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HIGH-ORDER EXPONENTIALLY FITTED DIFFERENCE SCHEMES FOR
SINGULARLY PERTURBED TWO-POINT BOUNDARY VALUE PROBLEMS∗

MILJENKO MARUŠIĆ†

Abstract. We introduce a family of exponentially fitted difference schemes of arbitrary order as numerical
approximations to the solution of a singularly perturbed two-point boundary value problem: εy′′ + by′ + cy = f .
The difference schemes are derived from interpolation formulae for exponential sums. The so-defined k-point
differentiation formulae are exact for functions that are a linear combination of 1, x, . . . , xk−2, exp (−ρx). The
parameter ρ is chosen from the asymptotic behavior of the solution in the boundary layer. This approach allows a
construction of the method with arbitrary order of consistency. Using an estimate for the interpolation error, we prove
consistency of all the schemes from the family. The truncation error is bounded by Chk−2, where C is a constant
independent of ε and h. Therefore, the order of consistency for the k-point scheme is k − 2 (k ≥ 3) in case of a
small perturbation parameter ε. There is no general proof of stability for the proposed schemes. Each scheme has to
be considered separately. In the paper, stability, and therefore convergence, is proved for three-point schemes in the
case when c < 0 and b 6= 0.
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1. Introduction. In this paper we study the numerical solution of the singularly perturbed
two-point boundary value problem for the ODE:

(Lu)(x) := εu′′(x) + b(x)u′(x) + c(x)u(x) = f(x),(1.1)
u(0) = α0, u(1) = α1.(1.2)

We assume that the perturbation parameter ε and the coefficient c satisfy

(1.3) ε > 0 and c(x) ≤ 0 for x ∈ [0, 1].

It is known that classical methods fail for this problem when ε is small relative to the mesh
width. Various numerical approaches have been proposed, for example, difference schemes
[5, 13, 15] and collocation methods [2, 6, 8, 9, 12]. An extensive review of methods is given
by Kadalbayo and Patidar in [7].

To derive a difference scheme for the above problem, we consider functions that satisfy a
differential equation of the form

(D − ρ1)(D − ρ2) · · · (D − ρk)s = 0

for some given real numbers ρ1, ρ2, . . . , ρk. Here, D stands for the differentiation operator
(Df = f ′ = df/dx for some function f ). For mutually distinct ρi, the solution of the above
equation is an exponential sum

(1.4)
k∑
i=1

γi eρix .

Generally, if some ρi are equal, we do not only have exponentials exp(ρix) in the sum
but also functions of the form x exp(ρix), x2 exp(ρix), . . . The resulting expressions are
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often called extended exponential sums [3] to be distinguished from the proper exponential
sums (1.4). In this paper we consider extended exponential sums, and we will simply refer to
them as exponential sums. The so-defined method belongs to a class of exponentially fitted
methods. Exponential fitting is a well-known approach widely used for singularly perturbed
problems [7].

The novelty of this paper is a new approach for the derivation of difference schemes.
Using interpolation formulae, we approximate the derivatives in the differential equation (1.1)
and obtain a difference scheme. The consistency of the schemes follows directly from the
estimate for the interpolation error of the exponential sum. The presented results give an
algorithm for the derivation of consistent schemes of arbitrary order. Unfortunately, we do not
have a general result of stability (and convergence) for the proposed schemes. So, in this paper,
we consider stability of three-point schemes and prove that they are first-order convergent in
the singular perturbation case.

In the forthcoming sections we present basic facts about exponential sums, explain
the derivation of difference schemes, prove consistency of the schemes, and analyze the
convergence for three-point schemes. Finally, we exemplify our methods at several singularly
perturbed problems.

2. Exponentially fitted differentiation formulae. As an approximation for u(x), we
consider interpolation by particular classes of exponential sums. Since a solution of (1.1)–(1.2)
asymptotically behaves as an exponential function on the boundary layer, we just use one
exponential term. Hence, we use an exponential sum from the null-space of the differential
operator

(2.1) Dk−1(D + ρ)s = 0,

and our exponential sum is of the form

(2.2) s(x) =

k−2∑
i=0

γix
i + γk−1 e−ρx .

Let be given a real number ρ, an increasing sequence of points (ti)
k−1
0

(t0 < t1 < . . . < tk−1), and a sequence of real numbers (yi)
k−1
0 . Then, there is a unique

exponential sum (2.2) satisfying the interpolation conditions

(2.3) s(ti) = yi, i = 0, . . . , k − 1.

Interpolation by exponential sums is widely investigated in [3] and the references therein.
It is more convenient to write an exponential sum in Lagrange form. Let Lk,mj be an

exponential sum from the null-space of the differential operator (2.1) satisfying

(2.4) Lk,mj (i) =

{
0 for i+m 6= j,

1 for i+m = j,

for j = 0, . . . , k − 1, i = −m, . . . , k − 1 − m, and for some m (0 ≤ m ≤ k − 1). For
equidistant points (ti)

k−1
0 (ti+1 = ti + h, h > 0), the exponential sum

(2.5) s(x) =

k−1∑
j=0

Lk,mj

(
x− tm
h

)
yj ,
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satisfies the interpolation conditions (2.3). Note that the so-defined s is not from the null-space
of (2.1) but from the null-space of

Dk−1(D + ρ/h)s = 0.

The interpolation error for exponential sums is studied in [10] and [11]. Here we reveal
results for the error bound applied to the sum (2.5).

LEMMA 2.1 ([10]). Let u ∈ Ck(a, b), and let s be an exponential sum (2.5) of order k
that interpolates u at an equidistant sequence of points (ti)

k−1
0 , (a ≤ t0 < . . . < tk−1 ≤ b,

h = ti+1 − ti). Then for all x ∈ [a, b] and for r = 0, 1, . . . , k − 1, the following estimates
hold:

|u(r)(x)− s(r)(x)| ≤ hk−rCk,r(ρ, (x− t0)/h)
∥∥∥u(k) +

ρ

h
u(k−1)

∥∥∥
∞
,

and

|u(r)(x)− s(r)(x)| ≤ hk−r−1|ρ|Ck,r(ρ, (x− t0)/h)

∥∥∥∥hρu(k) + u(k−1)
∥∥∥∥
∞
,

for r = 0, 1, . . . , k − 1. The function Ck,r(ρ, y) satisfies

0 < Ck,r(0, y) <∞,
0 < lim

ρ→∞
ρCk,r(ρ, y) <∞, r = 0, 1, . . . , k − 1, 0 < y,

0 < lim
ρ→∞

ρ1−rCk,r(ρ, y) <∞, r = 0, 1, . . . , k − 1, y = 0,

0 < lim
ρ→−∞

|ρ|Ck,r(ρ, y) <∞, r = 0, 1, . . . , k − 1, y < k − 1,

0 < lim
ρ→−∞

|ρ|1−rCk,r(ρ, y) <∞, r = 0, 1, . . . , k − 1, y = k − 1.

Here, by ‖ ‖∞ we denoted the maximum norm on the segment [a, b].
For ρ = 0, the exponential sum is a polynomial of order k. In this case, the interpolation

error is bounded by hkC‖u(k)‖∞. When ρ→∞, the exponential sum tends to a polynomial
of order k − 1, and the bound reads hk−1C‖u(k−1)‖∞. This is in concordance with results
for the interpolation by polynomial functions.

However, when u is a solution of the singularly perturbed problem (1.1)–(1.2), due to the
exponential behavior at the boundary layer, ‖u(k)‖∞ is not bounded for small ε. For b(x) < 0,
the asymptotic behavior is described by (cf. [15])

|u(l)(x)| ≤ C
[
1 + ε−l exp

(
−bmin

1− x
ε

)]
,

where

(2.6) bmin = min
x∈[0,1]

|b(x)|

and C is a constant independent of ε and x. When b(x) > 0, an analogous result holds (just
substitute x 7→ 1 − x). Further, a solution u may be bounded in the similar manner when
b ≡ 0.

The interpolation error when u is a solution of a singularly perturbed problem is studied
in [11]; the main result is reported in the following lemma.
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LEMMA 2.2 ([11]). Let u be a solution of a singularly perturbed boundary value problem
(1.1)–(1.2), and let (xi)

n
0 be an equidistant sequence of points (0 = x0 < x1 < . . . < xn = 1,

h = xi − xi−1) for an arbitrarily chosen integer n satisfying

(2.7) h ≥ 4(k − 1)ε ln(1/ε)/bmin,

where the constant bmin is defined by (2.6). Further, assume that
1. The functions b, c, and f are sufficiently smooth such that u ∈ Ck(0, 1);
2. b(x) 6= 0 and c(x) ≤ 0 for all x ∈ [0, 1];
3. The parameter ρ from the exponential part of the exponential sum is of the same sign

as the function b and satisfies K ≤ h/(|ρ|ε) ≤ b−1min for some positive constant K.
Then the exponential sum s of order k (k ≥ 2) that interpolates the solution u at k consecutive
mesh points (a subsequence of (xi)

n
0 denoted by (ti)

k
1) satisfies

|u(r)(x)− s(r)(x)| ≤ Rhk−1−r, r = 0, 1, . . . , k − 1,

for all x ∈ [t1, tk−1] when b(x) < 0 or all x ∈ [t2, tk] when b(x) > 0. The constant R is
independent of h and ε. Further,

lim
ε→0
|u(r)(x)− s(r)(x)| ≤ Rhk−1−r, r = 0, 1, . . . , k − 1,

for all x ∈ [t1, tk) when b(x) < 0 or all x ∈ (t1, tk] when b(x) > 0.
Note that Lemma 2.2 assumes b(x) 6= 0. A similar result may be obtained for the

self-adjoint problem (b ≡ 0).

3. A derivation of k-points difference schemes. To discretize the differential equation
(1.1)–(1.2) we divide the interval [0, 1] into n equal subintervals

0 = x0 < x1 < · · · < xn−1 < xn = 1, h = 1/n, xi = i h.

A finite difference method comprises a discretization of the differential equation using the grid
points xi, where the unknown function u is approximated by an exponential sum of order k in
the neighborhood of the knot xi.

For given k (k ≥ 3) and arbitrary i ∈ {0, . . . , n}, we choose mi ∈ {0, 1, . . . , k − 1}
satisfying 0 ≤ i −mi ≤ n − k + 1. Let sk,mii denote an exponential sum defined over k
consecutive grid points xi−mi , . . . , xi+k−mi−1. By taking advantage of the equidistant mesh,
we may apply the representation of exponential sums given by (2.4) and (2.5):

sk,mii (x) =

k−mi−1∑
j=−mi

Lk,mij

(
x− xi
h

)
uj .

The unknowns ui are determined by the approximation of u(xi), u′(xi), and u′′(xi)
in (1.1) with sk,mii (xi), (sk,mii )′(xi), and (sk,mii )′′(xi), respectively:(

Lsk,mii

)
(xi) ≡ ε(sk,mii )′′(xi) + bi(s

k,mi
i )′(xi) + cis

k,mi
i (xi) = fi.

Here we used the abbreviations bi = b(xi), ci = c(xi), and fi = f(xi). Now,

L
[
Lk,mij

(
x− xi
h

)]∣∣∣∣
x=xi

=
ε

h2

(
Lk,mij

)′′
(0) +

bi
h

(
Lk,mij

)′
(0) + ci ≡ (LiLk,mij )(0)
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leads to the equation

(3.1)
k−mi−1∑
j=−mi

(
LiLk,mij

)
(0)ui+j = fi.

Since the boundary conditions (1.2) give two equations

(3.2) u0 = α0, un = α1,

we need n− 1 equations of the form (3.1) to determine the n+ 1 unknowns uj .
Not all of the choices for such equations will lead to a regular system of equations or

to a stable method. However, all methods are consistent as we prove in the next section. A
reasonable strategy for the choice of equations is to select mutually different xi’s. Later in
this paper we construct and examine three convergent three-point methods to illustrate our
approach.

Up to this point we did not discuss the choice of the parameter ρ from the exponential
sum si. We determine ρ from the condition that the scheme is exact when the solution of the
problem (1.1)–(1.2) with constant coefficients is an exponential function. In this case, ρ is the
largest (by the absolute value) root of the quadratic equation

(3.3)
ε

h2
ρ2 − bi

h
ρ+ ci = 0.

We denote by ρi the parameter ρ associated with the exponential sum sk,mii .
In the case b(x) 6= 0, ρi is given by

(3.4) ρi =


h
bi +

√
b2i − 4εci
2ε

for bi > 0,

h
bi −

√
b2i − 4εci
2ε

for bi < 0.

This definition is used for the choice of the tension parameters in the collocation by tension
splines [9]. Another possibility is to choose ρ according to an asymptotic expansion of the
solution in the boundary layer. This approach is widely used for exponentially fitted difference
schemes. Such a choice leads to

(3.5) ρi =
hbi
ε
.

Both choices (3.4) and (3.5) are hardly distinguishable for small perturbation parameters ε.
For bi > 0 we have

h

ε

bi +
√
b2i − 4εci
2

=
h

ε
bi −

2hci

bi +
√
b2i − 4εci

.

If c ≡ 0, the choices (3.4) and (3.5) are equal.
When b ≡ 0, the solution of the problem (1.1)–(1.2) has two boundary layers, and ρ is

calculated according to

ρi =


h

√
−ci
ε

for i < n
2 ,

−h
√
−ci
ε

for i ≥ n
2 .
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4. Consistency of the difference schemes. Here we study the application of the exact
solution u of the problem (1.1)–(1.2) to the scheme given by (3.1). Let us define

τi =

k−mi−1∑
j=−mi

(
LiLk,mij

)
(0)u(xi+j)−

k−mi−1∑
j=−mi

(
LiLk,mij

)
(0)ui+j(4.1)

=

k−mi−1∑
j=−mi

(
LiLk,mij

)
(0)u(xi+j)− fi,

where i and mi are arbitrarily chosen.
There is an unique exponential sum Sk,mii of order k that interpolates u(x) at the grid

points xj , j = i −mi, . . . , i + k −mi − 1 (u(xj) = Sk,mii (xj)). For exponential sums of
order k, the difference scheme (3.1) is exact:

LSk,mii (xi) =

k−mi−1∑
j=−mi

(
LiLk,mij

)
(0)Sk,mii (xi+j).

Further, since u satisfies the differential equation (1.1), i.e., Lu(x) = f(x), τi reads

τi = LSk,mii (xi)− Lu(xi)

= ε

((
Sk,mii

)′′
(xi)− u′′(xi)

)
+ bi

((
Sk,mii

)′
(xi)− u′(xi)

)
.

Now, the approximation error for u′(x) is bounded by (cf. Lemma 2.1)

(4.2)
∣∣∣∣u′(xi)− (Sk,mii

)′
(xi)

∣∣∣∣ ≤ hk−2|ρi|Ck,1(ρi,mi)

∥∥∥∥ hρiu(k) + u(k−1)
∥∥∥∥k,mi,i
∞

,

and the approximation error for u′′(x) is bounded by

(4.3)
∣∣∣∣u′′(xi)− (Sk,mii

)′′
(xi)

∣∣∣∣ ≤ hk−3|ρi|Ck,2(ρi,mi)

∥∥∥∥ hρiu(k) + u(k−1)
∥∥∥∥k,mi,i
∞

,

where

(4.4) ‖f‖k,m,i∞ = max
x∈[xi−m,xi−m+k−1]

|f(x)| .

Note that Sk,mii interpolates u at the nodes xi−mi , . . . , xi−mi+k−1 and that the second argu-
ment of the functions Ck,r is (xi − xi−mi)/h = mi. Using (4.2) and (4.3) we obtain

|τi| ≤ ε
∣∣∣∣(Sk,mii

)′′
(xi)− u′′(xi)

∣∣∣∣+ |bi|
∣∣∣∣(Sk,mii

)′
(xi)− u′(xi)

∣∣∣∣(4.5)

≤ (hk−3ε+ hk−2) |ρi| C̄mik (ρi)

∥∥∥∥ hρiu(k) + u(k−1)
∥∥∥∥k,mi,i
∞

,

where C̄mk is defined by

(4.6) C̄mk (ρ) := max
{
Ck,2(ρ,m), ‖b‖∞Ck,1(ρ,m)

}
.
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Lemma 2.2 and (4.5) imply that

lim
ε→0
|τi| ≤ R|bi|hk−2,

for some constant R. The previous findings can be summarized in the next theorem.
THEOREM 4.1. Let n ≥ k and k ≥ 3 be arbitrary, and let u ∈ Ck(0, 1) be a solution of

(1.1)–(1.2). Then for any i ∈ {0, . . . , n} and mi (0 ≤ mi ≤ k− 1, 0 ≤ i−mi ≤ n− k+ 1),
the difference scheme defined by (3.1) is consistent, and τi defined by (4.1) satisfies

|τi| ≤
(
hk−2ε+ hk−1

)
C̄mik (ρi)

∥∥∥u(k) +
ρi
h
u(k−1)

∥∥∥k,mi,i
∞

,

and

|τi| ≤
(
hk−3ε+ hk−2

)
|ρi| C̄mik (ρi)

∥∥∥∥ hρiu(k) + u(k−1)
∥∥∥∥k,mi,i
∞

,

where h = 1/n. The function C̄mik (ρi) is defined by (4.6). Further, if b(x) 6= 0 on [0, 1], then
there exists a constant C, independent on h, such that

lim
ε→0
|τi| ≤ Chk−2,

for b(x) < 0 and mi < k − 1, or b(x) > 0 and mi > 0.
To study stability (and convergence) of difference schemes, it is more convenient to use a

matrix notation. Our goal is to bound the error u(xi)− ui, where u is the exact solution of the
problem (1.1)–(1.2). Let us define the vectors

u =



u(x0)
u(x1)
u(x2)

...
u(xn−1)
u(xn)


, un =



u0
u1
u2
...

un−1
un


, and f =



α0

f1
f2
...

fn−1
α1


.

The equations (3.2) together with the additional n − 1 equations of the form (3.1) define a
system matrix that we denote with Lk,n, and un is a solution of the equation

(4.7) Lk,nun = f .

We define a vector τ as

τ = Lk,nu− Lk,nun = Lk,n(u− un).

If the matrix Lk,n is regular, then

‖u− un‖∞ ≤ ‖L−1k,n‖∞‖τ‖∞.

A bound for τ is given in Theorem 4.1, and thus the next corollary follows.
COROLLARY 4.2. Let the integers n ≥ k and k ≥ 3 be arbitrary, and let u ∈ Ck(0, 1)

be a solution of (1.1)–(1.2). If n− 1 equations of the form (3.1) together with (3.2) define a
regular matrix Lk,n, then un = [u0, . . . , un]T , a solution of (4.7), satisfies

|uj − u(xj)| ≤ ‖L−1k,n‖∞
(
hk−2ε+ hk−1

)
max
i
C̄mik (ρi)

∥∥∥u(k) +
ρi
h
u(k−1)

∥∥∥k,mi,i
∞

,
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and

|uj − u(xj)| ≤ ‖L−1k,n‖∞
(
hk−3ε+ hk−2

)
max
i
|ρi|C̄mik (ρi)

∥∥∥∥ hρiu(k) + u(k−1)
∥∥∥∥k,mi,i
∞

,

where h = 1/n and j = 0, 1, . . . , n. If b(x) 6= 0 on [0, 1], then there exists a constant C,
independent on h, such that

lim
ε→0
|uj − u(xj)| ≤ Chk−2 lim

ε→0
‖L−1k,n‖∞,

if the limit limε→0 ‖L−1k,n‖∞ exists and when b(x) < 0 and mi < k − 1 or b(x) > 0 and
mi > 0.

There is no general approach to bound L−1k,n. Instead, we have to consider each method
separately.

5. Three-point difference schemes. Here we exemplify our approach in the simplest
case, the three-point difference schemes. In the analysis of stability (and convergence), in
addition to assumptions (1.3), we assume that the coefficient c satisfies

−c(x) ≥ cmin > 0 for x ∈ [0, 1].

Further, the coefficient b is restricted to b(x) 6= 0 for all x, i.e., we exclude the so-called
turning point case. We propose three three-point difference schemes (k = 3) with a uniform
choice of mi, mi = m, m = 0, 1, 2.

The system matrix (4.7), here denoted by L3,m,n, is a tridiagonal matrix

L3,m,n =



1 0
rmm smm tmm

rm1+m sm1+m tm1+m
. . . . . . . . .

rmn−2+m smn−2+m tmn−2+m
0 1


.

Since the approximation satisfies the boundary conditions, it holds that τ0 = 0 and τn = 0.
Therefore, we may omit the first and the last equation from the system, and we can consider
the simplified matrix

L3,m,n =


smm tmm 0
rm1+m sm1+m tm1+m

. . . . . . . . .
rmn−3+m smn−3+m tmn−3+m

0 rmn−2+m smn−2+m

 .

Theorem 4.1 states that the methods are consistent. But, to prove convergence of the
methods we have to consider stability, i.e., boundedness of the matrix L−13,m,n. This will be
done in the forthcoming section.

5.1. A difference scheme for m = 0. The general scheme (3.1) for k = 3 and m = 0
reads:(
LiL3,0

0

)
(0)ui +

(
LiL3,0

1

)
(0)ui+1 +

(
LiL3,0

2

)
(0)ui+2 = f(xi), i = 0, . . . , n− 2,
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with the end conditions u0 = α0 and un = α1. A straightforward calculation results in the
coefficients

r0i =
(
LiL3,0

0

)
(0) = ci +

bi
h

1

eρi −1
+
ρi
h

e2ρi

(eρi −1)2

(ερi
h
− bi

)
,

s0i =
(
LiL3,0

1

)
(0) = −bi

h

eρi +1

eρi −1
− ρi
h

2 e2ρi

(eρi −1)2

(ερi
h
− bi

)
,

t0i =
(
LiL3,0

2

)
(0) =

bi
h

eρi

eρi −1
+
ρi
h

e2ρi

(eρi −1)2

(ερi
h
− bi

)
,

for i = 0, . . . , n− 2.
LEMMA 5.1. Let −c(x)≥ cmin > 0 and b(x)> 0 for x∈ [0, 1]. If the ρi’s are chosen

according to (3.4), then the matrix L3,0,n is diagonally dominant, and it holds that

‖L−13,0,n‖∞ ≤
1

cmin
.

Proof. First, note that from (3.3) it easily follows that

ερi
h
− bi = −cih

ρi
≥ 0.

Therefore, the entries of the matrix L3,0,n satisfy

s0i ≤ 0 and t0i ≥ 0.

The coefficient r0i is given by

r0i = ci +
bi
h

1

eρi −1
− ci

e2ρi

(eρi −1)2
≥ ci − ci

e2ρi

(eρi −1)2
= −ci

(
e2ρi

(eρi −1)2
− 1

)
.

This inequality holds because of the positive signs of b and ρi. Since

e2ρi

(eρi −1)2
=

1

(1− e−ρi)2
≥ 1,

it follows that

r0i ≥ 0.

Now we easily obtain that

|s0i | − |r0i | − |t0i | = −s0i − r0i − t0i = −ci ≥ cmin > 0,

and the bound from Lemma 5.1 is proved.
One may note that for the choice of the ρi’s according to (3.5), r0i is positive for small ρi

and negative for large ρi. Thus, a simple argument of diagonal dominance does not apply in
this case.

5.2. A difference scheme for m = 1. The central-point scheme is given by

(5.1)
(
LiL3,1

−1

)
(0)ui−1 +

(
LiL3,1

0

)
(0)ui +

(
LiL3,1

1

)
(0)ui+1 = f(xi),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

338 M. MARUŠIĆ

i = 1, . . . , n − 1, with two additional equations obtained from the boundary conditions
u0 = α0 and un = α1. The explicit expressions for the coefficients of the scheme (5.1) are

r1i =
(
LiL3,1

−1

)
(0) =

ε eρi ρ2i
(eρi −1)2h2

+ bi
−1− eρi(ρi − 1)

(eρi −1)2h
,

s1i =
(
LiL3,1

0

)
(0) =

−2ε eρi ρ2i
(eρi −1)2h2

+ bi
1− e2ρi +2ρi eρi

(eρi −1)2h
+ ci,

t1i =
(
LiL3,1

1

)
(0) =

ε eρi ρ2i
(eρi −1)2h2

+ bi
eρi(eρi −ρi − 1)

(eρi −1)2h
,

for i = 1, . . . , n − 1. The parameter ρi is defined either by (3.4) or (3.5). A bound for the
matrix L3,1,n

−1 is given in the following lemma.
LEMMA 5.2. Let −c(x)≥ cmin > 0 and b(x) 6= 0 for x∈ [0, 1]. If the ρi’s are chosen

according to (3.4) or (3.5), then the matrix L3,1,n is diagonally dominant, and

‖L−13,1,n‖∞ ≤
1

cmin
.

Proof. First, we prove that the coefficients s1i , r1i , and t1i , i = 1, . . . , n− 1, satisfy

s1i < 0 and t1i , r
1
i > 0.

From the definition of ρi (3.4), we have

ε

h2
ρ2i −

bi
h
ρi + ci = 0.

Hence,

(5.2)
ε

h
ρ2i = biρi − cih > biρi, i = 1, . . . , n− 1.

If ρi is defined according to (3.5), then

(5.3)
ε

h
ρ2i = biρi, i = 1, . . . , n− 1.

For r1i we have, using (5.2) or (5.3),

r1i =
ε eρi ρ2i

(eρi −1)2h2
− bi

1 + eρi(ρi − 1)

(eρi −1)2h
=

ε eρi ρ2i
h − bi(1 + eρi(ρi − 1))

(eρi −1)2h

≥ bi(ρi eρi −(1 + ρi eρi − eρi))

(eρi −1)2h
=

bi
(eρi −1)h

> 0

because bi and ρi (and therefore bi and eρi −1) have the same sign. For ti we have, using (5.2)
or (5.3), that

t1i =
εeρiρ2i

(eρi − 1)2h2
+ bi

eρi(eρi − ρi − 1)

(eρi − 1)2h
=

(
εeρiρ2i
h + bie

ρi(eρi − ρi − 1)
)

(eρi − 1)2h

>
bie

ρi

(eρi − 1)2h
(ρi + eρi − ρi − 1) =

bie
ρi

(eρi − 1)h
> 0,
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where we again used that ρi and bi have the same sign. From the definition of ri, si, and ti it
is clear that si + ri + ti = ci, and

s1i = ci − r1i − t1i < 0.

Since

|s1i | − |r1i | − |t1i | = −s1i − r1i − t1i = −ci ≥ cmin > 0,

we conclude that L3,1,n is diagonally dominant, and

‖L−13,1,n‖∞ ≤
1

cmin
.

5.3. A difference scheme for m = 2. When m = 2, the three-point scheme reads

(5.4)
(
LiL3,2

−2

)
(0)ui−2+

(
LiL3,2

−1

)
(0)ui−1+

(
LiL3,2

0

)
(0)ui = f(xi), i = 2, . . . , n,

with the end conditions u0 = α0 and un = α1. The coefficients from the scheme (5.4) are

r2i =
(
LiL3,2

−2

)
(0) =

ε

h2
ρ2i

(eρi −1)2
+
bi
h

−1 + eρi −ρi
(eρi −1)2

,

s2i =
(
LiL3,2

−1

)
(0) =

ε

h2
−2ρ2i

(eρi −1)2
+
bi
h

1 + 2ρi − e2ρi

(eρi −1)2
,

t2i =
(
LiL3,2

0

)
(0) =

ε

h2
ρ2i

(eρi −1)2
+
bi
h

e2ρi − eρi −ρi
(eρi −1)2

+ ci,

for i = 2, . . . , n.
LEMMA 5.3. Let −c(x)≥ cmin > 0 and b(x)> 0 for x∈ [0, 1]. If the ρi’s are chosen

according to (3.4) or (3.5), then the matrix L3,2,n is diagonally dominant, and

‖L−13,2,n‖∞ ≤
1

cmin

for h = 1/n satisfying

(5.5) h ≤ min
x∈[0,1]

∣∣∣∣b(x)

c(x)

∣∣∣∣ .
Proof. Because of

eρi −1− ρi ≥ 0 and e2ρi −1− 2ρi ≥ 0

for ρi ≥ 0, the coefficients r2i and s2i satisfy

r2i ≥ 0 and s2i ≤ 0.

Also, for positive ρi,

e2ρi − eρi −ρi
(eρi −1)2

≥ 1.
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Now,

t2i ≥
bi
h

e2ρi − eρi −ρi
(eρi −1)2

+ ci ≥
bi
h

+ ci ≥ 0.

The last inequality follows from the condition (5.5). As in the previous cases,

|s2i | − |r2i | − |t2i | = −s2i − r2i − t2i = −ci ≥ cmin > 0,

which proves the diagonal dominance and the bound of the lemma.
We summarize all previous results in the following theorem.
THEOREM 5.4. Let u ∈ C3(0, 1) be the solution of (1.1)–(1.2), where−c(x) ≥ cmin > 0

and b(x) 6= 0 on [0, 1]. Let un = [u0, . . . , un]T denote a solution of the difference scheme
(4.7), for k = 3, m ∈ {0, 1, 2}, and h = 1/n. In addition, let the ρi’s be chosen according
to (3.4), and let h satisfy

h ≤ max
x∈[0,1]

∣∣∣∣c(x)

b(x)

∣∣∣∣
in the cases m = 0 for b < 0, and m = 2 for b > 0. Then, the error at the nodes xj ,
j = 0, . . . , n, is bounded by

|uj − u(xj)| ≤
(
hε+ h2

)
c−1min max

i
C̄m3 (ρi)

∥∥∥u(3) +
ρi
h
u(2)

∥∥∥3,m,i
∞

and

|uj − u(xj)| ≤ (ε+ h) c−1min max
i
|ρi| C̄m3 (ρi)

∥∥∥∥ hρiu(3) + u(2)
∥∥∥∥3,m,i
∞

.

The function C̄m3 is defined by (4.6), while the norm ‖ ‖3,m,i∞ is defined by (4.4). Further, there
exists a constant C, independent of h, such that

lim
ε→0
|uj − u(xj)| ≤ Ch,

when b < 0 and m < 2 or b > 0 and m > 0.
Proof. In the case m = 1, the assertion of the theorem follows directly from Corollary 4.2

by a direct substitution of ‖L−13,1,n‖∞ with the bound from Lemma 5.2.
Bounds for ‖L−13,2,n‖∞ and ‖L−13,0,n‖∞ are given by Lemma 5.3 and Lemma 5.1 in the

case when b(x) > 0. When b(x) < 0, the simple substitution t = 1 − x transforms the
problem (1.1)–(1.2) into the case −b(x) > 0. With such a substitution, the scheme for m = 0
becomes the scheme for m = 2 and vice versa. We may also verify that substituting ρi into
−ρi and bi into −bi transforms the scheme m = 2 into the scheme for m = 0, as well as the
scheme m = 0 into the scheme for m = 2. (Note that for bi > 0 the parameter ρi is positive,
while for bi < 0 the parameter ρi is negative.) Thus, ‖L−13,2,n‖∞ and ‖L−13,0,n‖∞ are bounded
for b(x) 6= 0, and the error estimate follows directly from Corollary 4.2.

Theorem 5.4 may be applied to the choice of ρi’s given by (3.5) with the exception of the
cases m = 0 for b > 0 and m = 2 for b < 0.

6. Numerical examples. In this section we illustrate our methods with examples having
a known analytical expression for the exact solution.
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FIG. 6.1. Error for the solution of (6.1)–(6.2) and the numerical order of convergence by different methods in
dependence of the number of subintervals for a perturbation parameter ε = 10−5.

EXAMPLE 6.1. Consider:

(6.1) εy′′ + y′ − (1 + ε)y = 0,

(6.2) y(0) = 1 + e−1, y(1) = 1 + e−
1+ε
ε .

The exact solution of problem (6.1)–(6.2) is

(6.3) y(x) = e−x
1+ε
ε + ex−1 .

We apply difference schemes to this problem using 2n subintervals, for n = 2, . . . , 24. The
perturbation parameter ε is set to 10−5. The maximum error at the grid points in dependency
on the number of subintervals is shown in Figure 6.1.

As could be expected, the central point scheme (m = 1) gives the best approximation.
Further, we compare our methods to those proposed by Reddy and Chakravarthy [14] (denoted
by RP) and Awoke and Reddy [1] (denoted by AR). Both methods are exponentially fitted,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

342 M. MARUŠIĆ
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FIG. 6.2. Error for the solution of (6.1)–(6.2) by the central difference methods of different order in dependence
of the number of subintervals for a perturbation parameter ε = 10−5.

and the AR method is an improvement of the RP method. When ε is smaller than the mesh
width h, the AR method is slightly better for this example than our method for m = 1, while
the RP method gives a solution that is indistinguishable to our method. But both methods (AR
and RP) fail to converge to the solution when h→ 0. This lack of convergence is not observed
in some other examples (not shown here). If the inner solution is an exponential function, then
the proposed schemes give the exact solution since the formulae used for the first and second
derivative are exact for exponential functions. Therefore, the approximation error decreases in
the case h < 4(k− 1)ε ln(1/ε)/bmin, too. The difference schemes denoted by AR [1] and RP
[14] are not exact for exponential functions and this may be the reason for their behavior.

In Figure 6.1 we also present the numerical order of convergence (rn). It is calculated
according to

rn :=
ln(en−1/en)

ln 2
,

where en is error for the partition with 2n subintervals. For ε < h, the convergence of the
methods is linear as was shown in Theorem 5.4. More precisely, for small ε, the error is
proportional to ε+ h. In this case, ε may be neglected and the convergence is linear.

The same theorem also provides a bound for relatively large ε. Now, the error is pro-
portional to εh + h2, i.e., the convergence is at least linear. From Figure 6.1, it is evident
that when h is relatively small with respect to ε, then the method with m = 1 converges
quadratically. An analysis of the method in the case h ≈ 0 may explain this behavior.

In this example we used the choice of ρi given by (3.4). We also tried the choice in (3.5),
but there was no difference in the results.

Further, we illustrate some properties of the proposed methods that are not discussed
in this paper. First, we applied high-order methods to the problem (6.1)–(6.2). All the used
methods appeared to be convergent (Figure 6.2). The order of convergence is k − 2 for the
k-point scheme.

EXAMPLE 6.2. An important property of methods for singularly perturbed problems is the
independence of the convergence of the perturbation parameter ε. Such convergence is called
ε-uniform convergence. A method is ε-uniformly convergent if there exists constants C and
m, independent of ε, such that the solution u of the problem (1.1)–(1.2) and its approximation
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FIG. 6.3. Error for the solution of problem (6.4)–(6.5) for three-, four-, and five-point methods in dependence
of the number of subintervals for a perturbation parameter ε = 10−5. Blue and red points indicate the error for
h = 4(k − 1)ε ln(1/ε)/bmin and h = (k − 1)ε ln(1/ε)/bmin, respectively.

at the mesh points ui satisfy

max
ε∈[0,1]

|u(xi)− ui| ≤ Chm

for all i.
Although Example 6.1 suggests ε-uniform convergence of the proposed methods, it is

known that exponentially fitted methods are not ε-uniformly convergent [16]. In [11] we
analyzed the interpolation error by exponential sums for the solution of singularly perturbed
boundary value problems, and we demonstrated that the interpolation error is not independent
of ε.

Here we consider the equation [11]

(6.4) εu′′ + 2(1− x)u′ − 2u = (ε− 2x)ex,

with boundary conditions

(6.5) u(0) = 2 and u(1) = e−1/ε + e .

The exact solution is given by

u(x) = e−(2x−x
2)/ε + ex.

This solution has a boundary layer near the point x = 0.
The dependence of the error on the number of intervals for three-, four-, and five-point

methods is presented in Figure 6.3. Figure 6.3 clearly demonstrates that the proposed methods
are not ε-uniformly convergent. For h ≥ 4(k − 1)ε ln(1/ε)/bmin the behavior of the error
is described by Lemma 2.2 (i.e., Theorem 4.1): ‖u(xi)− ui‖ ≤ Ckhk−2 (blue points in the
figure). Experimental results in [11] and the figure suggest that the condition (2.7) can be
extended to h ≥ (k − 1)ε ln(1/ε)/bmin (red points in the figure). After that, the error starts
to increase (except for the three-point method). For h ≤ 10−5 = ε the error again decreases,
which is in accordance with the bound from Theorem 4.1 (bound for ’large’ ρ). Although
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FIG. 6.4. Error for the solution of the advection-diffusion problem (6.6)–(6.7) for the three-point methods in
dependence of number of subintervals for a perturbation parameter ε = 10−5.

the error for the three-point method seems not to be affected by ε, in [11] we have shown
that the interpolation error is not ε-uniform convergent for three-point methods. Numerical
experiments from [11] suggest that an implementation of a dense mesh in the boundary layer
results in ε-uniform convergence.

EXAMPLE 6.3. Next, we applied the methods to the advection-diffusion problem [8]

(6.6) ε y′′ + y′ = − e1−x,

(6.7) y(0) = 0, y(1) = 0,

with the exact solution

y(x) =

[
e1−x−1− e1−1/ε +(e−1) e−x/ε

1− e−1/ε

]
1

1− ε
.

The dependence of the error on the number of intervals is displayed in Figure 6.4 (for
ε = 10−5). The behavior of the methods is the same as in the case c(x) 6= 0 (problem
(6.1)–(6.2), Figure 6.1). The convergence of the methods is linear for h > ε, which is in
agreement with the theoretical results. The order of the convergence is the same in the case
h < ε for m = 0 and m = 2. The method defined by m = 1 converges quadratically for small
values of h.

EXAMPLE 6.4. In the last example we demonstrate the applicability of the proposed
schemes to nonlinear problems. The problem

(6.8) ε y′′ + 2y′ − ey = f(x),

with homogeneous boundary conditions y(0) = 0, y(1) = 0, and f ≡ 0 has an approximate
asymptotic solution

(6.9) y(x) = log
2

3− x
− log

2

3
e−2x/ε .
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FIG. 6.5. Error for the solution of nonlinear problem (6.8) for three-point and four-point method in dependence
of the number of subintervals for a perturbation parameter ε = 10−5.

In the example we impose

f(x) =

ε+ (2x+ 6)

[(
3
2

)e−2x/ε

− 1

]
(x− 3)

2

and boundary conditions

y(0) = 0 and y(1) = log
3

2
e−2/ε .

Now, the function (6.9) is the exact solution of equation (6.8). We solve this equation with the
three-point method (k = 3,m = 1) and the four-point method (k = 4,m = 2). The nonlinear
system is solved by five iterations of a Newton-Raphson method. The results are presented in
Figure 6.5. Again, the behavior of the error is the same as in Examples 6.1 and 6.3.

It is noteworthy that condition (1.3) is important for the convergence of the method.
In a semilinear problem of the form ε y′′ + by′ + a(x, y) = f(x), the assumption ∂a

∂y ≤ 0
guarantees convergence. For example, the method did not converge for the problem
ε y′′ + 2y′ + ey = f(x).

7. Concluding remarks. In this paper we introduced a family of exponentially fitted dif-
ference schemes for singularly perturbed two-point boundary value problems. The schemes are
derived from interpolating formulae for exponential sums. The consistency of the considered
difference schemes follows from the error bounds given in [10]. Although this paper deals with
exponential sums with a basis of the form 1, x, . . . , xk−2, exp(ρx), interpolating formulae
may be applied to a wider class of exponential sums used in the literature, for example, sums
with a basis 1, x, . . . , xk−2, exp(ρx), x exp(ρx), . . . , xl exp(ρx) or 1, x, . . . , xk−2, exp(ρx),
exp(−ρx). Consistency may follow from a generalization of the results in [10].

We illustrated this approach for three three-point difference schemes. All three methods
are stable and convergent. As expected, the examples show that the central difference scheme
gives the best approximation. The proposed methods are comparable to other exponentially
fitted three-point methods such as, for example, the methods proposed in [1, 14]. Still, our
methods have better properties than these two methods.
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For exponential fitting, we use the fitting parameter ρ in (3.4) proposed for collocation
methods by tension spline [9, 12]. All three methods are convergent for such a choice of ρ
as well as for the choice (3.5) commonly used in similar schemes. Moreover, the performed
numerical tests indicate no difference between the approximations obtained by these two
choices of ρ. Some methods from the literature use a uniform choice of ρ. In our case, a
nonuniform choice guarantees convergence. Numerical tests show that a uniform choice of ρ
does not improve the method. Further, there are methods that use exponential fitting in the
boundary layer only (for example [17]) or that behave well when exponential fitting is applied
only in the boundary layer although the methods assume the exponential fitting over a whole
interval (for example [9]). Such approach is in concordance with the fact that the solution of
singularly perturbed problem exhibits strong exponential behavior only in the boundary layer.
This is not possible in our case since exponential fitting on a whole interval is essential for
the stability of the methods. Numerical tests show that the methods did not converge when
exponential fitting was applied on the boundary layer alone.

We derived high-order schemes, higher than the seventh-order scheme given in [4]. The
obtained results may be directly applied to schemes of higher order. We already have results
for the stability of four-point schemes. However, a stability analysis of such schemes would
be more complex.

Further, in the stability analysis we consider a singular perturbation problem with b(x) 6= 0
and c(x) < 0. Numerical examples show that these schemes are applicable to equations where
b(x) = 0 or c(x) = 0. In these cases, stability may be analyzed in the same way.

The proposed schemes are not ε-uniform convergent. However, convergence is guaranteed
up to the point when the mesh width h becomes smaller than 4(k − 1)ε ln(1/ε)/bmin. If
higher accuracy is required, then higher-order schemes may be used. The construction of a
grid that would result in ε-uniform convergence is currently under investigation.
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