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EIGENFUNCTION EXPANSION METHOD FOR MULTIPLE SOLUTIONS OF
FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS WITH CUBIC

POLYNOMIAL NONLINEARITY∗
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Abstract. Multiple solutions of fourth-order ordinary differential equations (ODEs) with cubic polynomial non-
linearity are presented in this paper. The ODEs are discretized by the eigenfunction expansion method. Discretization
error estimates are derived. We construct an efficient polynomial homotopy to find all solutions for the system of
polynomial equations on the coarse level by recursion. Two kinds of filters are suggested for removing possible
spurious solutions of the discretized system of polynomial equations. Numerical experiments are included to verify
the error estimates and efficiency of the proposed homotopy.
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1. Introduction. In this paper, our aim is to find numerically multiple solutions for the
following nonlinear fourth-order differential equation

y(4) + αy′′ + βy = f(y) + g(x), x ∈ Ω ≡ (0, 1)(1.1)

with the boundary conditions

y(0) = y(1) = y′′(0) = y′′(1) = 0,

where α and β represent some real constants, f is a polynomial of y and g ∈ L2(Ω) is a given
function.

The boundary value problem (BVP) (1.1) usually describes the equilibrium state of
the deformation of an elastic beam with supported ends. This problem has been widely
addressed by researchers using various types of equations and boundary conditions [2, 4, 10].
The relevant applications of fourth-order linear and nonlinear ODE models have gained
considerable attention in areas such as biology, physics, and engineering [6, 13, 29]. Nonlinear
science entails a difficult aspect in the application of nonlinear mathematical problems.

The difficulties of multiple solution problems involve theoretical issues, such as distribu-
tion and structure of the solution set. It also involves algorithmic issues, such as discretization
methods for the differential equations and algebraic methods for the discretized equations.
Usually, it is quite difficult to obtain closed form solutions for BVPs, especially for nonlinear
differential equations. Only in certain scenarios, analytic solutions can be anticipated. Hence,
numerical solutions for these problems become a choice. The solutions for problem (1.1)
are mostly dependent on the nonlinearity of f . Therefore, the number of solutions and their
existence are related to the growth conditions of nonlinearity; see [5, 14, 18, 21].

Many researchers deal with determining the numerical and analytic solutions of fourth-
order ordinary differential equations to both linear and nonlinear equations with initial and/or
boundary conditions. Numerical solutions are computed by the Finite Element Method [11],
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the Finite Difference Method [26], and the Sinc-Galerkin Method [23], while analytic solutions
are obtained by the Homotopy Perturbation Method [19], the Homotopy Analysis Method
[17], the Lower and Upper Solution Method [22], and the Modified Decomposition Method
[28]. As far as we know from the literature, there are only a few works on finding multiple
solutions of differential equations and even fewer for partial differential equations.

The Search-Extension Method (SEM) computes all possible solutions of semilinear elliptic
equations, which was suggested by Chen and Xie [7]. They also studied important aspects
of SEM for their significance by considering square, unit circle, and L-shape domains. In
SEM, the eigenfunction expansion method (EEM) is used as discretization method, where the
eigenfunctions are those of the Laplacian −∆. The main aspect of SEM consists of two steps:
First, all solutions for the EEM system in a small subspace, based on the cuboid algorithm, are
searched. Second, the approximate solutions obtained from the first step are used as initial
points in the numerical extension method (homotopy method) for further computation of
multiple solutions associated with the EEM system in a larger subspace.

Allgower et al. [1] established numerical continuation methods for the finite difference
discretization of nonlinear two-point boundary value problems. They performed a homotopy
deformation on successively refined discretization systems in order to obtain solutions on
the finer level. Some filters are used to remove spurious solutions that lead to an efficient
homotopy. These filters depend on the information of the original problem and no general rule
seems to be available.

By using the eigenfunction expansion method, the multiple solutions of semilinear elliptic
equations with polynomial nonlinearity have been investigated by Zhang et al. [31]. The
solutions for the discretized problem on a coarse level were computed and used as initial
guesses to find solutions of the discretized problem on a finer level. For the resulting system
of polynomial equations, they suggested the extension homotopy method to find efficiently
all solutions. They proposed a filter strategy to remove possible spurious solutions that
depends on the error estimates of the eigenfunction expansion discretization. Due to the
high computational cost, the dimension of the coarse level discretization is usually low. The
computed solutions can then be refined by the finite element method or the finite difference
method.

In this paper, we find multiple solutions of the nonlinear fourth-order differential equation
by the Eigenfunction Expansion Method. We formulate Algorithm 1 for the given system of
polynomial equations, which can be solved by software packages from the numerical algebraic
geometry community such as PHC, HOM4PS-2.0, PHoM, and Bertini [3, 12, 15, 16, 27]. The
solution set of the discretization system may have spurious solutions, which are not close to
the original solutions. Therefore, we apply the central difference scheme as a filter to remove
spurious solutions appearing in the solution set of the discretized system. We also apply
Newton’s method as a filter to remove spurious solutions.

This paper is organized as follows: In Section 2, we discretize the fourth-order differential
equation with polynomial nonlinearity by using the eigenfunction expansion method. In
Section 3, we constructed a polynomial homotopy to find all solutions for the resulting system
of polynomial equations on the coarse level. Section 4 contains the derivation of error estimates
for the discretization method. In Section 5, we provide filters for removing spurious solutions.
In Section 6, the details of our computation and numerical examples are presented to confirm
the accuracy of the eigenfunction expansion method and the efficiency of the homotopy
method. Conclusions are drawn in Section 7.

2. Discretization by the eigenfunction expansion method. The weak formulation of
(1.1) with homogeneous boundary conditions is defined as follows: find y ∈ H2(Ω)∩H1

0 (Ω),
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such that

(2.1) A(y, φ) =

∫ 1

0

(y′′φ′′ − αy′φ′ + βyφ) dx−
∫ 1

0

f(y)φdx−
∫ 1

0

g(x)φdx = 0,

∀φ ∈ H2(Ω) ∩H1
0 (Ω),

where H2(Ω) ∩H1
0 (Ω) is a Sobolev space with the first boundary condition y(0) = y(1) = 0.

The general idea of the method is to choose the set of eigenfunctions {φi}∞i=1 correspond-
ing to the Sturm-Liouville operator with boundary conditions that satisfies

H[φi] = λiφi

Rk[φi] = 0, k = 1, 2, 3, . . . , n,

whereH[·] is a linear differential operator related to (1.1), Rk[·] are linear boundary conditions
and λi are eigenvalues of the system (H, [Rk]). Specifically, the eigenpairs {λi, φi} of the
fourth-order differential operator with boundary conditions corresponding to (1.1) are as
follows, {

φ
′′′′

= λφ,

φ(0) = φ(1) = φ′′(0) = φ′′(1) = 0.

Thus, we have solutions φi(x) = C · sin(iπx), where C is an arbitrary constant.
The set of eigenfunctions {φi}∞i=1 is a normalized orthogonal basis of the Sobolev space

V (Ω) := H2(Ω) ∩H1
0 (Ω). Indeed, the orthogonality condition requires that (φi, φj) = δij ,

where δij is the Kronecker delta. Since the φi are normalized, the eigenpairs are as follows

φi(x) =
√

2 sin(iπx), λi = (iπ)4, i = 1, 2, 3 . . .

Let VN be the finite-dimensional subspace of the space H2(Ω) ∩H1
0 (Ω) spanned by the

first N eigenfunctions, i.e., VN = span{φi}Ni=1. The eigenfunction expansion discretization
for (1.1) is as follows: find the coefficients zi ∈ R in the linear combination of the φi,

yN (x) =

N∑
i=1

ziφi(x) =
√

2

N∑
i=1

zi sin(iπx) ∈ VN ,(2.2)

such that

A(yN , φ) = 0 ∀φ ∈ VN ,(2.3)

where the zi are unknown coefficients to be determined. By substituting (2.2) into (2.1), we
obtain the following equations

(
√

2)2
N∑
i=1

zi

∫ 1

0

[(iπ)2(mπ)2 sin(iπx) sin(mπx)− α(iπ)(mπ) cos(iπx) cos(mπx)

+ β sin(iπx) sin(mπx) ]dx =
√

2

∫ 1

0

[f(yN ) + g(x)] sin(iπx) dx.

Since
∫ 1

0
sin(iπx) sin(mπx) dx =

∫ 1

0
cos(iπx) cos(mπx) dx = 1

2δim, we obtain
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zi(i
4π4 − αi2π2 + β) =

√
2

∫ 1

0

[f(yN ) + g(x)] sin(iπx) dx.

From the above equations, we obtain a complicated system of polynomial equations with
respect to z = (z1, z2, . . . , zN ) that can be expressed as follows:

FN (z1, z2, . . . , zN ) =
z1v1 −

∫ 1

0
f(z1φ1 + z2φ2 + · · ·+ zNφN )φ1 −

∫ 1

0
gφ1

z2v2 −
∫ 1

0
f(z1φ1 + z2φ2 + · · ·+ zNφN )φ2 −

∫ 1

0
gφ2

...
zN−1vN−1 −

∫ 1

0
f(z1φ1 + z2φ2 + · · ·+ zNφN )φN−1 −

∫ 1

0
gφN−1

zNvN −
∫ 1

0
f(z1φ1 + z2φ2 + · · ·+ zNφN )φN −

∫ 1

0
gφN

 = 0,
(2.4)

where vi = [(iπ)4 − α(iπ)2 + β], i = 1, 2, . . . , N .
Given that N is large, it is difficult to find all solutions of the system of polynomial

equations in (2.4). However, the total problem can be decomposed into a series of subproblems
that can be solved. Hence, we utilize some special algorithms for the resulting system of
polynomial equations.

LEMMA 2.1. (See [30]) For k positive integers j1, j2, . . . , jk, let c(j1, j2, . . . , jk) denote∫ 1

0
sin(j1πx) sin(j2πx) · · · sin(jkπx) dx. Then, the following results hold:

(i) When k is odd and
k∑
l=1

jl is even, c = 0;

(ii) When k and
k∑
l=1

jl are odd

c =
(−1)(k−1)/2

π2k−2

∑
σl∈{−1,1}
l=2,··· ,k

σ2σ3 · · ·σk
j1 + σ2j2 + · · ·+ σkjk

;

(iii) When k is even,

c =
(−1)k/2

2k−1

∑
σl∈{−1,1}
l=2,··· ,k

σ2σ3 · · ·σkδ(j1 + σ2j2 + · · ·+ σkjk, 0)

where δ(·, ·) represents the Kronecker delta.

The calculation of
∫ 1

0
f(z1φ1 + z2φ2 + · · ·+ zNφN )φi in (2.4) depends on the results

from the Lemma 2.1. Then, we have∫ 1

0

φj1 · · ·φjlφi dx =
√

2
(l+1)

∫ 1

0

sin(rj1πx) · · · sin(rjkπx) sin(riπx) dx(2.5)

=
√

2
(l+1)

c(rj1 , rj2 , . . . , rjk , ri).

Accordingly, the integral (2.5) corresponding to monomial alylN of f(yN ) can be obtained as
follows:
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∫ 1

0

al(z1φ1 + · · ·+ zNφN )lφi dx

= al

∫ 1

0

∑
k1+k2+···+kN=l
k1,k2,...,kN≥0

(
l

k1, . . . , kN

)
(z1φ1)k1(z2φ2)k2 · · · (ztφt)kNφi dx

= al
∑

k1+k2+···+kN=l
k1,k2,...,kN≥0

(
l

k1, . . . , kN

)
zk11 zk22 · · · z

kN
N

∫ 1

0

φk11 φ
k2
2 · · ·φ

kN
N φi dx

=
√

2
(l+1)

al
∑

k1+···+kN=l

k1,...,kN≥0

(
l

k1, . . . , kN

)
c(r1, . . . , r1︸ ︷︷ ︸

k1

, r2, . . . , r2︸ ︷︷ ︸
k2

, . . . , rN , . . . , rN︸ ︷︷ ︸
kN

)zk11 zk22 · · · z
kN
N ,

where
(

l
k1,...,kN

)
= l!

k1!k2!......kN ! denotes a multinomial coefficient. The integral
∫ 1

0
g(x)φi dx

may not be calculated explicitly. So we can calculate it approximately by using the numerical
integration (quadrature) rules. Combining all these results, the integrals in (2.4) are obtained,
therefore the resulting system of polynomial equations is:

FN (z1, z2, . . . , zN ) =



d∑
|j|=0

c
(1)
j zj

d∑
|j|=0

c
(2)
j zj

...
d∑
|j|=0

c
(N)
j zj


= 0,

where j = (j1, . . . , jN ), |j| = j1 + · · ·+ jN , zj = zj11 z
j2
2 · · · z

jN
N , and ckj is the corresponding

coefficient in component k of FN .

3. Construction of the extension homotopy for the system of polynomial equations.
Some numerical methods have been proposed to deal with the algebraic sets generated from the
system of polynomial equations. Basic numerical algebraic geometry provides the algorithms
with probability one while computing all isolated solutions of a system of polynomial equations.
In this paper, we consider the homotopy defined by;

HN (z1, z2, . . . , zN , t) = tGN (z1, z2, . . . , zN ) + (1− t)FN (z1, z2, . . . , zN ),

where FN is defined in (2.4) and GN is defined as follows:

GN (z1, z2, . . . , zN ) ,
z1v1 −

∫ 1

0
f(z1φ1 + z2φ2 + · · ·+ zN−1φN−1)φ1 −

∫ 1

0
gφ1

z2v2 −
∫ 1

0
f(z1φ1 + z2φ2 + · · ·+ zN−1φN−1)φ2 −

∫ 1

0
gφ2

...
zN−1vN−1 −

∫ 1

0
f(z1φ1 + z2φ2 + · · ·+ zN−1φN−1)φN−1 −

∫ 1

0
gφN−1

zNvN −
∫ 1

0
f(z1φ1 + z2φ2 + · · ·+ zNφN )φN −

∫ 1

0
gφN

 .
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The case GN = 0 corresponds to the variational problem: find yN =
∑N
i=1 ziφi ∈ VN , such

that ∫ 1

0

[(PN−1yN )′′φ′′ − α(PN−1yN )′φ′ + β(PN−1yN )φ] dx −
∫ 1

0

f(PN−1yN ) dx

−
∫ 1

0

gφ dx = 0 ∀φ ∈ VN−1,∫ 1

0

[y′′Nφ
′′
N − αy′Nφ′N + βyNφN ] dx−

∫ 1

0

f(yN )−
∫ 1

0

gφN dx = 0,

where PN−1 : V −→ VN−1 denotes to the orthogonal projection that is defined as: for y ∈ V

(y − PN−1y, φ) = 0 ∀φ ∈ VN−1,

where (·, ·) is the L2 inner product on the domain Ω.
The starting system of the homotopy is HN (z1, . . . , zN , 1) = GN (z1, . . . , zN ) = 0 and

the target system is HN (z1, . . . , zN , 0) = FN (z1, . . . , zN ) = 0. Therefore, we expect that
the path-tracking (path-following) for the homotopy equation HN (z1, . . . , zN , t) = 0 is
efficient, since FN and GN have similar structures. The computational cost for the target
system is divided into two parts. The first part is the cost of tracking the homotopy paths
defined by HN = 0 and the second part is the computation of starting points SN of the paths
defined by GN = 0. In this paper, we get the starting points SN of the homotopy paths by
solving FN−1(z1, . . . , zN−1) = 0 and use the solution (z1, . . . , zN−1)′ in the last equation
to calculate the last components zN . We repeat the same technique again to get a recursive
process. Therefore, the solution of the target system FN = 0 is obtained by successively
tracking the paths Hn = 0 and solving the last equations of Gn = 0, with n = 2, . . . , N .

The key feature and the basic tool in homotopy continuation are path-tracking. However,
path-tracking often encounters difficulty when the path is singular as t varies from 0 to 1,
where singularity means that the Jacobian matrix has rank less than n. To tackle this problem,
a generic random number γ ∈ C (the accessibility constant) is used [20]. Therefore, we extend
the homotopy for a system of polynomial equations as

Hn(z1, . . . , zn, t) = γtGn(z1, . . . , zn) + (1− t)Fn(z1, . . . , zn), n = 2, . . . , N,(3.1)

with the following Algorithm 1:

Algorithm 1 Extension homotopy for the system of polynomial equations.
if n = 1

Solve a single polynomial F 1(z1) = 0 with respect to z1 in order to find solution set T1.
for n = 2 to Nc do

Solve the last polynomial of Gn(z1, z2, . . . , zn) = 0 with fixed z1, z2, . . . , zn−1 ∈ Tn−1
in order to find starting points Sn of Gn(z1, z2, . . . , zn) = 0;
Track all paths of Hn(z1, z2, . . . , zn, t) = 0 to obtain all solutions Tn of
Fn(z1, z2, . . . , zn) = 0 with starting points Sn;

end
end

The homotopy (3.1) is guaranteed to obtain all solutions of Fn = 0 which arise from the
discretization of a differential equation if deg(f(y)) is odd, under certain assumptions [24].
But when deg(f(y)) is even, we can not guarantee that the homotopy obtains all solutions of
Fn = 0. If desired, we can refine all solutions obtained with a nonlinear solver.
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4. Error estimates for eigenfunction expansion method. We introduce some notations
that are needed throughout this section. Given that s is a nonnegative integer, let Ḣs = Ḣs(Ω)

be a subspace of L2(Ω) consisting of functions v, with |v|s = (
∑∞
m=1 λ

s
m(v, φm)2)

1
2 <∞.

It is known that Ḣs(Ω) = {y ∈ Hs, y(2j)(0) = y(2j)(1) = 0, 0 ≤ j < s/2}, and the norms
| · |s and ‖ · ‖s are equivalent in Ḣs(Ω); see [25].

Consider a nonlinear differential operator L defined in H2(Ω) ∩H1
0 (Ω) as follows,

L(w) = w(4) + αw′′ + βw − f(w)− g(x).

The linearized operator of L at w (Frechet derivative) is then given by,

L′(w)v = v(4) + αv′′ + βv − f ′(w)v.

We assume that y is a solution of (1.1) and L′(y) is an isomorphism from V (Ω) to V ∗(Ω).
Define the bilinear form A

′
(·; ·, ·) : V × V −→ R as follows

A′(w; v, φ) =

∫ 1

0

(v′′φ′′ − αv′φ′ + βvφ) dx−
∫ 1

0

f ′(w)vφ dx.

Let PN be the L2-orthogonal projection defined by

(v − PNv, φ) = 0, ∀φ ∈ VN ,

and define the Ritz projection (elliptic projection) A′(y; ·, ·) such that

A′(y; v −RNv, φ) = 0, ∀φ ∈ VN .

We present some lemmas which will help us to clarify the proofs of our main results.
LEMMA 4.1. Let v ∈ Ḣs+1(Ω), for s ≥ 1. The following error estimates for the

projection PN hold

‖v − PNv‖H1 ≤ CN−s|v|1+s, ‖v − PNv‖L2 ≤ CN−(s+1)|v|1+s,

where C stands for a generic positive constant which is independent of N .
For the proof of Lemma 4.1; see [8].
LEMMA 4.2. Consider y the solution of problem (2.1). For vN ∈ VN and N sufficiently

large, we have

‖vN‖H1 ≤ C sup
φ∈VN

A′(y; vN , φ)

‖φ‖H1

and ‖vN‖H1 ≤ C sup
φ∈VN

A′(y;φ, vN )

‖φ‖H1

.(4.1)

The same results are also valid for ε sufficiently small when replacing A′(y; ·, ·) in (4.1) by
A′(yε; ·, ·) with ‖yε − y‖H1 ≤ ε.

Proof. Under the assumption that L′(y) is an isomorphism, we get

‖vN‖H1 ≤ C sup
φ∈V

A′(y; vN , φ)

‖φ‖H1

.
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Based on the definition of PN and Sobolev’s embedding theorem for a one-dimensional
domain Ω, H1(Ω) ↪→ Lp(Ω), 1 ≤ p < +∞, we have

A′(y; vN , w − PNw) =

∫ 1

0

[v′′N (w − PNw)′′ − αv′N (w − PNw)′ + βvN (w − PNw)] dx

−
∫ 1

0

f ′(y)vN (w − PNw) dx

=

∫ 1

0

[v′′′′N (w − PNw)− αv′′N (w − PNw) + βvN (w − PNw)] dx

−
∫ 1

0

f ′(y)vN (w − PNw) dx

= −
∫ 1

0

f ′(y)vN (w − PNw) dx.

Using Hölder’s inequality and Lemma 4.1, we therefore obtain

A′(y; vN , w − PNw) ≤ ‖f ′(y)‖L4‖vN‖L4‖w − PNw‖L2 ≤ CN−1‖w‖H1‖vN‖H1 .

Then

A′(y; vN , PNw) = A′(y, vN , w)−A′(y, vN , w − PNw)

≥ A′(y, vN , w)− CN−1‖w‖H1‖vN‖H1 .

Therefore, the first estimate in (4.1) follows through the use of ‖PNw‖H1 ≤ ‖w‖H1 . Similarly,
we can show the second estimate.

Again for A′(yε; ·, ·), we use Sobolev’s embedding theorem and Hölder’s inequality.
Therefore, we get

A′(yε;v, φ) =

∫ 1

0

[v′′φ′′ − αv′φ′ + βvφ] dx−
∫ 1

0

f ′(yε)vφ dx

=

∫ 1

0

[v′′φ′′ − αv′φ′ + βvφ] dx−
∫ 1

0

f ′(y)vφ dx+

∫ 1

0

[f ′(y)− f ′(yε)]vφ dx.

By using the Taylor expansion with the integral remainder over the interval Ω, we have

A′(yε; v, φ) = A′(y; v, φ)−
∫ 1

0

[f ′′(y)(yε − y) + · · ·+ f (d)(y)

(d− 1)!
(yε − y)d−1]vφ dx

≥ A′(y; v, φ)− C‖(yε − y)‖H1‖v‖H1‖φ‖H1 .

The proof is completed.
LEMMA 4.3. The following formula holds for the difference between the solution y and

its Ritz projection RNy.

‖y −RNy‖L2 ≤ CN−1‖y −RNy‖H1 .

Proof. Let eN = y −RNy and define z as the solution of the following equation,

A′(y; z, φ) ,
∫ 1

0

(z′′φ′′ − αz′φ′ + βzφ) dx−
∫ 1

0

f ′(y)zφ dx(4.2)

= (eN , φ), ∀φ ∈ V.
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Setting φ = eN in (4.2) we obtain

‖eN‖2L2 = A′(y; z, eN )

= A′(y; z − PNz, eN )

≤ C‖z − PNz‖H1‖eN‖H1

≤ CN−1|z|2‖eN‖H1 .

Since the norms | · |2 and ‖ · ‖H2 are equivalent and (4.2) satisfy the regularity condition
‖z‖H2 ≤ C‖eN‖L2 , we have

‖eN‖L2 ≤ CN−1‖eN‖H1 .

THEOREM 4.4. Let y ∈ Ḣs+1 be the solution of (2.1) and yN ∈ VN be the approximate
solution of (2.3). The following error estimates hold, if N is sufficiently large.

‖yN − y‖H1 ≤ CN−s, ‖yN − y‖L2 ≤ CN−(s+1).

Proof. The proof follows a similar argument as [31].

5. Filters for removing spurious solutions. The discretized boundary value problems
sometimes have spurious solutions that are not reasonable approximate solutions to the original
equation. Therefore, we have to remove them. In this section, we present two types of filters
for removing spurious solutions of the nonlinear fourth-order boundary value problem. The
first type depends on the finite difference approximation, which has two forms, and the second
type depends on Newton’s method.

For the first form of the finite difference filter, we apply the central finite differences to
obtain a discretization of the nonlinear fourth-order boundary value problem. For larger N,
discard y ∈ VN for which the residual is large, i.e., if,

N−1∑
i=3

∣∣∣yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2
h4

+ α
yi+1 − 2yi+1 + yi−1

h2
+ β yi−

f(yi)− g(xi)
∣∣∣ > ε,

where ε > 0 is a prescribed parameter.
For the second form of the finite difference filter, we take the derivative of the original

differential equation and obtain y(5) + αy′′′ + βy′ = y′f ′(yi) + g′(xi), and then discretize it
by a finite difference method. We throw away those solutions y ∈ VN of EEM for which,

N−2∑
i=4

∣∣∣yi+3 − 4yi+2 + 5yi+1 − 5yi−1 + 4yi−2 − yi−3
2h5

+ α
yi+2 − 2yi+1 + 2yi−1 − yi−2

2h3

+ β
yi+1 − yi−1

2h
− yi+1 − yi−1

2h
f ′(yi) + g′(xi)

∣∣∣ > ε,

where ε > 0 again is a prescribed parameter.
Let y be a solution of the nonlinear fourth-order boundary value problem and suppose

that the finite difference discretization has the following error estimate for some r > 0,

‖ y − yh ‖≤ Chr,
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where the constant C depends on derivatives of the exact solution y. Therefore, if y contains
some modes with more oscillations, the corresponding C will be large. This observation
provides some hints for choosing ε. If ε is small, then only solutions with few oscillations will
remain; if ε is larger, then solutions with many oscillations will also remain. We illustrate the
variations of peaks by numerical examples.

The second filter depends on the Newton method that relates to the error estimate for the
eigenfunction expansion discretization, as mentioned in Section 4. The approximate solu-
tions of the discretized problems on successively finer levels satisfy ‖y − yN‖H1 ≤ CN−s,
‖y − yN‖L2 ≤ CN−(s+1), and can be viewed as a solution path y(x;N) parameterized by
the discretization level N . Therefore, the true approximate solutions should lie on a solution
path. For larger N , the Cauchy criterion for convergence implies that ‖yN − yN+1‖ is very
small. While applying Newton’s method to the discretization systemA(yN , φ) = 0, ∀φ ∈ VN ,
with initial guesses yN = yN−1, the Newton method is expected to converge to nonspurious
solutions. In Section 6, we present numerical evidence to support our filters.

6. Numerical results and discussions. In this section, we will verify the efficiency of
the extension homotopy and accuracy of the EEM.

6.1. Efficiency of the extension homotopy. Numerical experiments have been per-
formed on the boundary value problem (1.1) with α = β = 1, the polynomial f(y) = y3, and
the function g(x) = π4 sin(πx) − π2 sin(πx) + sin(πx) + sin(πx) − sin3(πx). Since the
PHC package provides the option to accept a user-defined start system, we verify the efficiency
of the extension homotopy with the help of PHC. At every intermediate n, we call the PHC
package three times: First for solving the target system by the total degree homotopy; secondly,
for obtaining starting points while solving the start system by the total degree homotopy and,
lastly, for tracking the paths with the starting points obtained from the second call.

EXAMPLE 6.1. Consider the following nonlinear fourth-order boundary value problem
with boundary conditions

y(4) + y′′ + y = y3 + π4 sin(πx)− π2 sin(πx) + sin(πx) + sin(πx)− sin3(πx),(6.1)
y(0) = y(1) = y′′(0) = y′′(1) = 0.

The boundary value problem (6.1) may have infinitely many solutions [9], and the
discretized problem has finitely many solutions. Table 6.1 lists the solution data for the
discretized problem (6.1) in the subspace V10. The first part of Table 6.1 contains the solutions
of system of polynomial equations by the total degree homotopy. The last part consists of
the solutions of system of polynomial equations using the extension homotopy by tracking
the paths of Hn = 0 with known start solutions Sn, n = 2, . . . , N . The # Regular sols
refers to the numbers of regular solutions of the system of polynomial equations, including the
complex solutions. The number of regular solution is increasing with respect to the number
of eigenfunctions n. Likewise, the # Real sols refers to the number of real solutions, which
have zero imaginary parts, obtained after solving the target system of polynomial equations by
these two homotopies.

From Table 6.1, in the first part it takes 3 hours and 12 minutes for the total degree
homotopy when n = 10, while the time taken in the second part (the extension homotopy) is
1 hour and 26 minutes. Comparing the runtime one can observe a time difference of 1 hour
and 37 minutes. In fact, the random number in homotopy continuation was considered in
(3.1) as the reason why the numbers of regular solutions in the second columns of I and II of
Table 6.1 may be slightly different. Similarly, there is little difference in the numbers of the
real solutions; see the third columns of I and II of Table 6.1.
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TABLE 6.1
The solution data for the discretized problem (6.1) in V10.

I. Total degree homotopy

n # Regular sols # Real sols Time

1 3 3 ∼ 0ms
2 9 5 10s711ms
3 27 7 15s203ms
4 81 9 12s919ms
5 243 11 13s876ms
6 729 13 24s747ms
7 2187 15 1m31s975ms
8 6560 17 7m44s297ms
9 19679 19 37m14s434ms
10 59033 21 3h12m45s206ms

II. Tracking the paths of Hn with known Sn

n # Regular sols # Real sols Time

1
2 9 5 1ms
3 27 7 29ms
4 81 9 139ms
5 243 11 1s 64ms
6 729 13 6s268ms
7 2181 15 39s662ms
8 6561 17 3m31s953ms
9 19679 19 16m31s230ms
10 59014 25 1h26m 2s262ms

As we know spurious solutions may appear when solving problem (6.1). Then, it is
necessary to use the filters mentioned in Section 5 to remove the possible spurious solutions.
After obtaining the solutions for n = 13 from HOM4PS-2.0, we apply both the finite difference
filter and the Newton filter. For the Newton filter successive applications of Newton’s method
to systems of n ≤ 18 were used. Table 6.2 contains the results for problem (6.1). The
non-spurious solutions are shown in Figures 6.1 and 6.2. For the finite difference filter, ε was
chosen as 1e+3 and 1e+6, see Figures 6.3 and 6.4. Note that, we applied the finite difference
filter with n = 13 because of the very high cost of using HOM4PS-2.0.

As mentioned in Section 5, the finite difference filter filters solutions depending on their
shape and depending on ε. If ε is chosen small, the set of filtered solutions only contain some
solutions of low oscillation. If ε is chosen larger, solutions with higher oscillation will enter
the filtered solution set.

6.2. Convergence rate for EEM. In order to determine the order of accuracy (conver-
gence rate) for EEM, we take into consideration the regularity of the solution of the original
problem. First, we calculate errors when solving the problem and then we get the convergence
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TABLE 6.2
The number of solutions after removing spurious solutions.

FD-filter with FD-filter without Newton’s filterderivative original ODE derivative original ODE

n Real solutions by HOM4PS-2.0 Solutions after Filter(18)

11 5 5 13
12 5 5 13
13 5 5 11
14 - - 11
15 - - 11
16 - - 11
17 - - 11
18 - - 9
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FIG. 6.1. Solution set for problem (6.1) by applying FD-filter without derivative original ODE with n = 13
and ε = 1e+02.

order.
EXAMPLE 6.2. Consider the following nonlinear fourth-order boundary value problem

with boundary conditions

y(4) + y′′ + y = y3 + g(x), x ∈ Ω ≡ [0, 1],(6.2)
y(0) = y(1) = y′′(0) = y′′(1) = 0,

where g1(x) is given such that y1 = x3(x− 1)3 sin(πx) is a solution of problem (6.2). The
details of the convergence rate are shown in Table 6.3 and Figure 6.5. Note that the convergence
order reaches 2 and 3.8 for the H1-error and the L2-error, respectively.

7. Conclusions. The eigenfunction expansion method is a suitable choice of discretiza-
tion method for finding multiple solutions of fourth-order ODEs with cubic polynomial
nonlinearity. The error estimates of the eigenfunction expansion method for ODEs are differ-
ent from that for PDEs. The discretized system of polynomial equations is solved efficiently by
the extension homotopy method. This method guarantees to find all solutions of the discretized
system of polynomial equations with probability one. The Newton filter and finite difference
filter are two reasonable strategies for removing possible spurious solutions.
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FIG. 6.2. Solution set for problem (6.1) by applying Newton’s filter with n = 18.
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FIG. 6.3. Solution set for problem (6.1) with ε = 1e+03.
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FIG. 6.4. Solution set for problem (6.1) with ε = 1e+06.
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