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IMPROVED CONVERGENCE BOUNDS FOR TWO-LEVEL METHODS WITH AN
AGGRESSIVE COARSENING AND MASSIVE POLYNOMIAL SMOOTHING∗

RADEK TEZAUR† AND PETR VANĚK‡

Abstract. An improved convergence bound for the polynomially accelerated two-level method of Brousek et
al. [Electron. Trans. Numer. Anal., 44 (2015), pp. 401–442, Section 5] is proven. This method is a reinterpretation
of the smoothed aggregation method with an aggressive coarsening and massive polynomial smoothing of Vaněk,
Brezina, and Tezaur [SIAM J. Sci. Comput., 21 (1999), pp. 900–923], and its convergence rate estimate is improved
here quantitatively. Next, since the symmetrization of the method requires two solutions of the coarse problem, a
modification of the method is proposed that does not have this disadvantage, and a qualitatively better convergence
result for the modification is established. In particular, it is shown that a bound of the convergence rate of the method
with a multiply (k-times) smoothed prolongator is asymptotically inversely proportional to d2k , where d is the degree
of the smoothing polynomial. In earlier works, this acceleration effect is only quadratic. Finally, for another modified
multiply smoothed method, it is proved that this convergence improvement is not limited only to an asymptotic regime
but holds true everywhere.

Key words. two-level method with aggressive coarsening, coarse-space size independent convergence, smoothed
aggregation, polynomial smoothing
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1. Introduction. This paper is concerned with an improved convergence analysis of
the polynomially accelerated two-level method of [4] and the convergence analysis of its
modifications proposed here. The analyzed methods are used for solving linear systems with
a positive definite matrix, denoted throughout the paper by A. The methods are based on a
smoothed aggregation concept where, in order to make small coarse-space sizes possible, we
allow for an aggressive coarsening that is compensated for by massive polynomial smoothing.
These concepts are briefly reviewed in Section 2. We show that, for a coarse space characterized
by the diameter of the aggregates H and the fine-level space with the mesh size h, it is
sufficient to use O(H/h) elementary smoothing steps to compensate for the dependence of
the convergence rate estimate on the coarsening ratio H/h and get thereby a convergence rate
estimate independent of the coarse-space size. The computational cost of our methods is lower
than that of the domain decomposition methods that use direct subdomain solvers, as discussed
in Section 2 using the bounds of Section 7. This feature is not new here; the methods reviewed
in [4] belong to this category. In this paper, we are interested in a radical improvement of the
asymptotic convergence bound with respect to the degree of the smoothing polynomial for
certain modifications of the methods presented in [4].

An objection can be made that the problem can be solved by a standard multigrid cycle,
which would lead to a linear dependence of the overall computational cost on the number of
degrees of freedom, with a potentially same level of parallelism, provided that the smoothers
are additive. However, when dealing with an algebraic multigrid in particular, it is acceptable
to coarsen in a less than optimal fashion once, between the levels one and two, but it is not
acceptable to do it systematically and recursively throughout the process of coarsening. This
leads either to convergence deterioration and/or to excessive computational costs. Thus, in the
context of algebraic multigrid, a two-level frame considered here is more robust.
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The convergence bound for the method of [4, Section 5] shown therein is a relatively
straightforward consequence of a "pointwise" estimate for a general variational two-level
framework. It is pointwise in the following sense: the convergence rate estimate is a continuous
functional on the Euclidean space of all errors Rn; for each error upon an entry of an iteration,
it gives a bound of the error reduction factor. To be more precise, assume thatA is a symmetric,
positive semidefinite matrix, p : Rm → Rn (n = ord(A), m < n) a prolongator that is used
by the two-level method, and E the corresponding error propagation operator of a two-level
method (for example, E = S(I − p(pTAp)−1pTA) for a method with the post-smoother S).
The pointwise convergence rate estimate is a continuous functional

(1.1) rγ : e ∈ Rn 7→ γ

(
λ
infv ‖e− pv‖2

|e|2A

)
≥ |Ee|A
|e|A

,

where γ < 1, γ(0) = 0, is a continuous increasing function on R+
0 and λ ≥ %(A) an

available upper bound. Note that rγ is invariant with respect to the scaling (multiplication
by a scalar factor) of both e and A. In Section 3 of this paper, we prove a better pointwise
convergence rate estimate for a general variational two-level method with an A-symmetric
post-smoother and get thereby in Section 4 a sharper estimate for the final polynomially
accelerated two-level algorithm. Although only polynomial smoothers are considered here,
the pointwise estimate is established for the two-level method with a general A-symmetric
post-smoother. This general estimate can be used elsewhere. In addition, only the assumption
that the smoother is convergent in the A-norm is needed here whereas in [4], it is assumed that
the error propagation operator of the smoother is positive semidefinite in the A-inner product.
To summarize, the convergence result for the method of [4] is improved relatively significantly
but only quantitatively.

The A-symmetrization of the above two-level method, which is necessary for its use as a
conjugate gradient method preconditioner, requires two solutions of the coarse-level problem
per iteration. In Section 5, we first propose a modification whose A-symmetrization does
not have this disadvantage, i.e., it requires only one coarse-problem solution per iteration,
and we prove a convergence bound for it by different means. This modification uses a
double-smoothed prolongator as opposed to a single-smoothed prolongator of the method
from [4]. Then, building on the concept of a multiply smoothed prolongator, we consider a
method with the multiply smoothed prolongator P = Skp and an adequate multigrid smoother.
We prove that if the approximation constant (which reflects approximation properties of the
prolongator compared to the "strength" of the smoother S) is sufficiently small, then the
convergence rate estimate is directly proportional to its k-th power. This is a useful result since
the approximation constant can be made arbitrarily small by using S of a sufficient high degree.
In the final convergence theorem, the approximation constant is inversely proportional to the
square of the degree of the smoothing polynomial. Thus, the final convergence rate bound
is inversely proportional to d2k, where d is the degree of the smoothing polynomial. Then,
asymptotically, the method that uses a polynomial of double degree 2d yields an improvement
of a factor of 22k in the convergence rate compared to the method that uses a polynomial of
degree d. This is achieved at a cost of twice the computational work on the fine-level and under
suitable conditions on the construction of the prolongator, four times more computational
work in the Cholesky factorization, and twice more work in the backward substitution of the
coarse space. We stress that we consider a coarse space of a negligible size, for example, with
the dimension equal to the square root of the number of the fine-level degrees of freedom
or even fewer on a massively parallel architecture. This justifies the use of higher-degree
prolongator smoothers in this method to a greater extent than in our earlier methods since their
convergence rate estimate [3, 4, 8, 10] is inversely proportional only to d2.
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The radical acceleration of the above method occurs asymptotically only as the approx-
imation constant CA in (4.4) approaches 0. As stated above, this constitutes only a small
weakness as the approximation constant can be made arbitrarily small by using a polynomial
smoother of a sufficient high degree. However, in Section 6, we use a more radical (and more
expensive) prolongator smoother to achieve the strongest acceleration effect even for CA ≈ 1.

In Section 7, we apply our framework to the case of a prolongator given by generalized
aggregation ([9]) with large aggregates, resulting in a small coarse-space problem. In other
words, the aggressive coarsening based on generalized aggregations is balanced by massive
smoothing, and the resulting method is optimal in the following sense: for a second-order
elliptic problem discretized on a mesh with characteristic mesh size h and a small coarse
space characterized by a diameter of the aggregates H , the method exhibits a coarse-space
size-independent rate of convergence for the cost of O(H/h) elementary smoothing steps.
For reasonable aggregates, the coarse-level matrix is sparse. The computational cost of the
presented method is asymptotically superior to that of domain decomposition methods that use
direct subdomain solvers. In addition, the presented method allows for a finer grain parallelism
since the Richardson iterations used as a massive smoother (the bottleneck of the algorithm)
therein can be performed using up to n = ord(A) processors; thus, it can be performed in
constant time on an ideal massively parallel architecture. On a real-world massively parallel
platform, such as GPU processors, such a smoothing procedure can be performed rapidly. For
details, see [4].

Finally, numerical results on a model problem are presented in Section 8. They confirm
the theoretical estimates of the previous sections. Conclusions are offered in Section 9.

2. Two-level variational multigrid based on smoothed aggregations. In this section,
we define a two-level variational multigrid with a prolongator based on smoothed aggregations,
give a brief introduction to the aggregation-based coarsening, and define what we understand
as an optimal two-level method with an aggressive coarsening and a massive polynomial
smoothing. This introductory section closely follows [4]. The verification that the methods
presented in this paper are indeed optimal is presented in Section 7.

The solution of a system of linear algebraic equations

Ax = f ,

where A is a symmetric positive definite n × n matrix that arises from a finite element
discretization of an elliptic boundary value problem, is considered. To define a variational two-
level method, two algorithmic ingredients are required: a linear prolongator, P : Rm → Rn,
m < n, and a smoothing procedure. Polynomial smoothers that can be expressed as a sequence
of Richardson iterations

(2.1) x← (I − ωA)x+ ωf

are considered here. A particular case of interest is that of a small coarse space, that is, m� n.
Let ν1 and ν2 be integers. A variational two-level method proceeds as follows:

ALGORITHM 1.
1. For i = 1, . . . , ν1 do x← (I − αiA)x+ αif .
2. Set d = Ax− f .
3. Restrict d2 = PTd.
4. Solve the coarse problem A2v = d2, where A2 = PTAP ,
5. Correct x← x− Pv,
6. For i = 1, . . . , ν2 do x← (I − βiA)x+ βif .
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In this paper, a tentative prolongator p is constructed by a generalized unknowns aggrega-
tion method [9]. A simple example of a (non-generalized) aggregation method is presented
below in Example 2.1. For a standard finite element discretization of a scalar elliptic problem,
the generalized aggregation method coincides (up to a scaling) with a standard unknowns
aggregation [9]. The resulting prolongator p is an orthogonal matrix. The final prolongator P
is obtained by polynomial smoothing [6, 7, 9, 10, 11]

P = Sp, S = (I − ω1A) · · · (I − ωνA),

where ν is a positive integer. The coefficients αi, βi, and ωi are chosen carefully and kept in a
close relationship. The tentative prolongator p is responsible for the approximation properties
of the coarse space Range(P ). The prolongator smoother S enforces smoothness of the
coarse-space functions.

EXAMPLE 2.1. Consider a one-dimensional Laplace equation discretized on a uniform
mesh that consists of n = mN nodes. A simple unknowns aggregation prolongator can be
constructed as follows. Let the nodes be numbered in the usual way from left to right. The
aggregates are formed as disjoint sets of N consecutive nodes, i.e.,

{Ai}mi=1 =
{
{1, 2, . . . , N}, {N + 1, N + 2, . . . , 2N}, . . . ,

{(m− 1)N + 1, . . . ,mN − 1,mN}
}
.

The corresponding prolongator is given by

pij =

{
1 iff i ∈ Aj ,
0 otherwise,

that is, the j-th column is created by restricting a vector of ones onto the j-th aggregate with
zeroes elsewhere. In matrix form,

p =



1
...
1

1
...
1

...

...

...
1
...
1



A1A2

Am

.

The action of the prolongator corresponds to a disaggregation of the j-th Rm-variable into
N Rn-variables forming the aggregate Aj . Thus, p can be thought of as a discrete piecewise
constant interpolation. The prolongator becomes an orthogonal matrix by the scaling

p← 1√
N
p.
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For scalar problems (such as Example 2.1), the columns of the prolongator p have a
disjoint nonzero structure. This can also be viewed as the discrete basis functions of the
coarse space Range(p) having disjoint supports. For non-scalar elliptic problems, several
fine-level vectors are restricted to each of the aggregates. For example, for a discretization of
the equations of linear elasticity in three dimensions, six rigid-body modes are restricted to
each of the aggregates, giving rise to six columns with the same nonzero structure. Such a
set of columns is labeled a super-column and the corresponding set of coarse-level degrees of
freedom (each associated with one column) a super-node. The super-columns have a disjoint
nonzero structure corresponding to the disjoint nonzero structure of the aggregates. Thus, in
general, it is assumed that the discrete coarse-space basis functions (columns of the prolongator
p) are non-overlapping unless they belong to the same aggregate.

A key assumption to prove convergence of a two-level method is that the prolongator
satisfies the weak approximation condition

(2.2) ∀e ∈ Rn∃v ∈ Rm : ‖e− pv‖2 ≤ CA
%(A)

(
H

h

)2

‖e‖2A.

Here, h is a characteristic element size of the fine-level discretization (assuming the quasi-
uniformity of the mesh), and H is a characteristic diameter of the aggregates (understood as a
set of finite element nodal points). A simple example of a verification of (2.2) in one dimension
is shown in [4, Section 2] using the Poincaré inequality. For a scalar elliptic second-order
problem, (2.2) was proved in [9]. For the case of linear elasticity in 3D, the reader is referred
to [10].

The constant in the weak approximation condition (2.2) depends on the ratio H
h . As a

result, the convergence of a straightforward two-level method depends on the same ratio. More
specifically, assuming (2.2), the variational two-level method with the prolongator p and a
single Jacobi post-smoothing step converges with the rate of convergence

(2.3) ‖Ee‖2A ≤

(
1− C

(
h

H

)2
)
‖e‖2A,

where E is the error propagation operator of the method. Our objective is to eliminate
the dependence of the convergence of a two-level method on the ratio H

h for a minimal
possible cost. Domain decomposition methods strive toward the same goal. A typical domain
decomposition method can be viewed as a two-level multigrid method with a small coarse
space whose local resolution corresponds to the subdomain size and a block-smoother that
uses direct subdomain solvers. The subdomain solvers are relatively expensive. Here, methods
with a much lower cost that also open the room for a better level of fine-grain parallelism are
described and analyzed.

A two-level method is labeled optimal if, for a second-order elliptic problem discretized
on a mesh with the mesh size h, it yields a small, sparse coarse space characterized by the
diameter H and an H/h-independent rate of convergence for the cost of O(H/h) elementary
smoothing steps. Generally, a Richardson iteration sweep given by (2.1) is considered as
an elementary smoothing step. One cannot possibly expect a better result, i.e., coarse-space
size-independent convergence with fewer than O(H/h) smoothing steps, since that many
steps are needed to establish essential communication within the discrete distance O(H/h),
that is, the continuous distance O(H).

In three dimensions, an optimal two-level method is significantly less expensive than a
domain decomposition (DD) method based on direct subdomain solvers. A DD method needs
to solve O((1/H)3) subdomain linear problems of size O((H/h)3). When a direct sparse
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solver is used for the Cholesky decomposition of the local matrices in the DD method, the total
fine-level cost is at least O(1/H3((H/h)3)2) = O(1/h3(H/h)3) = O(n(H/h)3 operations.
However, the cost of the optimal two-level method is only O(n(H/h). Furthermore, aside
from the cost of communication, an optimal two-level method is more amenable to massive
parallelism. The smoothing using O(H/h) Richardson sweeps (2.1), which constitutes a
bottleneck of the entire procedure, can be performed using up to n processors. On the other
hand, in a DD method, a subdomain-level parallelism, and therefore a much coarser-grain
parallelism, is natural, where typically only O(m) processors can be utilized with m being the
number of subdomains.

3. Pointwise estimate for a variational two-level method. For the linear system with
a symmetric, positive semidefinite n × n matrix A, the variational two-level method with
prolongator p (n×m full-rank matrix, m < n) and common smoothers is known to converge
uniformly under the condition:

(3.1) ∃C > 0 :

(
∀e ∈ Rn ∃v ∈ Rm : ‖e− pv‖2 ≤ C

λ
|e|2A

)
,

where λ ≥ %(A) is the upper bound used in the smoother. (If the smoother contains no upper
bound of %(A), then we can consider λ = %(A).) The above assumption is usually called the
weak approximation condition and is restated here without the spatial size parameters found in
its version (2.2).

The (very simple) theory of [2] then gives the estimate for the A-seminorm of the error
propagation operator E in the form |E|A ≤ q(C) < 1, that is,

(3.2) ∀e ∈ Rn : |Ee|A ≤ q(C)|e|A,

with q < 1 being a continuous increasing function on R+. In other words, from the uniform
validity of the weak approximation condition in (3.1), the uniform error estimate (3.2) follows.
By the term "uniform" we understand "valid with the same constant for all e".

In [4], when studying the uniformity of the convergence of a two-level method with an
aggressive coarsening and a massive polynomial smoothing, we needed a stronger convergence
property of the variational two-level method that is also required in the abstract convergence
theory of Section 4 below. The error estimate needs to hold point by point in the sense
that it gives an upper bound of the error contraction factor for each particular error and the
convergence rate estimate is a continuous functional on the space of all errors Rn. The
definition of the pointwise convergence estimate, which is in accordance with its sketch in the
introduction, follows. In order to be able to treat more general smoothers, we find it useful to
formulate the definition in a general Hilbert space setting. For reasons that will become clear
in Section 4, we need to allow the semidefiniteness of A.

DEFINITION 3.1 (Pointwise convergence estimate). Let H = (Rn, 〈 · , · 〉) be a vector
Hilbert space with the induced norm ‖ · ‖, A a self-adjoint positive semidefinite operator on H ,
| · |A the A-seminorm on H , and λ ≥ λmax(A) an upper bound used in the smoother. Assume
that there is a continuous increasing function γ(·) < 1, γ(0) = 0, defined on R+

0 such that
(for the two-level method with the error propagation operator E) the following implication
holds:

∀e ∈ Rn :(
∃v ∈ Rm, C = C(e) ≥ 0 : ‖e− pv‖2 ≤ C

λ
|e|2A =⇒ |Ee|A ≤ γ(C)|e|A

)
.

(3.3)

Then we call the estimate (3.3) pointwise.
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For the sake of brevity we simply identify the abstract estimate (3.3) with the continuous
functional rγ in (1.1) and call the functional rγ a pointwise convergence rate estimate.

The pointwise convergence estimate is not easy to establish. In [4], we provided a proof
of such a property that is an adaptation of the proof of the multi-level theory of [1]. The proof
of [1] cannot be used directly since it requires the stability |Q|A ≤ C of the interpolation
operator Q : e 7→ pv in (3.3). Possible objections to our adaptation of this proof are:

1. Aesthetic: to use the very complex multi-level proof of [1] is an overkill. Our
adaptation of the proof is several pages long and is also extremely technical. This is,
of course, not an objection against the masterpiece of [1] itself; in the context of the
multi-level method such complexity is adequate and a simpler proof is hardly possible.
This is true even about the more recent proof based on the so-called XZ-identity [12].

2. The estimate is not very sharp.
3. The proof is restricted to the case of a smoother with a positive semidefinite error

propagation operator (in the A-inner semi-product).
In this paper, we provide a much simpler and more straightforward proof that is not

restricted to the case of a smoother with a positive semidefinite error propagation operator and
that gives an estimate that is, particularly for small C, much sharper. For realistic values of C,
the new estimate is nearly the square of the old estimate of [4]. The strong improvement of
the convergence estimate can always be achieved in the resulting polynomially accelerated
method since, by using a polynomial of a sufficient high degree, the pointwise estimate is
employed with a constant C in the region of the strong acceleration (cf. (4.7) and (5.8))

In [4], we proved an estimate for the variational two-level method that is pointwise
according to a different definition, which is equivalent to Definition 3.1 as shown below. The
alternative definition reflects how we used the pointwise convergence estimate in the proof of
the convergence theorem. The same definition is also needed in Section 4 of this paper. Again,
we formulate it in the general Hilbert space setting.

DEFINITION 3.2. Let (Rn, 〈 · , · 〉) be a vector Hilbert space with the induced norm
‖ · ‖, A a self-adjoint positive semidefinite operator on H , | · |A the A-seminorm on H ,
λ ≥ λmax(A) the upper bound used in the smoother, and E the error propagation operator of
the two-level method with the prolongator p. Assume that there is a continuous increasing
function γ(·) < 1, γ(0) = 0, defined on R+

0 such that the following holds:
Assume that, for all V ⊂ Rn, V 6= ∅, the uniform validity of the weak approximation

condition for all e ∈ V with the same constant C, i.e.,

(3.4) ∃C = C(V ) ≥ 0 :

(
∀e ∈ V ∃v ∈ Rm : ‖e− pv‖2 ≤ C

%(A)
|e|2A

)
implies the uniform bound

(3.5) ∀e ∈ V : |Ee|A ≤ γ(C)|e|A.

Then we call the abstract estimate (3.4) =⇒ (3.5) pointwise and the functional rγ in (1.1) a
pointwise rate of convergence.

Definitions 3.1 and 3.2 are equivalent, and γ is in both cases the same function. In-
deed, assume that the convergence estimate that conforms to Definition 3.2 holds true. Let
e ∈ Rn. The predicate (3.4) =⇒ (3.5) for V = {e} implies the predicate (3.3) with
C (3.3)(e) = C (3.4)({e}). Thus the estimate conforms to Definition 3.1. Assume that the
convergence estimate conforms to Definition 3.1. Let V ⊂ Rn. The predicate ∀e ∈ V : (3.3)
implies the predicate (3.4) =⇒ (3.5) with C (3.4)(V ) = supe∈V {C (3.3)(e)}. Thus, the conver-
gence estimate conforms to Definition 3.2. The weak approximation condition (3.1) follows
from (3.4) with C (3.1) = C (3.4)(Rn).
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The error propagation operator of a two-level variational method without a pre-smoother
is given by E = S(I −Q), where Q = p(pTAp)+pTA is the A-orthogonal projection onto
Range(p) ([2]), the symbol + denotes the Moore-Penrose pseudoinverse, and S is the error
propagation operator of the post-smoother. The following lemma was proved as Lemma 5.4
of [4] based on a regularity-free multi-level estimate of [1].

LEMMA 3.3. Let (Rn, 〈 · , · 〉) be the Euclidean space with the induced norm ‖ · ‖, A a
symmetric positive semidefinite matrix, λ ≥ %(A), and p an n×m full-rank matrix, m < n.
Furthermore, let R be a symmetric positive definite n× n matrix such that S ≡ I −R−1A is
positive semidefinite in the A-inner semi-product. We assume that there is a constant CR > 0
such that for all w ∈ Rn

1

λ
‖w‖2 ≤ CR〈R−1w,w〉.

Let V ⊂ Rn. Assume (3.4) holds true. Then for E = S[I − p(pTAp)+pTA], the inequal-
ity (3.5) is satisfied with

(3.6) γ(C) =

(
1− 1

1 + CCR

)1/2

.

As an alternative to Lemma 3.3, we provide the following statement with a much simpler
proof. This statement is not limited to the case of a smoother with a positive semidefinite error
propagation operator. The only assumption here is that the choice of the parameters ensures
that the smoother is convergent in the A-seminorm. The estimate is also sharper than that of
Lemma 3.3.

THEOREM 3.4. Let H = (Rn, 〈 · , · 〉) be a vector Hilbert space with the induced norm
‖ · ‖, A a symmetric positive semidefinite operator on H , | · |A the A-seminorm on H ,

p :

(
Rm, 〈 · , · 〉2 : x,y 7→

m∑
i=1

xiyi

)
→ H

a linear injective mapping, and p∗ the adjoint operator. Let Q = p(p∗Ap)+p∗A and
S = I − ω/λA, where λ ≥ λmax(A) is an available upper bound, and ω ∈ (0, 2). For
E = S(I −Q), the implication (3.3) is satisfied with

(3.7) γ(C) =


(

C
4ω(2−ω)

)1/2
for C ≤ 2ω(2− ω),(

1− ω(2−ω)
C

)1/2
for C > 2ω(2− ω).

Proof. Let e ∈ Rn, e1 = (I − Q)e, and let the left-hand side of the implication (3.3)
be satisfied. If e1 ∈ Ker(A), then Se1 = e1 ∈ Ker(A), and the right-hand side of the
implication (3.3) holds true trivially. Thus, assume e1 6∈ Ker(A), which implies e 6∈ Ker(A),
and define t = |e1|A/|e|A. Since the operator I −Q is an A-orthogonal projection, t ∈ (0, 1].
Thus, the left-hand side of the implication (3.3) holds, and the fact that Range(Q) ⊂ Range(p)
yields

(3.8) ‖e1 − pv1‖2 ≤ C/λ|e|2A ≤
C

t2λ
|e1|2A,

where v1 = v − (p∗Ap)+p∗Ae.
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TABLE 3.1
Comparison of the new convergence rate estimate γ (3.7) with the old estimate γold (3.6) for the Richardson

smoother I − ω/λA and ω = 1.

C γ(C) γold(C) α : γαold = γ
0.1 0.158 0.301 1.536
0.5 0.353 0.577 1.893
1.0 0.500 0.707 1.999
2.0 0.707 0.816 1.705
5.0 0.894 0.912 1.216

Next, we use a classical argument by Achi Brandt [2] based on the orthogonality argument
known from the proof of Céa’s lemma ([5]):

|Se1|2A = |e1|2A − 2
ω

λ
‖Ae1‖2 +

(ω
λ

)2
|Ae1|2A ≤ |e1|2A − 2

ω

λ
‖Ae1‖2 +

ω2

λ
‖Ae1‖2

= |e1|2A
(
1− ω(2− ω)

λ

‖Ae1‖2

|e1|2A

)
.(3.9)

Since Q is the A-orthogonal projection onto Range(p), I −Q is the A-orthogonal projection
onto Range(p)⊥A ≡ {v ∈ Rn : 〈Av, p · 〉 = 0}, and we have 〈Ae1, pv1〉 = 0. Using this
property, (3.8), and the Cauchy-Schwarz inequality, we get the estimate

|e1|2A = 〈Ae1, e1 − pv1〉 ≤ ‖Ae1‖‖e1 − pv1‖ ≤
√
C/(t2λ)‖Ae1‖|e1|A.

Dividing the above inequality by |e1|A and squaring the result gives the coercivity bound

(3.10)
‖Ae1‖2

|e1|2A
≥ t2λ

C
.

Substituting this estimate into (3.9) and using t ∈ (0, 1] yields

|S(I −Q)e|2A
|e|2A

=
|Se1|2A
|e1|2A

|e1|2A
|e|2A

≤ t2
(
1− t2ω(2− ω)

C

)
≤ max
ξ∈[0,1]

ξ

(
1− ξω(2− ω)

C

)
.

The right-hand side of the above inequality is a maximum of a concave quadratic function in ξ
on the interval [0, 1]. The global maximum is attained for ξ̂ = C/[2ω(2− ω)] ≥ 0. Assuming
C/[2ω(2− ω)] ∈ [0, 1], the global maximum is also the maximum on the interval [0, 1] and
equals C/[4ω(2−ω)]. Let C/[2ω(2−ω)] > 1. The maximized concave quadratic function is
increasing on

(
−∞, C/[2ω(2− ω)]

]
⊃ [0, 1], hence increasing on [0, 1]. The maximum on

[0, 1] is therefore attained for ξ = 1 and equals to 1−ω(2−ω)/C. This proves the right-hand
side of the implication (3.3) with the function γ given by (3.7). The fact that the function γ
conforms to Definition 3.1 is now evident.

REMARK 3.5. The proof of Theorem 3.4 provides a natural insight into the func-
tioning of the method when the constant C in (3.3) is small. By (3.10), C/t ≥ 1, hence
t = |(I −Q)e|2A/|e|2A ≤ C, that is, the coarse-level correction must be efficient for C < 1.

Theorem 3.4 with the choice H ≡ Rn provides the pointwise convergence estimate for
the Richardson smoother I − ω/λA. An improvement of the new estimate (3.7) compared to
the old estimate (3.6) is demonstrated in Table 3.1, where the convergence rate γold is given
by a formula γold =

√
1− 1/(1 + C/ω), ω ∈ (0, 1]. The value ω = 1 is therefore optimal

with respect to both γ and γold.
In the rest of this section we prove an estimate for a smoother with the error propagation

operator I − ω/λRR−1A, where R is a symmetric, positive definite matrix, λR is an upper
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bound of λmax(R−1A), and ω ∈ (0, 2). The parameter ω is chosen so that the smoother
is convergent in the A-seminorm. If R is nonsymmetric, then it can be symmetrized by
performing an iteration with R followed by an iteration with RT . The estimate follows from
Theorem 3.4 using the substitutions

(3.11) H ← (Rn, 〈 · , · 〉R), A← R−1A,

where 〈 · , · 〉R and ‖ · ‖R are the usual R-inner product and the induced R-norm, respectively.
We prove the following corollary:

COROLLARY 3.6. Let A be a symmetric, positive semidefinite n × n matrix, R a
symmetric, positive definite n × n matrix, and p an n × m full-rank matrix, m < n. Let
Q = p(pTAp)+pTA and SR = I − ω/λRR−1A, where λR ≥ λmax(R−1A) is an available
upper bound, and ω ∈ (0, 2). Then, E = SR(I − Q) satisfies the pointwise convergence
estimate (3.3) with γ given by (3.7) and ‖ · ‖ ← ‖ · ‖R.

Proof. Let H and A in Theorem 3.4 be given by (3.11). Clearly, R−1A is an 〈 · , · 〉R-
symmetric, positive semidefinite operator. Then λmax(A) of Theorem 3.4 becomes
λmax(R

−1A), λ of Theorem 3.4 becomes λR, the smoother S of Theorem 3.4 becomes
I − ω/λRR−1A = SR, and p∗ of Theorem 3.4 becomes pTR. Hence Q of Theorem 3.4
becomes

p
(
pTR(R−1A)p

)+
pTR(R−1A) = p(pTAp)+pTA.

Since the inner product of Theorem 3.4 becomes 〈R−1A · , · 〉R = 〈A · , · 〉, the seminorm of
Theorem 3.4 becomes | · |A. The statement now follows by Theorem 3.4.

4. An improved convergence bound for the method of [4, Section 5]. In this section,
we prove an improved abstract convergence estimate for the polynomially accelerated two-
level method of [4, Section 5], i.e., the two-level method with the error propagation operator

(4.1) E = S

(
I − ω

λAS

AS

)
[I−p(pTASp)+pTAS ], AS = S2A, k ≥ 0, ω ∈ (0, 2),

where λAS
≥ %(AS) is an available upper bound and S a polynomial in A of the form

(4.2) S = (I − α1A)(I − α2A) · · · (I − αdA), d ≥ 1,

that satisfies %(S) ≤ 1. Clearly, the corresponding two-level method consists of two parts: the
inner iteration with the error propagation operator

(4.3) EAS
=

(
I − ω

λAS

S2A

)
[I − p(pTASp)+pTAS ]

and the outer post-smoothing iteration with the error propagation operator S. The inner itera-
tion EAS

corresponds to the variational multigrid with prolongator p used for the transformed
problem with the matrix AS = S2A. The outer iteration S is a multiple Richardson smoothing
procedure.

It is computationally more efficient to implement the method as a smoothed prolongator
method ([10]) with the prolongator P = Sp and the identical error propagation operator(

I − ω

λAS

AS

)
[I − P (PTAP )+PTA]S = E,

where the pre-smoother is interpreted as a sequence of Richardson iterations.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

274 R. TEZAUR AND P. VANĚK

Following the methodology of [4], we prove the following theorem. The proof follows as
a more or less straightforward consequence of Corollary 3.6.

THEOREM 4.1. Let A be a symmetric, positive definite n× n matrix, p a full-rank n×m
matrix, m < n. Further let S be a polynomial in A in the form (4.2) such that %(S) ≤ 1, E
and AS be given by (4.1), and λAS

≥ %(AS) be an available upper bound. Assume that

(4.4) ∃CA > 0 :

(
∀e ∈ Rn∃v ∈ Rm : ‖e− pv‖2 ≤ CA

λAS

‖e‖2A
)
.

Then ‖E‖A ≤ γ(CA) with γ given by (3.7).
Proof. Let e ∈ Rn. We prove ‖Ee‖A ≤ γ(CA)‖e‖A. We can restrict ourselves to the

non-trivial case e 6∈ Ker(S). For every τ ∈ (0, 1], define the set

V (τ) = {v ∈ Rn : |v|AS
≥ τ‖v‖A} \ {0}.

Then the assumption (4.4) yields

(4.5) ∀u ∈ V (τ)∃v ∈ Rm : ‖u− pv‖2 ≤ CA/τ
2

λAS

|u|2AS
.

Let t = |e|AS
/‖e‖A. Since %(S) ≤ 1, t ∈ (0, 1]. Trivially, e ∈ V (t). Let EAS

be given
by (4.3). From (4.5) and e ∈ V (t), by Corollary 3.6 with R−1 ← A and A← AS , it follows
that |EAS

e|AS
≤ γ(CA/t2)|e|AS

. By this estimate, t ∈ (0, 1], and E = SEAS
, we get

‖Ee‖A
‖e‖A

=
|EAS

e|AS

|e|AS

|e|AS

‖e‖A
≤ tγ(CA/t2) ≤ sup

ξ∈(0,1]

{
ξγ(CA/ξ

2)
}
.

Similarly to the end of the proof of Theorem 3.4, inspecting (the limits at) the ends of the
interval and the local maxima reveals that the maximum is attained for ξ = 1, which proves
our statement.

REMARK 4.2. In view of Theorem 4.1, a smoothing polynomial S is sought such that it
is an error propagation operator of an A-non-divergent smoother and makes %(AS) = %(S2A)
as small as possible. The smaller the available upper bound λAS

of %(AS) is, the easier it
becomes to satisfy (4.4) with a small constant CA. Such optimal property is held by the
linearly transformed Chebyshev polynomial in A given by

(4.6) q(A) =

(
1− 1

r1
A

)
· · ·
(
1− 1

rd
A

)
, ri =

λ

2

(
1− cos

2iπ

2d+ 1

)
,

where λ is an available upper bound of %(A). It follows from [4], Lemma 4.4 that for
S = q(A),

(4.7) λAS
=

λ

[1 + 2deg(q)]2
≥ %(S2A)

and that the smoother S = q(A) satisfies %(S) ≤ 1. Assumption (4.4) then becomes

(4.8) ∃CA > 0 :

(
∀e ∈ Rn∃v ∈ Rm : ‖e− pv‖2 ≤ CA[1 + 2deg(S)]2

λ
‖e‖2A

)
and is, for larger d = deg(S), much easier to satisfy with a uniform constant than (3.1). Note
that the case of interest is when (3.1) is satisfied with a non-uniform constant C ≡ c0(H/h)2
with c0 > 0 independent of H and h, where h is the fine and H the coarse-space resolution
and the smoother S of a degree cH/h, c > 0. This yields (4.8) with CA independent of H/h.
For details, see Section 7.
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5. The A-symmetric modifications and their convergence analysis. TheA-symmetri-
zation of the method in (4.1) requires two solutions of the coarse-level problem per iteration.
We investigate a modified method that does not have this disadvantage. Its error propagation
operators E and the error propagation operator of its A-symmetrization Es = EE∗ are given
by

(5.1) E = SSAS
(I −QA), Es = SSAS

(I −QA)SAS
S,

respectively, where

P = S2p,(5.2)

QA = P (PTAP )+PTA, AS = S2A, SAS
= I − ω

λAS

AS ,(5.3)

with ω ∈ (0, 2), and where λAS
is an available upper bound of %(AS). Thus, we investigate a

method with the double-smoothed prolongator P = S2p.
Note that, if the coarse-level matrix for the single-smoothed prolongator (Sp)TA(Sp) =

pTAS2p is sparse, then the coarse-level matrix for the double-smoothed prolongator pTAS4p
is also sparse and has only several times more non-zero entries and only about twice larger
bandwidth (assuming a suitable numbering of the degrees of freedom). The same holds true
for the prolongator P . In any case, it is an empirical observation of the authors that enlarging
the supports of the coarse-space basis functions (by additional prolongator smoothing) until a
very fast convergence is achieved pays off in terms of overall performance. This observation is
also supported theoretically as elaborated in Remark 5.3 below. Practically, a very small coarse
space can be used. For example, for 3D problems, setting the number of coarse degrees of
freedom equal to nearly the square root of the number of degrees of freedom on the fine-level
is optimal on a serial computational architecture. On a massively parallel platform the cost of
the fine-level computations scales linearly until the number of processors n is reached, making
an even smaller coarse-space size optimal.

THEOREM 5.1. Let A be a symmetric, positive definite n× n matrix, p a full-rank n×m
matrix, m < n. Furthermore, let S be a polynomial in A of the form (4.2) such that %(S) ≤ 1.
Under assumption (4.4), the error propagation operator E and the error propagation operator
of the A-symmetrization Es = EE∗ given by (5.1) with (5.2) and (5.3) satisfy the estimates
‖E‖A ≤ γ(CA) and ‖Es‖A ≤ γ2(CA), respectively, where γ is given by (3.7).

Proof. Let e ∈ Rn and e1 = (I − QA)e. We assume e, e1 6∈ Ker(S) since Ee = 0
otherwise. Let t = ‖e1‖AS

/‖e‖A. Since %(S) ≤ 1, I −QA is an A-orthogonal projection,
and e, e1 6∈ Ker(S), t ∈ (0, 1]. By using (3.9) with A← AS and S ← SAS

, we obtain

(5.4) ‖Ee‖A = ‖SSAS
e1‖2A = |SAS

e1|2AS
≤ t2

(
1− ω(2− ω)

λAS

‖ASe1‖2

|e1|2AS

)
‖e‖2A.

Let v = argminx∈Rm‖e1 − px‖. Since I − QA is the A-orthogonal projection onto
Range(S2p)⊥A , 〈ASe1, pv〉 = 0. From this and (4.4) we get

|e1|2AS
= 〈ASe1, e1 − pv〉 ≤ ‖ASe1‖‖e1 − pv‖ ≤

√
CA/λAS

‖ASe1‖‖e1‖A
=
√
CA/(t2λAS

)‖ASe1‖|e1|AS
.

Dividing the above estimate by |e1|AS
and squaring the result yields

‖ASe1‖2

|e1|2AS

≥ t2λAS

CA
.
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Substituting this estimate into (5.4), we obtain

‖Ee‖2A
‖e‖2A

≤ t2
(
1− ω(2− ω)

CA
t2
)
≤ max
ξ∈[0,1]

{
ξ

(
1− ω(2− ω)

CA
ξ

)}
= γ2(CA),

where the last step has been verified at the end of the proof of Theorem 3.4. This gives
‖E‖A ≤ γ(CA). The statement ‖Es‖A ≤ γ2(CA) follows by

‖Es‖A = ‖EE∗‖A ≤ ‖E‖A‖E∗‖A = ‖E‖2A.

The use of the prolongator P = S2p as in (5.1) is very powerful and theoretically
interesting. To demonstrate it, we investigate a modification of the method of (5.1) with the
prolongator P = Skp, k ≥ 2, and k multigrid post-smoothing steps Sk instead of a single
one S. The convergence estimate exhibits a great improvement for CA < ω(2− ω)/(k − 1),
where its dependence on CA is asymptotically of the k-th power.

THEOREM 5.2. Let A be a symmetric, positive definite n× n matrix, p a full-rank n×m
matrix, m < n. Furthermore, let S be a polynomial in A of the form (4.2) such that %(S) ≤ 1,
P = Skp, k ≥ 2, and QA, AS , and SAS

are defined as in (5.3). Under assumption (4.4), the
error propagation operatorsE = SAS

Sk(I−QA) andEs = EE∗ = SAS
Sk(I−QA)SkSAS

satisfy ‖E‖A ≤ γ2(CA) and ‖Es‖A ≤ γ22(CA) with the function γ2 given by

(5.5) γ22(CA) =


Ck

A

[CA+ω(2−ω)]k for CA ∈
[
0, ω(2−ω)k−1

)
,

1
k

[
k−1

ω(2−ω)k

]k−1
Ck−1A for CA ∈

[
ω(2−ω)
k−1 , ω(2− ω) k

k−1

)
,

1− ω(2−ω)
CA

for CA ∈
[
ω(2− ω) k

k−1 ,∞
)
.

Proof. Let e ∈ Rn and e1 = (I − QA)e. We can assume that e, e1 6∈ Ker(S).
Let e2 = Sk−2e1. Since S and AS commute, ‖S‖A ≤ 1 and ‖SAS

‖A ≤ 1, we have
‖SAS

S2e2‖A ≤ ‖S2e2‖A and ‖SAS
S2e2‖A = ‖SSAS

Se2‖A ≤ ‖SAS
Se2‖A. From here it

follows that

(5.6)
‖SAS

S2e2‖A
‖e2‖A

≤ min

{
‖S2e2‖A
‖e2‖A

,
‖SAS

Se2‖A
‖e2‖A

}
.

Let v = argminx∈Rm‖S2e2 − pv‖. Since I − QA is the A-orthogonal projection onto
Range(Skp)⊥A , e2 ∈ Range(S2p)⊥A = Range(p)⊥AS . We estimate using this orthogonal-
ity, the Cauchy-Schwarz inequality, assumption (4.4), and the identity ‖S2e2‖A = |Se2|AS

as follows:

|Se2|2AS
= 〈ASe2, S2e2 − pv〉 ≤ ‖ASe2‖‖S2e2 − pv‖ ≤

√
CA/λAS

|Se2|AS
‖ASe2‖.

Dividing the estimate by |Se2|AS
and squaring the result yields

(5.7)
‖ASe2‖2

|Se2|2AS

≥ λAS

CA
.

Let tj = ‖Sje1‖A/‖Sj−1e1‖A, j = 1, . . . , k. From the definition of e2, it follows that
tk−1 = |e2|AS

/‖e2‖A and tk = |Se2|AS
/‖Se2‖A = |Se2|AS

/|e2|AS
. Clearly,

|e2|2AS
= 〈AS2e2, e2〉 ≤ ‖S2e2‖A‖e2‖A = |Se2|AS

‖e2‖A.
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Dividing the estimate by |e2|AS
‖e2‖A yields tk−1 ≤ tk. Thus, 0 < tk−1 ≤ tk ≤ 1.

From (5.4) and (5.7) it follows that

‖SSAS
e2‖2A

‖e2‖2A
= t2k−1

(
1− t2k

ω(2− ω)
λAS

‖ASe2‖2

|Se2|2AS

)
≤ t2k−1

(
1− t22

ω(2− ω)
CA

)
.

By the above estimate, the second inequality of (5.6), and ‖S2e2‖A = tk−1tk‖e2‖A, we get

‖SAS
S2e2‖2A
‖e2‖2A

≤ t2k−1 min

{
t2k, 1− t2k

ω(2− ω)
CA

}
, 0 < tk−1 ≤ tk ≤ 1.

Hence, since tk are non-decreasing,

‖Ee‖2A
‖e‖2A

=
‖SAS

S2e2‖2A
‖e2‖2A

‖e2‖2A
‖e‖2A

≤ (t1 · · · tk−1)2min

{
t2k, 1− t2k

ω(2− ω)
CA

}
≤ t2(k−1)k−1 min

{
t2k, 1− t2k

ω(2− ω)
CA

}
≤ max

[ξ1,ξ2]∈T
ξk−11 min

{
ξ2, 1− ξ2

ω(2− ω)
CA

}
,

where T =
{
[ξ1, ξ2] : 0 ≤ ξ1 ≤ ξ2 ≤ 1

}
. Since the argument is increasing in ξ1, the

maximum is attained for ξ1 = ξ2. Inspecting the maximum of this function of one variable
yields the statement ‖E‖A ≤ γ2(CA) , and ‖Es‖A ≤ γ22(CA) follows by the symmetrization
argument.

REMARK 5.3. Let the assumption (4.8) for d = deg(S) = 0 be satisfied with
CA ≡ CA,d=0. Then for a polynomial S = q(A) given by (4.6) of degree d > 0, the
assumption (4.8) holds true with

(5.8) CA ≡ CA,d = CA,d=0/(1 + 2d)2.

Note that for second-order elliptic problems discretized on a mesh with the characteristic
resolution h and a coarse space with the characteristic resolution H , (4.8) holds for d = 0
with a non-uniform constant CA,d=0 = O((H/h)2). For details, see Section 7.

The estimate of the rate of convergence of the symmetrized method of Theorem 5.2 is
asymptotically proportional to CkA,d for a small CA,d. This combined with (5.8) implies that
the estimate is inversely proportional to (1 + 2d)2k. In our previous convergence results
[3, 4, 8, 10], the convergence rate bound is inversely proportional to (1 + 2d)2 only. It is
a relevant result since by using S as the polynomial q(A) in (4.6) of a sufficient degree d,
the constant CA,d can be made arbitrarily small and kept within the region with the strong
acceleration. Thus, considering the polynomial S of degree 2d instead of d in the asymptotic
region should improve the convergence rate almost 22k times and incurs only twice more
computational work on the fine level.

Taking into account the factor two in the computational work (and assuming that the
convergence rate estimate is sharp and the cost of the coarse-level correction is negligible; see
below), let us now compare an error reduction effect of one iteration that uses the smoother
of degree 2d with the effect of two iterations that use the smoother of degree d. Assuming
the optimal choice ω = 1 and d already large enough so that (1 + 2(2d))2/(1 + 2d)2 ≈ 4,
cf. (5.8), the corresponding error reduction is given by γ22(CA,d/4) (approximately) and
γ42(CA,d). Assuming k = 2 or k = 3 and inspecting where γ42(CA,d) = γ22(CA,d/4), we
find that this holds true for CA,d = 1/2, and the corresponding error reduction factor is then
1/32 or 1/33, respectively. Thus, for CA,d > 1/2, it pays off to enlarge twice the degree of
the smoothing polynomial rather than perform two iterations with the smoother of degree
d. For CA,d < 1/2, the opposite is true. If CA,d = 1/2, then the method that uses the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

278 R. TEZAUR AND P. VANĚK

smoother of degree 2d and two iterations of the method that uses a polynomial of degree
d are comparably efficient, and increasing twice the degree of S still does not represent a
waste of computational resources. The optimal d is therefore when CA,d ∈ [1/8, 1/2], which
corresponds to convergence rates in the interval [1/9k, 1/3k]. A similar conclusion can be
drawn for k > 3.

The calculation above presumes that the cost of the coarse-level correction is negligible,
i.e., the coarse-space problem is sufficiently small. Otherwise, we would also need to account
for the fact that, when we increase the degree d = O(H/h) twice, the coarse-level problem
bandwidth increases about twice (assuming a suitable numbering of degrees of freedom)
making the setup phase of the Cholesky decomposition on the coarse-level about 4 times more
expensive and the forward-backward coarse solutions about twice expensive.

REMARK 5.4. A consequence of our theory is an observation that, at least asymptotically,
it is much better to use a prolongator P = Skp, k > 1, than a single Chebyshev prolongator
smoother of degree kd.

6. More radical prolongator smoothing. In this section, we prove a convergence bound
for a modification of the method of Theorem 5.2. An estimate superior to the sharpest bound
of Theorem 5.2 valid only for small CA there is valid here for any CA ≈ 1. For a larger
CA, the new convergence rate estimate is the k-th power of the old one. The computational
complexity of the method presented here is larger, but the strong acceleration effect is achieved
under a much weaker condition.

The modified method employs the prolongator P = (SAS
S)kS2p, k ≥ 0, and the post-

smoother (SAS
S)k+1. Below, we investigate its convergence and the convergence of its

symmetrization.
THEOREM 6.1. Let A be a symmetric, positive definite n× n matrix, p a full-rank n×m

matrix, m < n, and S a polynomial in A of the form (4.2) such that %(S) ≤ 1. Denote
AS = S2A and SAS

= I − ω/λAS
AS , where ω ∈ (0, 2) and λAS

is an available upper
bound of the spectral radius %(AS). Let the prolongator be given as P = (SAS

S)kS2p, k ≥ 0,
and denote Q = P (PTAP )−1PTA.

Then, under assumption (4.4), the error propagation operator E = (SAS
S)k+1(I −Q)

of a two-level variational method characterized by the prolongator P and a smoother with the
error propagation operator (SAS

S)k+1 and the error propagation operator Es = EE∗ =
(SAS

S)k+1(I −Q)(SAS
S)k+1 of its A-symmetrization (where ∗ denotes the A-adjoint oper-

ator) satisfy ‖E‖A ≤ γk+1(CA) and ‖Es‖A ≤ γ2(k+1)(CA) with γ given by (3.7).
Proof. Let e ∈ Rn, S′ = SAS

S, e1 = (I − Q)e, and e2 = (S′)ke1. We prove first
‖Ee‖A ≤ γk+1(CA)‖e‖A. If e ∈ Ker(S), e1 ∈ Ker(S) or e2 ∈ Ker(S), then Ee = 0 and
the desired inequality holds trivially. Thus, we can assume that e, e1, e2 6∈ Ker(S).

First, we will show that

(6.1)
‖Ee‖A
‖e‖A

≤
(
‖S′e2‖A
‖e2‖A

)k+1

.

Indeed, since I −Q is an A-orthogonal projection, ‖e1‖A ≤ ‖e‖A, and therefore

(6.2)
‖Ee‖A
‖e‖A

≤ ‖(S
′)k+1e1‖A
‖e1‖A

=
‖(S′)k+1e1‖A
‖(S′)ke1‖A

‖(S′)ke1‖A
‖(S′)k−1e1‖A

· · · ‖S
′e1‖A
‖e1‖A

.

Let 0 < i ≤ k. We have

‖(S′)ie1‖2A = 〈A(S′)i+1e1, (S
′)i−1e1〉 ≤ ‖(S′)i+1e1‖A‖(S′)i−1e1‖A.
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Dividing this estimate by ‖(S′)ie1‖A‖(S′)i−1e1‖A yields

‖(S′)ie1‖A
‖(S′)i−1e1‖A

≤ ‖(S
′)i+1e1‖A

‖(S′)ie1‖A
≤ ‖(S

′)k+1e1‖A
‖(S′)ke1‖A

=
‖S′e2‖A
‖e2‖A

.

This together with (6.2) proves (6.1).
Since I −Q is the A-orthogonal projection onto Range((S′)kS2)⊥A , where ⊥A denotes

the A-orthogonal complement, we have e2 = (S′)ke1 ∈ Range(S2p)⊥A . Next, we prove
that

(6.3) ∀x ∈ Range(S2p)⊥A \ {0} : ‖S′x‖2A
‖x‖2A

≤ γ(CA).

The proof of (6.3) follows the proof of Theorem 5.1. We have

‖S′x‖2A = ‖SAS
x‖2AS

= ‖x‖2AS
− 2

ω

λAS

‖x‖2AS
+

(
ω

λAS

)2

‖ASx‖2AS

≤ ‖x‖2AS
− 2

ω

λAS

‖ASx‖2 +
ω2

λAS

‖ASx‖2 =

(
1− ω(2− ω)

λAS

‖ASx‖2

‖x‖2AS

)
‖x‖2AS

.(6.4)

Set v = argminw‖x − pw‖. Since x ∈ Range(S2p)⊥A , we have 〈ASx, p · 〉 = 0. We set
t = ‖x‖AS

/‖x‖A and estimate using this orthogonality, assumption (4.4), and the Cauchy-
Schwarz inequality:

‖x‖2AS
= 〈ASx,x− pv〉 ≤ ‖ASx‖‖x− pv‖ ≤

√
CA/λAS

‖ASx‖‖x‖A
≤
√
CA/(t2λAS

)‖ASx‖‖x‖AS
.

Dividing this estimate by ‖x‖AS
and squaring the result yields

(6.5)
‖ASx‖2

‖x‖2AS

≥ t2λAS

CA
.

Clearly, t ∈ (0, 1]. Substituting (6.5) into (6.4) yields

‖S′x‖2A
‖x‖2A

≤ t2
(
1− ω(2− ω)

CA
t2
)
≤ max
ξ∈[0,1]

ξ

(
1− ω(2− ω)

CA
ξ

)
.

The estimate (6.3) follows by the same calculations as those used at the end of the proof of
Theorem 3.4. Since e2 ∈ Range(S2p)⊥A and e 6= 0 ∈ Ker(S), (6.3) holds for x = e2 and
‖E‖A ≤ γk+1(CA) follows by (2.3). Finally,

‖Es‖A = ‖EE∗‖A ≤ ‖E‖A‖E∗‖A = ‖E‖2A ≤ γ2(k+1)(CA).

REMARK 6.2. Let us consider ω = 1 and a large enough d = deg(S) so that, using (5.8),
CA,d ≈ 1 and CA,2d ≈ 1

4CA,d. Then, the respective estimates of the rate of convergence
γ2(k+1)(CA,d) and γ2(k+1)(CA,2d) of the symmetrized method with the degree of S equal to
d and 2d satisfy

γ2(k+1)(CA,2d) ≈
1

4k+1
γ2(k+1)(CA,d).

In Section 5, this was true only asymptotically for CA,d → 0. Here, the assumption CA,d ≈ 1
is sufficient.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

280 R. TEZAUR AND P. VANĚK

7. Application to the method with an aggressive coarsening based on the unknowns
aggregation and a massive polynomial smoothing. We apply the results of Sections 4, 5,
and 6 to a system arising from a finite element discretization of a second-order elliptic PDE.
Throughout this section, the prolongator p is assumed to be constructed by a generalized
unknowns aggregation method ([9]). A brief introduction to the unknowns aggregation
coarsening is included in Section 2.

The resulting methods feature an aggressive coarsening (resulting in a small coarse
space) based on the unknowns aggregation, balanced by a massive polynomial smoothing
(a multiple Richardson iteration). They are optimal in the following sense: for a second-
order elliptic problem discretized on a mesh with the characteristic mesh size h and a coarse
space characterized by the resolution H , they exhibit a coarse-space size independent rate of
convergence for the cost of O(H/h) elementary smoothing steps. The coarse-level matrix is
sparse if the aggregates have a reasonably compact shape and approximately the same size.

The theory of the previous sections can be readily applied, provided that the prolongator
satisfies a version of the weak approximation condition required by the method. In order
to achieve coarse-space size and problem size independent convergence for the considered
methods, it is necessary to establish that the prolongator satisfies

(7.1) ∃C > 0 :

(
∀e ∈ Rn ∃v ∈ Rm : ‖e− pv‖2 ≤ C

λ

(
H

h

)2

‖e‖2A

)
with a constant C independent of h and H . Here, h is a characteristic element size of the
fine-level discretization (assuming the quasi-uniformity of the mesh), H is a characteristic
diameter of the aggregates (understood as a set of finite element nodal points), and λ is an
available upper bound of %(A). For a scalar elliptic second-order problem, (7.1) was proved
in [9]. For the case of linear elasticity in 3D, the reader is referred to [10].

We summarize the results in the following uniform theorem:
THEOREM 7.1. Let A be a symmetric, positive definite n× n matrix, p a full-rank n×m

matrix, m < n. Assume the prolongator p satisfies (7.1), the smoother S is given by (4.6),
its degree d satisfies d ≥ cdH/h with cd > 0, and λAS

is given by (4.7). Then the error
propagation operator E in both (4.1) and (5.1) and Es in (5.1) satisfy

(7.2) ‖E‖A ≤ γ
(
C (7.1)

4c2d

)
, ‖Es‖A ≤ γ2

(
C (7.1)

4c2d

)
,

where C (7.1) is the constant C in (7.1) and the function γ is given by (3.7). The operators E
and Es of Theorem 5.2 satisfy

(7.3) ‖E‖A ≤ γ2
(
C (7.1)

4c2d

)
, ‖Es‖A ≤ γ22

(
C (7.1)

4c2d

)
,

with the function γ2 given by (5.5). Furthermore, for the method of Section 6, we have

(7.4) ‖E‖A ≤ γk+1

(
C (7.1)

4c2d

)
, ‖Es‖A ≤ γ2(k+1)

(
C (7.1)

4c2d

)
,

with γ given by (3.7). In (7.2), (7.3), and (7.4), the rate of convergence is independent of h
and H .

Proof. For λAS
in (4.7) we have

λAS
≤ λ

(1 + 2cdH/h)2
≤ λ

4c2d

(
h

H

)2

,
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which together with (7.1) yields that (4.4) is satisfied with

CA ≤ C (7.1)

(
H

h

)2
λAS

λ
≤ C (7.1)

4c2d
.

Then, the estimates (7.2), (7.3), and (7.4) follow from Theorems 4.1, 5.1, 5.2, and 6.1,
respectively.

REMARK 7.2. In view of Theorem 7.1, we choose d = deg(S) equal to c(H/h). A
reasonable choice is c = 1/2. For the A-symmetric method of Theorem 5.2, based on
Remark 5.3, we strive to choose c so that the final convergence rate is about 0.01–0.1.

8. Numerical experiments. The purpose of this section is to illustrate the convergence
of the proposed methods and verify that the convergence estimates obtained in the previous
sections are predictive of the actual numerical convergence. To this end, the methods are
implemented in MATLAB and the focus here is on the number of iterations and the convergence
rate. Numerical experiments comparing the efficiency of the presented methods and other
domain decomposition methods, preferably on a parallel platform, are beyond the scope of
this theoretical paper.

A numerical solution of the Poisson equation is considered in a three-dimensional cube.
A Dirichlet boundary condition is imposed on the left, top, and bottom faces. The cube is
discretized using bilinear quadrilateral finite elements (Q1) on two uniform grids of 60×60×60
and 120× 120× 120 elements, resulting in systems of approximately 216 thousand and 1.728
million degrees of freedom, respectively.

The tentative prolongator is constructed from elemental partitions into subdomains of size
10× 10× 10 and 20× 20× 20 elements. Each of the interior subdomain nodes is assigned to
its aggregate (a column of the prolongator) and the interface nodes are assigned to the column
with the lower index. The constant ω is set to 1 throughout. The iterations are started from a
zero initial guess, and they are stopped when the relative residual

‖Ax− f‖
‖f‖

drops below 10−6 or the number of iterations exceeds 100. Table 8.1 displays the number of
iterations required by each method for the two discretizations and the two aggregate sizes and a
varying degree of the smoothing polynomial d. In the table, the methods are denoted as follows:

A6S5O - Algorithm 6 of [4, Section 5];
T5.1 - Algorithm of Theorem 5.1;
T5.1s - Symmetrized algorithm of Theorem 5.1;
T5.2k2 - Algorithm of Theorem 5.2 with k = 2;
T5.2sk2 - Symmetrized algorithm of Theorem 5.2 with k = 2;
T5.2k3 - Algorithm of Theorem 5.2 with k = 3;
T5.2sk3 - Symmetrized algorithm of Theorem 5.2 with k = 3.

Due to its cost, the method of Section 6 is interesting mostly theoretically and is not considered
in the comparisons.

Table 8.1, displays the iteration counts for all of the methods above, the two problem
sizes, and the two aggregates sizes when the degree of the smoothing polynomial d is varied.
Comparing the rows corresponding to the same cd (cf. Theorem 7.1), e.g., the problem
120× 120× 120 for d = 3 with aggregates of size 10× 10× 10 and d = 6 with aggregates
of size 20 × 20 × 20, one can observe that the iteration counts remain virtually the same,
confirming the theoretical estimates. Furthermore, the iteration counts remain almost constant

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

282 R. TEZAUR AND P. VANĚK
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FIG. 8.1. Numerical rates of convergence compared to the old and new theoretical estimates for 120×120×120
cube with subdomains of size 20× 20× 20 and the method of [4, Section 5].

with respect to the problem size when keeping d andH/h constant as can be seen by comparing
the entries in the first and third or the second and fourth blocks of the table.

The convergence rate of the methods in the matrix A-norm, which is used in the estimates
of the theorems, are tabulated in Table 8.2. The rates are computed from the last two iterations
of each run. The same conclusions that can be observed from Table 8.1 for the number of
iterations can also be drawn for the convergence rates: the convergence rates are virtually
independent of the coarse-space size when the degree of polynomial is adjusted to keep
cd constant. The validity of comments from Remark 5.3 can also be seen. For example,
considering the larger 120×120×120 problem with subdomains of size 20×20×20 and the
symmetrized method of Theorem 5.2 with k = 2, the ratio of convergence rates for d = 6 and
d = 2 ·6 = 12 is 34, even exceeding the estimate of approximately 22k = 16. Similarly, in this
case for the method with k = 3, the ratio is 409, again exceeding the estimate of 22k = 64.

Finally, the convergence rates from Table 8.2 are used to compare the improved estimate
of Section 4 to that of [4, Section 5]. For this purpose, the problem with 120 × 120 × 120
elements and aggregates of size 20×20×20 is considered, and the convergence rates from the
first column are plotted in Figure 8.1 as a function of the degree of the smoothing polynomial d.
Then, the constants from the new estimates and the old estimate are calibrated to the numerical
rate for d = 1 and d = 2, respectively, and the rest of their dependence is plotted using (3.7)
with (5.8) and the old estimate

√
1− 1/(1 + C) from [4]. It can be seen that the old estimate

greatly underestimates the convergence rates. The new estimate matches up the numerical
convergence rate up to d = 6 and is considerably closer than the old one throughout the range
of considered values.

9. Conclusions. We have proven that for a two-level variational multigrid method with a
multiply (k-times) smoothed prolongator and an adequate multigrid smoother, asymptotically
(i.e., for a sufficient large degree of the smoothing polynomial d = deg(S)), the convergence
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bound improves greatly with increasing d. Current and future work is focusing on a more
practical version of the method of Section 6 whose convergence rate improves greatly even for
moderate d and a high-performance implementation of the methods.
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Z. VASTL, An overview of multilevel methods with aggressive coarsening and massive polynomial
smoothing, Electron. Trans. Numer. Anal., 44 (2015), pp. 401–442.
http://etna.ricam.oeaw.ac.at/vol.44.2015/pp401-442.dir/pp401-442.pdf

[5] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
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TABLE 8.1
Number of iterations by method and degree of the smoothing polynomial.

d A6S5O T5.1 T5.1s T5.2k2 T5.2sk2 T5.2k3 T5.2sk3
60× 60× 60 with aggregates of size 10× 10× 10

1 63 56 33 50 31 44 25
2 23 18 12 16 11 14 9
3 16 9 6 8 6 6 5
4 10 7 4 5 4 4 3
6 7 6 4 4 3 3 2
8 7 6 3 3 3 2 2

10 6 5 3 3 2 2 2
12 6 5 3 3 2 2 2

60× 60× 60 with aggregates of size 20× 20× 20

1 100+ 100+ 100+ 100+ 100+ 100+ 89
2 80 69 40 61 38 53 30
3 41 33 21 30 20 26 15
4 26 19 13 17 12 15 9
6 15 8 6 8 6 6 4
8 11 7 4 5 3 3 3

10 8 7 4 4 2 3 2
12 7 6 4 4 3 3 2

120× 120× 120 with aggregates of size 10× 10× 10

1 63 54 33 49 31 42 25
2 23 17 12 16 11 13 9
3 17 9 6 7 6 6 4
4 10 7 4 5 4 4 3
6 7 6 4 4 3 3 2
8 7 6 3 3 3 2 2

10 7 5 3 3 2 2 2
12 6 5 3 3 2 2 2

120× 120× 120 with aggregates of size 20× 20× 20

1 100+ 100+ 100+ 100+ 100+ 100+ 93
2 84 69 42 62 40 53 31
3 43 33 21 30 21 25 16
4 27 19 13 17 13 15 9
6 17 8 6 8 6 6 4
8 11 8 5 5 4 3 3

10 8 6 4 4 3 3 2
12 7 6 4 4 3 3 2
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TABLE 8.2
Convergence rate by method and degree of the smoothing polynomial.

d A6S5O T5.1 T5.1s T5.2k2 T5.2sk2 T5.2k3 T5.2sk3
60× 60× 60 with aggregates of size 10× 10× 10

1 8.11e-1 8.08e-1 6.58e-1 7.88e-1 6.29e-1 7.64e-1 5.90e-1
2 5.34e-1 5.24e-1 2.96e-1 4.85e-1 2.80e-1 4.38e-1 2.16e-1
3 3.60e-1 2.24e-1 9.27e-2 2.08e-1 8.37e-2 1.65e-1 5.03e-2
4 2.01e-1 1.53e-1 2.43e-2 6.43e-2 1.94e-2 3.13e-2 6.39e-3
6 1.19e-1 1.46e-1 1.45e-2 3.06e-2 2.90e-3 1.51e-2 1.42e-4
8 1.20e-1 1.13e-1 6.42e-3 1.04e-2 1.36e-3 1.38e-3 4.33e-5

10 6.21e-2 8.38e-2 1.10e-2 1.90e-2 1.19e-4 1.59e-3 5.94e-6
12 5.65e-2 8.81e-2 8.06e-3 1.07e-2 2.30e-4 1.23e-3 4.15e-6

60× 60× 60 with aggregates of size 20× 20× 20

1 9.37e-1 9.30e-1 8.86e-1 9.24e-1 8.76e-1 9.16e-1 8.58e-1
2 8.43e-1 8.41e-1 7.10e-1 8.21e-1 6.90e-1 8.02e-1 6.39e-1
3 7.12e-1 7.04e-1 5.07e-1 6.73e-1 4.89e-1 6.38e-1 4.05e-1
4 5.68e-1 5.46e-1 3.30e-1 5.06e-1 3.20e-1 4.60e-1 2.17e-1
6 3.67e-1 2.25e-1 8.97e-2 2.05e-1 8.33e-2 1.64e-1 3.16e-2
8 2.24e-1 1.55e-1 2.74e-2 4.97e-2 8.80e-3 2.34e-2 3.51e-3

10 1.70e-1 1.53e-1 2.34e-2 4.40e-2 7.10e-4 1.36e-2 2.49e-4
12 1.09e-1 1.40e-1 1.95e-2 4.13e-2 1.59e-3 1.53e-2 5.67e-5

120× 120× 120 with aggregates f size 10× 10× 10

1 7.89e-1 8.02e-1 6.29e-1 7.81e-1 6.11e-1 7.57e-1 5.52e-1
2 5.09e-1 5.14e-1 2.77e-1 4.75e-1 2.74e-1 4.27e-1 1.85e-1
3 3.64e-1 1.77e-1 7.37e-2 1.77e-1 6.86e-2 1.55e-1 4.13e-2
4 1.98e-1 1.48e-1 2.35e-2 6.04e-2 1.68e-2 2.68e-2 5.47e-3
6 1.03e-1 1.34e-1 1.25e-2 2.09e-2 3.44e-3 1.40e-2 1.33e-4
8 1.29e-1 1.25e-1 4.71e-3 8.67e-3 1.58e-3 1.31e-3 4.36e-5

10 6.11e-2 8.11e-2 1.00e-2 1.89e-2 1.19e-4 1.10e-3 5.09e-6
12 6.24e-2 9.10e-2 1.05e-2 1.35e-2 4.30e-4 2.02e-3 7.58e-6

120× 120× 120 with aggregates of size 20× 20× 20

1 9.38e-1 9.29e-1 8.83e-1 9.22e-1 8.75e-1 9.10e-1 8.53e-1
2 8.38e-1 8.40e-1 7.03e-1 8.17e-1 6.88e-1 8.04e-1 6.26e-1
3 7.06e-1 7.09e-1 5.02e-1 6.75e-1 4.93e-1 6.45e-1 3.93e-1
4 5.62e-1 5.55e-1 3.33e-1 5.12e-1 3.31e-1 4.73e-1 2.06e-1
6 3.85e-1 1.89e-1 8.66e-2 1.96e-1 8.06e-2 1.77e-1 4.02e-2
8 2.27e-1 1.55e-1 2.62e-2 5.67e-2 1.89e-2 2.66e-2 5.78e-3

10 1.70e-1 1.47e-1 2.09e-2 4.95e-2 3.44e-3 1.67e-2 3.10e-4
12 1.18e-1 1.44e-1 1.44e-2 3.33e-2 2.35e-3 1.44e-2 9.82e-5
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