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NON-TOEPLITZ DECAY BOUNDS FOR INVERSES OF HERMITIAN POSITIVE
DEFINITE TRIDIAGONAL MATRICES∗

ANDREAS FROMMER†, CLAUDIA SCHIMMEL†, AND MARCEL SCHWEITZER†

Abstract. It is well known that the entries of the inverse of a Hermitian positive definite, banded matrix exhibit a
decay away from the main diagonal if the condition number of the matrix is not too large compared to the matrix size.
There is a rich literature on bounds which predict and explain this decay behavior. However, all the widely known
results on exponential decay lead to a Toeplitz matrix of bounds, i.e., they yield the same bound for all entries along a
sub- or superdiagonal. In general, there is no reason to expect the inverse of A to have a Toeplitz structure so that
this is an obvious shortcoming of these decay bounds. We construct an example of a tridiagonal matrix for which
the difference between these decay bounds and the actual decay is especially pronounced and then show how these
bounds can be adapted to better reflect the actual decay by investigating certain (modified) submatrices of A. As
a by-product, we also investigate how the distribution of all eigenvalues of A rather than just the spectral interval
influences the decay behavior. Here, our results hold for matrices with a general, not necessarily banded, sparsity
structure.
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1. Introduction and motivation. It has long been known that the entries of the inverse
of a Hermitian positive definite, banded matrix decay away from the main diagonal. There is
much literature devoted to this topic; see, e.g., [10, 11, 13, 19, 23] and the references therein.
Extensions to certain non-Hermitian matrices are discussed in [12, 14, 24, 25, 26]. Decay
away from the diagonal is not specific to the inverse but also appears in other matrix functions.
Due to its importance in many applications, there are in particular many publications dealing
with the matrix exponential [4, 6, 18, 22] or general analytic functions [3, 27]. Recently, also
other classes of functions like, e.g., Stieltjes functions, have been studied with respect to their
decay behavior; see, e.g., [2, 5, 6, 15].

There is a wide variety of different areas in which these off-diagonal decay bounds are
exploited. In [5, 9], knowledge of sharp decay bounds for the entries of matrix functions
is used in order to design linearly scaling algorithms for matrix function computations. In
several applications, e.g., in Markov chain queuing models [7, 8] and quantum dynamics [16],
information on the decay behavior can be used for constructing sparse approximations for
quantities of interest, thus reducing storage complexity and computational effort. In addition
to this computationally-oriented usage of decay bounds, the knowledge of the decay behavior
can also be exploited for theoretical purposes, e.g., in the stability analysis of finite element
methods [1]. Of course, in all these applications, the efficiency of the designed algorithms and
the quality of the obtained results strongly depend on how well the decay bounds predict the
actual decay in the matrix function.

While oftentimes the decay behavior is captured very well by the classical bounds—and
they can be shown to be sharp in certain cases (see [11, Section 3])— there are also situations
where the bounds are quite misleading. To illustrate this, we first recall the classical bound for
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FIG. 1.1. Magnitude of the entries of A−1 (left) and Q from (1.3) (right), where A is the matrix from Example 1.2.

the matrix inverse from [11]. We say that A is β-banded if Ai,j = 0 for |i − j| > β (i.e., a
tridiagonal matrix is 1-banded, a pentadiagonal matrix is 2-banded etc.).

THEOREM 1.1 (Theorem 2.4 in [11]). Let A be Hermitian positive definite and β-
banded with smallest eigenvalue λmin, largest eigenvalue λmax, and condition number
κ(A) = λmax/λmin. Then,

(1.1) |[A−1]i,j | ≤ cq
|i−j|
β

with

(1.2) q =

√
κ(A)− 1√
κ(A) + 1

and c = max

{
1

λmin
,

(
1 +

√
κ(A)

)2
2λmax

}
.

Typically, the quality of the decay bounds is illustrated by showing the actual decay in
one row or column of the inverse and comparing it to the bound for this row or column. In the
example below, we instead compare the whole matrix A−1 to the matrix containing all the
bounds (1.1). If we apply Theorem 1.1 to a tridiagonal matrix, i.e., β = 1, then collecting all
the bounds (1.1) in a matrix Q yields the symmetric Toeplitz structure

(1.3) Q = c ·



q0 q1 · · · · · · qn−1

q1 q0 q1 . . .
...

... q1
. . . . . .

...
...

. . . . . . . . . q1

qn−1 · · · · · · q1 q0


,

which, by Theorem 1.1, fulfills

(1.4) Q ≥ |A−1|,

where “≥” and “| · |” are understood componentwise. Similarly, all the results on decay
bounds for banded matrices from [2, 5, 6, 14, 15, 24, 25, 26] also result in a Toeplitz-structured
matrix Q of bounds. See also [12] for Toeplitz type bounds for block-tridiagonal matrices.
However, even when A is a Toeplitz matrix, A−1 is in general not Toeplitz, indicating that the
bound (1.4) will typically not estimate all the entries of A−1 equally well when going along
a specific sub- or superdiagonal. We now give an example where this effect is particularly
pronounced.
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EXAMPLE 1.2. We construct a symmetric, tridiagonal matrix with prescribed spectrum
following the construction principle developed in [20, Section 6.1]. The idea is to start with
a diagonal matrix containing the prescribed eigenvalues and then apply a series of (two-
sided) Givens rotations in order to introduce nonzero elements on the sub- and superdiagonal.
Nonzero elements that are introduced outside the band are immediately chased off the bottom-
right corner of the matrix, similarly to Schwarz band reduction [29].

Specifically, we construct a symmetric positive definite tridiagonal matrix A ∈ R100×100

with logarithmically spaced eigenvalues in the interval [10−2, 102]. Figure 1.1 displays the
magnitude of the entries of A−1 and of the Toeplitz matrix (1.3) containing the bounds from
Theorem 1.1. Two problems with the bound are apparent: On the one hand, the magnitude of
the entries is very severely overestimated, and on the other hand, the structure of A−1 is far
from being Toeplitz in contrast to the matrix Q.

In the remainder of this paper we develop a theoretical framework for explaining and
accurately predicting a decay behavior as observed in Example 1.2. In Section 2, we very
briefly explain how the computation of decay bounds is related to polynomial approximation
problems as this relation is needed later on for constructing our refined bounds. In Section 3,
we show how to obtain a family of decay bounds based on full spectral information of A, while
the bound in Theorem 1.1 is only based on the largest and smallest eigenvalue, i.e., the spectral
interval. Although this information is typically not available in practical situations, it will help
us make a first step towards explaining the decay behavior observed for the matrix A from
Example 1.2. As these bounds turn out to be still not necessarily accurate, we improve them
further in Section 4 by relating the decay above and below the diagonal of the kth column of
A−1 to the eigenvalues of (slightly modified) k × k and (n− k)× (n− k) submatrices of A,
respectively. By combining the approaches from Sections 3 and 4, we obtain sharp bounds
for the entries of A−1 even in extreme situations as the one from Example 1.2. Concluding
remarks are given in Section 5.

2. The relation between off-diagonal decay in banded matrices and polynomial ap-
proximation. In this section, we briefly outline the connection between the errors of polyno-
mial approximations and decay bounds for entries of matrix inverses, which is, e.g., also the
basis of the bounds cited in Theorem 1.1. We focus only on the Hermitian positive definite,
banded case, as only this is relevant for the later developments in this paper.

For a Hermitian positive definite, β-banded matrixA ∈ Cn×n, one exploits the knowledge
of the error

εE(m) := max
z∈E
|z−1 − pm(z)|,

where E ⊂ C is a set containing σ(A), the spectrum of A, and pm is a polynomial approxima-
tion of z−1 of degree at most m. Using the eigendecomposition A = UΛUH with Λ diagonal
and U unitary, we see that the relation

‖A−1 − pm(A)‖2 = ‖U(Λ−1 − pm(Λ))UH‖2 = ‖Λ−1 − pm(Λ)‖2
= max
z∈σ(A)

|z−1 − pm(z)|

holds, and it actually holds for any normal matrix A. Now, for bounding an entry |[A−1]i,j |,
write |i−j| = mβ+s withm ≥ 0 and s ∈ {1, . . . , β}, i.e.,m is the largest number for which
|i− j| > mβ. Since for every polynomial of degree m the matrix pm(A) has bandwidth mβ,
we have [pm(A)]i,j = 0 for this choice of m. Putting this together yields

|[A−1]i,j | = |[A−1]i,j − [pm(A)]i,j | ≤ ‖A−1 − pm(A)‖2
= max
z∈σ(A)

|z−1 − pm(z)| ≤ max
z∈E
|z−1 − pm(z)| = εE(m),

(2.1)
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i.e., the polynomial approximation error εE(m) gives an upper bound for all values |[A−1]i,j |
with |i − j| > mβ. Note that in the Hermitian positive definite case, one can take
E = [λmin(A), λmax(A)]. Within this approach, the best possible decay bounds are then
obtained by taking the polynomial pm which solves the min-max problem

min
p∈Πm

max
z∈[λmin(A),λmax(A)]

|z−1 − pm(z)|.

3. Superlinear decay bounds based on full spectral information on A. The decay
bounds from Theorem 1.1 are obtained by taking E = [λmin(A), λmax(A)] in the approach
outlined in Section 2 and then using the best polynomial approximation for the inverse on a
real positive interval. A drawback of the bounds of Theorem 1.1 is that they cannot accurately
capture the actual decay behavior if the decay is superlinear. This problem is comparable to
what one observes for the classical textbook convergence bound for the conjugate gradient
method; see, e.g., [28]. While for a given condition number one can always find a matrix such
that the bound for step k is sharp, it is typically neither sharp for other matrices with the same
condition number, nor for other steps of the iteration. In the same way, one cannot expect the
decay bounds from Theorem 1.1 to be sharp for all matrices with a given condition number
or even just for all entries of one specific matrix. In particular, the classical CG convergence
result only predicts linear convergence (and similarly, the bound of Theorem 1.1 only predicts
linear decay), while in practice one often observes superlinear convergence due to spectral
adaptation.

A simple approach for explaining the superlinear convergence is based on bounding the
iteration polynomial from the CG method by other, so-called composite polynomials, which
leads to a family of bounds. This approach is described in detail in [21, Chapter 5.6.4] and is
adumbrated in the proof of Theorem 3.1 below.

To use the same idea, we cannot use the bounds of Theorem 1.1 but have to resort to
a slightly different approach: Instead of using a polynomial approximation for the inverse
directly, we use shifted and normalized Chebyshev polynomials similarly to what was done
in [15] for general line segments in the complex plane. In the case of a Hermitian positive
definite matrix, this gives the same decay rate as that of Theorem 1.1 with a new constant C
which fulfills C ≤ 2c, i.e., the new constant can be slightly worse than the constant c in (1.2).
The advantage is that with this approach we may use the same idea as for the CG convergence
analysis to explain a superlinear convergence behavior. Altogether this gives the following
family of bounds based on the effective condition number.

THEOREM 3.1. Let A ∈ Cn×n be Hermitian positive definite and β-banded with
eigenvalues λmin(A) = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax(A). Further, let

(3.1) κ`(A) =
λn−`
λ1

, q` =

√
κ`(A)− 1√
κ`(A) + 1

, and C =
2

λ1
.

Then the entries of A−1 can be bounded as

(3.2) |[A−1]i,j | ≤ C q
|i−j|
β −`

` for all ` = 0, 1, . . . ,

⌊ |i− j|
β

⌋
.

Proof. Instead of bounding the entries of the inverse by using the polynomial best
approximation on an interval containing the spectrum ofA, we now first work with the discrete
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set σ(A) = {λ1, . . . , λn}. Because of (2.1), we can estimate the entries of the inverse as

|[A−1]i,j | ≤ min
pm∈Πm

max
z∈{λ1,...,λn}

|z−1 − pm(z)| = min
pm+1∈Πm+1

pm+1(0)=1

max
z∈{λ1,...,λn}

∣∣∣∣pm+1(z)

z

∣∣∣∣
≤ 1

λ1
min

pm+1∈Πm+1

pm+1(0)=1

max
z∈{λ1,...,λn}

|pm+1(z)|

≤ 1

λ1
min

pm+1−`∈Πm+1−`
pm+1−`(0)=1

max
z∈{λ1,...,λn}

|r`(z)pm+1−`(z)|,

where

r`(z) =

n∏
i=n−l+1

(
1− z

λi

)
is a polynomial which satisfies r`(0) = 1, r`(λi) < 1 for i = 1, . . . , n− `, and r`(λi)=0 for
i = n− `+ 1, . . . , n. Therefore, the entries of the inverse can further be bounded via

1

λ1
min

pm+1−`∈Πm+1−`
pm+1−`(0)=1

max
z∈{λ1,...,λn−`}

|r`(z)pm+1−`(z)|

≤ 1

λ1
max

z∈{λ1,...,λn−`}
|r`(z)| min

pm+1−`∈Πm+1−`
pm+1−`(0)=1

max
z∈{λ1,...,λn−`}

|pm+1−`(z)|

≤ 1

λ1
min

pm+1−`∈Πm+1−`
pm+1−`(0)=1

max
z∈[λ1,λn−`]

|pm+1−`(z)|

=
1

λ1
max

z∈[λ1,λn−`]
|Tm+1−`(z)|,

where Tm+1−`(z) is the normalized Chebyshev polynomial of degreem+1−` for the interval
[λ1, λn−`]. Now, it is well-known [28] that

max
z∈[λ1,λn−`]

|Tm+1−`(z)| ≤ 2 qm+1−`
`

so that (3.2) follows by using |i− j|/β ≤ m+ 1.
The family (3.2) of bounds can potentially predict the decay behavior in A−1 much more

accurately than (1.1)—which is contained as a special case for ` = 0 (except for a factor 2 in
the constant)—if one chooses the value of ` which minimizes (3.2) for each entry [A−1]i,j .

EXAMPLE 3.2. We consider the matrix from Example 1.2 again, but this time we define
a matrix Q such that

(3.3) Qi,j = min
`=0,...,b |i−j|β c

Cq
|i−j|
β −`

` ,

where q` andC are defined in (3.1). Note that the choice of ` that minimizes the right-hand side
of (3.3) depends on the distribution of the eigenvalues of A. A larger number ` improves the
effective condition number and therefore the decay rate q`, but at the same time the exponent
|i−j|
β − ` decreases. Therefore, the distribution of the eigenvalues determines whether the

improvement of the decay rate counterbalances the smaller exponent.
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FIG. 3.1. Magnitude of the entries of A−1 (left) and Q from (3.3) (right) on a logarithmic scale, where A is the
matrix from Example 1.2.
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FIG. 3.2. Magnitude of the entries of the first (left) and 50th (right) column of A−1 and the corresponding
bounds (3.3) on a logarithmic scale, where A is the matrix from Example 1.2.

The magnitude of the entries of the resulting matrix Q is given in Figure 3.1 (together
with the magnitude of the entries of A−1 for comparison). In contrast to what we observed
in Figure 1.1, the entries are not overestimated as much as before (though still by several
orders of magnitude), and at least in the first few rows and columns (which correspond to the
front part of the plotted surfaces), the qualitative decay behavior is predicted quite accurately.
For the other rows and columns, however, the decay behavior predicted by the bounds is still
not satisfactory. To better understand why this is the case, we take a closer look at the decay
behavior in two individual columns in Figure 3.2. On the left-hand side, the magnitude of
the entries of the first column of A−1 and the corresponding bounds are given, and on the
right-hand side, the same information is shown for the 50th column. The plot on the right-hand
side nicely illustrates the main problem that still occurs with (3.3): While the bounds obtained
by (3.3) give a better idea of the actual decay behavior, they still lead to a symmetric Toeplitz
structure of Q. As a consequence, the bound for the 50th column in the right part of Figure 3.2
is symmetric with respect to the 50th entry, and the bounds for the first fifty entries of the first
column plotted in the left part of Figure 3.2 agree with the bounds for the entries 51–100 of
the 50th column. This means in particular that the decay predicted “above” the diagonal (i.e.,
for i < j) is the same as the decay predicted “below” the diagonal (i.e., for i > j), although
the actual decay is very different for these two parts of the 50th column. Whenever this is the
case, any symmetric Toeplitz-structured bound has this shortcoming as it must be valid for
both parts of the column, and will thus be forced to follow the part of the column with the
“slower decay”.

It is important to notice that the approach presented in this section can immediately
be generalized to Hermitian and positive definite matrices with an arbitrary, not necessarily
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banded, sparsity pattern. All one has to do is to replace the quantity |i− j|/β by the distance
d(i, j) of the vertices i and j in the undirected graph G(A) = (V,E) induced by A with
vertices V = {1, . . . , n} and edges E = {{i, j} : i 6= j and aij 6= 0}. Everything then works
in a completely analogous manner by using the fact that in a polynomial pm(A) of degree
m the (i, j)-entry is zero if d(i, j) > m (see, e.g., [6, 15]) so that we can state the following
result without proof.

THEOREM 3.3. Let the matrix A ∈ Cn×n be Hermitian positive definite, and let denote
d(i, j) the distance of the vertices i and j in its graph G(A). Let λmin(A) = λ1 ≤ λ2 ≤
· · · ≤ λn = λmax(A) be the eigenvalues of A, and let κ`(A), q`, and C = 2

λ1
be defined as in

Theorem 3.1. Then the entries of A−1 can be bounded as

|[A−1]i,j | ≤ C qd(i,j)−`
` for all ` = 0, 1, . . . , d(i, j).

Motivated by Example 3.2, we now proceed to show how to obtain bounds that are not
restricted to a Toeplitz structure. In doing so, we use the bound of Theorem 3.1 for submatrices
of A.

4. Decay bounds based on a block-partitioning of A. This section contains our second
main result, which relates the decay in A−1 to the decay of the matrices in a block-partitioning
of A when A is tridiagonal. The basic idea is to perform a rank-one modification of A that
reduces it to a block-diagonal form (similar to what is done in the divide and conquer algorithm
for the symmetric tridiagonal eigenvalue problem [17]). By applying the Sherman–Morrison
formula [30], the inverse of A can then be written as the sum of the inverse of a block-diagonal
matrix and a rank-one matrix. By exploiting the fact that both the inverse of the block-diagonal
matrix and the rank-one term exhibit off-diagonal decay, the result then follows. So fix
k ∈ {1, . . . , n− 1} and decompose

(4.1) A =

[
A11 A22

A21 A22

]
=

[
B1 0
0 B2

]
+ uuH , u = α(ek +

ak+1,k

|ak+1,k|
ek+1) ∈ Cn,

with α =
√
|ak+1,k| and ek, ek+1 the kth and (k + 1)st canonical unit vectors in Cn,

respectively. Note that B1 ∈ Ck×k is tridiagonal and that it differs from A11 only in its (k, k)
entry, which is [B1]k,k = ak,k − |ak+1,k|. Similarly, B2 ∈ C(n−k)×(n−k) is tridiagonal, too,
and it differs from A22 only in its (1, 1) entry, which is [B2]1,1 = ak+1,k+1 − |ak+1,k|.

THEOREM 4.1. Let A ∈ Cn×n be a tridiagonal Hermitian positive definite matrix.
Assume that B1 and B2 in (4.1) are positive definite, and define for s = 1, 2

κs =
λmax(Bs)

λmin(Bs)
, qs =

√
κs − 1√
κs + 1

, cs =
2

λmin(Bs)
.

Then the entries of A−1 can be bounded as

|[A−1]i,j | ≤


c1 q
|i−j|
1 + c21 c̃ q

2k−j−i
1 for i, j ≤ k,

c2 q
|i−j|
2 + c22 c̃ q

i+j−2(k+1)
2 for i, j > k,

c1 c2 c̃ q
k−i
1 qj−k−1

2 for i ≤ k < j,

c1 c2 c̃ q
j−k
1 qi−k−1

2 for j ≤ k < i,

with the constant

c̃ =
|ak+1,k|

1 + |ak+1,k|
(

1
λmax(B1) + 1

λmax(B2)

) .
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Proof. Let B = diag(B1, B2). The Sherman–Morrison formula gives

A−1 = B−1 − B−1uuHB−1

1 + uHB−1u
=: B−1 −R.

Obviously, we thus have

|[A−1]i,j | ≤ |[B−1]i,j |+ |Ri,j |,

and as B−1 = diag(B−1
1 , B−1

2 ), we can use Theorem 3.1 for ` = 0 applied to B1 and B2 in
order to bound the entries of B−1 as

|[B−1]i,j | =


|[B−1

1 ]i,j | ≤ c1 q|i−j|1 for i, j ≤ k,
|[B−1

2 ]i,j | ≤ c2 q|i−j|2 for i, j > k,

0 otherwise.

Let M•,` denote the `-th column of a matrix M , we have

B−1u = α

[
[B−1

1 ]•,k
ak+1,k

|ak+1,k| [B
−1
2 ]•,1

]
,

which shows that the absolute values of the entries of the rank-one term R are given by

|Ri,j | =
α2

1 + uHB−1u
·


|[B−1

1 ]i,k| · |[B−1
1 ]j,k| ≤ c21 q

k−i
1 qk−j1 for i, j ≤ k,

|[B−1
2 ]i−k,1| · |[B−1

2 ]j−k,1| ≤ c22 q
i−k−1
2 qj−k−1

1 for i, j > k,

|[B−1
1 ]i,k| · |[B−1

2 ]j−k,1| ≤ c1 c2 q
k−i
1 qj−k−1

2 for i ≤ k < j,

|[B−1
1 ]j,k| · |[B−1

2 ]i−k,1| ≤ c1 c2 q
k−j
1 qi−k−1

2 for j ≤ k < i,

where we applied the bounds for the inverse also to these terms. Since

uHB−1u = α2
(
[B−1

1 ]k,k + [B−1
2 ]1,1

)
,

we further find

1 + uHB−1u ≥ 1 + α2

(
1

λmax(B1)
+

1

λmax(B2)

)
.

Putting all these inequalities together gives the desired result.
We discuss this theorem in the following remarks.
REMARK 4.2. The result of Theorem 4.1 is based on Theorem 3.1 with ` = 0 for ease of

presentation. It is possible to rewrite it in the spirit of (3.3) to obtain sharper decay bounds.
We will state and illustrate the resulting bounds in Example 4.5 below, but refrain from giving
a formal proof because it is essentially the same as that of Theorem 4.1.

REMARK 4.3. A crucial assumption in Theorem 4.1 is that B1 and B2 are positive
definite. One situation in which this assumption is guaranteed to be fulfilled is when A is
strictly diagonally dominant as B1 and B2 inherit this property and must therefore also be
positive definite.

REMARK 4.4. Theorem 4.1 only applies to the case of tridiagonal matrices, i.e., for
bandwidth β = 1. To modify the theorem to be applicable for matrices with bandwidth β > 1,
one can use a rank-β modification that again reduces the matrix to block-diagonal form and
then proceed in an analogous manner. However, the quality of the bounds obtained in this way
will deteriorate more and more the larger the bandwidth is.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

370 A. FROMMER, C. SCHIMMEL, AND M. SCHWEITZER

0
20

40
60

80
100

0
20

40
60

80
100

10−10

10−8

10−6

10−4

10−2

100

102

10−10

10−8

10−6

10−4

10−2

100

102

0
20

40
60

80
100

0
20

40
60

80
100

10−10

10−8

10−6

10−4

10−2

100

102

10−10

10−8

10−6

10−4

10−2

100

102

FIG. 4.1. Magnitude of the entries of A−1 (left) and the bounds from (4.2) (right), where A is the matrix from
Example 1.2.

Another possible generalization of Theorem 4.1 is to consider general sparse matrices and
perform the splitting by choosing a separator in the graph of A and renumbering the nodes
accordingly to obtain a block matrix. In this case, the exponent |i− j| is replaced by d(i, j),
the graph distance between the nodes i and j. Again, the resulting bounds can be combined
with the superlinear bounds for a general sparsity pattern according to Theorem 3.3.

Using Theorem 4.1 (modified according to Remark 4.2), we are now in a position to
compute bounds that accurately predict the decay behavior of the inverse for the matrix A of
Example 1.2.

EXAMPLE 4.5. In this example, we illustrate the bounds arising from the block-
partitioning approach of Theorem 4.1. As Theorem 4.1 gives possibly different bounds
for an entry of |[A−1]i,j | for each value of k, the best possible bounds are obtained by comput-
ing bounds for every partitioning point k = 1, . . . , n− 1 and then taking the smallest among
those bounds, i.e.,

(4.2) |[A−1]i,j | ≤ min
k=1,...,n−1

Q
(k)
i,j ,

where

(4.3) Q
(k)
i,j =


c1 q
|i−j|
1 + c21 c̃ q

2k−j−i
1 for i, j ≤ k,

c2 q
|i−j|
2 + c22 c̃ q

i+j−2(k+1)
2 for i, j > k,

c1 c2 c̃ q
k−i
1 qj−k−1

2 for i ≤ k < j,

c1 c2 c̃ q
j−k
1 qi−k−1

2 for j ≤ k < i.

Note that all quantities on the right-hand side of (4.3) depend on k. The resulting matrix of
bounds (4.2) arising for the matrix A from Example 1.2 is illustrated on the right-hand side
of Figure 4.1 with the magnitude of the entries of A−1 given on the left-hand side again. We
observe a considerable improvement compared to the bounds (3.3) presented in Figure 3.1.
In particular, the matrix of bounds is not a Toeplitz matrix and can thus better capture the
different decay rates above and below the diagonal.

Further improvements can be obtained by combining the approach of Theorem 4.1 with
that of Theorem 3.1, i.e., by replacing the bounds in (4.2) by bounds involving the effective
condition numbers of the diagonal blocks B1 and B2 for suitable values of `. The bounds
obtained this way (when always selecting the best possible value ` for each entry |[A−1]i,j |)
are depicted in Figure 4.2. These bounds resemble the actual decay behavior in A−1 even
better, and in order to allow another comparison to the results presented in Example 3.2, we
show a comparison of the exact values of the first and 50th column of A−1 with our bounds
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FIG. 4.2. Bounds for A−1 obtained by combining Theorem 3.1 with Theorem 4.1, where A is the matrix from
Example 1.2.
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FIG. 4.3. Magnitude of the entries of the first (left) and 50th (right) column of A−1 and corresponding bounds
obtained by combining Theorem 3.1 with Theorem 4.1, where A is the matrix from Example 1.2.

in Figure 4.3. While still overestimating the entries by about two orders of magnitude, the
qualitative decay behavior is resolved quite well by these bounds.

5. Conclusions. We have presented new approaches for obtaining decay bounds for the
inverse A−1 of a Hermitian positive definite, tridiagonal matrix A. In contrast to most bounds
from the literature, these new bounds can predict superlinear decay behavior and do not obey
a Toeplitz structure and can therefore more accurately predict the decay behavior in A−1.

The main purpose of this paper was to find alternatives for obtaining decay bounds in
situations where even full spectral information of A does not lead to accurate results when
using the classical approach from, e.g., [11]. The bounds in the presented form are not meant
to be used for practical computations as they require complete spectral information of several
submatrices of A. Finding ways to efficiently compute non-Toeplitz bounds in practical
situations seems to be an interesting topic for future research.
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