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MODEL REDUCTION IN ATMOSPHERIC TOMOGRAPHY BY OPTIMAL
GROUPING OF TURBULENT LAYERS∗

GÜNTER AUZINGER†

Abstract. In wide-field applications of adaptive optics systems, the problem of atmospheric tomography has
to be solved. Commonly used methods for this purpose operate on a set of two-dimensional reconstruction layers.
Due to run-time restrictions and demands on stability, in general the usable number of such reconstruction layers is
less than the number of atmospheric turbulence layers. Hence, model reduction has to be applied to the profile of
atmosphere layers in order to achieve a smaller number of the most relevant reconstruction layers. In continuation of
earlier published and purely heuristic experiments, we concentrate on the question how the choice of the heights of
these reconstruction layers influences the performance of the tomographic solver, aiming for a more rigorous analysis.
We derive a function representing an approximate expected value for the best-case residual error, i.e., a limitation (in
a statistical sense) for what any tomographic solver is able to reach. We provide a method for the minimization of
this function, which consequently yields an algorithm for the (approximately) optimal choice of the reconstruction
layer heights for a given input atmosphere model, i.e., given the turbulence strength depending on the altitude. Our
implementation of the optimization algorithm has acceptable run-time, and first tests of the resulting layer profiles
show that the obtained quality is significantly better than for other choices of the reconstruction layer profiles.
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1. Introduction. The problem of finding appropriate reconstruction layer profiles for
atmospheric tomography (commonly referred to as layer compression) is essential for wide-
field applications of adaptive optics (AO) control [9]. It is known [1, 3, 7] that the resulting
quality of commonly used tomographic reconstruction methods depends crucially on the
choice of these reconstruction layer profiles. We present the optimal grouping method as a
model reduction approach for a priori compression in the form of a method for calculating an
appropriate reconstruction layer profile for a chosen number of layers from a given atmosphere
profile, i.e., given heights and turbulence strengths C2

n per layer. The numerical tests [15] are
promising, and the method seems to outperform all other competitive approaches independent
of the algorithm used for the tomographic reconstruction. A simplified version of the algorithm
was already published in [15]. We derive the complete and more general method in this work
and provide the theoretical background.

Section 1.1 gives a short summary of the atmospheric tomography problem. In Section 1.2
we informally discuss the basic idea of the proposed compression method, which should serve
as a motivation for elaborating the technical details in the subsequent discussion. In Section 2
we derive an a priori estimate of the residual error and its dependence on the reconstruction
layer profile. Several approximations lead to a rather simple expression for this dependence,
which is necessary for the efficiency of the resulting compression method. In Section 3
we present an optimization algorithm for finding the global minimum of the achieved error
estimate function, which yields approximately optimal reconstruction layer profiles.

1.1. Atmospheric tomography: a brief problem description. This summary of the
tomography problem is kept short and serves more as a clarification of the notation used in the
subsequent sections rather than a real introduction. For a detailed description of the modeling
of light and adaptive optics systems, the reader is referred to the introductory literature [9].
We describe light in terms of Fourier optics [8], i.e., as propagating electromagnetic waves
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according to Maxwell’s equations. The major source of disturbances of the wave-fronts is the
fluctuation of the air’s refractive index due to unpredictable atmospheric turbulence leading to
a deformation of the originally plain wave-fronts. The essential effect on the waves are phase
delays, which add up as the light propagates through the air.

In wide-field applications of AO systems, the following tomography problem arises: We
obtain measurements from a number G of wave-front sensors (WFSs) by looking into the
directions of G (natural or laser) guide-stars (GSs), g = 1, . . . , G. From these measurements,
the wave-fronts (WFs) ϕ̃g are reconstructed. They represent sums over shifted optical phase
delays Φ(n) in the atmosphere, where n = 1, . . . , N . In general, the number N of atmospheric
layers at the heights H1, . . . ,HN is far too large to directly state the tomography problem (i.e.,
solving for the phase delays) on these layers. This is due to memory and run-time constraints
as well as stability demands on the solver, as the problem of narrow angle tomography is
severely ill-posed [4]. Hence, the layer structure of the atmosphere is usually approximated by
a smaller number L < N of reconstruction layers at the heights h1, . . . , hL.

We define the shift operator

(1.1)
(
T∆xΦ

)
(x) := Φ (x−∆x) ,

which formally denotes the horizontal shift of the phase delays Φ by a translation vector ∆x.
The value of this translation caused by the GS with number g in a layer at height hl is given by

∆x = hl · dg ,

where dg is the view direction of the GS number g and which is defined as the vector (d1
g, d

2
g)

in the aperture plane for the GS being located on the line ξ(d1
g, d

2
g, 1) for ξ ≥ 0. The chosen

coordinate system has its origin at the center of the telescope aperture and the z-axis is identical
to the optical axis; we assume the telescope being directed to zenith here for simplicity. These
view directions are bound by a GS separation angle α via

(1.2) |dg| ≤ tan(α) , for all g = 1, . . . , G,

where α is usually of the same order of magnitude as the field of view.
Using these notations, we can formulate the tomography problem as follows:
PROBLEM 1.1. Given the measured and reconstructed wave-fronts ϕ̃g , for g = 1, . . . , G

(number of GS). For all g, solve the system

L∑
l=1

Thldg Φ̂
(l)

= ϕ̃g

for the unknown phase delays Φ̂
(l)

, where l = 1, . . . , L with L the number of reconstruction
layers. The wave-fronts ϕ̃g are given as noise-contaminated sums of the atmospheric phase
delays in the view directions

ϕ̃g =

N∑
n=1

THndgΦ(n) +N .

The noise N stems from discretization (due to finitely many sub-apertures of the WFS)
and measurement errors (e.g., quantum effects) of the WFSs. The reconstruction of the wave-
fronts ϕ̃ from the sensor measurements causes additional numerical errors, which we interpret
as included in N here for the sake of simplicity. Problem 1.1 is in general ill-posed and a
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solver can only try to find a good approximation of the least-squares solution to Problem 1.1.

In the sequel we denote by T such a solver that maps the input ϕ̃g to the unknowns Φ̂
(l)

:

T : (ϕ̃1, . . . , ϕ̃G) 7→
(

Φ̂
(1)
, . . . , Φ̂

(L)
)
.

Note that we have neglected the cone effect, which introduces an additional height-dependent
scaling of the phase delays if laser GSs are in use. This is because we assume that it does
not play a significant role in our context. Also the nature of N is not taken into account here.
The treatment of noise will be discussed in the beginning of Section 2. Further we neglect the
so-called piston mode, i.e., we assume that

(1.3)
∫
R2

Φ(x) dx = 0

in all atmospheric layers and for the results Φ̂ of the solver T on all reconstruction layers.
The phase delays Φ are assumed to be non-deterministic, and their behavior is described

by a statistical model such as the widely used model according to von Karman. Such models
are usually formulated using either the structure function, the autocorrelation function, or the
power spectral density of the atmosphere’s refractive index or the phase delay. In our context,
the autocorrelation function is most practical. We assume the turbulence model to be given in
form of the autocorrelation function of the atmospheric phase delays, that is,

CΦ(∆x) := E (〈Φ(x)−meanValue (Φ) , Φ(x−∆x)−meanValue (Φ)〉) ,

where E denotes the expected value and 〈· , ·〉 is the usual scalar product in L2. Under our
assumption that the piston mode is zero (1.3), this takes the form

(1.4) CΦ(∆x) := E (〈Φ(x) , Φ(x−∆x)〉) .

According to [9], the autocorrelation function is a constant times the inverse Fourier transform
of the power spectral density function Pn(ω) of the air’s refractive index n:

Pn ∝ PΦ = F
{
CΦ

}
.

The latter is commonly specified according to the von Karman model (see, e.g., [13])

(1.5) Pn(ω) = C · C2
n(H)

(
|ω|2 +

1

L̃2

)−11/6

· exp

(
− |ω|

2

|ωm|2

)
,

where |ωm| = 5.92/lmin. The parameters lmin and L̃ denote the characteristic minimum
length of an eddy and the outer scale of the spatial coherence of the turbulence, respectively.
The scaling constant C does not depend on H and is not relevant in our context.

However, in simulation tools for adaptive optics systems, also a modified version of the
von Karman model is used, namely

(1.6) Psim
n (ω) = C ′ · C2

n(H)

(
|ω|2 +

1

L̃2

)−11/6

.

This modification changes the decay of P from exponential to polynomial, from which we can
expect a decrease in smoothness of the phase delays Φ as well as the autocorrelation function.

In both models (1.5), (1.6), the relative strength of the turbulence in an atmospheric layer
at height H (i.e., the dependence on H) is described by a measured constant C2

n(H). For the
reconstruction layers, predictors c2(h) corresponding to these constants are in general required
for the tomographic solver T as parameters—usually these are internally used as weights, e.g.,
in the penalty terms.
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1.2. The idea and motivation for the proposed compression method. The focus of
our interest is the question how to choose the reconstruction layer heights hl in order to achieve
the best possible performance when solving Problem 1.1 using any tomographic solver T if
the number of reconstruction layers L is given. Our approach is based on choosing hl such
that the minimum residual (i.e., the best residual T can theoretically achieve) gets as small as
possible. For this aim we need an estimate for the minimum residual that can be calculated a
priori only from information about the atmosphere model.

In a first step, we try to find this estimate in the simple case with only one atmospheric
layer at height H , and we want to find an approximation on a single reconstruction layer at a
different height h with ∆h := h −H 6= 0. Let the atmospheric phase delay in layer H be
Φ(x). The tomographic reconstructor T yields an approximation Φ̂(x) on layer h. The aim of
T is to find Φ̂ such that the difference between Φ and Φ̂ is small for several view directions d.
These different view directions cause Φ̂ to be shifted about ∆x = ∆h · d relative to Φ.

Our goal is now to find an estimate for the error Φ − Φ̂ and explicate its dependence
on ∆h. The first rough idea, on which this work is based, is to assume that Φ̂ ≈ Φ, and hence,

(1.7) Φ(x)− Φ̂(x−∆h · d) ≈ Φ(x)− Φ(x−∆h · d) ≈ |d|∇Φ(x)∆h ,

indicating that the error depends linearly on ∆h. From established statistical models of
the atmosphere we assume that ∇Φ is linearly correlated to

√
C2
n(H), hence the squared

minimum residual error should be proportional to C2
n(H) ·∆h2. In order to use this single-

layer connection for the full profile, we make the assumption that the solution Φ̂
(l)

on every
reconstruction layer hl approximates the phase delays in the atmospheric layers Hn that are
close to hl. Thus, the problem should be solved if the values for hl are chosen such that the
sum over all single-layer estimates C2

n(H) ·∆h2 between all reconstruction layers and their
neighboring atmospheric layers is small.

Of course an argumentation like (1.7) is formally not acceptable. We will show a more
rigorous way of achieving such a result in the sequel: the two unknowns, the phase delay Φ
and its reconstruction Φ̂, are treated in different ways. In a first step we assume Φ̂ to be the best
possible solution that the tomographic solver T can theoretically find, i.e., the least-squares
solution to Problem 1.1 for a given Φ—this is motivated by our aim to chose the reconstruction
profile such that the possibilities for T are optimal. Subsequently, the expected value for this
minimal error is estimated under the assumption that Φ is in accordance with an appropriate
turbulence model of the atmosphere. From the rough idea sketched in (1.7), it can be expected
that we need some kind of smoothness assumptions on Φ (e.g., Φ has to be differentiable or at
least Lipschitz continuous in order to allow the last step in (1.7))—this will turn out to appear
in the form of a smoothness condition on the autocorrelation function in the vicinity of its
maximum. This is more consistent with the statistical nature of Φ.

The idea to simply add up the single-layer estimates in order to achieve an estimate for the
complete profile turns out to be hard to justify theoretically. We have to base it on a conjecture,
the validity of which we can only show heuristically; see Section 2.2.

2. A profile-dependent function for estimating the minimum residual error. As
mentioned in Section 1.1, the tomographic solver T has to operate on a number L of re-
construction layers that is in general less than N , the number of turbulence layers in the
atmosphere. Hence, the essential question is how to chose the heights hl and the weights c2l for
the reconstruction layer profile for a given L. It turned out during earlier experiments [1] that
the variation of the heights hl has significantly more impact than the variation of c2l . Hence
this article concentrates primarily on the heights; for the weights c2l , see Section 2.2.3.

We want to achieve optimal results for the tomography solver T without any knowledge
about T . This can be formulated in two ways:
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• Amongst all error sources that restrict the performance of the solver T (such as
instability due to the ill-posedness of the tomography problem, various kinds of noise
from WFS measurements and actuation of deformable mirrors, disturbing effects
from laser guide stars, etc.), identify those stemming directly from the fact that
not every atmospheric layer coincides with a reconstruction layer. Subsequently,
choose the reconstruction layer profile h1, . . . , hL such that this profile-caused error
restriction is minimal.

• Neglect all physical and numerical error sources and assume that the solver T
yields the best possible result, i.e., a solution with minimum residual error in the
reconstruction layer profile. Subsequently, choose h1, . . . , hL such that this residual
error gets minimal.

We will work with the second formulation, which is formally easier to handle. In Section 2.1
the simplified case of having only one atmospheric layer and one reconstruction layer is
analyzed, and the dependence of the residual error on the height difference of these layers can
be shown. In Section 2.2 we expand this result to the general case of N atmospheric layers
and L reconstruction layers.

2.1. Error analysis for a single layer. In this section we derive a formula similar to (1.7)
in a more rigorous way. However, we have to use several approximations in order to achieve a
formula that is sufficiently simple. This is motivated by the need for a practical method for
layer compression with acceptable run-time.

2.1.1. The definition of the problem geometry. Let D ⊂ R2 be the telescope aperture
and V the number of view directions dv with v = 1, . . . , V . In a standard tomography setup,
these could be GS directions and V = G. However, we understand the term view direction
more general since for controlling MCAO (Multi Conjugate Adaptive Optics, see [9]) systems,
the view directions can be completely detached from the GSs. H is the height of the single
atmospheric layer carrying a phase delay Φ, h is the height of the reconstruction layer on
which the solver T yields a reconstructed phase delay Φ̂, and ∆h := h−H . We define ΩH as
the intersection of the atmospheric layer at height H with all the telescope’s cylinders of view:

ΩH :=
{
x ∈ R2|∀v : x−H · dv ∈ D

}
=

V⋂
v=1

(D +H · dv) .

This is the subregion of the layer at height H , where the fields of view corresponding to
all view directions are overlapping. The region that is actually relevant for the tomography
problem is in general larger (see Section 2.1.4), but we concentrate on ΩH first.

Each view direction causes Φ̂ to be shifted about ∆x relative to Φ due to ∆h 6= 0. For
a certain view direction dv with |dv| ≤ tan(α), this shift is given by ∆x = ∆h · dv, and
consequently, the L2-error has the form

(2.1) E2
dv =

∫
ΩH

(
Φ(x)− Φ̂(x−∆h · dv)

)2

dx ,

with |∆x| ≤ |∆h| · tan(α); see Figure 2.1.
Note that under our restriction to ΩH , the atmospheric phase delay Φ is only known (and

relevant) in ΩH , whereas the reconstructed Φ̂ can in general be any function in L2(R2). We
need a reformulation of this expression to a form with the shift applied to Φ rather than Φ̂.
For this purpose, we expand the domain of integration to the set of all values x at which the
evaluation of Φ̂ can contribute to (2.1):

Ω∆h
H :=

{
x ∈ R2|∃v : x−∆h · dv ∈ ΩH

}
=

V⋃
v=1

(ΩH + ∆h · dv) .
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FIG. 2.1. Single atmospheric layer at height H (below) and reconstruction layer at height h (above) intersected
by light rays (blue) in 2 view directions d1,2 at a maximum angle α. ΩH is the intersection of the atmospheric layer
with the cylinders of view corresponding to the guide stars; Ω∆h

H is the extension to the reconstruction layer.

Further, let Φ0 be the continuation of Φ from ΩH to Ω∆h
H with constant 0 outside ΩH :

(2.2) Φ0(x) :=

{
Φ(x) for x ∈ ΩH ,

0 else .

Now Edv can be written as

E2
dv =

∫
Ω∆h
H

(
Φ0(x + ∆h · dv)− Φ̂(x)

)2

dx .

2.1.2. The central least-squares solution. According to our concept of optimizing the
solver T , we now assume that Φ̂ minimizes the overall (with respect to the view directions)
residual error, which we define in the l2-sense: let

E2 :=

V∑
v=1

E2
dv .

Then our minimization problem is of the following form: for a given phase delay Φ on the
atmospheric layer H and for the view directions d1, . . . ,dV , find a reconstruction Φ̂ on the
reconstruction layer h such that

(2.3) E2 =

V∑
v=1

∫
Ω∆h
H

(
Φ0(x + ∆h · dv)− Φ̂(x)

)2

dx→ min .

If we denote by ‖·‖H,∆h and 〈· , ·〉H,∆h the L2(Ω∆h
H )-norm and the associated scalar product,

respectively, and by

(2.4) Φ0
v(x) := Φ0(x + ∆h · dv)

the residual minimization, then (2.3) can be written in the compact form

(2.5) E2 =

V∑
v=1

∥∥∥Φ0
v − Φ̂

∥∥∥2

H,∆h
→ min .

Since the functional
∥∥Φ0

v − ·
∥∥2

as well as a sum over such expressions are strictly convex,
there exists a unique minimum. This minimum can be found by setting the Fréchet-derivative
to zero, which leads to

(2.6) Φ̂min =
1

V

V∑
w=1

Φ0
w .
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Inserting Φ̂ = Φ̂min into the expression for E in (2.5), we get a Φ-dependent minimal error
that is theoretically achievable by T :

(2.7) E2
min = E2

min(Φ,∆h) :=

V∑
v=1

∥∥∥Φ0
v − Φ̂min

∥∥∥2

H,∆h
.

For our further argumentation we require that Emin is expressed in terms of differences
between the shifted phase delays Φ0

v. First we note that for f, g elements of any real Hilbert
space it trivially holds that ‖f − g‖2 = ‖f‖2 + ‖g‖2 − 2 〈f , g〉. We define the differences
Ψv := Φ0

v − Φ̂min and see that for all v, w ∈ {1, . . . , V },∥∥Φ0
v − Φ0

w

∥∥2

H,∆h
= ‖Ψv‖2H,∆h + ‖Ψw‖2H,∆h − 2 〈Ψv , Ψw〉H,∆h .

Summing up this equation over all v and w leads to a representation without Φ̂min:

∑
v,w

∥∥Φ0
v − Φ0

w

∥∥2

H,∆h
= 2V

V∑
k=1

‖Ψk‖2H,∆h − 2
∑
v

∑
w

〈Ψv , Ψw〉H,∆h

(2.7)
= 2V ·E2

min − 2

〈∑
v

Ψv ,
∑
w

Ψw

〉
H,∆h

= 2V ·E2
min − 2

〈
−V Φ̂min +

∑
v

Φ0
v , −V Φ̂min +

∑
w

Φ0
w

〉
H,∆h

.

Due to (2.6), the factors in the scalar product vanish, and we get

(2.8) E2
min =

1

2V

∑
v 6=w

∥∥Φ0
v − Φ0

w

∥∥2

H,∆h
.

In this form the minimum residual error is only dependent on shifted copies of Φ, and we can
use the atmosphere model—especially the autocorrelation function—as a distribution for the
random quantity Φ in order to find an expected value.

2.1.3. The approximation of the expected value for the minimum residual error.
Since for all Φ̂ it holds that E ≥ Emin, a lower bound for Emin seems to be of interest.
However, a usable lower bound cannot be found because Emin could theoretically be zero
for special choices of Φ. For example, if the view directions dv have the property that there
exists a p ∈ R2 such that (dv − dw) · p ∈ N for all v, w (e.g., view directions on a regular
square or hexagonal grid fulfill this condition), then a phase delay Φ(x) = sin(2πx · p∆h)
would lead to Emin = 0 except for the slim region Ω∆h

H \ ΩH . However, the probability that
Φ is of such a special form is negligible in reality. What we really need is not an estimate
for Emin in the sense of a best or worst case but an expression for the average case under the
assumption that Φ is realistic. This means that we search for the expected value E

(
E2

min

)
using the atmosphere models (1.5) or (1.6) as a distribution of the random ’variable’ Φ.

In order to achieve an efficient layer compression method, we aim for an approximation
of E

(
E2

min

)
that can be evaluated fast, i.e., a formula similar to (1.7). Hence, we have to use

several approximations and heuristic arguments in this section. The main justification lies is
the fact that we are talking about expected values of completely unknown functions, the exact
values of which are probably not of more practical use than estimates. Further, the satisfying
performance of the resulting method has already been shown [15].
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For functions Φ resulting from statistical models like (1.5) or (1.6), norms and scalar
products over the domain R2 are in general infinite. However, in our subsequent derivations
the need for a well-defined L2-norm of the phase delays will arise. Hence, we define a circular
region Λ ⊂ R2 with diameter dΛ � diam(D) around a midpoint m ∈ D. Further, we state the
statistical model (especially the autocorrelation) of the phase delays to be given on Λ instead
of R2 and assume that the error due to this simplification is negligible if Λ is large enough. In
this sense we begin our analysis with the scalar product 〈· , ·〉Λ and the norm ‖·‖Λ and for the
shifted phase delays

Φv(x) := Φ(x + ∆h · dv)

without the truncation to ΩH as in (2.2), (2.4).
Due to the representation (2.8) of Emin, it suffices to find expected values for the discrep-

ancies between the shifted phase delays:

(2.9) E
(
‖Φv − Φw‖2Λ

)
= E

(
‖Φv‖2Λ + ‖Φw‖2Λ − 2 〈Φv , Φw〉Λ

)
.

Since Λ is very large compared to the shift ∆h · dv , it can be shown that the expected value of
the difference between the norms ‖Φv‖2Λ and ‖Φw‖2Λ is negligible:

Let Λv := Λ−∆h · dv , Λ+
v := Λv \ Λ, and Λ−v := Λ \ Λv . Then

E
(
‖Φv‖2Λ

)
= E

(
‖Φ‖2Λv

)
= E

(
‖Φ‖2Λ + ‖Φ‖2Λ+

v
− ‖Φ‖2Λ−v

)
.

Since |Λ| = O(d2
Λ) and |Λ±v | = O(dΛ), the relative error between E

(
‖Φv‖2Λ

)
and E

(
‖Φ‖2Λ

)
can be made arbitrarily small if dΛ is chosen large enough. Hence, Φv,w can be replaced by Φ
in the Λ-norms.

According to (1.4), the expected value of the scalar product 〈Φv , Φw〉 is nothing else than
the autocorrelation function evaluated at ∆x = ∆h(dv − dw). Thus, (2.9) can be simplified
to

(2.10) E
(
‖Φv − Φw‖2Λ

)
≈ 2E

(
‖Φ‖2Λ

)
− 2CΦ(∆h(dv − dw)) .

The autocorrelation function, when restricted to the domain Λ, takes its global maximum
at ∆x = 0, and this maximum is identical to E

(
‖Φ‖2Λ

)
. An additional property of CΦ is

its rotational symmetry (isotropy of atmospheric turbulence), i.e., it depends only on |∆x|.
Equation (2.10) could be used in this form for all subsequent derivations, however, since
we would like to obtain a method that solves the layer compression problem in acceptable
run-time, we try to simplify (2.10) further. For that, we use the following approximation of
CΦ by a power function in the vicinity of the maximum under the assumption that |∆x| is
small:

(2.11) CΦ(∆x) ≈ E
(
‖Φ‖2Λ

)
· (1− γ|∆x|κ) ,

with some constants γ, κ > 1. The essential property of this term is the fact that the difference
(CΦ(0)−CΦ(·)) is approximated by a multiplicative function, which will enable us to essen-
tially simplify the resulting target function. The order of magnitude for |∆x| can be estimated
in the following heuristic way: For future extremely large telescopes like the ELT of ESO, the
field of view has a diameter of maximal 2α ≤ 7 arc-minutes. According to the C2

n-profiles
of commonly used atmosphere models, 95% of the turbulence occurs in the altitude range
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0–20 km, and usually L ≥ 10 reconstruction layers will be used by the tomographic solvers.
Hence, assuming an equidistant distribution of the reconstruction layers, ∆h ≤ 1000m, and
due to (1.2), we have for all g that |dg| ≤ 10−3. Thus, |∆x| = |∆h(dv − dw)| ≤ 2m. (In
general, the optimal reconstruction layers are not equidistant, but we will see that distances
∆h ≥ 20km/(2L) occur only in regions of weak turbulence). Using this estimate, we would
like to assess the quality of the approximation (2.11). Algebraic representations of the inverse
Fourier transforms of the von Karman power spectral density can be found in the literature,
however, these formulas are rather complicated, and we found no easy way to apply one
formalism to both models (1.5) and (1.6). Hence we prefer a numerical calculation by the
two-dimensional IFFT for typical parameter values (lmin = 1m and L̃ = 20m), noting that
also the estimate for |∆x| is only approximate.

FIG. 2.2. The autocorrelation function CΦ(∆x) for the turbulence model according to von Karman (1.5) for
the parameters lmin = 1m and L̃ = 20m: 3D plot (left) and a section through the maximum (right). The plots are
scaled such that the value at the central maximum is 1.

FIG. 2.3. The autocorrelation function CΦ(∆x) for the turbulence model (1.6) used for simulation with
L̃ = 20m: 3D plot (left) and a section through the maximum (right). The plots are scaled such that the value at the
central maximum is 1.

In Figure 2.2 we display a three-dimensional plot (left) of CΦ, calculated by the IFFT
of Pn according to (1.5) as well as a cross-section (right) through the maximum at ∆x = 0.
Within the range of interest |∆x| ≤ 2m, we can see that CΦ(∆x) can be approximated by a
parabolic function CΦ(0) · (1− γ|∆x|2), i.e., (2.11) is applicable with κ = 2. For the model
(1.6) used for simulations, the resulting autocorrelation function is displayed in Figure 2.3.
In this case, a cone function CΦ(0) · (1− γ|∆x|) appears to be a reasonable approximation
within the range |∆x| ≤ 2m, i.e., (2.11) is applicable with κ = 1.

Of course, these arguments are quite heuristic. We note that the reason for using (2.10)
and (2.11) is mainly a significant increase of efficiency of the resulting method (see Section 3)
since the optimization algorithm has to evaluate E

(
‖Φv − Φw‖2Λ

)
frequently. In spite of all
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these simplifications, the results are still convincing [15].
Using ∆x = ∆h · (dv − dw), (2.10), and (2.11), we can express the error as

(2.12) E
(
‖Φv − Φw‖2Λ

)
≈ 2γ|dv − dw|κ · E

(
‖Φ‖2Λ

)
|∆h|κ .

In both statistical models (1.5) and (1.6), the power spectral density Pn(ω) is linearly
dependent on C2

n. Hence, there is a constant θ > 0 such that

(2.13) E
(
‖Φ‖2Λ

)
= θ · C2

n(H) .

The last piece we need for finishing this section is a connection between the expected values of
integrals over Λ and subsets of Λ. First we note that for any integrable function f : Λ→ R+

0

and any subset T ⊂ Λ it holds that E
(∫
T
f dx

)
= |T |
|Λ|E

(∫
Λ
f dx

)
if f obeys a statistical

model independent of x. Hence, using the notation ΩH|vw := (ΩH−∆hdv)∩ (ΩH−∆hdw)

and η := 1
|Λ| ,

E
(〈

Φ0
v , Φ0

w

〉
Λ

)
= E

(
〈Φv , Φw〉ΩH|vw

)
= η · |ΩH|v,w| · E (〈Φv , Φw〉Λ) .

Now we use the argument that |∆x| = |∆h(dv − dw)| is small (≤ 2m, see above) compared
to the aperture diameter (≈ 40m for the ELT). Further, the strongest turbulence occurs at
lower altitudes, where diam(ΩH) is still significantly larger than |∆x|. Hence, we assume that
|ΩH|vw| ≈ |ΩH | and approximate the expected difference of the truncated phase delays by
the expected difference of the phase delays on Λ scaled by η|ΩH |:

E
(∥∥Φ0

v − Φ0
w

∥∥2

H,∆h

)
= E

(∥∥Φ0
v

∥∥2

Λ
+
∥∥Φ0

w

∥∥2

Λ
− 2

〈
Φ0
v , Φ0

w

〉
Λ

)
= E

(
η|ΩH |

(
‖Φv‖2Λ + ‖Φw‖2Λ

)
− 2η|ΩH|vw| 〈Φv , Φw〉Λ

)
≈ η|ΩH | · E

(
‖Φv − Φw‖2Λ

)
.(2.14)

Now the expected residual error can finally be approximated by a rather simple expression
that shows the dependence on ∆h similar to the original idea (1.7):

E
(
E2

min

) (2.8)
=

1

2V

∑
v 6=w

E
(∥∥Φ0

v − Φ0
w

∥∥2

H,∆h

)
(2.14)
≈ η|ΩH |

2V

∑
v 6=w

E
(
‖Φv − Φw‖2Λ

)
(2.12)
≈ η|ΩH |

2V

∑
v 6=w

2γ|dv − dw|κ
E

(
‖Φ‖2Λ

)
|∆h|κ

(2.13)
≈ ηθγ

|ΩH |
V

∑
v 6=w

|dv − dw|κ
 · C2

n(H) · |∆h|κ .(2.15)

The constant κ stems from the approximation (2.11) and depends on the shape of the auto-
correlation function in the vicinity of its maximum and hence on the choice of the turbulence
model. We have seen that for the original physical model (1.5), we can choose κ = 2, whereas
for (1.6) as used in the simulation, the setting κ = 1 seems more suitable. Concerning the
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other constants η, θ, γ, we note that their actual values are not important (as long as they are
positive) since they do not effect the location of the minimum of the target function that we
derive in Section 2.2.2. The next necessary step is to expand this result to the complete layer
region of interest.

2.1.4. The regions of incomplete overlap. Until now we have analyzed the expected
minimum residual error for the region ΩH where all cylinders of view intersect. The complete
region that is relevant for the tomographic solver is of course larger as it includes all regions
where some—but not all—cylinders intersect, which creates a mosaic of sections with subsets
of the view directions involved. Figure 2.4 displays a schematic example for V = 4 under the
simplifying assumption that the aperture D is a circle.

FIG. 2.4. A simple example for regions of incomplete overlap for the case V = 4 with a circular aperture D.
The indices of involved view directions are listed in each region.

For each one of these regions, our estimate (2.15) is in principle applicable with two
modifications: First, the sum over the view directions has to be restricted to the ones relevant
in each region, and V has to be adapted accordingly. Second, |ΩH | in (2.15) has to be replaced
by the area of the region.

For notational purposes, we define the set of all view direction indices as V :={1, 2, . . . , V }
and the intersection of the cylinder of view in direction dv with the atmospheric layer at height
H as

ΩH,v :=
{
x ∈ R2|x−H · dv ∈ D

}
= D +H · dv

for v ∈ V . The complete relevant region is now given by Ω̄H :=
⋃V
v=1 ΩH,v. Next, for any

given index subset σ ⊂ V corresponding to a subset of view directions, we define the regions
where only the view directions σ are ’active’ and all others are not:

ΩH,σ :=

[⋂
v∈σ

ΩH,v

]
\

⋃
v 6∈σ

ΩH,v

 .
For example, in Figure 2.4 the region marked with ’3,4’ is ΩH,σ for σ = {3, 4}. The complete
region Ω̄H is the disjoint union of all these sets:

Ω̄H =
⋃
σ⊂V

ΩH,σ and ∀σ1 6= σ2 : |ΩH,σ1
∩ ΩH,σ2

| = 0 .

Now we add up the errors on the disjoint subregions to obtain the error on the complete set
Ω̄H . The approximate expected minimum residual error on the layer at height H takes the
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form

E
(
E2

min

)
≈ ηθγ ·

∑
∅6=σ⊂V

|ΩH,σ|
|σ|

( ∑
v,w∈σ

|dv − dw|κ
)
· C2

n(H) · |∆h|κ ,

where |σ| denotes the number of elements contained in σ. In order to split this expression into
parts with a comfortable visibility of dependencies, we define the layer-independent constant

(2.16) B := ηθγ · |D|
V
·
∑
v,w∈V

|dv − dw|κ

and the layer-dependent weights

(2.17) ω(H) :=

 |D|
V
·
∑
v,w∈V

|dv − dw|κ
−1

·
∑
∅6=σ⊂V

|ΩH,σ|
|σ|

∑
v,w∈σ

|dv − dw|κ .

Because for H = 0 it holds that ΩH = D = Ω̄H and |ΩH,σ| = 0 for all σ 6= V , we can see
that ω(0) = 1. Thus, the weights ω(H) have no geometry dependency and can be conveniently
used as H-dependent weights. The expected minimum residual error can now be written as

E
(
E2

min

)
≈ B · ω(H) · C2

n(H) · |∆h|κ .

We did not find an appropriate (i.e., sufficiently simple) way to give analytical expressions
for the areas |ΩH,σ| of the subregions in the general case of an arbitrary aperture shape D.
Hence, a method for the numerical calculation of the weights ω(H) was implemented in
MATLAB using the possibility of approximately representing subsets of R2 pixelwise by large
Boolean matrices, which can be easily shifted and added or subtracted; the areas can then be
approximated by simple pixel counting.

Some example plots for values of ω(H) as functions of H are displayed in Figure 2.5.
For the sake of simplicity we chose a simple ring-shaped aperture, where the relative diameter
of the central obstruction is varied (0, 0.2, 0.4, and 0.6) but other geometrical complications
are neglected. It can be seen that for H larger than ≈40km, the weights are zero. This
is the limiting height Hlim, where the last overlap disappears; there is only at most one
view direction active, and the sums over differences of view directions consequently yield
zero. This corresponds to the fact that above this limiting height Hlim, tomography is not
possible anymore. Consequently our method will ignore atmospheric layers at higher altitudes.
Typically, realistic atmosphere models do not contain such layers anyway; this is achieved
by choosing the GS separation appropriately. However, if any tomographic operation is
wanted above Hlim, then the approximation option (2.19) should be used. A general analytic
expression for the function ω(H) does not seem to be achievable—not even in this simple
case of a purely circular geometry.

2.1.5. Optional approximations of the region weights. Using (2.17), the weights
ω(H) can be calculated numerically for arbitrary aperture shapes and view directions. How-
ever, there are practical situations where one would like to run several simulations for varying
telescope geometries but with the same reconstruction profiles. Moreover, our first experiments
of AO simulations with generated profiles showed that in the end, the resulting reconstruction
quality is quite insensitive to the values of ω(H). We suspect that this phenomenon is a
consequence of the fact that in practice the function ω(H) is significantly smoother than the
function C2

n(H). We suggest as a first approximation (see also Figure 2.5)

(2.18) ω(H) ≈ ω1(H) :=

{
1−H/Hlim for H ≤ Hlim ,

0 else .
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FIG. 2.5. The weights ω(H) (blue) for a typical E-ELT telescope geometry: 6 guide stars in hexagonal
arrangement, guide star separation 3.5 arcmins, and aperture diameter 42m. The relative central obstruction diameter
was chosen 0 (up left), 0.2 (up right), 0.4 (low left), and 0.6 (low right). The approximation ω1(H) from (2.18) is
shown in red.

Hlim is the limiting height for tomography, i.e., the height above which no more intersection
of any cylinders of view can happen. The simple formula (2.18) is much easier to evaluate
than the original definition (2.17). Further, the results of AO simulation seem to be extremely
insensitive to the replacement of ω by ω1.

As a second possibility we mention a crude approximation:

(2.19) ω(H) ≈ ω2(H) := 1 .

Although this does not really look acceptable, the loss of quality in the results is remarkably
small, and this trivial approximation has a clear advantage: it can be used in the case when no
knowledge about the telescope geometry is available or if in a certain state of research it is
required that a fixed profile is used for tests on, e.g., varying GS separations. This was the
case for the investigations in [15], hence, ω2 was used there. In addition, this choice should be
used if tomographic operations above Hlim are to be performed.

2.1.6. A summary of the error estimate for one layer. In the preceding sections we
investigated the best-case possibilities for a tomography solver T for the simplified one-layer
case: a single phase delay Φ in an atmospheric layer at height H has to be approximated
by a reconstructed phase delay Φ̂ on a reconstruction layer at height h with ∆h = h − H .
Our approach was to assume that Φ̂ is the best approximating solution Φ̂min. The resulting
minimum residual error Emin is dependent on Φ, which underlies a statistical turbulence
model given in the form of the autocorrelation function. Using this model, we have derived an
approximation for the expected value of Emin,

(2.20) E
(
E2

min

)
≈ E2

exp := B · ω(H) · C2
n(H) · |∆h|κ .

The constant κ describes the shape of the autocorrelation function in the vicinity of its central
maximum (2.11). It takes the value 2 for the original von Karman model (1.5) and κ = 1
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for the simulation model (1.6). The constant B is defined by (2.16) based on the constants
η, θ, and γ stemming from approximations discussed in Section 2.1.3. As we will see in
Section 2.2.2, the actual value of B is not important—we only require B to be positive and
independent of H and C2

n(H).

2.1.7. A corresponding solution with approximately minimum residual. Until now
we have only derived an error estimate for the complete region, but a generalization of the
solution itself is still missing. For this aim we apply the considerations from Section 2.1.2
leading to (2.6) to any of the subregions ΩH,σ for σ ∈ V: if we assume that the phase delay
Φ in the atmospheric layer H has non-zero values only in ΩH,σ, then the solution Φ̂ in the
reconstruction layer h with minimum residual is given by

Φ̂min,σ =
1

|σ|
∑
v∈σ

Φv .

Because the subregions are disjoint, the complete phase delay Φ can be uniquely represented
as a sum of functions supported by single subregions. Since the solution depends linearly on
the phase delay, we suggest to set

(2.21) Φ̂
H,h

min :=
∑
∅6=σ⊂V

1

|σ|
∑
v∈σ

T∆h·dv
(
Φ · χΩH,σ

)
as an approximation of a solution with minimum residual. Here, χΩ denotes the characteristic
function of Ω and the translation operator T is defined by (1.1). We do not need this solution
explicitly for the single-layer analysis, but it will serve as a basis for our construction of a
hypothetical solver in Section 2.2.1.

In the sequel we generalize our result (2.20) to the situation of N atmospheric layers and a
tomographic reconstruction algorithm T with the purpose of finding a solution to Problem 1.1
on L reconstruction layers with L < N .

2.2. The error estimate function for a complete reconstruction layer profile. We
now consider an atmosphere model given by a finite sequence of increasing heights
0 < H1 < H2 < · · · < HN , each of them carrying a strength of turbulence given as C2

n(H).
Further a number L < N of reconstruction layers is given, usually chosen in order to meet
real-time and stability demands for the tomographic reconstructor T . The crucial question
is now how to choose the heights h1 < h2 < · · · < hL of the reconstruction layer profile
and the weights c21, . . . , c

2
L corresponding to the C2

n-values of the atmosphere, which usually
play the role of weight parameters for T . For that purpose, we aim at deriving an estimate for
the minimum residual error dependent on this complete profile, which can subsequently be
minimized.

2.2.1. A hypothetic solver with strictly valid locality properties. The result of Sec-

tion 2.1.6 can only be of use if we can assume that a solution Φ̂
(l)

on the reconstruction layer l
contributes to the sum in Problem 1.1 mainly as a compensation of Φ(n) on those atmospheric
layers at the heights Hn that are near to hl. This motivates the notation of corresponding
subsets of atmospheric layers:

For given Hn and hl, we define the Voronoi intervals

I1 :=

[
0 ,

h1 + h2

2

)
, IL :=

[
hL−1 + hL

2
, ∞

)
, and Il :=

[
hl−1 + hl

2
,
hl + hl+1

2

)
,

for l = 2, . . . , L− 1,
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and

G̃l := {1 ≤ n ≤ N : Hn ∈ Il} for l = 1, . . . , L.

Now G̃l contains the indices n of those atmosphere layers with height Hn that are closer to hl
than to any other hk with k 6= l. Using this notation, we require that the following locality
properties to hold for all l:

• The result Φ̂
(l)

on the reconstruction layer at height hl is mainly determined by the
data stemming from atmospheric layers at height Hn with n ∈ G̃l.

• All other atmospheric layers do not significantly contribute to Φ̂
(l)

.

Of course this is not guaranteed in general since we have no information about the solver T .
In order to circumvent this problem, we construct a solver L that has these properties and
whose residual error can be estimated and is expected to be approximately minimal, at least in
a statistical sense.

Let Φ = (Φ(1), . . . ,Φ(N)) be the given phase delays in the atmospheric layers

H1, . . . ,HN , and let Φ̂ = (Φ̂
(1)
, . . . , Φ̂

(L)
) denote the reconstructed delays in the recon-

struction layers h1, . . . , hL. Then we define L as the operator that assigns to each hl the sum
of the single-layer solutions Φ̂

H,h

min from (2.21) for H = Hn over n ∈ G̃l:

(2.22) Φ̂ = LΦ

with

(2.23) Φ̂
(l)

:=
∑
n∈G̃l

Φ̂
Hn,hl
min .

We note that this solver is only of theoretical interest and cannot be used in practice since it
uses information that is not available: in a running AO system, a tomographic solver has only
information about sensor measurements of accumulated wave-fronts but not about specific
phase delays in separated atmospheric layers. Further, L will in general not yield the exact
least-square solution; especially the optical energy ||Φ̂||2 will in general be significantly larger
than the minimum. The advantage of L is that its residual error can be estimated, and we can
assume that this residual error is sufficiently close to the actual minimum residual error. We
were not able to prove this. We therefore formulate it as a conjecture:

CONJECTURE 2.1. The expected value of the residual error of L defined by (2.22), (2.23)
is not significantly larger than the expected value of the minimum residual error of the complete
tomography problem Problem 1.1.

At least a heuristic argumentation for the validity of this conjecture could be found in
one of the following ways: First, tomography on finitely many two-dimensional layers is in
a certain sense a discretization of a fully three-dimensional tomography problem. Hence a
’good’ solver should reconstruct the three-dimensional distribution of the atmospheric phase
delay correctly and consequently local structures of this function should not be reconstructed
at a completely wrong height. Second, it might be possible to construct an atmospheric phase
delay in a layer Hn that can be reconstructed with a small residual in a completely different
reconstruction layer hl if the special structure of the view directions is used for periodicity
properties—similarly to the argumentation in the beginning of Section 2.1.3. But again, we
can argue that such specially constructed phase delays will not occur in nature and can thus be
ignored in our statistical approach: according to (2.20), the expected error is increasing if the
distance between an atmospheric layer at height Hn carrying Φ(n) and the reconstruction layer
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on which Φ̂
(l)

is reconstructed gets larger. Hence, a smaller residual is likely to be reached
if another reconstruction layer—one that is closer to Hn—tries to approximate Φ(n). This
means that the smallest residual can be expected if n ∈ G̃l.

However, under the assumption that Conjecture 2.1 holds, the expected minimum residual
error of the complete tomography problem can be approximately minimized by choosing the
profile (h1, . . . , hL) if such a choice minimizes the expected minimum residual error of our
hypothetical solver L.

From the definition of L it follows that each reconstruction layer at height hl can in the
sense of the locality properties be called ’responsible’ for a certain subset of the atmospheric
layers. Several methods for layer compression somehow use this principle, e.g., [1] by a
similar introduction of Voronoi intervals. Usually, these subsets of responsibility are chosen a
priori, and the values hl and cl are calculated by a simple and fast method. The idea of our
approach is now to give up the advantage of having something fast and simple but instead
invest calculation time to optimize the configuration of these subsets. We will refer to this
configuration as grouping in the sequel.

2.2.2. The grouping of atmospheric layers and the overall sum of errors. We define
’groups’ G1, . . . , GL as non-empty subsets of {1, 2, . . . , N} with the properties

L⋃
l=1

Gl = {1, 2, . . . , N}, min(G1) = 1; max(GL) = N ;

∀1 ≤ l < L : max(Gl) + 1 = min(Gl+1)

(2.24)

and call Γ := {G1, . . . , GL} a ’grouping’. Every group Gl contains the indices of those
atmospheric layers for which reconstruction layer number l is responsible in the sense described
above. The setup is displayed in Figure 2.6.

FIG. 2.6. Example for a grouping of atmospheric layers: G1 = {1, 2}, G2 = {3, 4, 5, 6}, . . . Reprinted
from [15].

REMARK 2.2. Note that Gl plays the same role as G̃l in Section 2.2.1. We use a different
notation here because Gl is defined independently of hl. According to the definition of the
optimization problem (2.25) and (3.1), it can be shown that Gl and G̃l are actually the same if
(Γ,h) is a solution; see Remark 3.1.

We now would like to give an estimate for the minimal error that L can achieve. According
to the locality properties defined in Section 2.2.1, we assume that for the reconstruction layer
hl, only the data of the atmospheric layers with the indices in Gl are relevant. Hence, the
contribution of the reconstruction layer l to the overall residual error is the sum of the single-
layer errors within the group Gl. We have stated in (2.20) that the expected minimum residual
error stemming from the discrepancy ∆hk,l = hl−Hk between an atmospheric layer at height
Hk and a reconstruction layer at height hl can be approximated by

E2
exp = B · ω(Hk) · C2

n(Hk) · |hl −Hk|κ .

Now the question arises, how to sum these error estimates in each group k ∈ Gl and, further,
how to sum over all groups. Since E2

exp is an expected value of a squared residual norm, the
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square root, Eexp, has the character of a quantity that is linearly correlated to the error. These
quantities form a vector (with indices k, l), the q-norm of which we want to minimize, taking
into account the grouping of the layers, i.e.,

B ·

(
L∑
l=1

∑
k∈Gl

(
ω(Hk) · C2

n(Hk)
)q · |hl −Hk|qκ

)1/q

→ min .

Since we are interested in the values hl for which the minimum is attained, the value of B is
irrelevant and we can ignore the exponent 1/q. With the definitions

ρk := ω(Hk) · C2
n(Hk), p := qκ, and β :=

p

κ
,

we can define the scaled error estimator

(2.25) Ep,β
A

(Γ,h) :=

L∑
l=1

∑
k∈Gl

ρβk · |Hk − hl|p ,

where A :=
(
H1, . . . ,HN ;C2

n(H1), . . . , C2
n(HN )

)
denotes the information about the atmo-

sphere profile, Γ is the grouping, and h = (h1, . . . , hL). The reason for introducing the
parameters p and β is a practical one: On the one hand, it is not clear in which norm the
vector of errors should be minimized, i.e., how to choose q. On the other hand, the resulting
optimization method (see Section 3.1) can be implemented significantly faster if p = 1 or
p = 2. Hence, it is more convenient to choose p ∈ {1, 2} and let q be defined by q = p/κ.
If the turbulence is modeled by (1.5), then κ = 2, and we have to chose p = 2 in order to
guarantee that q ≥ 1. The parameter β can in principle be chosen arbitrarily in (2.25) and is
left open in the implementation for experimentation. It turned out during these tests (using the
atmosphere model (1.6), i.e., κ = 1), that for both p ∈ {1, 2}, the setting β = p/1 is indeed
the best choice with respect to the resulting quality in AO simulations; see also Section 3.5.

Since our principle aim is to derive a reconstruction layer profile h that provides the best
possible chance for L to solve the tomography problem in Problem 1.1, we have to minimize
the scaled error estimator (2.25) for appropriately chosen parameters p and β. A method for
solving this minimization problem will be presented in Section 3. First we have to finish the
theoretical part by illustrating how the weights c21, . . . , c

2
L are selected.

2.2.3. The choice of the predicting weights c2l . According to our definition of L, the

reconstruction layer at height hl carries a solution Φ̂
(l)

that has to compensate all phase delays
Φ(k) for k ∈ Gl; we have called this responsibility. Under our assumption that the piston
mode is zero (1.3), the turbulence strength C2

n has the character of a variance. Since variances

are additive, we can expect the turbulence strength of Φ̂
(l)

to be the sum of the turbulence
strengths on the atmospheric layers in the corresponding group. This motivates the setting

(2.26) c2l :=
∑
k∈Gl

C2
n(Hk) , for all l = 1, . . . , L,

where (Gl) is already minimizing (2.25). Experience [1] shows that tomographic solvers T
are usually rather insensitive to the weights c2l , and it will probably not pay off to use a more
sophisticated method than (2.26) for the calculation of the c2l .
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3. The minimization of the error estimation function. In Section 2 we have given the
theoretical background for our paradigm that an approximately optimal reconstruction profile
(h1, . . . , hL) can be found by minimizing the scaled error estimator (2.25). We will now
propose a method for carrying out this minimization in practice.

Given an atmosphere profile A =
(
H1, . . . ,HN ;C2

n(H1), . . . , C2
n(HN )

)
, parameters

p ≥ 1, β > 0, and the number L of desired reconstruction layers, we want to find a grouping
Γ and heights h = (h1, . . . , hL) such that

(3.1) Ep,β
A

(Γ,h)→ min .

We will now reduce this target function to a purely discrete one, suggest a practical data
structure for handling the groupings, and present an iterative algorithm for solving (3.1) in
acceptable run-time.

3.1. The reduction to a discrete optimization problem. In our target function (3.1)
we have to deal with continuous variables h as well as discrete ones Γ. In a first step we
simplify the problem to a purely discrete optimization problem. This can be done easily if the
parameter p is chosen as 1 or 2. To see that, we assume for the moment that the grouping Γ is
fixed. The minimization problem for h has in this case a very simple solution hmin(Γ):

• Let p = 1: Obviously, for each group Gl the internal sum
∑
k∈Gl ρ

β
k · |Hk − hl| as a

function of hl is a convex piecewise linear function, and hence it takes its minimum
at h∗l = Hk∗ for some k∗ ∈ Gl. This k∗ is found by a simple evaluation for all
k ∈ Gl and taking k∗ as the index for which the minimum is attained. We can
do this independently for all groups, which yields the minimizing height profile
hmin(Γ) = (h∗1, . . . , h

∗
L) for any given grouping Γ.

• Let p = 2: In this case hl minimizes
∑
k∈Gl ρ

β
k(Hk − hl)2 within each group Gl,

which yields the unique solution

h∗l =

∑
k∈Gl ρ

β
kHk∑

k∈Gl ρ
β
k

,

defining the desired hmin(Γ) = (h∗1, . . . , h
∗
L).

• For other values of p, the minimizer hmin(Γ) can be calculated as well, but in general
by far not as fast as for p = 1, 2. Since this calculation has to be performed very
often within the process of finding the optimal grouping Γ, our experiments done so
far were restricted to p = 1 or p = 2.

Having a fast implementation for the computation of hmin(Γ) at hand, (3.1) reduces to the
purely discrete problem of finding Γ such that

(3.2) f(Γ) := Ep,β
A

(Γ,hmin(Γ))→ min .

REMARK 3.1. As an alternative, we could as well reduce (3.1) to a purely continuous
optimization problem by calculating Γmin(h) for given h and by defining the target function
g(h) := Ep,β

A
(Γmin(h),h). It can be shown that Γmin(h) is determined by the index subsets

G̃l of Section 2.2.1. However, it turned out that computing the global minimum of f(Γ) can be
implemented easier and more efficiently than minimizing g(h). Thus, we choose the former
approach.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

304 G. AUZINGER

3.2. The representation of groupings by binary numbers. A grouping Γ as defined
by (2.24) is not easy to handle as operating with different groupings involves unpleasant
index manipulations. However, the set of all valid groupings can be mapped to a set of binary
numbers, which is easier to handle. We recall that L is the number of reconstruction layers
and, hence, the number of groups in Γ. Further, N is the number of atmospheric turbulence
layers and therefore also the overall number of indices k contained in G1 ∪ · · · ∪GL. Now let
Γ be a given grouping, and let b be an (N − 1)-digit binary number with the property that the
digit bj at position j is 1 if and only if j is the maximum of one of the groups Gl in Γ. Since
the maximum of GL is always N , b contains exactly L− 1 ones, and the remaining N − L
digits are zero. Using the Hamming weight

W (b) :=

N−1∑
j=1

bj

givesW (b) = L−1. On the other hand, if any b is an (N−1)-digit number withW (b) = L−1,
then a unique Γ can be found as the corresponding grouping by

G1 = {1, . . . , j1}, G2 = {j1 + 1, . . . , j2}, . . . , GL = {jL−1 + 1, . . . , N} ,

where jl is the index of the lth appearance of 1 in b, i.e., for all l = 1, . . . , L − 1, we have
bjl = 1 ∧ jl < jl+1. Thus, the mapping Γ 7→ b is one-to-one. For an efficient implementation
we recommend to store the values jl as representation of a grouping Γ or the number of
elements in each group |Gl| = jl − jl−1 with the convention j0 = 0 and jL = N . For the
sake of convenience, we use the second approach for defining starting values in Section 3.4.

From combinatorial theory it is known that the number of such binary numbers—and
hence the number of possible groupings PGN,L—is given by the binomial coefficient

PGN,L =

(
N − 1
L− 1

)
.

For typical values, e.g., N = 40 and L = 10, this number is much too large (e.g.,
PG40,10 = 211915132) for testing all possibilities. We use a simple iterative search algorithm
for solving (3.2) approximately. It will be described in the sequel.

3.3. The proposed minimization algorithm. We suggest an iterative algorithm for
minimizing (3.2) that is based on minimizing a small vicinity of the iterated state by exhaustive
search and using the result for the next step. For a given grouping Γ = {G1, . . . , GL}, we
define a set V (Γ) of somehow similar groupings that we call the vicinity of Γ: V (Γ) is the set
of all groupings Γ′ = {G′1, . . . , G′L} that fulfill the following property:

Γ′ can be constructed from Γ by splitting one group in Γ into two and subsequently merge
two neighboring groups into one such that Γ′ 6= Γ; see Figure 3.1.

FIG. 3.1. An example for Γ′ achieved from Γ by splitting and merging. (Reprinted from [15]).

REMARK 3.2. The idea behind this choice was motivated by the experiences with an
earlier chosen vicinity that was based on one of the groups inheriting some of the contained
indices from a neighboring group. This antecedent vicinity turned out to be too small in the
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sense that the iteration tended to get stuck at local minima and required a large number of
iterations. The improved vicinity presented above seems to avoid this problem by performing
larger jumps through the space of valid groupings though still containing the antecedent one.

Using the representation of Γ as a binary number b from Section 3.2, the vicinity can be
expressed in the following way: If b corresponds to Γ and b′ to Γ′, then the relation between Γ
and Γ′ defined above has a simple equivalent: b′ is constructed from b by ’moving’ one of the
ones to another position, i.e., changing one digit from one to zero and another one from zero
to one. In terms of the Hamming distance

D(b, b′) := |{0 < j < N : bj 6= b′j}| = W (b XOR b′)

this can be written in the compact form D(b, b′) = 2.
It can easily be seen that for any given b, there are (L− 1) · (N − L) possibilities for the

choice of b′: simply set one of the (L− 1) bits carrying one to zero, and set one of the bits
that have been zero from the beginning to one. Consequently, we have

|V (Γ)| = (L− 1)(N − L) .

Hence it is feasible to evaluate f(Γ′) from (3.2) for all Γ′ ∈ V (Γ) for any given Γ—this is
exploited by our minimization Algorithm 1 in each iteration step.

Algorithm 1 Minimization of the error estimator (published earlier in [15]).
Input: L, Atmosphere profile A, parameters p, β, number of starting values R.
Choose arbitrary grouping Γbest. . Will be overwritten.
for r = 1, . . . , R do

Choose initial grouping Γ0
r randomly or according to Section 3.4.

Set Γnew := Γ0
r .

repeat
Set Γold := Γnew.
Create the vicinity U := V (Γold) ∪ {Γold}.
Find Γnew = argminΓ′∈U (f(Γ′)). . NOTE: f (3.2) depends on p and β.

until f(Γnew) = f(Γold)
if f(Γnew) < f(Γbest) then

Set Γbest := Γnew.
end if

end for
for l = 1, . . . , L do

c2l :=
∑
k∈Gl C

2
n(Hk) according to (2.26), where Gl are the groups of Γbest.

end for
Output: Reconstruction layers h := hmin(Γbest) and the weights c2l .

An iterative algorithm of this form is of course not guaranteed to find the global minimum.
The question remains, how to chose the starting values Γ0.

3.4. Recommended starting values. The problem of finding the global minimum of
(3.2) can simply be solved by applying Algorithm 1 for a sufficiently large number R of
different randomly chosen starting values Γ0. However, this leads to the questions how many
starting values should be tried, which probability for finding the global minimum is acceptable,
and if the dependence on the random generator is problematic. Hence we propose a small
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number of recommended deterministic starting values by which an almost optimal result can
be achieved in a fast way even without an additional use of random starting values.

A first approach is a grouping Γ0,eq that uses the same number of indices in each group
and distributes the remaining indices over the lower groups if N is not an integral multiple
of L. Let q ∈ N and 0 ≤ r < L be such that N = qL+ r. Then

|G0,eq
l | =

{
q + 1 for l ≤ r ,
q else, for all l = 1, . . . , L.

This choice of Γ0,eq is motivated by the following consideration: keeping the number of indices
approximately the same in all groups will produce a reconstruction layer height profile h that
approximately inherits the layer density of the atmosphere in the sense of ’layers per unit
length’. We call Γ0,eq the standard starting value (SSV). It turned out that this starting value
seems to find the global minimum in many but not all cases. In order to decrease this risk of
failure, an additional sequence of starting values was constructed: for every m = 1, . . . , L we
define Γ0,δ;m such that

|G0,δ;m
l | =

{
N − L+ 1 for l = m,

1 else, , for all l = 1, . . . , L.

Γ0,δ;m is called the mth delta starting value (DSV). There is no real physical motivation for
these values; they were found by trial-and-error.

In addition, we propose two more deterministic starting values, which are physically more
meaningful than the SSV. For that aim, we first define two operations on groupings containing
a number L′ of groups with L′ not necessarily equal to L:

• Greedy Merge: For a given grouping containing L′ groups, find the best merge of
two neighboring groups (i.e., leading to the minimal increase of f ) giving a new
grouping containing L′ − 1 groups.

• Greedy Split: For a given grouping containing L′ groups, find the best split of one
group into two groups (i.e., leading to the maximal decrease of f ) giving a new
grouping containing L′ + 1 groups.

Using these fast and simple operations, two new starting values (’Greedy Starting Values’,
GSVs) can be defined: The first GSV, Γ0,g↑, is generated from the trivial grouping with L′ = 1
(containing only one group G1 = {1, . . . , N}) by an (L− 1)-fold application of the Greedy
Split routine. The second GSV, Γ0,g↓, is generated from the opposite trivial grouping with
L′ = N (containing N one-element groups) by an (N − L)-fold application of the Greedy
Merge routine. In terms of the representation of groupings by binary numbers, Greedy Merge
simply sets one digit from one to zero, and Greedy Split sets one digit from zero to one.

Our current implementation begins by testing the SSV, the DSVs (there are L of them),
and the two GSVs, which gives L + 3 deterministic starting values. In addition, a chosen
number of random starting values (RSVs) is used. All local minima that are attained are stored
together with the information at which starting values they were found. It turned out that the
overall number of local minima is quite small, and we do not have to use a very large number
of RSVs. Even without RSVs, the deterministic starting values find the global minimum with
high probability, and if not, then they find at least a local minimum with the function value f
very close to the global minimum.

3.5. The choice of parameters. The method suggested in Sections 3.3 and 3.4 turned
out [15] to be suitable for the minimization of our scaled error estimator (2.25) when the
parameters are simply chosen as p = β = 1 and ω(H) is approximated by the constant 1. For
more investigations on the variation of these parameters and the behavior of the minimization
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algorithm, Algorithm 1, and the starting values Γ0, a follow-up publication is planned. We
only summarize our first findings here.

It turned out that the method is rather insensitive to the variation of the parameters
except for a strong numerical evidence to choose β = p. This coincides with the theoretical
recommendation to set β := p/κ (see Section 2.2.2) and the usage of (1.6) in the simulations,
i.e., κ = 1 in (2.11). Switching between p = β = 1 and p = β = 2 (note that we made the
restriction p ∈ {1, 2} in Section 3.1) seems to have remarkably low impact on the resulting
performance of a full AO simulation. Since the algorithm is slightly faster for p = 2, we
recommend this choice—and consequently β = 2—as a default value.

If phase delays in a real atmosphere are to be reconstructed and these physical phase
delays are more in accordance with the original von Karman model (1.5), then our theory
suggests the choice κ = 2 and consequently p = 2 and β = p/2 = 1. However, until now we
have no experience with ’on-sky’ reconstruction, i.e., the profiles produced by Algorithm 1
have not been tested on real data from a telescope so far.

Another setup that has to be specified is how the subregion weights ω(H), discussed in
Section 2.1.4, are to be calculated or approximated. It turned out that the results are remarkably
insensitive to this choice. We recommend to use the linear approximation (2.18) if at least
the limiting height for overlap, Hlim, is known from the telescope geometry (using the exact
values seems to bring no significant benefit and their calculation takes time) or the constant
approximation (2.19) if no information about the telescope is available or independence of
the telescope geometry is required for some reason. It has to be noted that if the linear
approximation or the exact values are used, then the atmospheric layers above Hlim are
completely ignored. If there is a need to take these layers into account, then it is also
recommended to use the constant approximation.

3.6. Implementation. Algorithm 1 was implemented‡ in MATLAB and used for the
results presented in [15]. The number of RSVs (random starting values) can be chosen as
well as the parameters p, β, and the approximation mode for ω; the choice of p is restricted
to the values 1 or 2. The atmosphere profile has to be provided in the form of two vectors
of dimension N containing the heights Hi and the C2

n-values, respectively, together with the
desired number of reconstruction layers L. The resulting reconstruction layer profile is also
provided as two corresponding vectors of dimension L. In addition, a list containing all found
local minima of f(Γ) is produced as output, each one with the information by how many
RSVs and for which deterministic starting values it was found.

The code is not optimized for speed yet; for 50 starting values (this was sufficient in all
cases tested so far) it takes a few seconds of run-time on a usual desktop PC dependent on the
atmosphere profile and L. This is acceptable as a pre-processing step in the context of AO
simulation, where tests usually run for several hours.

4. Conclusion and outlook. The basic idea of the optimal grouping method is to op-
timize the possibilities for a tomography solver to reach a small residual by choosing the
reconstruction layer profile such that the theoretic limit for this residual is minimized. For
that purpose we constructed a hypothetical solver L that yields a solution to the tomography
problem Problem 1.1 with a residual error that is supposedly close to the best possible one.
Subsequently, the expected value of the residual of L is minimized. It depends on the solver
T that is used in practice if this decreased limit can be exploited. Hence, there is no general
guarantee that every solver will benefit from the reconstruction layer profiles generated by the
optimal grouping method.

‡The implementation was entitled FRROG (Forecasting Residual Reduction by Optimal Grouping).
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However, the results in [15] obtained with ESO’s end-to-end simulation tool OCTOPUS
[10] show that three investigated reconstruction solvers (FEWHA [20], FrIM [17, 18], and
the gradient based method [16]) can indeed profit significantly from the profiles produced
by Algorithm 1, especially in the case of a small number L of reconstruction layers and for
large guide star separations. It is shown that using reconstruction layer profiles generated by
Algorithm 1, all solvers perform superior in comparison to various other methods for layer
compression under a variation of the guide star separation and the atmosphere model. All
these tests were carried out with the simple parameter setting p = β = 1 and a constant
ω-approximation (2.19). In addition, the effects of layer compression on the global profile
properties like turbulence moments and generalized isoplanatic angles are investigated in [15].

The run-time of Algorithm 1 depends moderately on the atmosphere model and the
number of requested reconstruction layers L but most significantly on the number of starting
values used for the optimization routine proposed in Section 3. It turned out that in practice,
few deterministic starting values (as suggested in Section 3.4) are sufficient and there is no
need for a large number of random starting values. This yields a run-time of 3-10 seconds for
our current implementation on a standard PC, which is acceptable for a pre-processing step in
AO simulation.

Algorithm 1 has three parameters (p, β, and the approximation mode for ω), but it turned
out that the results of the tomographic reconstruction are rather insensitive to their variation,
and we can give clear recommendations on how to chose them; see Section 3.5. However,
since the concept seems to be quite new, there are still several issues left for future research.

4.1. Open questions. An interesting special case is multi-conjugate adaptive optics
(MCAO): in the case that a two-step method [6, 17, 21] or a three-step method [12, 14] is
applied for the reconstruction, two subsequent tomography problems have to be solved, the
second one resulting in commands for controlling the deformable mirrors (DMs). In this
context, Algorithm 1 could be used for choosing optimal conjugation heights for the DMs.
Another interesting question is, of course, how Algorithm 1 could be used for on-sky control,
i.e., when applying it to data from a real telescope. In that case run-time requirements will arise
that are not so important as long as Algorithm 1 is used as a pre-processing step preceding an
AO simulation loop. In reality there might be updates for the atmosphere model available from
measurements that are performed at a certain frequency, e.g., from SCIDAR [2, 5, 11, 19].
In this case the run-time of the optimization process must be significantly less than the time
interval between two such updates. We first mention that there is a trivial possibility for
parallelization since the outermost loop of the optimization Algorithm 1 is simply testing
different starting values. Second, since the turbulence characteristics will probably not change
fundamentally between two such measurements, the profile and grouping resulting from the
old measurements will probably serve as good starting values for the new data as input.
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