—ln < Kok

bl

where the latter inverseis of the product considered as a linear map range ;' — range P;".
Whether a given product of matrices satisfies this hyperbolicity assumption is a difficult
guestion to answer. It is, however, a question worth further investigation from the point of
view of numerical analysis.

7. Rank deficient products. A product of matrices A = AM AR ... A®) js defined
here to be numerically rank deficient if there are matrices £(V), i = 1,.. ., pwhere || E?)||, <
Ca|| A]|, for some modest constant (!, and the perturbed product

AL L OV AP L E@y. 4 4 g
(A + BV (AN + BN - (AW 4 BT

is exactly rank deficient. This “backward error” definition of rank deficiency means that
simply looking at the (computed) singular values is not enough to determine if a product is
rank deficient. For example, the product of (£ + 1) factors

1 k u
1/2 1
is rank deficient because of the singular value u even though the other singular value 2~*
might be far, far smaller. On the other hand

[ 1]

isnot anumerically rank deficient product for any k. Sincethe main agorithm presented here
is backward stable with respect to the factors of a product, this definition of a numerically
rank deficient product is appropriate.

Detecting numerical rank deficiency in productsof square matricesiscomparatively easy:
all that is needed is to check that each factor is numerically nonsingular. This can be done
by performing an SVD on each factor and looking at the ratio of the smallest to the largest
singular values, and if thisislessthan C'u for any factor, then the factor and the product is
rank deficient.

Thissimpletest cannot be applied directly to products of non-square matrices. Howeve,
if the technique described in §4 is applied, then the product is transformed to become a
product of square matrices. However, the test needs to be modified to take the ratio of the
smallest singular value of each computed square factor, to the largest singular value of the
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corresponding original factor A%). If this ratio is less than C'u then the product is rank
deficient.

Note, however, that determining the (numerical) rank deficiency of aproduct where more
than one factor is rank deficient, is a more complex task, requiring the computation of null
spaces of factors, and determining how these subspaces are transformed by the other factors.

8. Accelerating convergence. Convergence is accelerated in thisalgorithm by using a
shifting strategy together with deflation. The LRCH agorithm can be shifted, and thisis
indeed part of the origina agorithm in [21]. However, the shift must be smaller than the
smallest singular value of R = RIWR(? ... R(?) as otherwise the Cholesky factorization of
RTR — o doesnot exist.

The standard shifting strategy of setting s to be (smallest) eigenvalue of the bottom right-
hand 2 x 2 submatrix of R” R was modified in[21], and combined with a suitable mechanism
for handling the occasional failure of thistechnique.

The shift cannot be done directly, asit isin LRCH, but must be done implicitly on the
product. Note that the product 27 R does not need to be formed if we apply hyperbolic
rotationsto

_ R 2nxn
(8.1) S_[TI]ER ,

where 72 = ¢. Applying hyperbolic rotationsto S gives

Ry

(8.2) HS = [ 5

:| c R2n><n

where H isthe product of partitioned hyperbolic rotations.
Let J be an elementary partitioned hyperbolic rotation. Then

1 -

(8.3) J=

where ¢2 — 52 = 1. Then,
+[1 01, [I 0
(84) J [o =10 o |

Thus, applying suitably partitioned hyperbolicrotationsto S = [ v

invariant. Thus, RY R, = RT R — 72I. Noting that ||S||2. = trace(S”S), taking traces
shows that hyperbolic rotations will leave ||X||2 — ||Y||% invariant. Hence ||Ry[|% =
IRI3 — nr2.

Hyperbolicrotationsarenot much usedin numerical analysisasthey canbeill-conditioned.
In particular, 4c? > k2(J) = (¢ + |s])? > ¢2. Care should therefore be taken to avoid exces-
sively large values of ¢. Thiscan be avoided if we choose r so that /¢, (R) isnot too close

X ] Jeaves XTX —YTY
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to one. A combination of two strategies can be used to avoid problems: (1) the modification
of the matrix can be aborted if the values of |¢| are excessive, and the original factors can be
restored with only the original first factor saved; (2) choose r so that /7, (R) is no more
than, say, 0.95 where 7, (R) isthe estimate of the smallest singular value.

The hyperbolic rotations are applied to zero successive rows of the bottom n x n sub-
matrix of .S, starting with the bottom row. After the (2n — k)th row of S is zeroed, ¥V =
diag(r,...,7,0,....,0)and||Y|lr = 7vn —k — 1 S0 || X||2 = ||R||Z + (||| — nT?) <
|| R||%.. Thus, thesize of X inthe Frobeniusnormisdecreased by each row eimination. Note
aso that if |¢| isof modest size for the hyperbolic rotations then the 2-norms of the rows of
Y areof thesameorderas r < o, (X).

In order to determine the appropriate shift and hyperbolic rotations the actua values of
R are needed. Thiscan be donerow by row, so that each computed row of R has an error that
issmall relative to its own 2-norm. By using a separate exponent this can aso be donein a
way that avoids overflow except for extremely long products of matrices or extremely large
entries. Once the parameters of a hyperbolic rotation are computed they need to be applied
to the rows of S. However, these hyperbolic rotations a so need to be applied to the product
ROR®2 ... gk,

Rather than apply hyperbolic rotations directly to

S:[ﬁy

we take out the factor of R on theright to give

_ g — I
sesn=| L ]n
Then we can apply the hyperbolic rotationsto .5’. The application of partitioned hyperbolic
rotations to .5” can in fact produce an upper triangular matrix. If H' is the set of rotations
applied to .S” to make S’ upper triangular, then

HS:ESR:[%]R
Then we can replace R(Y with S, R(V. This can be donewithsmall backward error, and since
this error can be made into an outer multiplicative error, thisresultsin only asmall relative
perturbation of the singular values. An dternative to actualy doing this multiplicationisto
make S the first factor. The implementations of this algorithm of the author has not used
this technique. To recover the singular values of R, if &; isthe ith singular value of S R,
then the ith singular value of R iso; = /72 + 572

Note that as 7 < o, (R), o;(TR™Y) < 7/0,(R) < 1s0 I — r2R~T R~ is poditive
definite. Thus, 7R~ is of modest size and can be computed to high absolute accuracy, as
each row of R~ can be computed to high accuracy relative to the 2-norm of that row.

This shifting strategy requires about n3(p — 1)/3 flops to compute the product R and
the row scales. Each hyperbolic rotation requires 6 flops and one sguare root to compute
the ¢ and s values; the total amount of work needed to compute and apply al the hyperbolic
rotations is about n2 flops plus n square roots. The total amount of computation needed for
the shifting strategy is about n3(p + 2)/3 flopsand n square roots. Thisis of the same order
as asingle pass of the basic algorithm. If each iteration of the above algorithm incorporates
shifting at each step, then the cost of a single completeiteration is about n°(8p — 4)/3 flops
and n sguare roots.
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9. Numerical results. The LRCH agorithm, optionally including shifting using hyper-
bolic rotationsand deflation, has been implementedin * C’ using the Meschach matrix library
[22]. All calculationsusing the Cimplementationswere performed on a95MHz Intel Pentium
running Linux. Double precision (u &~ 2.2 x 10~'6) was used throughout. The unshifted
agorithm was also implemented in MATLAB”M [18]. The version implementing shifting,
sets 7 to be 0.95 times the smallest singular value of the bottom 2 x 2 submatrix of R.

Deflation occurred when ||5]]2 < 105, All computationswere donein doubleprecision
withu &~ 2 x 10~16,

For comparison, the Jacobi method of Bojanczyk et al. [ 3] wasimplemented in Meschach.
This used the scheme of Heath, Laub, Paige and Ward [14] for scheduling the Givensrotations
of the product. It was found to be necessary to explicitly zero entries in the factors; without
this step it was found that the product matrix with the scaled rows did not converge to a
diagonal matrix to within the specified tolerance of 10~ 15,

These methods were applied to a number of test problems to determine their reliability
and accuracy. The results for these examples are summarized in Table 9.1. The results
in this table show the number of floating point operations, number of square roots and the
number of iterations needed for the methods discussed in this paper. The first isthe LRCH
method without shifts (LRCH); the second is the LRCH method with shifts (LRCH/sh); third
is the Jacobi based method of Bojanczyk et al. [3]; fourth is the graded QR agorithm of
G.W. Stewart implemented essentially asdescribed in[23] (GRQRLY); thefifthisthegraded QR
algorithmimplemented by taking the QR factori zation of A() with column pivoting, then then
forming the QR factorization of the product times the permutation matrix by treppeniteration
(GRQR2). These last two methods give identical resultsin exact arithmetic as noted above;
comparison of the results shown relative discrepancies between the approximate singular
values between GRQR1 and GRQR2 of no morethan 5 x 10~ for thefirst three examples.
In Table 9.1, the errorsare actually the natura logarithms of the ratios of the computed results
to the true answer. Dashes are used to indicate results for which the errors cannot be reliably
determined. Note that for examples 4 and 5, there were discrepancies between the LRCH
results and the Jacobi results of about 1 x 10~° and 3 x 10~* respectively. This discrepancy
can be explained in part by noting that the “average’ condition number of the factor matrices
can be estimated, using the Lyapunov exponents, to be about 5 x 10°; for 1000 3 x 3 factors
with machine epsilon (2.2 x 10~16) perturbations to each entry, an error estimate of about
3 x 10~ can be obtained without considering the effects of any “instability” in the product.
Example 1. Thefirst test problem was the product

10* 102 o 1%
A=A = | 1072 1 1072
0 1072 1

The largest eigenvalue is close to (10%)2° = 10%° while the two smaller eigenvalues are
relatively closeto 1. MATLAB gavethe eigenvalues of AV to be 1.00000000000100 x 10%,
1.00999999499982 and 0.98999999499982; the 20th power of these are the singular values
of A, which are, according to MATLAB,

1.00000000002002 x 108, 1.22018991913264 and 0.81790685497746. The smaller eigen-
valuesare not extremely close together, yet the asymptoti c convergence rate (without shifting)
of = 0.8179/1.2202 2z 0.67 isnot very good.

Example2. Thisisthe same as thefirst example except that

1 1002 0
AV =102 1 1072 |.

0 102 10*
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The eigenvalues of A(Y) are the same for this problem, and so the singular values of the
product are aso the same.

Example3. Thisexampleisaproduct of 100 random 5x 5 matriceswith entriesindependently
drawn fromauniform probability distributionon[—1, +1]. Thetheory of Lyapunov exponents
dueto Oseledec [19] showsthat infiniteproductsof such matrices have well-defined Lyapunov
exponents.

Example 4. This example illustrates the use of product SVD agorithms for computing
Lyapunov exponents for dynamical systems. The product isa product of 1000 factors which
was obtained by integrating the Lorenz equations[17, 20], which were developed as a very
crude approximation to the behavior of weather systems. The differential equations are [20,
p. 180]

¥ =0y —x),
Y =pr—y—az,
7= —pBz+zy.

The standard values of the parameters ¢ = 10, p = 28, and 5 = 8/3, were used in the
caculations. The factor matrices were generated by integrating the variationa equations
P = Vf(x(t)) P along with the differential equations ' = f(z). This integration was
performed numerically using the standard fixed step-size fourth order Runge-Kutta method
with step size h = 0.01 over intervals of length one, after which theintegrationis re-started
with ® reset to the identity matrix.

Example5. Thisisthe same as example4, except that 10,000 factors were used with the same
integration scheme, step sizes, interval lengths, and initial conditions. Algorithm GRQR2
was not use for this problem as it would take an excessive length of time to run. Note that
GRQR2 is an O(p?n?) agorithm, so increasing p by afactor of ten roughly increases the
running time by afactor of 100, requiring about 6.3 Gflopsto finish.

Thesingular valuesare, to eight digits, 2.1368676 x 1073941, 1.0701122, and 3.1999193 x
10~53295 which correspond to Lyapunov exponents+0.9075247,6.776 x 108, and — 14.5740960.
These are for integration over atime period of 10*. Note that from the theory of Lyapunov
exponents, if atrajectory of an ODE does not come arbitrarily closeto fixed pointsor gotoin-
finity, then zero isaLyapunov exponent for that trajectory. Since only afinitetimeintegration
of the Lorenz equations have been used, and a Runge—Kuttamethod is used to approximate
the trgjectory, it cannot be expected that any of the computed Lyapunov exponents would be
exactly zero. However, the computed Lyapunov exponent of ~ 6.8 x 10~° seemsto be close
to zero.

The relative differences between the singular values computed by the LRCH agorithm
and the Jacobi agorithm for examples #4 and #5 are greatest for the smallest singular value,
and the logarithm of the ratiosis about 4.6 x 10~* and 5.3 x 10~* for examples #4 and #5
respectively. For the second largest singular value, the relative discrepancies are 2.9 x 1013
and 1.1 x 10~3, and are equally small for the largest singular values of the products.

Test problems of the type given in G.W. Stewart [23] were aso used for making com-
parisons. The products ABAB --- BA with 2m + 1 were formed where A = UZV7,
B = VU with randomly generated orthogonal matrices U/ and V, and diagonal matrices
3. The SVD of the product ABAB ---BA is UZ?"*+1yT, The choices for = used were
$=73;=diag(1,10711072/1073/107%) and = = 3, = diag(1,0.99,0.8,0.7,0.6).

The computational work for the different methods, problems, and values of m are shown
in Table 9.2. Therdative errors are shown in Table 9.3.

As can be seen from these tables, al agorithms considered here produce singular values
that are accurate to essentidly the full accuracy afforded by double precision arithmetic.
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Example Method | #iter'ns #flops #sgrt’'s  max. error
#1 LRCH 69 282,146 4140 4.7 x 107%
LRCH/sh 8 34,009 575 23x 107
Jacobi 1 7,278 132 23x10°%
GRQR1 - 2,7780 630 0.16
GRQR2 - 2,646 60 0.16
#2 LRCH 69 282,146 4140 2.0x 10~18
LRCH/sh 9 38,236 642 23x 10713
Jacobi 1 7,278 132 23x10°%3
GRQR1 - 27,780 630 0.16
GRQR2 - 2,646 60 0.16
#3 LRCH 3 205,689 1300 -
LRCH/sh 3 206,731 1341 -
Jacobi 2 278,120 2580 -
GRQR1 - 3,127,800 25,250 0.19
GRQR2 - 62,510 500 0.19
#4 LRCH 2 408,131 6000 -
LRCH/sh 2 408,417 6016 -
Jacobi 1 360,078 6012 -
GRQR1 — 63,129,000 1,501,500 0.93
GRQR2 - 132,006 3000 0.93
#5 LRCH 2 4,080,131 60,000 -
LRCH/sh 2 4,080,417 60,016 -
Jacobi 1 3,600,078 60,012 -
GRQR2 — 1,320,006 30,000 1.63

TABLEO9.1

Results for examples1to 5

For ¥ = %, al agorithms are competitive in terms of the amount of computation needed.
However, the close singular values for = = X, cause problems for the LRCH agorithms,
especidly for the unshifted al gorithm.

10. Conclusions. A new agorithmfor computing SVD’sof longproducts A = AM A2 ... A(®P)
of matrices are given which is based on the LRCH agorithm of Rutishauser and Schwartz
[21], and treppeniteration, and has complexity O(n3p). It avoids computing the product,
and avoids creating extremely ill-conditioned matrices, which the product A oftenis. Unlike
the algorithm of Abarbanel et al. [1], the LRCH algorithm lends itself to a backward error
analysisin terms of thefactors A(*) of A.

The unshifted LRCH a gorithm can converge sl owly, though shifting can beincorporated
by means of hyperbolic rotations. Care must be taken with the shifting strategy, as when the
shifts are too large, the shifting operation may need to be re-started with a new shift as was
done by Rutishauser and Schwartz [21].

For long products of matrices, the shiftingisnot usualy necessary for rapid convergence.
Inthiscasethe LRCH algorithmiscompetitivewith the Jacobi method [3], athough for small
systems and short products, the Jacobi method appears to be the faster method. Both methods
are numerically stable and produce highly consistent answers.
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#iter'ns #flops #sort's
m=2>5
LRCH 3 30558 165
LRCH/sh 3 32061 217
Jacobi 2 31056 355
m =10
LRCH 2 38892 210
LRCH/sh 2 39852 239
Jacobi 1 35876 355
m =20
LRCH 2 75932 410
LRCH/sh 2 76 892 439
Jacobi 1 69796 655
2=21
#iter'ns #flops #sort's
m =20
LRCH 80 3075246 16605
LRCH/sh 13 232966 1934
Jacobi 3 158876 1555
m = 40
LRCH 41 3150252 17010
LRCH/sh 11 342341 2885
Jacobi 2 225376 2105
m = 80
LRCH 21 3279892 17710
LRCH/sh 9 516879 4447
Jacobi 2 447 456 4105
2=2
TABLE 9.2

G.W. Sewart test examples. Computational work
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