
Electronic Transactions on Numerical Analysis.
Volume 5, pp. 29-47, June 1997.
Copyright  1997, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

A NEW ALGORITHM FOR THE SVD OF A LONG PRODUCT OF MATRICES
AND THE STABILITY OF PRODUCTS�

DAVID E. STEWARTy

Key words. SVD, products of matrices, Lyapunov exponents.

AMS subject classifications. 65F15, 34D08.

Abstract. Lyapunov exponents can be estimated by accurately computing the singular values of long products
of matrices, with perhaps 1000 or more factor matrices. These products have extremely large ratios between the
largest and smallest eigenvalues. A variant of Rutishauser’s Cholesky LR algorithm for computing eigenvalues
of symmetric matrices is used to obtain a new algorithm for computing the singular values and vectors of long
products of matrices with small backward error in the factor matrices. The basic product SVD algorithm can also
be accelerated using hyperbolic Givens’ rotations. The method is competitive with Jacobi-based methods for certain
problems as numerical results indicate.

Some properties of the product SVD factorization are also discussed, including uniqueness and stability. The
concept of a stable product is introduced; for such products, all singular values can be computed to high relative
accuracy.

1. Introduction. Algorithms have been developed to compute the singular values of
products of matrices without explicitly computing the products. Some of these algorithms
can only computed the SVD of a product of two matrices, such as the algorithms in Heath,
Laub, Paige and Ward [14], Fernando and Hammarling [11], or for a product of three matrices
(theHK SVD) by Ewerbring and Luk [9], [10]. Algorithms for computing the SVD of longer
products are discussed in Bojanczyk, Ewerbring, Luk and Van Dooren [3], and Abarbanel,
Brown and Kennel [1]. All of the above methods, except the last, use Jacobi methods for
computing the SVD.

Another approach is to use product versions of rank-revealing factorizations. This is
pursued by G.W. Stewart in [23], where a generalization of QR factorizations with column
pivoting is developed.

The above algorithms use only orthogonal transformations. In contrast, there have also
been some other forms of product SVD’s (in fact, a whole tree of such decompositions)
described by De Moor [4], H. Zha [25], and De Moor and Zha [5]. For each factor in the
product SVD’s in De Moor’s and Zha’s family of decompositions, they assign a “P” or a
“Q” depending on whether the product involves the matrix as a factor directly, or the inverse
adjoint of the matrix as a factor. That is, while a PP-SVD for factors A and B gives the SVD
of AB, the PQ-SVD gives the SVD of A(B�1)�.

These decompositions of De Moor and Zha use non-orthogonal transformations in the
same spirit as the generalized SVD as presented in Golub and Van Loan [13], x8.7.3. However,
here, as in the paper by Bojanczyk et al., the product SVD is a factorization of A = A(1) �
A(2) � � �A(p) of the form

A = U (1)R(1) � � �R(p)(U (p+1))T ;

where R(k) = (U (k))TA(k)U (k+1) is upper triangular, and the matrices U (k) are orthogonal,
and the product R(1) � � �R(p) is diagonal.

� Received September 27, 1996. Accepted for publication June 20, 1997. Communicated by L. Reichel.
y Mathematics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0123,

USA. Email: stewart@math.vt.edu. This work was supported in part through CODAC by AFOSR grant
F49620-93-1-0280.

29

ETNA
Kent State University
etna@mcs.kent.edu

30 DAVID E. STEWART

Here the emphasis is on obtaining backward error analysis in terms of the factors of the
product rather than the product itself. As has often been noted, backward error analysis gives
the best possible result for any numerical computation, since the data is invariably corrupted
by noise with magnitude of the order of machine epsilon or unit roundoff. Also, the data for
the product SVD problem consists of the sequence of factor matrices, not the product itself.

An aim of this work is to accurately compute Lyapunov exponents. To do this directly in
terms of singular value computations requires high relative accuracy rather than high absolute
accuracy. This is only sometimes possible, as a counterexample given in this paper shows.
In this paper we introduce the concept of a stable product, for which singular values can be
computed to high relative accuracy.

One application of these algorithms is to accurately compute Lyapunov exponents for
dynamical systems [2]. This involves computing the SVD of a matrix defined either through
differential equations

Φ0(t) = A(t)Φ(t); Φ(0) = I;(1.1)

or through difference equations

Φk+1 = AkΦk; Φ0 = I:(1.2)

The ith Lyapunov exponent is related to the ith singular values of Φ(t) or Φk by the
relation

�i = lim
t!1

log(�i(Φ(t)))

t
or �i = lim

k!1

log(�i(Φk))

k
;(1.3)

depending on whether the system is a differential or difference equation. Unfortunately
from the numerical point of view, these matrices become increasingly ill-conditioned; distinct
Lyapunov exponents imply exponentially diverging singular values. High relative accuracy
of the singular values rather than high absolute accuracy is desired for obtaininggood absolute
accuracy in the estimates for the �i, even if the ratio of largest to smallest singular values
is much greater than 1=u where u is the unit roundoff. High accuracy relative to kΦkk is
not sufficient as the smaller singular values can be easily swamped by noise from the larger
singular values. With exponentially large and exponentially small singular values, there are
also dangers of over- and under-flow. For example, in Lyapunov exponent calculations, the
singular values of products of hundreds or thousands of matrices are wanted, and the singular
values can easily exceed the range 10�1000.

While there are already methods to estimate the Lyapunov exponents of a dynamical
system by forming the QR factorization of a product of matrices, with a modest multiple
of the work needed to compute this product QR factorization, the entire singular value
decomposition can be computed. As the singular values are more directly related to the
definition of the Lyapunov exponents, and the QR factorization only gives results that are
asymptotically correct, it might be expected that this will give more quickly converging
estimates of these exponents.

The aim is, therefore, to compute the singular values of a product of matrices

A = A(1) �A(2) � � �A(p)(1.4)

while avoiding forming the product (at least in the conventional way), or making the A(k)

matrices ill-conditioned. The algorithm developed here is based on the LRCH algorithm of
Rutishauser and Schwartz [21] for finding the eigenvalues of ATA by using treppeniteration,
without forming either A or ATA. This method is guaranteed to converge [21], but may do

ETNA
Kent State University
etna@mcs.kent.edu

SVD OF A LONG PRODUCT 31

so rather slowly if some eigenvalues are close. In practice, for problems of the sort that come
from dynamical systems, convergence is usually very rapid. Where convergence is slow, a
shifting method based on hyperbolic rotations can accelerate convergence, as is described in
section 8.

This approach based on the LRCH algorithm is in fact equivalent in exact arithmetic to
implementing the QR algorithm for the product ATA as implemented by Abarbanel, Brown
and Kennel [1], by a result of Wilkinson [24, p. 535]. However, Abarbanel, Brown and
Kennel [1] do not perform any error analysis for their method under roundoff error, and it
does not appear possible to perform backward error analysis on their method. Backward error
results are proven in this paper for the LRCH method developed here.

Most previous product SVD algorithms, such as in [3], [8], and [14], are essentially
Jacobi methods.

In this paper only real matrices are considered. The complex case is an easy extension
of the real case.

The remainder of the paper is divided as follows. In section 2 the LRCH algorithm
as applied to computing the singular values of a product of matrices is described; section 3
describes the convergence and deflation theory for the product LRCH algorithm; section 4
gives the backward error analysis for the algorithm, with some discussion of the stability
properties of the problem; section 5 describes how non-square factors can be made square in
the algorithm (which simplifies the analysis for testing rank deficiency); section 6 discusses
the stability of the product SVD problem, and described stable products; section 7 discusses
numerical rank deficiency in the context of products of matrices; section 8 describes the use
of hyperbolic rotations to accelerate the convergence of the main algorithm; and section 9
gives some numerical results to indicate the competitiveness of the algorithm, at least for long
products.

2. The LRCH algorithm for computing singular values of products. The LRCH
algorithm for computing the singular value decomposition of a long product of matrices is

U1 I; V1 I

for i = 1; 2; : : :
Q
(p+1)
i I

for k = p; p� 1; : : : ; 1
C
(k)
i A

(k)
i Q

(p+1)
i

C
(k)
i = Q

(k)
i R

(k)
i (QR factorization)

if i odd then
Ui+1 UiQ

(1)
i

else
Vi+1 ViQ

(1)
i

for k = 1; 2; : : : ; p
A
(k)
i+1 (R(p�k+1)

i)T

(2.1)

Note that i is the iteration counter.
This algorithm is based on Rutishauser’s LRCH algorithm [21] for computing the eigen-

values of a symmetric positive semi-definite matrix. The basic LRCH algorithm without
shifts is [21]:

for i = 1; 2; : : :
Bi = LiL

T
i (Cholesky factorization)

Bi+1 LTi Li:

(2.2)

ETNA
Kent State University
etna@mcs.kent.edu

32 DAVID E. STEWART

Computing the singular values of A is equivalent to computing the square roots of the
eigenvalues of the matrix B = ATA. Note that forming the Cholesky factorization of
Bi = AT

i Ai = LiL
T
i is equivalent to forming the QR factorization of Ai: Ai = QiRi

implies that Ri = DiL
T
i where Di is a diagonal matrix with�1’s on the diagonal. The basic

LRCH iteration for computing singular values is thus

for i = 1; 2; : : :
Ai = QiRi (QR factorization)
Ai+1 RT

i :

(2.3)

(The updates for Ui and Vi have been dropped here.) It should also be noted that if Ai is rank
deficient, there is still a factorization AT

i Ai = LiL
T
i , though this may not be computable by

the standard Cholesky algorithm.
The QR factorization of Ai = A

(1)
i �A(2)

i � � �A(p)
i can be computed without forming Ai

by using a variant of treppeniteration as follows:

Q
(p+1)
i I

for k = p; p� 1; : : : ; 1

C
(k)
i A

(k)
i Q

(k+1)
i

C
(k)
i = Q

(k)
i R

(k)
i (QR factorization).

(2.4)

Then Ai = Q
(1)
i R

(1)
i R

(2)
i � � �R(p)

i = Q
(1)
i Ri, where each factor R(k)

i , and therefore Ri, is
upper triangular. This version of treppeniteration is used by Eckmann and Ruelle [7] for
estimating Lyapunov exponents. It is also discussed as a method of computing product QR
factorizations by Geist, Parlitz and Lautersborn [12] in their survey of different methods for
computing Lyapunov exponents.

If each of the A(k) are n � n, then one iteration of treppeniteration would take about
4n3p=3 flops for the QR factorizations using Householder transformations [13, p. 212], and
2n3(p�1) flops for the matrix multiplications (which could be reduced to aboutn3(p�1) flops
by using the fact that theR(k) are triangular). The total cost of an iteration of treppeniteration
is then about n3(7p=3� 2) flops.

Since in (2.2)Bi converges to a diagonal matrix as i!1,RT
i Ri approaches a diagonal

matrix of eigenvalues of ATA, and so Ri must converge to a diagonal matrix containing
the singular values of A. Let Qi = Q

(1)
i . Note that (2.3) can also give the singular

vectors as shown below. One cycle of (2.3) gives Ai+1 = (QT
i Ai)

T = AT
i Qi. Hence

Ai+2 = (AT
i Qi)

TQi+1 = QT
i AiQi+1, and so

A2i+1 = QT
2i�1 � � �QT

3 Q
T
1 A1Q2Q4 � � �Q2i

= (Q1Q3 � � �Q2i�1)
TA(Q2Q4 � � �Q2i)

= UT
i AVi:

(2.5)

Note that A(k)
i Q

(k+1)
i = Q

(k)
i R

(k)
i and so the singular values of A(k)

i and R
(k)
i are

identical. This means that R(k)
i is as well conditioned as A(k)

i in the 2-norm.
It should also be noted that the “product QR” factorization that is produced by treppen-

iteration is unique up to the signs of the entries if only real arithmetic is used. (If complex
arithmetic is used, then the entries are unique up to unit factors ei� for some real �.) This is
shown more precisely in the following lemma.

LEMMA 1. Suppose that

A = Q
(1)
1 R

(1)
1 � � �R(p)

1 (Q
(p+1)
1)T = Q

(1)
2 R

(1)
2 � � �R(p)

2 (Q
(p+1)
2)T

ETNA
Kent State University
etna@mcs.kent.edu

SVD OF A LONG PRODUCT 33

are two product QR factorizations of A = A(1) � � �A(p) with A(k) = Q
(k)
i R

(k)
i (Q

(k+1)
i)T

for k = 1; 2; : : : ; p, i = 1; 2. If Q(p+1)
1 = Q

(p+1)
2 then there are diagonal matrices D(k)

of the form diag (�1; : : : ;�1) where Q
(k)
1 = Q

(k)
2 D(k) and R

(k)
1 = D(k)R

(k)
2 D(k+1) for

k = 1; 2; : : : ; p.
Proof. Since Q(p+1)

1 = Q
(p+1)
2 we can take D(p+1) = I.

Now, we proceed by induction backwards from k = p+ 1 down to k = 1. Suppose that
the induction hypothesis has been established for k + 1 > 1. Since

A(k) = Q
(k)
1 R

(k)
1 (Q

(k+1)
1)T = Q

(k)
2 R

(k)
2 (Q

(k+1)
2)T ;

by the induction hypothesis,

Q
(k)
1 R

(k)
1 D(k+1)(Q(k+1)

2)T = Q
(k)
2 R

(k)
2 (Q(k+1)

2)T :

Premultiplying by (Q
(k)
1)T and postmultiplying by Q(k+1)

2 (R
(k)
2)�1 gives

R
(k)
1 D(k+1)(R

(k)
2)�1 = (Q

(k)
1)TQ

(k)
2 :

The left hand side is an upper triangular matrix, while the right hand side is a real orthogonal
matrix. Thus they must both be diagonal matrices with entries �1 on the diagonal. Let
D(k) = ((Q(k)

1)TQ(k)
2)T = (Q(k)

2)TQ(k)
1 . Premultiplying by Q(k)

2 gives Q(k)
1 = Q

(k)
2 D(k).

Then R(k)
1 = D(k)R

(k)
2 D(k+1) follows directly, and the induction hypothesis holds for k.

Thus by induction the result follows. 2

Note that if the factorization is performed so as to ensure that the diagonal entries of the
R(k) matrices are positive, then it can also be established that D(k) = I for all k, and the
product QR factorization is unique.

This uniqueness result gives an efficient method for computing the “graded QR decom-
position” of Stewart [23]: First form the QR factorization with column pivoting A(p) =
Q(p)R(p)ΠT of A(p). Then form the product QR factorization of AΠ by treppeniteration.
Since G.W. Stewart’s graded QR factorization is a product QR factorization of AΠ, this is the
the result of the above procedure up to signs.

3. Convergence and deflation. It is easy to show that with suitable choice of signs in
Di = diag (�1;�1; : : : ;�1), DiRi converges to the diagonal matrix of singular values of
A as i ! 1 [21]. However, this does not imply that R(k)

i converges as i ! 1, for any k.
What can be said is that, using jAj to denote the matrix with entries jaijj,

j diagRij = j diag (R(1)
i � � �R(p)

i)j = j diag (R(1)
i)j � � � j diag (R(p)

i)j(3.1)

converges to the diagonal matrix of singular values as i ! 1. The strictly upper triangular
parts of R(k)

i generally do not converge to zero. (Counterexamples using a pair of 2 � 2
matrices can be easily found.)

To test for convergence, write

Ri =

�
Ri r̃i
0 r�i

�
; R

(k)
i =

"
R
(k)
i r̃

(k)
i

0 r
(k)�
i

#
:

Then some arithmetic using RiR
T
i = RT

i+1Ri+1 gives

(r�i+1)
2 + kr̃i+1k2

2 = (r�i)
2;(3.2)

ETNA
Kent State University
etna@mcs.kent.edu

34 DAVID E. STEWART

so kr̃ik2 ! 0 as i!1.
The convergence rate with which Ri ! diag can be estimated in the case of distinct

singular values to be geometric with rate at least maxk(�k+1=�k)2. The above analysis,
however, shows that there must still be convergence even if �k+1 = �k in the sense that
r̃i ! 0. Once r̃i is sufficiently small, the matrix can be deflated by setting r̃i 0, and the
argument can be recursively applied to the principal sub-matrix Ri.

For many applications with long products, the singular values diverge exponentially
quickly, so the ratios �k+1=�k are very small. If these ratios are all significantly smaller than
u, then only a small number of iterations are needed to obtain convergence. It has been found
that for most Lyapunov exponent calculations with hundreds or thousands of factors, that only
two iterations are needed.

Rank deficient matrices. Rank deficiency is no barrier to fast convergence. If the rank
of Ri is r, then �r+1 = 0 < �r, and so the convergence rate for the separation of the rank
deficient part of Ri is faster than geometric convergence.

For Ri to be rank deficient, it must have a zero on the diagonal. This means that one
of the factor matrices R(k)

i must also have a zero on its diagonal. For there to be a zero
on the diagonal in that position at the end of the next iteration, it can be shown that the
row corresponding to that diagonal entry must also be zero. If that is not so, then the zero
entry will be pushed further down the diagonal. For there to be a zero entry in that diagonal
position after two iterations, not only does the corresponding row need to be zero, but also
the corresponding column will be zero after the iterations. Once this is done, standard QR
factorization techniques (such as Householder transformations and Givens’ rotations) will
preserve the zeros in this row and this column.

Deflation. Deflation can be carried out when jr�i+1=r
�
i j is sufficiently close to one, as

kr̃i+1k2 = r�i+1

q
(r�i =r

�
i+1)

2 � 1. This may give rise to numerical difficulties as r�i =r
�
i+1 =

1 + O(u) implies that kr̃i+1k2 = O(
p
u). Fortunately, there is a better test which relates

directly to the backward error.
Essentially deflation is just a matter of zeroing the r̃i vector. This can be done by zeroing

the nth column of each R(i) matrix above the diagonal. This gives an exact decoupling of the
last singular value, which will not be destroyed by later computations.

The deflation also results in small backward error if k(Ri)�1r̃ik2 is small. Provided
(Ri)kk is not small relative to the magnitude of thekth row for eachk, the quantityk(Ri)�1r̃ik2

can be computed to high absolute accuracy. This is because rows of Ri can be computed to
high accuracy relative to the size of that row. Further, as Ri ! diag the diagonal entries will
come to dominate the other entries in each row, so the assumption that “(Ri)kk is not small
relative to the magnitude of the kth row for each k” will become true after some iterations.

Once k(Ri)
�1r̃ik2 is of the same order asu, deflation can proceed since for � = (Ri)

�1r̃i,�
Ri r̃i
0 r�i

� �
I ��
0 1

�
=

�
Ri 0
0 r�i

�
:

Thus zeroing the last column above the diagonal gives a multiplicative backward error, and
hence a relative error in the singular values of size k�k2, by the results in x6. Note that
(Ri)�1r̃i can be computed to high absolute accuracy by using diagonal scaling.

4. Nonsquare factors. Nonsquare matrices can make the calculations seem somewhat
awkward. However, the product can be reduced, in a finite number of steps, to a product of
square matrices. Consider an adjacent pair of factors A(k)A(k+1). The first pass of the above

ETNA
Kent State University
etna@mcs.kent.edu

SVD OF A LONG PRODUCT 35

algorithm computes

Q(k)R(k)R(k+1) = A(k)A(k+1)Q(k+2);

where both R(k) and R(k+1) are upper triangular. Suppose that A(k) is m(k) � n(k) and
A(k+1) is m(k+1) � n(k+1). For the product to be meaningful, n(k) = m(k+1).

If m(k+1) > n(k) = m(k+2), then as R(k+1) is upper triangular, the bottom m(k+1) �
n(k+1) rows of R(k+1) are zero. Thus, in the product R(k)R(k+1), the right-most m(k+1) �
n(k+1) columns of R(k) are multiplied by a zero submatrix. Thus the product R(k)R(k+1) is
unchanged if the last m(k+1)� n(k+1) rows of R(k+1) and the last m(k+1) � n(k+1) columns
of R(k) are deleted. Also note that if m(1) > n(1), then the bottomm(1) � n(1) rows of R(1)

can be deleted without changing the singular values or rank of the product.
If we say that after i passes, R(k)

i is an m(k)
i � n

(k)
i matrix after deleting irrelevant rows

and columns, then

m
(1)
i � n

(1)
i = m

(2)
i � n

(2)
i = m

(3)
i � � � � � n

(p)
i :(4.1)

Since the second step involves a transposition that reverses the order of the factors, and
transposes each factor,

m
(k)
i+1 � n

(p�k+1)
i ; n

(k)
i+1 � m

(p�k+1)
i :

Thus m(k)
i+2 � m

(k)
i and n

(k)
i+2 � n

(k)
i . Since these quantities are non-negative integers, they

must eventually be constant for even i, with m(k)
i+1 = n

(p�k+1)
i and n(k)i+1 = m

(p�k+1)
i . Using

this in (4.1) for sufficiently large j gives the reversed inequalities:

n
(p)
j+1 � m

(p)
j+1 = n

(p�1)
j+1 � m

(p�1)
j+1 = n

(p�2)
j+1 � � � � � m

(1)
j+1:(4.2)

Combining (4.1) and (4.2) shows that the factor matrices will eventually become square under
this process of deleting irrelevant rows.

5. Error analysis. The main result of this section is that the computed singular values
of A = A(1) � � �A(p) are exact singular values for a perturbed matrix

A+ E = (A(1) + E(1)) � � � (A(p) + E(p)):

In terms of the number of iterations of LRCH used (N), the maximum number of rows or
columns in a factor matrix (n), and machine roundoff (u), these perturbations kE(k)k can be
bounded by quantities of order un3=2NkA(k)k if no deflation is used. The backward error
that occurs in deflating can be made quite small as is shown below, and can be bounded by
easily computable quantities. In what follows we use matrices with carets (b) to indicate
the corresponding quantities computed using finite precision arithmetic, as opposed to exact
arithmetic. The function fl(� � �) will be used to denote the results of a computation. The
error analysis is based on that given in Wilkinson [24], and Golub and Van Loan [13]. It is
assumed throughout that Householder operations are used to computed the QR factorizations,
and that a standard matrix multiplication procedure is used (and not, for example, Strassen’s
method), and that n3=2

u � 0:01. Larger constants than 0.01 can be used here, provided the
values of the constants Ki in the proof below are increased accordingly. The k � kF norm is
the Frobenius norm: kAkF =

p
trace(ATA).

THEOREM 1. If bΣ = bR(1) � � � bR(p) is the matrix of computed singular values in N steps
without deflation, then bΣ contains the exact singular values of a matrix product

(A(1) +E(1))(A(2) + E(2)) � � � (A(p) + E(p));

ETNA
Kent State University
etna@mcs.kent.edu

36 DAVID E. STEWART

where kE(i)kF = O(Nn3=2ukA(i)kF) provided Nn3=2u maxi kA(i)kF � 1.
Proof. In what follows, Ki will denote an appropriate absolute quantity (for example,
K0 = 1:01 and K1 = 12:36). The precise value of these constants is not important, and all
are of modest size.

The lowest level operations in (2.4) are matrix multiplications and QR factorizations.
From Golub and Van Loan [13, x2.4.8, p. 66],

fl(AB) = AB + E; where jEj � K0nujAj jBj:

From this it is evident that, using Frobenius norms,

kfl(AB) � ABkF � K0nukAkFkBkF :

The matrix bQ computed by the QR factorization of a matrix A with bA = bQ bR, is nearly
orthogonal in that there is an exactly orthogonal matrix Q, where

k bQ�QkF � (n� 1)(1 +K1u)
n�2K1ukAkF � K2n

3=2
u;

and

k bR�QTAkF � (n� 1)(1 +K1u)
n�2K1ukAkF � K2nukAkF :

Now,

bC(k)
i = fl(bA(k)

i
bQ(k+1)
i) = bA(k)

i
bQ(k+1)
i +E

(k)
0;i ;

where kE(k)
0;i kF � K0nuk bA(k)

i kF k bQ(k+1)
i kF . Since

k bQ(k+1)
i kF � kQ(k+1)

i kF + k bQ(k+1)
i � Q

(k+1)
i kF

� pn+K2n
3=2
u � (1 +K2un)

p
n;

this gives kE(k)
0;i kF � K3n

3=2
uk bA(k)

i kF .
Now write

bC(k)
i = bA(k)

i
bQ(k+1)
i +E

(k)
0;i = bA(k)

i Q
(k+1)
i +E

(k)
1;i ;

where E(k)
1;i = bA(k)

i (bQ(k+1)
i �Q

(k+1)
i) +E

(k)
0;i . Then

kE(k)
1;i kF � k bA(k)

i kF (K2n
3=2
u+K3n

3=2
u) = K4n

3=2
uk bA(k)

i kF :

Thus,

bC(k)
i = (bA(k)

i + E
(k)
2;i)Q

(k+1)
i

with kE(k)
2;i kF � K4n

3=2
uk bA(k)

i kF since E(k)
2;i = E

(k)
1;i (Q

(k+1)
i)T .

The QR factorization step in (2.4) computes the QR factorization of bC(k)
i . Then

k bC(k)
i � Q

(k)
i
bR(k)
i kF � K2nuk bC(k)

i kF
� K2nu(1 +K4n

3=2
u)k bA(k)

i kF
� K5nuk bA(k)

i kF ;
(5.1)

ETNA
Kent State University
etna@mcs.kent.edu

SVD OF A LONG PRODUCT 37

and kQ(k)
i � bQ(k)

i kF � K2n
3=2
u. So Q(k)

i
bR(k)
i = bC(k)

i +E
(k)
3;i where

kE(k)
3;i kF � K2nu(1 +K4n

3=2
u)k bA(k)

i kF :

Hence,

bR(k)
i = Q

(k)T
i ((bA(k)

i +E
(k)
2;i)Q

(k+1)
i + E

(k)
3;i) = Q

(k)T
i (bA(k)

i + E
(k)
4;i)Q

(k+1)
i ;

where Q(k)
i and Q(k+1)

i are exactly orthogonal, and

kE(k)
4;i kF � kE(k)

2;i kF + kE(k)
3;i kF � (K5 +K4

p
n)nuk bA(k)

i kF :

This is the first step of (2.3); the second step of (2.3) simply involves a transpose, which
involves transposing and reordering the R(k)

i matrices. Neither of these operations in the
second step of (2.3) involves roundoff error.

Thus, bA(k)
i+1 = bR(p�k+1)T

i = Q
(p�k)T
i (bA(p�k+1)

i + E
(p�k+1)
4;i)TQ

(p�k+1)
i with

kE(p�k+1)
4;i kF � (K5 +K4

p
n)nu k bA(p�k+1)

i kF :(5.2)

This implies that

k bA(k)
i+1kF � (1 +K6 n

3=2
u)k bA(p�k+1)

i kF � K7k bA(p�k+1)
i kF :

So two applications of LRCH gives

bA(k)
i+2 = bR(p�k+1)T

i = Q
(p�k)T
i+1 Q

(k)T
i (bA(k)

i +E
(k)
5;i)Q

(k+1)
i Q

(p�k+1)
i+1 ;(5.3)

where

kE(k)
5;i kF � (K9 +K8

p
n)nuk bA(k)

i kF � (K8 +K9)n
3=2
uk bA(k)

i kF :(5.4)

If no deflation is used then it is straightforward to see that N applications of LRCH gives the
same singular values as a perturbation to each factor of A of size
O(n3=2

uNkA(k)kF) in the Frobenius norm. 2

6. Stability. The question of stability of the problem cannot be answered completely
here. However, a partial indication can be given by the following result.

THEOREM 2. If A 2 Rm�n and E 2 Rm�n, then j�i((I + E)A)=�i(A) � 1j � kEk2

for i = 1; : : : ; rank (A).
This follows from a standard result for multiplicative bounds of singular values: �i+j�1(AB) �

�i(A)�j(B). See [15, p. 423, Ex. 18], and [16, p. 178, Thm. 3.3.16(d)]. This is an example
of an outer multiplicative perturbation. Note that the deflation operations are considered in
section 3.

The problem with trying to prove stabilityof the problem of computing the singularvalues
to high relative precision is that of turning a perturbation of each factor into a multiplicative
perturbation of the product. Note firstly that for a particular factor, A+E = A(I +F) where
F = A�1E. If kEk2 = O(ukAk2), then kFk2 = O(u�2(A)). A similar result will give
multiplicative perturbations of each factor on the left with the same bounds. Provided none of
the factors is ill-conditioned, this gives small multiplicative backward errors for each factor.

The relative stability of the singular values to multiplicative perturbations does not hold
in general as the following example shows. Suppose that 0 < � = 2�k � �1; �2 � 1 are

ETNA
Kent State University
etna@mcs.kent.edu

38 DAVID E. STEWART

chosen and A = diag (1=2; 1) and B = diag (1; 1=2). Then � is the repeated singular value
of the product

AkBk =

�
� 0
0 1

��
1 0
0 �

�
= �I:

Let I + E =

�
1 �1

�2 1

�
. Then

Ak(I + E)Bk =

�
� �1�

2

�2 �

�
= �

�
1 �1�

�2=� 1

�

, which has a singular value of size � �2.
On the other hand, the singular values of some products are not changed excessively

by perturbations of the factors. For example, consider the product of k factors Bk =
diag (1; 1=2)k. Then for any 0 � l � k,

Bl

�
1 �1

�2 1

�
Bk�l =

�
1 0

2�l�2 1

�
Bk

�
1 2�(k�l)�1

0 1� �1�2

�
:

Clearly the ill-conditioning of the product does not necessarily make the singular values
sensitive to perturbations of the factors.

The product Bk = diag (1; 1=2)k is an example of a stable product. The above result
can be generalized to replace any collection of inner multiplicative perturbations

B(I + eE(1))B(I + eE(2))B � � � (I + eE(p))B

with a pair of outer multiplicative perturbations

(I + F+)B
k(I + F�);

where F+ and F� have a size comparable to maxi k eE(i)k. More formally,
DEFINITION 1. An infinite product � � �A(�1)A(0)A(1) � � � is a stable product if there are

constants C and �0 > 0 such that for any i < j and matrices E(k) with kE(k)k � �0,

A(i)(I +E(i))A(i+1) � � � (I + E(j�1))A(j) = (I + F�)A
(i)A(i+1) � � �A(j)(I + F+)

for some matrices F�, F+, where kF�k; kF+k � C maxi�k�j kE(k)k.
A finite product A(1)A(2) � � �A(p) is stable if the above holds for a modest constant C

(which does not grow exponentially in p).
If a product A(1)A(2) � � �A(p) is a stable product in this sense, and each factor is well

conditioned, then the perturbed product

(A(1) +E(1))(A(2) +E(2)) � � � (A(p) + E(p))

can be represented in terms of inner and outer multiplicative perturbations

(I + E(1)(A(1))�1)A(1)(I +E(2)(A(2))�1)A(2) � � � (I + E(p)(A(p))�1)A(p);

which can then be represented in terms of outer multiplicative perturbations only:

(I + F�)A
(1)A(2) � � �A(p)(I + F+);

ETNA
Kent State University
etna@mcs.kent.edu

SVD OF A LONG PRODUCT 39

where kF+k; kF�k � C maxi kE(i)k k(A(i))�1k for a modest constant C, and where the
perturbationsE(i) are all sufficiently small.

There are results showing the backward stability of Lyapunov exponents under hyperbol-
icity assumptions. See, for example, Dieci, Russell and Van Vleck [6] which shows stability
of the Lyapunov exponents under the assumption that the linear system

bΦk+1 = e�
A(k)bΦk

is hyperbolic whenever
 is not a Lyapunov exponent. That is, there is a pair of (possibly non-
orthogonal) projectors P s

k and P u
k for each k, modest constants K > 0 and 0 < � < 1 where

P s
k +Pu

k = I, kP s
kk and kP u

k k are bounded independently of k, range P s
k�1 = A(k)range P s

k

and similarly for P u
k , and for l � k,

e�(l�k)
kP s
k�1A

(k)A(k+1) � � �A(l�1)A(l)P s
l k � K�l�k;

e�(l�k)
k(Pu
k�1A

(k)A(k+1) � � �A(l�1)A(l)Pu
l)
�1k � K�l�k;

where the latter inverse is of the product considered as a linear map range P u
k ! range P u

l .
Whether a given product of matrices satisfies this hyperbolicity assumption is a difficult
question to answer. It is, however, a question worth further investigation from the point of
view of numerical analysis.

7. Rank deficient products. A product of matrices A = A(1)A(2) � � �A(p) is defined
here to be numerically rank deficient if there are matrices E(i), i = 1; : : : ; pwhere kE(i)k2 �
CukA(i)k2 for some modest constant C, and the perturbed product

(A(1) +E(1))(A(2) +E(2)) � � � (A(p) + E(p))

is exactly rank deficient. This “backward error” definition of rank deficiency means that
simply looking at the (computed) singular values is not enough to determine if a product is
rank deficient. For example, the product of (k + 1) factors

�
1

1=2

�k �
u

1

�

is rank deficient because of the singular value u even though the other singular value 2�k

might be far, far smaller. On the other hand

�
1

1=2

�k

is not a numerically rank deficient product for any k. Since the main algorithm presented here
is backward stable with respect to the factors of a product, this definition of a numerically
rank deficient product is appropriate.

Detecting numerical rank deficiency in products of square matrices is comparatively easy:
all that is needed is to check that each factor is numerically nonsingular. This can be done
by performing an SVD on each factor and looking at the ratio of the smallest to the largest
singular values, and if this is less than Cu for any factor, then the factor and the product is
rank deficient.

This simple test cannot be applied directly to products of non-square matrices. However,
if the technique described in x4 is applied, then the product is transformed to become a
product of square matrices. However, the test needs to be modified to take the ratio of the
smallest singular value of each computed square factor, to the largest singular value of the

ETNA
Kent State University
etna@mcs.kent.edu

40 DAVID E. STEWART

corresponding original factor A(k). If this ratio is less than Cu then the product is rank
deficient.

Note, however, that determining the (numerical) rank deficiency of a product where more
than one factor is rank deficient, is a more complex task, requiring the computation of null
spaces of factors, and determining how these subspaces are transformed by the other factors.

8. Accelerating convergence. Convergence is accelerated in this algorithm by using a
shifting strategy together with deflation. The LRCH algorithm can be shifted, and this is
indeed part of the original algorithm in [21]. However, the shift must be smaller than the
smallest singular value of R = R(1)R(2) � � �R(p) as otherwise the Cholesky factorization of
RTR� �I does not exist.

The standard shifting strategy of setting s to be (smallest) eigenvalue of the bottom right-
hand 2�2 submatrix of RTRwas modified in [21], and combined with a suitable mechanism
for handling the occasional failure of this technique.

The shift cannot be done directly, as it is in LRCH, but must be done implicitly on the
product. Note that the product RTR does not need to be formed if we apply hyperbolic
rotations to

S =

�
R

�I

�
2 R2n�n;(8.1)

where � 2 = �. Applying hyperbolic rotations to S gives

HS =

�
R+

0

�
2 R2n�n;(8.2)

where H is the product of partitioned hyperbolic rotations.
Let J be an elementary partitioned hyperbolic rotation. Then

J =

2
666666666664

1
. . .

c : : : s
...

...
s : : : c

. . .
1

3
777777777775

(8.3)

where c2 � s2 = 1. Then,

JT
�
I 0
0 �I

�
J =

�
I 0
0 �I

�
:(8.4)

Thus, applying suitably partitioned hyperbolic rotations to S =

�
X

Y

�
, leaves XTX�Y TY

invariant. Thus, RT
+R+ = RTR � � 2I. Noting that kSk2

F = trace (STS), taking traces
shows that hyperbolic rotations will leave kXk2

F � kY k2
F invariant. Hence kR+k2

F =
kRk2

F � n� 2.
Hyperbolic rotations are not much used in numerical analysis as they can be ill-conditioned.

In particular, 4c2 � �2(J) = (c+ jsj)2 � c2. Care should therefore be taken to avoid exces-
sively large values of c. This can be avoided if we choose � so that �=�n(R) is not too close

ETNA
Kent State University
etna@mcs.kent.edu

SVD OF A LONG PRODUCT 41

to one. A combination of two strategies can be used to avoid problems: (1) the modification
of the matrix can be aborted if the values of jcj are excessive, and the original factors can be
restored with only the original first factor saved; (2) choose � so that �=b�n(R) is no more
than, say, 0.95 where b�n(R) is the estimate of the smallest singular value.

The hyperbolic rotations are applied to zero successive rows of the bottom n � n sub-
matrix of S, starting with the bottom row. After the (2n � k)th row of S is zeroed, Y =
diag (�; : : : ; �; 0; : : : ; 0) and kY kF = �

p
n� k � 1. So kXk2

F = kRk2
F +(kY k2

F �n� 2) <
kRk2

F . Thus, the size ofX in the Frobenius norm is decreased by each row elimination. Note
also that if jcj is of modest size for the hyperbolic rotations then the 2-norms of the rows of
Y are of the same order as � < �n(X).

In order to determine the appropriate shift and hyperbolic rotations the actual values of
R are needed. This can be done row by row, so that each computed row ofR has an error that
is small relative to its own 2-norm. By using a separate exponent this can also be done in a
way that avoids overflow except for extremely long products of matrices or extremely large
entries. Once the parameters of a hyperbolic rotation are computed they need to be applied
to the rows of S. However, these hyperbolic rotations also need to be applied to the product
R(1)R(2) � � �R(p).

Rather than apply hyperbolic rotations directly to

S =

�
R

�I

�
;

we take out the factor of R on the right to give

S = S0R =

�
I

�R�1

�
R:

Then we can apply the hyperbolic rotations to S0. The application of partitioned hyperbolic
rotations to S0 can in fact produce an upper triangular matrix. If H 0 is the set of rotations
applied to S0 to make S0 upper triangular, then

H0S = H0S0R =

�
S+
0

�
R:

Then we can replaceR(1) withS+R(1). This can be done with small backward error, and since
this error can be made into an outer multiplicative error, this results in only a small relative
perturbation of the singular values. An alternative to actually doing this multiplication is to
make S+ the first factor. The implementations of this algorithm of the author has not used
this technique. To recover the singular values of R, if b�i is the ith singular value of S+R,
then the ith singular value of R is �i =

p
� 2 + b�2

i .
Note that as � < �n(R), �i(�R�1) � �=�n(R) < 1 so I � � 2R�TR�1 is positive

definite. Thus, �R�1 is of modest size and can be computed to high absolute accuracy, as
each row of R�1 can be computed to high accuracy relative to the 2-norm of that row.

This shifting strategy requires about n3(p � 1)=3 flops to compute the product R and
the row scales. Each hyperbolic rotation requires 6 flops and one square root to compute
the c and s values; the total amount of work needed to compute and apply all the hyperbolic
rotations is about n3 flops plus n square roots. The total amount of computation needed for
the shifting strategy is about n3(p + 2)=3 flops and n square roots. This is of the same order
as a single pass of the basic algorithm. If each iteration of the above algorithm incorporates
shifting at each step, then the cost of a single complete iteration is about n3(8p� 4)=3 flops
and n square roots.

ETNA
Kent State University
etna@mcs.kent.edu

42 DAVID E. STEWART

9. Numerical results. The LRCH algorithm, optionally including shifting using hyper-
bolic rotations and deflation, has been implemented in ‘C’ using the Meschach matrix library
[22]. All calculations using the C implementations were performed on a 95MHz Intel Pentium
running Linux. Double precision (u � 2:2 � 10�16) was used throughout. The unshifted
algorithm was also implemented in MATLABTM [18]. The version implementing shifting,
sets � to be 0.95 times the smallest singular value of the bottom 2� 2 submatrix of R.

Deflation occurred when k�k2 < 10�15. All computations were done in double precision
with u � 2� 10�16.

For comparison, the Jacobi method of Bojanczyk et al. [3] was implemented in Meschach.
This used the scheme of Heath, Laub, Paige and Ward [14] for scheduling the Givens rotations
of the product. It was found to be necessary to explicitly zero entries in the factors; without
this step it was found that the product matrix with the scaled rows did not converge to a
diagonal matrix to within the specified tolerance of 10�15.

These methods were applied to a number of test problems to determine their reliability
and accuracy. The results for these examples are summarized in Table 9.1. The results
in this table show the number of floating point operations, number of square roots and the
number of iterations needed for the methods discussed in this paper. The first is the LRCH
method without shifts (LRCH); the second is the LRCH method with shifts (LRCH/sh); third
is the Jacobi based method of Bojanczyk et al. [3]; fourth is the graded QR algorithm of
G.W. Stewart implemented essentially as described in [23] (GRQR1); the fifth is the graded QR
algorithm implemented by taking the QR factorization ofA(p) with column pivoting, then then
forming the QR factorization of the product times the permutation matrix by treppeniteration
(GRQR2). These last two methods give identical results in exact arithmetic as noted above;
comparison of the results shown relative discrepancies between the approximate singular
values between GRQR1 and GRQR2 of no more than 5� 10�14 for the first three examples.
In Table 9.1, the errors are actually the natural logarithms of the ratios of the computed results
to the true answer. Dashes are used to indicate results for which the errors cannot be reliably
determined. Note that for examples 4 and 5, there were discrepancies between the LRCH
results and the Jacobi results of about 1� 10�5 and 3� 10�4 respectively. This discrepancy
can be explained in part by noting that the “average” condition number of the factor matrices
can be estimated, using the Lyapunov exponents, to be about 5� 106; for 1000 3� 3 factors
with machine epsilon (2:2 � 10�16) perturbations to each entry, an error estimate of about
3� 10�6 can be obtained without considering the effects of any “instability” in the product.
Example 1. The first test problem was the product

A = (A(1))20 =

2
4 104 10�2 0

10�2 1 10�2

0 10�2 1

3
5

20

:

The largest eigenvalue is close to (104)20 = 1080 while the two smaller eigenvalues are
relatively close to 1. MATLAB gave the eigenvalues of A(1) to be 1:00000000000100� 104,
1:00999999499982 and 0:98999999499982; the 20th power of these are the singular values
of A, which are, according to MATLAB,
1:00000000002002� 1080, 1:22018991913264 and 0:81790685497746. The smaller eigen-
values are not extremely close together, yet the asymptotic convergence rate (without shifting)
of � 0:8179=1:2202� 0:67 is not very good.
Example 2. This is the same as the first example except that

A(1) =

2
4 1 10�2 0

10�2 1 10�2

0 10�2 104

3
5 :

ETNA
Kent State University
etna@mcs.kent.edu

SVD OF A LONG PRODUCT 43

The eigenvalues of A(1) are the same for this problem, and so the singular values of the
product are also the same.
Example 3. This example is a product of 100 random 5�5 matrices with entries independently
drawn from a uniform probability distribution on [�1;+1]. The theory of Lyapunov exponents
due to Oseledec [19] shows that infinite products of such matrices have well-defined Lyapunov
exponents.
Example 4. This example illustrates the use of product SVD algorithms for computing
Lyapunov exponents for dynamical systems. The product is a product of 1000 factors which
was obtained by integrating the Lorenz equations [17, 20], which were developed as a very
crude approximation to the behavior of weather systems. The differential equations are [20,
p. 180]

x0 = �(y � x);
y0 = �x� y � xz;

z0 = ��z + xy:

The standard values of the parameters � = 10, � = 28, and � = 8=3, were used in the
calculations. The factor matrices were generated by integrating the variational equations
Φ0 = rf(x(t))Φ along with the differential equations x0 = f(x). This integration was
performed numerically using the standard fixed step-size fourth order Runge–Kutta method
with step size h = 0:01 over intervals of length one, after which the integration is re-started
with Φ reset to the identity matrix.
Example 5. This is the same as example 4, except that 10,000 factors were used with the same
integration scheme, step sizes, interval lengths, and initial conditions. Algorithm GRQR2
was not use for this problem as it would take an excessive length of time to run. Note that
GRQR2 is an O(p2 n3) algorithm, so increasing p by a factor of ten roughly increases the
running time by a factor of 100, requiring about 6.3 Gflops to finish.

The singular values are, to eight digits,2:1368676�10+3941, 1:0701122, and 3:1999193�
10�63295, which correspond to Lyapunov exponents+0:9075247,6:776�10�6, and�14:5740960.
These are for integration over a time period of 104. Note that from the theory of Lyapunov
exponents, if a trajectory of an ODE does not come arbitrarily close to fixed points or go to in-
finity, then zero is a Lyapunov exponent for that trajectory. Since only a finite time integration
of the Lorenz equations have been used, and a Runge–Kutta method is used to approximate
the trajectory, it cannot be expected that any of the computed Lyapunov exponents would be
exactly zero. However, the computed Lyapunov exponent of� 6:8� 10�6 seems to be close
to zero.

The relative differences between the singular values computed by the LRCH algorithm
and the Jacobi algorithm for examples #4 and #5 are greatest for the smallest singular value,
and the logarithm of the ratios is about 4:6� 10�4 and 5:3� 10�4 for examples #4 and #5
respectively. For the second largest singular value, the relative discrepancies are 2:9� 10�13

and 1:1� 10�13, and are equally small for the largest singular values of the products.
Test problems of the type given in G.W. Stewart [23] were also used for making com-

parisons. The products ABAB � � �BA with 2m + 1 were formed where A = UΣV T ,
B = V ΣUT with randomly generated orthogonal matrices U and V , and diagonal matrices
Σ. The SVD of the product ABAB � � �BA is UΣ2m+1V T . The choices for Σ used were
Σ = Σ1 = diag (1; 10�1; 10�2; 10�3; 10�4) and Σ = Σ2 = diag (1; 0:99; 0:8;0:7; 0:6).

The computational work for the different methods, problems, and values of m are shown
in Table 9.2. The relative errors are shown in Table 9.3.

As can be seen from these tables, all algorithms considered here produce singular values
that are accurate to essentially the full accuracy afforded by double precision arithmetic.

ETNA
Kent State University
etna@mcs.kent.edu

44 DAVID E. STEWART

Example Method # iter’ns # flops # sqrt’s max. error
#1 LRCH 69 282,146 4140 4:7� 10�14

LRCH/sh 8 34,009 575 2:3� 10�14

Jacobi 1 7,278 132 2:3� 10�14

GRQR1 – 2,7780 630 0.16
GRQR2 – 2,646 60 0.16

#2 LRCH 69 282,146 4140 2:0� 10�13

LRCH/sh 9 38,236 642 2:3� 10�13

Jacobi 1 7,278 132 2:3� 10�13

GRQR1 – 27,780 630 0.16
GRQR2 – 2,646 60 0.16

#3 LRCH 3 205,689 1300 –
LRCH/sh 3 206,731 1341 –

Jacobi 2 278,120 2580 –
GRQR1 – 3,127,800 25,250 0.19
GRQR2 – 62,510 500 0.19

#4 LRCH 2 408,131 6000 –
LRCH/sh 2 408,417 6016 –

Jacobi 1 360,078 6012 –
GRQR1 – 63,129,000 1,501,500 0.93
GRQR2 – 132,006 3000 0.93

#5 LRCH 2 4,080,131 60,000 –
LRCH/sh 2 4,080,417 60,016 –

Jacobi 1 3,600,078 60,012 –
GRQR2 – 1,320,006 30,000 1.63

TABLE 9.1
Results for examples 1 to 5

For Σ = Σ1, all algorithms are competitive in terms of the amount of computation needed.
However, the close singular values for Σ = Σ2 cause problems for the LRCH algorithms,
especially for the unshifted algorithm.

10. Conclusions. A new algorithm for computing SVD’s of long productsA= A(1)A(2) � � �A(p)

of matrices are given which is based on the LRCH algorithm of Rutishauser and Schwartz
[21], and treppeniteration, and has complexity O(n3p). It avoids computing the product,
and avoids creating extremely ill-conditioned matrices, which the product A often is. Unlike
the algorithm of Abarbanel et al. [1], the LRCH algorithm lends itself to a backward error
analysis in terms of the factors A(k) of A.

The unshifted LRCH algorithm can converge slowly, though shifting can be incorporated
by means of hyperbolic rotations. Care must be taken with the shifting strategy, as when the
shifts are too large, the shifting operation may need to be re-started with a new shift as was
done by Rutishauser and Schwartz [21].

For long products of matrices, the shifting is not usually necessary for rapid convergence.
In this case the LRCH algorithm is competitive with the Jacobi method [3], although for small
systems and short products, the Jacobi method appears to be the faster method. Both methods
are numerically stable and produce highly consistent answers.

ETNA
Kent State University
etna@mcs.kent.edu

SVD OF A LONG PRODUCT 45

iter’ns # flops # sqrt’s
m = 5
LRCH 3 30 558 165

LRCH/sh 3 32 061 217
Jacobi 2 31 056 355
m = 10
LRCH 2 38 892 210

LRCH/sh 2 39 852 239
Jacobi 1 35 876 355
m = 20
LRCH 2 75 932 410

LRCH/sh 2 76 892 439
Jacobi 1 69 796 655

Σ = Σ1

iter’ns # flops # sqrt’s
m = 20
LRCH 80 3 075 246 16 605

LRCH/sh 13 232 966 1 934
Jacobi 3 158 876 1 555
m = 40
LRCH 41 3 150 252 17 010

LRCH/sh 11 342 341 2 885
Jacobi 2 225 376 2 105
m = 80
LRCH 21 3 279 892 17 710

LRCH/sh 9 516 879 4 447
Jacobi 2 447 456 4 105

Σ = Σ2
TABLE 9.2

G.W. Stewart test examples: Computational work

REFERENCES

[1] H. D. I. ABARBANEL, R. BROWN, AND M. B. KENNEL, Local Lyapunov exponents computed from observed
data, Chaos: An Int. J. of Nonlinear Science, 2 (1992), pp. 343–365.

[2] L. ARNOLD, H. CRAUEL, AND J.-P. ECKMANN, Lyapunov exponents,Springer–Verlag, Berlin, New York, 1991.
Lecture Notes in Mathematics #1486.

[3] A. W. BOJANCZYK, M. EWERBRING, F. T. LUK, AND P. VAN DOOREN, An accurate product SVD algorithm,
in SVD and Signal Processing II, R. J. Vaccaro, ed., Amsterdam, New York, 1991, Elsevier Science
Publishers, pp. 113–131.

[4] B. DE MOOR, Generalizations of the singular value and QR decompositions, Signal Processing, 25 (1991),
pp. 135–146.

[5] B. DE MOOR AND H. ZHA, A tree of generalizations of the ordinary Singular Value Decomposition, Linear
Algebra Appl., 147 (1991), pp. 469–500.

[6] L. DEICI, R. D. RUSSELL, AND E. S. VAN VLECK, On the computation of Lyapunov exponents for continuous
dynamical systems. Georgia Institute of Technology Technical Report Math:040893–006, 1993.

[7] J.-P. ECKMANN AND D. RUELLE, Ergodic theory of chaos and strange attractors, Rev. Modern Physics, 57
(1985), pp. 617–656.

[8] L. M. EWERBRING AND F. T. LUK, Canonical correlations and generalized SVD: applications and new
algorithms, J. Comp. Appl. Math., 27 (1989), pp. 37–52.

[9] , The HK singular value decomposition, in Transaction of the 6th Army Conference on Applied Math.,
1989, pp. 881–891.

ETNA
Kent State University
etna@mcs.kent.edu

46 DAVID E. STEWART

Error in singular value
m = 5 1 2 3 4 5
LRCH 1:8� 10�15 8:9� 10�16 4:3� 10�15 1:1� 10�13 1:1� 10�12

LRCH/sh 1:8� 10�15 8:9� 10�16 4:3� 10�15 1:1� 10�13 1:1� 10�12

Jacobi 2:0� 10�15 1:3� 10�15 4:1� 10�15 1:1� 10�13 1:1� 10�12

m = 10 1 2 3 4 5
LRCH 4:1� 10�15 2:2� 10�15 7:7� 10�15 1:0� 10�13 1:6� 10�12

LRCH/sh 4:1� 10�15 2:2� 10�15 7:7� 10�15 1:0� 10�13 1:6� 10�12

Jacobi 3:9� 10�15 3:8� 10�15 7:3� 10�15 1:0� 10�13 1:6� 10�12

m = 20 1 2 3 4 5
LRCH 8:5� 10�15 8:2� 10�15 1:8� 10�14 2:7� 10�13 3:6� 10�12

LRCH/sh 8:5� 10�15 8:2� 10�15 1:8� 10�14 2:7� 10�13 3:6� 10�12

Jacobi 8:3� 10�15 1:1� 10�14 1:8� 10�14 2:7� 10�13 3:6� 10�12

Σ = Σ1

Error in singular value
m = 20 1 2 3 4 5
LRCH 2:1� 10�14 3:7� 10�14 4:6� 10�14 6:2� 10�14 5:8� 10�14

LRCH/sh 4:7� 10�15 8:0� 10�15 3:6� 10�15 1:4� 10�14 1:8� 10�15

Jacobi 2:4� 10�15 4:4� 10�15 4:9� 10�15 4:8� 10�15 1:3� 10�15

m = 40 1 2 3 4 5
LRCH 1:8� 10�15 7:5� 10�15 4:8� 10�15 5:7� 10�14 4:2� 10�14

LRCH/sh 4:8� 10�15 1:0� 10�14 2:8� 10�15 1:9� 10�14 4:4� 10�15

Jacobi 3:1� 10�15 1:0� 10�14 6:0� 10�15 1:5� 10�14 1:8� 10�15

m = 80 1 2 3 4 5
LRCH 2:4� 10�14 1:1� 10�13 7:2� 10�14 1:0� 10�13 6:0� 10�14

LRCH/sh 4:4� 10�15 1:6� 10�14 1:3� 10�15 3:7� 10�14 1:7� 10�14

Jacobi 6:7� 10�15 1:9� 10�14 1:4� 10�14 2:8� 10�14 4:0� 10�15

Σ = Σ2

TABLE 9.3
G.W. Stewart test examples: Relative errors in singular values

[10] , The HK singular value decomposition of rank deficient matrix triplets, in Computing in the 90’s,
Springer–Verlag, Berlin, New York, 1991, pp. 286–292. Lecture Notes in Computer Science Series, no.
507.

[11] V. FERNANDO AND S. HAMMARLING, A product SVD (ΠSVD) for two matrices and balanced realizations, in
Linear Algebra in Signals, Systems and Control, B. N. Datta, eds., SIAM Publ., Philadelphia, PA, 1988,
pp. 128–140.

[12] K. GEIST, U. PARLITZ, AND W. LAUTERSBORN, Comparison of different methods for computing Lyapunov
exponents, Progr. Theoret. Phys., 83 (1990), pp. 875–893.

[13] G. GOLUB AND C. VAN LOAN, Matrix Computations, Johns Hopkins University Press, 2nd ed., 1989.
[14] M. T. HEATH, A. J. LAUB, C. C. PAIGE, AND R. C. WARD, Computing the singular value decomposition of a

product of two matrices, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 1147–1159.
[15] R. A. HORNE AND C. A. JOHNSON, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[16] , Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[17] E. N. LORENZ, Deterministic non-periodic flow, J. Atmospheric Sci., 20 (1963), pp. 130–141.
[18] C. MOLER, J. LITTLE, AND S. BANGERT, Pro-MATLAB User’s Guide, The MathWorks Inc., South Natick, MA,

1990.
[19] V. I. OSELEDEC, A multiplicative ergodic theorem: Ljapunov characteristic numbers for dynamical systems,

Trans. Moscow Math. Soc., 19 (1967), pp. 197–231.
[20] L. PERKO, Differential Equations and Dynamical Systems, Texts Appl. Maths. 7, Springer–Verlag, Berlin,

Heidelberg, New York, 1991.

ETNA
Kent State University
etna@mcs.kent.edu

SVD OF A LONG PRODUCT 47

[21] H. RUTISHAUSER AND H. R. SCHWARTZ, The LR transformation method for symmetric matrices, Numer. Math.,
5 (1963), pp. 273–289.

[22] D. E. STEWART AND Z. LEYK, Meschach: Matrix Computations in C, Australian National University, Canberra,
1994.

[23] G. W. STEWART, On gradedQR decompositions of products of matrices, Elec. Trans. Numer. Anal., 3 (1995),
pp. 39–49.

[24] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[25] H. Y. ZHA, A numerical algorithm for computing the restricted singular value decomposition of matrix triplets,

Linear Algebra. Appl., 158 (1992), pp. 1–25.

