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Abstract. Markov chains that describe interacting subsystems suffer from state space explosion but lead to highly
structured matrices. In this work, we propose a novel tensor-based algorithm to address such tensor-structured Markov
chains. Our algorithm combines a tensorized multigrid method with AMEn, an optimization-based low-rank tensor
solver, for addressing coarse grid problems. Numerical experiments demonstrate that this combination overcomes the
limitations incurred when using each of the two methods individually. As a consequence, Markov chain models of
unprecedented size from a variety of applications can be addressed.
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1. Introduction. This paper is concerned with the numerical computation of stationary
distributions for large-scale continuous-time Markov chains. Mathematically, this task consists
of solving the linear system

(1.1) Ax = 0 with 1Tx = 1,

where A is the transposed generator matrix of the Markov chain and 1 denotes the vector of
all ones. The matrix A is square, nonsymmetric, and satisfies 1TA = 0. It is well known [4]
that the irreducibility of A implies existence and uniqueness of the solution of (1.1).

We specifically consider Markov chains that describe d interacting subsystems. Assuming
that the kth subsystem has nk states, the generator matrix usually takes the form

(1.2) A =

T∑
t=1

Et
1 ⊗ Et

2 ⊗ · · · ⊗ Et
d,

where⊗ denotes the Kronecker product and Et
k ∈ Rnk×nk for k = 1, . . . , d. Consequently, A

has size n = n1n2 · · ·nd, which reflects the fact that the states of the Markov chain correspond
to all possible combinations of subsystem states. The exponential growth of n with respect to d
is usually called state space explosion [10]. Applications of models described by (1.2) include
queuing theory [11, 12, 16], stochastic automata networks [20, 28], analysis of chemical
reaction networks [1, 21], and telecommunication [2, 27]. Equations of similar type arise in
time stepping procedures for the chemical master equation [13, 17].

The tensor structure of (1.2) can be exploited to yield efficient matrix-vector multipli-
cations in iterative methods for solving (1.1); see, e.g., [20]. However, none of the standard
iterative solvers is computationally feasible for larger d because of their need to store vectors
of length n. To a certain extent, this can be avoided by reducing each nk with the tensorized
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multigrid method recently proposed in [5]. Still, the need for solving coarse subproblems of
size 2d or 3d limits such an approach to modest values of d.

Low-rank tensor methods as proposed in [9, 18] can potentially deal with large values
of d. The main idea is to view the solution x of (1.2) as an n1 × n2 × · · · × nd tensor and
aim at an approximation in a highly compressed, low-rank tensor format. The choice of the
format is crucial for the success and practicality of such an approach. In [9], the so called
canonical decomposition was used, constituting a natural extension of the concept of product
form solutions. Since this format aims at separating all subsystems at the same time, it cannot
benefit from an underlying topology and thus often results in relatively large ranks. In contrast,
low-rank formats based on tensor networks can be aligned with the topology of interactions
between subsystems. In particular, it was demonstrated in [18] that the so called tensor train
format [25] appears to be well suited. Alternating optimization techniques are frequently
used to obtain approximate solutions within a low-rank tensor format. Specifically, [18]
proposes a variant of the Alternating Minimal Energy method (AMEn) [14, 34]. In each step
of alternating optimization, a subproblem of the form (1.1) needs to be solved. This turns out
to be challenging, although these subproblems are much smaller than the original problem,
they are often too large to allow for the solution by a direct method and too ill-conditioned
to allow for the solution by an iterative method. It is not known how to design effective
preconditioners for such problems.

In this paper, we combine the advantages of two methods. The tensorized multigrid
method from [5] is used to reduce the mode sizes nk and the condition number. This, in turn,
benefits the use of the low-rank tensor method from [18] by reducing the size and the condition
number of the subproblems. The same idea has been proposed by Ballani and Grasedyck [3]
for linear systems from PDE discretizations using a different low-rank tensor format.

The rest of this paper is organized as follows. In Section 2 we briefly describe the tensor
train format and explain the basic ideas of alternating least squares methods, including AMEn.
The tensorized multigrid method is described in Section 3. Section 4 describes our proposed
combination of the tensorized multigrid method with AMEn. In Section 5, the advantages of
this combination are illustrated by a series of numerical experiments involving models from
different applications.

2. Low-rank tensor methods. A given vector x ∈ Rn1···nd is turned into a tensor
X ∈ Rn1×···×nd by setting

(2.1) X (i1, . . . , id) = x
(
i1 + (i2 − 1)n1 + (i3 − 1)n1n2 + · · ·+ (id − 1)n1n2 · · ·nd−1

)
,

with 1 ≤ ik ≤ nk for k = 1, . . . , d. In MATLAB, this corresponds to the command
X=reshape(x,n) with n=[n_1,n_2,...,n_d].

2.1. Tensor train format. The tensor train (TT) format is a multilinear low-dimensional
representation of a tensor. Specifically, a tensor X is said to be represented in TT format if
each entry of the tensor is given by

(2.2) X (i1, . . . , id) = G1(i1) ·G2(i2) · · ·Gd(id).

The parameter-dependent matrices Gk(ik) ∈ Rrk−1×rk for k = 1, . . . , d are usually collected
in rk−1 × nk × rk tensors, which are called the TT cores. The integers r0, r1, . . . , rd−1, rd,
with r0 = rd = 1, determining the sizes of these matrices, are called the TT ranks. The
complexity of storing X in the format (2.2) is bounded by (d− 2)n̂r̂2 + 2n̂r̂ if each nk ≤ n̂
and rk ≤ r̂.

For a matrix A ∈ Rn1···nd×n1···nd , one can define a corresponding operator TT format by
mapping the row and column indices of A to tensor indices analogous to (2.1) and letting each
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TABLE 2.1
Complexity of operations in the TT format for tensors X ,Y ∈ Rn1×···×nd with TT ranks bounded by r̂X and

r̂Y , respectively, and a matrix A ∈ R(n1×···×nd)×(n1×···×nd) with operator TT ranks bounded by r̂A. All sizes
nk are bounded by n̂.

Operation Cost Resulting TT ranks
Addition of two tensors X + Y — r̂X + r̂Y

Scalar multiplication αX O(1) r̂X
Scalar product 〈X ,Y〉 O(dn̂max{r̂X , r̂Y}3) —

Matrix-vector product AX O(dn̂2r̂2Ar̂2X ) r̂Ar̂X
Truncation of X O(dn̂r̂3X ) prescribed

entry of A satisfy

(2.3) A(i1, . . . , id; j1, . . . , jd) =M1(i1, j1) ·M2(i2, j2) · · ·Md(id, jd),

with parameter-dependent matrices Mk(ik, jk) ∈ Rrk−1×rk for k = 1, . . . , d. The difference
to (2.2) is that the cores now depend on two parameters instead of one. A matrix given as a sum
of T Kronecker products as in (1.2) can be easily converted into an operator TT format (2.3)
using, e.g., the techniques described in [23]. It holds that rk ≤ T but often much smaller
operator TT ranks can be achieved.

Assuming constant TT ranks, the TT format allows to perform certain elementary op-
erations with a complexity linear (instead of exponential) in d. Table 2.1 summarizes the
complexity for operations of interest, which shows that the cost can be expected to be domi-
nated by the TT ranks. For a detailed description of the TT format and its operations, we refer
to [23, 25, 26].

2.2. Alternating least squares. In this section, we describe the method of alternating
least squares (ALS) from [18].

To incorporate the TT format, we first replace (1.1) by the equivalent optimization problem

(2.4) min ‖Ax‖ subject to 1Tx = 1,

where ‖ · ‖ denotes the Euclidean norm. We can equivalently view A as a linear operator on
Rn1×···×nd and constrain (2.4) to tensors in TT format:

(2.5) min ‖AX‖ subject to 〈X ,1〉 = 1, X is in TT format (2.2),

where 1 now refers to the n1 × · · · × nd tensor of all ones.
Note that the TT format is linear in each of the TT cores. This motivates the use of an

ALS approach that optimizes the kth TT core while keeping all other TT cores fixed. To
formulate the subproblem that needs to be solved in each step of ALS, we define the interface
matrices

G≤k−1 =
[
G(i1) · · ·G(ik)

]
∈ R(n1···nk)×rk−1 ,

G≥k+1 =
[
G(ik+1) · · ·G(id)

]T ∈ R(nk+1···nd)×rk .

Without loss of generality, we may assume that the TT format is chosen such that the columns
of G≤k and G≥k+1 are orthonormal; see, e.g., [19]. By letting gk ∈ Rrk−1nkrk contain the
vectorization of the kth core and setting

G6=k = G≤k−1 ⊗ Ink
⊗G≥k+1,
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it follows that

vec(X ) = G6=kgk.

Inserting this relation into (2.5) yields

min ‖AG6=kgk‖ subject to 〈G6=kgk,1〉 = 1,

which is equivalent to the linear system

(2.6)
[
GT
6=kA

TAG6=k ẽ

ẽT 0

] [
gk
λ

]
=

[
0
1

]
,

with the Lagrange multiplier λ ∈ R. The vector ẽ = GT
6=k1 can be cheaply computed by tensor

contractions. After (2.6) has been solved, the TT format of the tensorX is updated by reshaping
gk into its kth TT core. One full sweep of ALS consists of applying the described procedure
first in a forward sweep over the TT cores 1, 2, . . . , d followed by a backward sweep over the
TT cores d, d− 1, . . . , 1. After each update of a core, an orthogonalization procedure [25] is
applied to ensure the orthonormality of the interface matrices in the subsequent optimization
step.

2.3. AMEn. The method AMEn proposed in [14] for linear systems enriches the TT
cores locally by gradient information, which potentially yields faster convergence than ALS
and allows for rank adaptivity. It is sufficient to consider d = 2 for illustrating the extension
of this procedure to (2.5). The general case d > 2 then follows, analogously to [14, 19], by
applying the case d = 2 to neighbouring cores.

For d = 2, the TT format corresponds to a low-rank factorization X = G1G
T
2 with

G1 ∈ Rn1×r1 , G2 ∈ Rn2×r2 . Suppose that the first step of ALS has been performed and G1

has been optimized. We then consider a low-rank approximation of the negative gradient of
1
2‖AX‖

2:

R = −AX ≈ R1R
T
2 .

In practice, a rank-2 or rank-3 approximation of R is used. Then the method of steepest
descent applied to minimizing 1

2‖AX‖
2 would compute

X + αR ≈
[
G1 R1

] [
G2 αR2

]T
for some suitably chosen scalar α. We now fix (and orthonormalize) the first augmented core[
G1 R1

]
. However, instead of using

[
G2 αR2

]
, we apply the next step of ALS to obtain

an optimized second core via the solution of a linear system of the form (2.6). As a result
we obtain an approximation X that is at least as good as the one obtained from one forward
sweep of ALS without augmentation and, when ignoring the truncation error inR, at least as
good as one step of steepest descent. The described procedure is repeated by augmenting the
first core and optimizing the second core and so on. In each step, the rank of X is adjusted by
performing low-rank truncation. This rank adaptivity is one of the major advantages of AMEn.

3. Multigrid. In this section, we recall the multigrid method from [5] for solving (1.1)
with a matrix A having the tensor structure (1.2). Special care has to be taken in order to
preserve the tensor structure within the multigrid hierarchy. We first introduce the generic
components of a multigrid method before explaining the tensor specific construction.

A multigrid approach has the following ingredients: the smoothing scheme, the set of
coarse variables, transfer operators (the interpolation operator and the restriction operator),
and the coarse grid operator.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

352 M. BOLTEN, K. KAHL, D. KRESSNER, F. MACEDO, AND S. SOKOLOVIĆ

Algorithm 1: Multigrid V -cycle.

1 v` = MG(b`, v`)
2 if coarsest grid is reached then
3 Solve coarse grid equation A`v` = b`
4 else
5 Update v` by ν1 smoothing steps for A`v` = b`
6 Compute coarse right-hand side b`+1 = Q`(b` −A`v`)
7 e`+1 = MG(b`+1, 0)
8 v` = v` + P`e`+1

9 Update v` by ν2 smoothing steps for A`v` = b`
10 end

Presmoothing Direct solve Postsmoothing

Q

Q

Q P

P

P

FIG. 3.1. Multigrid V-cycle: on each level, a presmoothing iteration is performed before the problem is
restricted to the next coarser grid. On the smallest grid, the problem is typically solved exactly by a direct solver.
When interpolating back to the finer grids, postsmoothing iterations are applied on each level.

Algorithm 1 is a prototype of a V -cycle and includes the mentioned ingredients. For a
detailed description we refer the reader to [29, 32]. In particular, for a two-grid approach, i.e.,
` = 1, 2, one can describe the realization as follows: the method performs a certain number
ν1 of smoothing steps using an iterative solver that can be, for instance, a weighted Jacobi, a
Gauss-Seidel, or a Krylov subspace method like GMRES [30, 31]; the residual of the current
iterate is computed and restricted by a matrix-vector multiplication with the restriction matrix
Q ∈ Rn×nc ; the operator A1 = A is restricted via a Petrov-Galerkin construction to obtain
the coarse-grid operator, A2 = QA1P ∈ Rnc×nc , where P ∈ Rnc×n is the interpolation
operator. Then we have a recursive call where we solve the coarse grid equation, which is
the residual equation. Then the error is interpolated and again some smoothing iterations
are applied. Instead of stopping at the second grid because the matrix may still be too large,
one can approximate the solution of the residual equation again via a two-grid approach. By
this recursive construction one obtains the V -cycle displayed in Figure 3.1. This V -cycle is
performed repeatedly until a certain accuracy of the residual is reached or a maximum number
of V -cycles have been applied.

No details have yet been provided on how to choose nc and how to obtain the weights for
the interpolation and restriction operators P and Q. The value nc is obtained by specifying
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coarse variables. Geometric coarsening [32] or compatible relaxation [6, 7] are methods which
split the given n variables into fine variables F and coarse variables C so that n = |C|+ |F|.
If such a splitting is given, nc = |C|, the operators are defined as

Q : R|C∪F| → R|C|, P : R|C| → R|C∪F|.

To obtain the entries for these operators, one can use methods like linear interpolation [32] or
direct interpolation [29, 32], among others. Another approach for choosing a coarse grid is
aggregation [8], where one defines a partition of the set of variables and each subset of this
partition is associated with one coarse variable.

In this work we focus on the V -cycle strategy. Other strategies, for example W - or
F -cycles [32], can be applied in a straightforward fashion.

3.1. Tensorized multigrid. In order to make Algorithm 1 applicable to a tensor-structured
problem, one has to ensure that the tensor structure is preserved along the multigrid hierarchy.
In this, we follow the approach taken in [5] and define interpolation and restriction in the
following way.

PROPOSITION 3.1. Let the matrix A of the form (1.2) be given with Et
k ∈ Rnk×nk . Let

P =
⊗d

k=1 Pk and Q =
⊗d

k=1Qk with Pk ∈ Rnk×nc
k and Qk ∈ Rnc

k×nk , where nck < nk.
Then the corresponding Petrov-Galerkin operator satisfies

QAP =

T∑
t=1

d⊗
k=1

QkE
t
kPk.

Thus, the task of constructing interpolation and restriction operators becomes a “local”
task, i.e., each part Pk of the interpolation P =

⊗d
k=1 Pk coarsens the kth subsystem. In

particular, this implies n(c)k < nk, and the entries of Pk depend largely on the local part of the
tensorized operator.

Another important ingredient of the multigrid method is the smoothing scheme. In our
setting, it has to satisfy two main requirements: it should

(i) be applicable to non-symmetric, singular systems;
(ii) admit an efficient implementation in the TT format.

Requirement (ii) basically means that only the operations listed in Table 2.1 should be used
by the smoother, as most other operations are far more expensive. In this context, one logical
choice is GMRES [30, 31] (which also fulfills requirement (i)), which consists of matrix-
vector products and orthogonalization steps (i.e., inner products and vector addition). Note that
GMRES is a non-stationary method and so an atypical choice for a smoother in a multigrid
context. However, the typically used stationary smoothers like Gauss-Seidel or Jacobi can not
be implemented efficiently in a TT format; see [5]. GMRES as smoother is discussed, e.g., in
[33], and was already successfully applied to tensor-structured Markov chains in [5].

Parameters of the SVD truncation. We apply the TT-SVD algorithm from [25] to keep
the TT ranks of the iterates in the tensorized multigrid method under control. Except for
the application of restriction and interpolation, which both have operator TT rank one by
construction, all operations of Algorithm 1 lead to an increase of the rank of the current iterate.

In particular, truncation has to be performed after line 6 and line 8 of Algorithm 1.
Concerning the truncation of the restricted residual in line 6, we have observed that we do not
need a very strict accuracy to obtain convergence of the global scheme and thus set the value
to 10−1. As for the truncation of the updated iterates v` after line 8, we note that they have
highly different norms on the different levels so that the accuracy for their truncation should
depend on the level. Additionally, a dependency on the cycle, following the idea in [18] in
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which such an adaptive scheme is applied to the sweeps of AMEn, is also included. Precisely,
the accuracy depends on the residual norm after the previous cycle. This is motivated by the
fact that truncations should be more accurate as we get closer to the desired approximation,
while this is not needed far away from it. Summarizing, the accuracy of the truncation of the
different v` is thus taken as the norm of v` divided by v1 (dependency on the level) times the
residual norm after the previous cycle (dependency on the quality of the current approximate
solution) times a default value of 10. This “double” adaptivity is also used within the GMRES
smoother to truncate the occurring vectors.

We also impose a restriction on the maximum TT rank allowed after each truncation. This
maximum rank is initially set to 15 and grows by a factor of

√
2 after each cycle for which

the reduction of the residual norm is observed to be smaller than a factor of 9
10 , signalling

stagnation.

4. Multigrid-AMEn. In Sections 2 and 3 we have discussed two independent methods
for solving (1.1). In this section we first discuss the limitations of these two methods and then
describe a novel combination that potentially overcomes these limitations.

4.1. Limitation of AMEn. Together with orthogonalization and low-rank truncation,
one of the computationally most expensive parts of AMEn is the solution of the linear
system (2.6), which has size rk−1rknk + 1. A direct solver applied to this linear system has
complexity O(r̂6n̂3) and can thus only be used in the presence of small ranks and mode sizes.

Instead of a direct solver, an iterative solver such as MINRES [15, 30] can be applied
to (2.6). The Kronecker structure of GT

6=kA
TAG6=k inherited by the low operator TT rank

of A allows for efficient matrix-vector multiplications despite the fact that this matrix is not
sparse. Unfortunately, we have observed for all the examples considered in Section 5 that the
condition number of the reduced problem (2.6) grows rapidly as the mode sizes nk increase.
In turn, the convergence of MINRES is severely impaired, often leading to stagnation. It is by
no means clear whether it is possible to turn a preconditioner for the original problem into
an effective preconditioner for the reduced problem. So far, this has only been achieved via
a very particular construction for Laplace-like operators [19], which is not relevant for the
problems under consideration.

4.2. Limitations of tensorized multigrid. The described tensorized multigrid method
is limited to modest values of d, simply because of the need for solving the problem on the
coarsest grid. The size of this problem grows exponentially in d. Figure 4.1 illustrates the
coarsening process if one applies full coarsening to each Et

j in an overflow queueing problem
with mode sizes 9 as described, e.g., in [5, Section 5.1]; see also Section 5.1 of this paper. In
the case of three levels, a problem of size 3d would need to be addressed by a direct solver on
the coarsest grid. Due to the nature of the problem it is not possible to coarse the problem to a
single variable in each dimension.

4.3. Combination of the two methods. Instead of using a direct method for solving the
coarsest-grid system in the tensorized multigrid method, we propose to use AMEn. Due to the
fact that the mode sizes on the coarsest grid are small, we expect that it becomes much simpler
to solve the reduced problems (2.6) within AMEn.

Note that the problem to be solved on the coarsest grid constitutes a correction equation
and thus differs from the original problem (1.1) in having a nonzero right-hand side and
incorporating a different linear constraint. To address this problem, we apply AMEn [14] to
the normal equations and ignore the linear constraint. The linear constraint is fixed only at the
end of the cycle by explicitly normalizing the obtained approximation as in [5].
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9× 9× · · · × 9

5× 5× · · · × 5

3× 3× · · · × 3

Q

Q
P

P

FIG. 4.1. Coarsening process for a problem with mode sizes 9.

Q1

...

Q2

...

Q3

...

Q4

...

Q5

...

Q6

...

FIG. 5.1. Structure of the model overflow.

Parameters of AMEn for the coarsest grid problem. AMEn targets an accuracy that
is at the level of the residual from the previous multigrid cycle, and we stop AMEn once
this accuracy is reached or, at the latest, after 5 sweeps. A rank-3 approximation of the
negative gradient, obtained by ALS as suggested in [14], is used to augment the cores within
AMEn. Reduced problems (2.6) are addressed by a direct solver for size up to 1000; otherwise
MINRES (without a preconditioner) is used.

Initial approximation of the solution. All algorithms are initialized with the tensor that
results from solving the coarsest grid problem, using the variant of AMEn described in
Section 2.3, and then bringing it up to the finest level using interpolation as in [5].

5. Numerical experiments. In this section, we illustrate the efficiency of our newly
proposed algorithm from Section 4. All tests have been performed in MATLAB version 2013b,
using functions from the TT-Toolbox [24]. The execution times have been obtained on a
12-core Intel Xeon CPU X5675, 3.07GHz with 192 GB RAM running 64-Bit Linux version
2.6.32.

5.1. Model problems. All benchmark problems used in this paper are taken from the
benchmark collection [22], which not only provides a detailed description of the involved
matrices but also MATLAB code. In total, we consider six different models, which can be
grouped into three categories.

Overflow queuing models. The first class of benchmark models consists of the well-
known overflow queuing model and two variations thereof. The structure of the model is
depicted in Figure 5.1. The arrival rates are chosen as λk = 1.2− (k− 1) · 0.1 and the service
rates as µk = 1 for k = 1, . . . , d, as suggested in [9]. The variations of the model differ in the
interaction between the queues:
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Q1

...

Q2

...

Q3

...

Q4

...

Q5

...

Q6

...

FIG. 5.2. Structure of the model kanbanalt2.
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(a)
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◦
◦◦
◦

◦◦
◦

(b)

FIG. 5.3. Structure of the models directedmetab (a) and divergingmetab (b).

• overflow: customers which arrive at a full queue try to enter subsequent queues until
they find one that is not full; after trying the last queue, they leave the system.

• overflowsim: as overflow, but customers arriving at a full queue try only one subse-
quent queue before leaving the system.

• overflowpersim: as overflowsim, but when the last queue is full, a customer arriving
there tries to enter the first queue instead of immediately leaving.

For these models, as suggested in [5], we choose the interpolation operator Pk as direct
interpolation based on the matrices describing the local subsystems and the restriction operator
as its transpose.

Simple tandem queuing network (kanbanalt2). A number d of queues has to be passed
through by customers one after the other. Each queue k has its own service rate, denoted by
dep(k), and its own capacity, denoted by cap(k). For our tests we choose dep(k) = 1 for all
k = 1, . . . , d. The service in queue k can only be finished if queue k + 1 is not full so that
the served customer can immediately enter the next queue. Customers arrive only at the first
queue with an arrival rate of 1.2. Figure 5.2 illustrates this model.

As only the subsystems corresponding to the first and last dimensions have a non-trivial
“local part” and the one for the last dimension is associated with a subdiagonal matrix, we con-
struct only P1 via direct interpolation (as in the overflow models) and use linear interpolation
for P2, . . . , Pd.

Metabolic pathways. The next model problems we consider come from the field of
chemistry describing stochastic fluctuations in metabolic pathways. In Figure 5.3(a) each node
of the given graph describes a metabolite. A flux of substrates can move along the nodes being
converted by means of several chemical reactions (an edge between node k and ` in the graph
means that the product of reaction k can be converted further by reaction `). The rate at which
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TABLE 5.1
Execution time (in seconds), number of iterations, and maximum rank of the computed approximations for

overflow with mode size 17 and varying dimension d. The symbol — indicates that the desired accuracy could not be
reached within 3 600 seconds.

AMEn Multigrid MultigridAMEn
d time iter rank time iter rank time iter rank
4 4.5 7 16 4.6 13 13 4.2 13 13
5 36.3 9 23 6.4 11 20 7.0 11 20
6 239.4 12 28 24.7 17 29 20.4 17 29
7 1758.4 14 36 252.4 24 29 38.3 24 29
8 — — — — — — 98.4 28 41
9 — — — — — — 214.8 36 57

10 — — — — — — 718.8 40 80
11 — — — — — — 2212.2 45 113

the kth reaction happens is given by
vkmk

mk +Kk − 1
,

divergingmetab is a variation of this model. Now, one of the metabolites in the reaction
network can be converted into two different metabolites, meaning that the reaction path splits
into two paths which are independent of each other as shown in Figure 5.3(b).

The interpolation and restriction operators for these models are chosen in the same way
as for kanbanalt2.

5.2. Numerical results. In this section, we report the results of the experiments we
performed on the models from Section 5.1 in order to compare our proposed method, called
“MultigridAMEn”, to the existing approaches “AMEn” and “Multigrid”.

Throughout all experiments, we stop an iteration when the residual norm ‖Ax‖ is two
orders of magnitude smaller than the residual norm of the tensor of all ones (scaled so that
the sum of its entries is one). This happens to be our initial guess for AMEn, but it does not
correspond to the initial guesses of Multigrid and MultigridAMEn. Note that this requirement
also implicitly defines the accuracy requirement for the solution tensor. We do not study the
relation between the ranks and the accuracy requirement here. For the model problem overflow
such a study was performed in [5].

For both multigrid methods, three pre- and postsmoothing steps are applied on each grid.
The number of levels is chosen such that the coarsest grid problem has mode size 3.

Scaling with respect to the number of subsystems. In order to illustrate the scaling
behaviour of the three methods, we first choose in all models a capacity of 16 in each
subsystem (i.e., mode sizes 17) and vary d, the number of subsystems. Figure 6.1 displays the
obtained execution times.

To provide more insight into the results depicted in Figure 6.1, we also give the number
of iterations and the maximum rank of the computed approximation for the overflow model in
Table 5.1. For the other models, the observed behaviour is similar and we therefore refrain
from providing more detailed data.

In Figure 6.1, we observe that Multigrid and MultigridAMEn behave about the same up
to d = 6 subsystems. For larger d, the cost of solving the coarsest grid problem of size 3d

by a direct method becomes prohibitively large within Multigrid. MultigridAMEn is almost
always faster than AMEn even for d = 4 or d = 5. To which extent MultigridAMEn is faster
depends on the growth of the TT ranks of the solution with respect to d, as these have the
largest influence on the performance of AMEn.
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TABLE 5.2
Execution time (in seconds), number of iterations and maximum rank of the computed approximations for

overflow with d = 6 and varying mode sizes. The symbol — indicates that the desired accuracy could not be reached
within 3 600 seconds.

AMEn Multigrid MultigridAMEn
n time iter rank time iter rank time iter rank
5 0.7 4 13 5.9 8 15 6.2 8 15
9 3.8 6 19 6.1 8 15 3.9 8 15

17 239.4 12 28 24.8 17 29 19.5 17 29
33 — — — 102.9 17 41 104.6 17 41
65 — — — 882.1 20 57 904.1 20 57

Note that the choice of levels in MultigridAMEn is not optimized; it is always chosen
such that the coarsest grid mode sizes are three. We sometimes observed that choosing a larger
mode size leads to better performance, but we have not attempted to optimize this choice.

The TT format is a degenerate tree tensor network and thus perfectly matches the topology
of interactions in the models overflowsim, kanbanalt2, and directedmetab. Compared to
overflowsim, the performance is slightly worse for kanbanalt2 and directedmetab, possibly
because they contain synchronized interactions, that is, interactions associated with a simulta-
neous change of state in more than one subsystem. In contrast, overflowsim as well as overflow
and overflowpersim only have functional interactions, that is, the state of some subsystems
determines the rates associated with other subsystems. This seems to be an important factor
as the second best performance is observed for overflowpersim, which contains a cycle in the
topology of the network and thus does not match the TT format. This robustness with respect
to the topology is also reflected by the results for divergingmetab; recall Figure 5.3(b).

The maximum problem size that is considered is 1713 ≈ 9.9 × 1015. MultigridAMEn
easily deals with larger d, but this is the largest configuration for which an execution time
below 3 600 seconds is obtained.

Scaling with respect to the mode sizes. To also illustrate how the methods scale with
respect to increasing mode sizes, we next perform experiments where we fix all models to
d = 6 subsystems and vary their capacity. The execution times for all models are presented in
Figure 6.2, while more detailed information for the overflow model is given in Table 5.2.

Figure 6.2 shows that the AMEn method outperforms the two multigrid methods (except
for kanbanalt2) for small mode sizes. Depending on the model, the multigrid algorithms start
to be faster for mode sizes 9 or 17 as the subproblems to be solved in AMEn become too
expensive at this point. The bad performance of AMEn for kanbanalt2 can be explained by
the fact that the steady state distribution of this model has rather high TT ranks already for
small mode sizes.

Concerning the comparison between the two multigrid methods, no significant difference
is visible in Figure 6.2; we have already seen in Figure 6.1 that d = 6 is not enough to let the
coarsest grid problem solver dominate the computational time in Multigrid. In fact, Figure 6.2
nicely confirms that using AMEn for solving the coarsest grid problem does not have an
adverse effect on the convergence of multigrid. The maximum problem size addressed in
Figure 6.2 is 1296 ≈ 4.6× 1012.

6. Conclusion. We have proposed a novel combination of two methods, AMEn and
Multigrid, for computing the stationary distribution of large-scale tensor-structured Markov
chains. Our numerical experiments confirm that this combination truly combines the advan-
tages of both methods. As a result, we can address a much wider range of problems in terms
of number of subsystems and subsystem states. Also, our experiments demonstrate that the TT

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LOW-RANK TENSOR MULTIGRID FOR MARKOV CHAINS 359

format is capable of dealing with a larger variety of applications and topologies compared to
what has been previously reported in the literature.
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FIG. 6.1. Execution time (in seconds) needed to compute an approximation of the steady state distribution for
the benchmark models from Section 5.1. All mode sizes are set to 17.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

360 M. BOLTEN, K. KAHL, D. KRESSNER, F. MACEDO, AND S. SOKOLOVIĆ
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FIG. 6.2. Execution time (in seconds) needed to compute an approximation of the steady state distribution for
the benchmark models from Section 5.1. All models have d = 6 subsystems.
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