
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 48, pp. 156–182, 2018.
Copyright c© 2018, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol48s156

MULTISCALE COARSE SPACES FOR OVERLAPPING SCHWARZ METHODS
BASED ON THE ACMS SPACE IN 2D∗

ALEXANDER HEINLEIN†, AXEL KLAWONN†, JASCHA KNEPPER†, AND OLIVER RHEINBACH‡

Abstract. Two-level overlapping Schwarz domain decomposition methods for second-order elliptic problems in
two dimensions are proposed using coarse spaces constructed from the Approximate Component Mode Synthesis
(ACMS) multiscale discretization approach. These coarse spaces are based on eigenvalue problems using Schur
complements on subdomain edges. It is then shown that the convergence of the resulting preconditioned Krylov
method can be controlled by a user-specified tolerance and thus can be made independent of heterogeneities in
the coefficient of the partial differential equation. The relations of this new approach to other known adaptive
coarse space approaches for overlapping Schwarz methods are also discussed. Compared to one of the competing
adaptive approaches, the new coarse space can be significantly smaller. Compared to other competing approaches, the
eigenvalue problems are significantly cheaper to solve, i.e., the dimension of the eigenvalue problems is minimal
among the competing adaptive approaches under consideration. Our local eigenvalue problems can be solved using
one iteration of LobPCG for essentially the same cost as a Cholesky-decomposition of a Schur complement on a
subdomain edge.
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1. Introduction. We consider coarse spaces for two-level overlapping Schwarz meth-
ods [40] based on variations of the Approximate Component Mode Synthesis (ACMS) special
finite element method, which was introduced in [25] for the discretization of second-order
elliptic problems with highly varying coefficients. For our new two-level overlapping Schwarz
method, we obtain a condition number bound which is independent of large variations in the
coefficient; see Section 6 for the condition number bound and Section 7 for corresponding
numerical results.

The ACMS discretization method builds on the traditional Component Mode Synthesis
(CMS) method [7, 27] and uses eigenvectors from local discrete eigenvalue problems to
construct the approximation space. A discretization error estimate and an a posteriori error
indicator are available [24] for ACMS as well as a parallel implementation [22]. The improved
approximation properties for heterogeneous problems, compared to standard FEM spaces,
rely on the adaptation of the basis functions to the heterogeneities, i.e., the basis functions
are computed in a first (off line) step. They are used in the later (on line) simulations, which
can be performed on a relatively coarse mesh. However, for large problems, this mesh may
still require parallel solution methods, and in [22], it has been shown that parallel domain
decomposition solvers can robustly solve the discretized ACMS (on line) problems.

Many multiscale discretization methods have been proposed in the past, among them
are Multiscale Finite Element Methods (MsFEM) [15, 26], Heterogeneous Multiscale Finite
Element Methods (HMM) [13, 14], adaptive multiscale methods [35], and Generalized Finite
Element Methods (GFEM) [2, 3]; see also the references therein.

Different exotic coarse spaces for overlapping Schwarz methods are also known, e.g.,
energy minimizing coarse spaces [1, 5, 6, 8, 9, 10, 20, 23], where [1, 5, 6] use coarse spaces
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TABLE 2.1
Reference table for some bilinear forms, semi-norms, and norms used throughout this paper; see the respective

reference for an exact definition. The upper part lists those related corresponding to the a(·, ·) bilinear form, whereas
the lower part lists those related to the scaled L2-inner product.

aΩ (u, v) :=
∫

Ω
A(x)(∇u(x))T∇v(x) dx (2.3)

|u|2a,Ω := aΩ (u, u) (2.4)

a∗,e,η (u, v) := aη (He→η(u),He→η(v)) (4.11)

|u|2a,∗,e,η := a∗,e,η (u, u) (4.12)

āeij (u, v) :=
(
Aeij ,max(x)Dxtu,Dxtv

)
(5.3)

beij (u, v) := 1
h

(
Aeij ,max u, v

)
L2(eij)

(4.1)

b̃eij (u, v) := 1
h2

(
Aweij (u), weij (v)

)
L2(Ωeij ) (4.5)

‖u‖2b̃,eij := b̃eij (u, u) (4.7)

b̄eij (u, v) := h−1
∑

xk∈eij
βku (xk) v (xk) (5.4)

built on MsFEM basis functions. Adaptive coarse spaces from eigenvalue problems for over-
lapping Schwarz methods were already proposed in [16, 17] considering unions of neighboring
subdomains. Their idea was to replace a Poincaré inequality by a computable bound from a
discrete eigenvalue problem involving a Neumann matrix and a mass matrix. In [38], Spillane
et al. introduced the GenEO coarse space for overlapping Schwarz methods. This method uses
the bilinear form on both sides of the generalized eigenvalue problems. By elimination, the
generalized eigenvalue problems can be reduced to the overlap of the subdomains, resulting in
smaller eigenvalue problems. This helped to make adaptive overlapping Schwarz methods
practical.

The size of the eigenvalue problems is further reduced in the more recent methods
which are the focus of this paper. Here, (generalized) eigenvalue problems on the subdomain
boundary or on edges are solved. We will briefly review ACMS as a discretization method
before we introduce the ACMS-based coarse space for overlapping Schwarz methods using
eigenvalue problems on edges. We will also discuss two approaches closely related to ours, i.e.,
the method introduced in [11], where eigenvalue problems on the boundaries of the overlapping
subdomains are used, and the very recent method introduced in [19] also using edges. The
methods [16, 17], [11], and [19] are described in Section 5.1, Section 5.2, and Section 5.3,
respectively, in order to illustrate differences and relations to our approach. Let us note that,
compared to [11, 16, 17], the eigenvalue problems in our approach are more local, i.e., defined
on edges. The eigenvalue problems used in [19] are also defined on edges and are typically
computationally slightly cheaper than ours (if the standard, non-economic variant of our
approach is used), but our new ACMS coarse space can be significantly smaller in certain
cases; see Section 7. For an overview of the bilinear forms, semi-norms, and norms defined
and used in this paper, we refer to Table 2.1.

Adaptive coarse space approaches for nonoverlapping domain decomposition methods
are, of course, also related, cf., e.g., [4, 28, 29, 30, 31, 33, 34, 36, 37, 39], but are outside the
scope of this paper. For further references to the literature, we refer to the references listed in
the aforementioned publications.

2. ACMS special finite element method. We consider problems of the form

(2.1)
−∇ · (A(x)∇u(x)) = f(x) in Ω ⊂ R2,

u = 0 on ∂Ω,
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where the scalar coefficient function A : R2 → R is highly heterogeneous, possibly with high
jumps. The model problem (2.1) can be transformed into the variational formulation: find
u ∈ H1

0 (Ω) such that

(2.2) aΩ (u, v) = L(v) ∀v ∈ H1
0 (Ω)

with the bilinear form and the linear functional

(2.3) aΩ (u, v) :=

∫
Ω

A(x)(∇u(x))T∇v(x) dx and L (v) :=

∫
Ω

f(x)v(x) dx,

respectively, where f ∈ L2(Ω). In addition to that, we denote the semi-norm corresponding to
the bilinear form aΩ (·, ·) as

|u|2a,Ω := aΩ (u, u) .(2.4)

We assume that the coefficient function A(x) satisfies

0 < Amin ≤ A(x) ≤ Amax ∀x ∈ Ω̄.

We consider a family (τH)H of conforming triangulations of Ω into triangles or convex
quadrilaterals, where each triangulation introduces an interface

Γ =

( ⋃
T∈τH

∂T

)
\ ∂Ω.

The decomposition

(2.5) H1
0 (Ω) =

(⊕
T∈τH

VT

)
⊕ VΓ

is orthogonal with respect to aΩ (·, ·) and is standard in domain decomposition theory. How-
ever, here, the decomposition (τH)H of Ω corresponds to a triangulation by ACMS elements
with typical diameter H . Only later, when we use ACMS as a coarse space for overlapping
Schwarz methods, this decomposition will correspond to a nonoverlapping domain decom-
position with typical diameter H . Note that this domain decomposition may then also be
irregular.

We have

VT =
{
v ∈ H1

0 (Ω) : v|T ∈ H1
0 (T ) and v|Ω\T̄ = 0

}
⊂ H1

0 (Ω)

for all T ∈ τH and

VΓ =
{
HΓ→Ω(τ) ∈ H1

0 (Ω) : τ ∈ H1/2 (Γ)
}
⊂ H1

0 (Ω),

whereHΓ→Ω corresponds to the harmonic extension operator, i.e., to the solution of

−∇ · (A(x)∇HΓ→Ω (τ)) = 0 in T, ∀T ∈ τH ,
HΓ→Ω (τ) = τ on Γ,

HΓ→Ω (τ) = 0 on ∂Ω.
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Based on decomposition (2.5), problem (2.2) can equivalently be written as: find uT ∈ VT
and uΓ ∈ VΓ such that

(2.6)
aΩ (uT , vT ) = L (vT ) ∀T ∈ τH ,∀vT ∈ VT ,
aΩ (uΓ, vΓ) = L (vΓ) ∀vΓ ∈ VΓ,

where the solution of (2.2) is then given by

u =
∑
T∈τH

uT + uΓ ∈ H1
0 (Ω).

In the CMS method [7, 27], eigenfunctions are used as basis functions to solve the
problems given in (2.6); see also Kolmogoroff’s n-width from approximation theory, which
explains the approximation properties of eigenfunctions. The ACMS finite element space,
which was introduced by Hetmaniuk and Lehoucq in [25], is designed as an approximation
of the CMS finite element space where only basis functions with local support are employed.
This applies, in particular, to the functions in VΓ, which have global support, whereas the
functions in VT are already local in the CMS method.

We employ, in total, three different types of basis functions in the ACMS method which
we refer to as vertex-specific, edge-based, and fixed-interface basis functions.

A vertex-specific basis function which corresponds to a vertex P of the triangulation τH ,
is given by the boundary value problem

(2.7)

−∇ · (A(x)∇ϕP ) = 0 in T, ∀T ∈ τH ,
ϕP = 0 on ∂Ω,

ϕP (P ′) = δP,P ′ ∀ vertices P ′,

where δP,P ′ is the Kronecker delta function. These functions originate from the Multiscale
Finite Element Method (MsFEM) [15, 26], and we refer to them also as MsFEM basis functions.
Note that from (2.7), the basis function ϕP is not yet well defined since the definition of the
values at the edges is missing.

These vertex-specific basis functions are harmonic extensions of trace functions defined
on Γ, and thus ϕP ∈ VΓ. The trace values of ϕP on Γ can, e.g., be chosen to be linear between
the vertices or discrete harmonic in one dimension. Another possible way to define the edge
values of the MsFEM basis functions is given in (4.4) in Section 4.2. In the latter case, on
each edge e ⊂ Γ, we choose them to be the solution of

(2.8)
∂

∂τ
〈Ae,max(x)τ,∇ϕP (x)〉 = 0 on e,

ϕP (P ′) = δP,P ′ on Γ,

where τ denotes the tangential vector of the edge with ‖τ‖=
√
〈τ, τ〉 = 1 and 〈·, ·〉 is the

standard Euclidean inner product. Here, we use for an edge ēij = T i ∩ T j with Ti, Tj ∈ τH ,
i 6= j,

Aeij ,max(x) := max

{
lim

yi∈Ωi→x
A(yi), lim

yj∈Ωj→x
A(yj)

}
(2.9)

instead of A in case of discontinuities across the edge; cf., e.g., the coefficient function
in Figure 3.1.
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For any open edge e ⊂ Γ, we define the edge-based basis function by the corresponding
eigenvalue problem in the space of harmonic extensions: find (τ∗,e, λ∗,e) ∈ H1/2

00 (e)×R such
that

(2.10) aΩ

(
HΓ→Ω(τ̃∗,e),HΓ→Ω(θ̃)

)
= λ∗,e (τ∗,e, θ)L2(e) ∀θ ∈ H1/2

00 (e)

with τ̃∗,e and θ̃ being the trivial extension of τ∗,e and θ, respectively, by zero to Γ \ e. In order
to approximate the solution of the local problems in (2.6), fixed-interface eigenfunctions with

aΩ (z∗,T , v) = λ∗,T (z∗,T , v)L2(Ω) ∀v ∈ VT ,

on each of the T ∈ τH are employed. The eigenvalues {λi,T }∞i=1 and {λi,e}∞i=1 are assumed to
be ordered non-decreasingly and the corresponding eigenmodes accordingly. The eigenmodes
z1,T , z2,T , . . . and τ1,e, τ2,e, . . . form orthonormal bases for the L2-inner product of VT and
of VΓ on the element T and on the edge e, respectively.

The finite element space of the ACMS special finite element method is then given by

(2.11)

VACMS =

(⊕
T∈τH

span {zi,T : 1 ≤ i ≤ IT }

)

⊕

 ⊕
P∈Γ

P vertex

span {ϕP }


⊕

⊕
e⊂Γ
e edge

span {HΓ→Ω (τ̃i,e) : 1 ≤ i ≤ Ie}


with positive integers IT , for all T ∈ τH , and Ie, for all edges e ⊂ Γ, corresponding to the
number of eigenmodes used as basis functions in each element and on each edge, respectively.

In practice, the ACMS basis functions are not computed explicitly, but they are replaced by
their approximation on a submesh; cf. [22, 25]. This submesh is also denoted as the ACMS fine
mesh τh, and its finite elements have a typical diameter of h. Next, in the overlapping Schwarz
method with the ACMS coarse space, the standard finite element mesh will correspond to
the ACMS fine mesh, and the ACMS elements T ∈ τH with a typical diameter of H will
correspond to the nonoverlapping domain decomposition underlying the overlapping Schwarz
method.

3. Two-level overlapping Schwarz methods. Let

Ku = f

be the discretization of the problem (2.2) by piecewise linear or bilinear finite elements on a
family of triangulations (τh)h, K the stiffness matrix, f the right-hand side, and u the discrete
solution vector in the finite element space V := V h (Ω). Furthermore, let {Ωi}Ni=1 be a
nonoverlapping domain decomposition of Ω with the interface

Γ =

N⋃
i=1

∂Ωi \ ∂Ω.

The typical diameter of the subdomains is H .
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TABLE 3.1
Iteration counts and condition numbers for PCG with a two-level Schwarz preconditioner using Q1 (piecewise

bilinear) or MsFEM coarse basis functions; 1/H = 4, H/h = 16, and δ = 2h; relative stopping criterion∥∥r(k)
∥∥

2
/
∥∥r(0)

∥∥
2
< 10−8; for the coefficient distribution, see Figure 3.1.

V0 it. κ

VQ1 98 8.87 · 105

VMsFEM 21 5.56

The set {Ω′i}
N
i=1 is a corresponding overlapping decomposition of Ω with overlap δ. In

the preconditioning context, we assume that the coefficient function A is constant on each
finite element. We define as Ri : V → Vi := V h (Ω′i), i = 1, . . . , N , the restriction to the
local finite element space on the overlapping subdomain Ω′i, and RTi is the corresponding
prolongation to V h (Ω). In addition, let V0 be a global coarse space. We use exact local
solvers, and therefore the local bilinear forms on the subspaces are given by

ãi (ui, vi) = aΩ

(
RTi ui, R

T
i vi
)

∀ui, vi ∈ Vi

and the operators P̃i : V → Vi by

ãi

(
P̃iu, vi

)
= aΩ

(
u,RTi vi

)
∀vi ∈ Vi

for i = 1, . . . , N ; cf., e.g., [40]. Defining Pi := RTi P̃i : V → RTi Vi ⊂ V , the two-level
Schwarz operator is given by

POS−2 =

N∑
i=0

Pi,

and the two-level overlapping Schwarz preconditioner in matrix form can be written as

M−1
OS−2 = RT0 K

−1
0 R0︸ ︷︷ ︸

coarse level

+

N∑
i=1

RTi K
−1
i Ri︸ ︷︷ ︸

first level

.

Here, the local and coarse stiffness matrices Ki are given by

Ki = RiKR
T
i ,

for i = 0, . . . , N . Note that the coarse operator K0 is formed by a Galerkin product instead of
using a discretization on a coarse grid.

The condition number of the standard two-level Schwarz preconditioner for the prob-
lem (2.2), where standard Lagrange basis functions are used for the discretization of the coarse
level, depends on the contrast of the coefficient function A, i.e.,

κ
(
M−1

OS−2K
)
≤ Cmax

T∈τH
max
x,y∈ωT

(
A (x)

A (y)

)(
1 +

H

δ

)
.

Here, ωT corresponds to the union of all coarse mesh elements which touch a coarse mesh
element T . This bound can be sharpened, but a dependence on the coefficient contrast remains;
see [20].
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FIG. 3.1. A discontinuous coefficient function A with inclusion at the vertices of the decomposition. The light
blue color corresponds to a coefficient of 1.0 and the dark blue color to a coefficient of 108, 1/H = 4.

3.1. The MsFEM coarse space. As proposed by Aarnes and Hou [1] as well as by
Buck, Iliev, and Andrä [5, 6], MsFEM basis functions can be used in the coarse space of an
overlapping Schwarz preconditioner to enhance the performance in the presence of rough
coefficients.

Considering the overlapping Schwarz method and the underlying domain decomposition
into nonoverlapping subdomains Ω1, . . . ,ΩN of typical diameter H , we identify each Ωi with
an element T ∈ τH from Section 2. The MsFEM basis functions ϕP , as defined in (2.7), are
then discretized in the spaces V h (Ωi), i.e., on a fine triangulation of Ωi into finite elements of
typical diameter h; we also refer to the fine triangulation as the fine mesh.

In particular, the discretized basis functions, which we will also denote as ϕP , are
employed to build the coarse MsFEM space

VMsFEM−O :=

 ⊕
P∈Γ

P vertex

span {ϕP }

 ;

cf. [25] for the notation “MsFEM-O”. Since these functions are thus defined as discrete
harmonic extensions, they can be computed also for unstructured domain decompositions (as
in the GDSW preconditioner [8, 9, 23]) without the need for an additional coarse triangulation.
This is an advantage over the use of standard Lagrange coarse basis functions. The GDSW
preconditioner is a two-level overlapping Schwarz preconditioner with energy minimizing
coarse space functions, i.e., it uses discrete harmonic coarse space functions as well. MsFEM
basis functions can also improve significantly the robustness of the overlapping Schwarz
preconditioner for coefficient functions of a certain (simple) type; cf., e.g., Figure 3.1 and the
results in Table 3.1.

Note that, for a constant coefficient function A and a structured domain decomposition
into triangles or quadrilaterals, the MsFEM coarse space corresponds to standard piecewise
linear or bilinear coarse basis functions, respectively.

4. Coarse spaces based on the ACMS space. In adaptive coarse spaces, generalized
eigenvalue problems are typically used in order to obtain condition number estimates that
are independent of the contrast of the coefficient function. Thus, it seems natural to use the
ACMS edge-based basis functions as coarse basis functions in a two-level Schwarz method
for heterogeneous problems; these ACMS edge functions are computed from local generalized
eigenvalue problems (2.10) and contribute to the excellent approximation properties of the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

OVERLAPPING SCHWARZ WITH ACMS COARSE SPACES 163

ACMS discretization for second-order elliptic PDEs with highly heterogeneous coefficients.
We will observe, after applying some modifications to the eigenvalue problems, that we can
construct a coarse space for overlapping Schwarz methods which is robust with respect to
the contrast of the coefficient function; cf. Section 6 for a proof and Section 7 for supporting
numerical results.

As in the two-level Schwarz preconditioner with an MsFEM coarse space (cf. Section 3.1),
let us consider our overlapping Schwarz method using the underlying domain decomposition
into nonoverlapping subdomains Ω1, . . . ,ΩN of typical diameter H . In order to define our
ACMS coarse space for the overlapping Schwarz method, we again identify each Ωi with
an ACMS element T ; cf. Section 2. The triangulation of Ωi into finite elements of typical
diameter h then represents the ACMS fine mesh τh; for simplicity, we assume quasi-uniformity
of the fine mesh.

4.1. Coarse space with Dirichlet boundary conditions. We propose a coarse space for
overlapping Schwarz methods which is based on the construction of the ACMS finite element
space. In particular, we use the MsFEM basis functions, i.e., the vertex-specific basis function
(see (2.7)) and a modified version of the edge-based coupling eigenmodes (see (2.10)), where
we replace the L2-inner product on the right-hand side of (2.10) by a scaled version. Therefore,
for an edge eij = Ωi ∩ Ωj , we define the bilinear form

beij (u, v) :=
1

h

(
Aeij ,max u, v

)
L2(eij)

,(4.1)

where Aeij ,max is defined as in (2.9). Using this bilinear form, we obtain a discrete eigenvalue
problem, which is a modification of (2.10): find

τ∗,eij ∈ V h0 (eij) :=
{
v|eij : v ∈ V, v = 0 on ∂eij

}
,

such that

aΩ

(
HΓ→Ω(τ̃∗,eij ),HΓ→Ω(θ̃)

)
= λ∗,eij beij

(
τ∗,eij , θ

)
∀θ ∈ V h0 (eij) .(4.2)

Again, the tilde corresponds to the extensions of τ∗,eij and θ by zero to Γ \ eij . Let the
eigenvalues be sorted in non-decreasing order, i.e., λ1,eij ≤ λ2,eij ≤ . . . ≤ λm, and the
eigenmodes accordingly, where m = dim

(
V h0 (eij)

)
. We select all eigenmodes τ∗,eij where

the eigenvalues are below a certain threshold tol, i.e., λ∗,eij ≤ tol. Then, the coarse basis
functions corresponding to the edge eij are the discrete harmonic extensions of the selected
τ̃∗,eij to the interior degrees of freedom, i.e., the solutions v∗,eij of

(4.3)
aΩl

(
v∗,eij , v

)
= 0 ∀v ∈ V h0 (Ωl) , l = 1, . . . , N,

v∗,eij = τ∗,eij on eij ,
v∗,eij = 0 on Γ \ eij ,

where V h0 (Ωi) := {v : v ∈ V, v = 0 in Ω \ Ωi}.
The coarse space based on the ACMS finite element method is then given by

V tolACMS−D = VMsFEM−O ⊕

⊕
e⊂Γ
e edge

span {vk,e : λk,e ≤ tol}

 ,

where VMsFEM−O is the MsFEM coarse space, which is identical to the space spanned by the
discretized vertex-based ACMS basis functions; cf (2.11).
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eij

ηkhij
Ωi Ωj

kh kh

FIG. 4.1. Graphical representation of the slab ηkhij corresponding to the edge eij . We denote the methods
which construct the eigenvalue problems using functions supported on a slab as “economic”.

As can be observed in Section 7, this coarse space is robust for many coefficient distribu-
tions with jumping coefficients, while the eigenvalue problems are defined on the open edges
and are thus of comparably modest size.

Here, we enforce Dirichlet boundary conditions on the whole interface for the discrete
harmonic extensions on the left-hand side of the generalized eigenvalue problem (4.2). How-
ever, for our proof, a different choice of the boundary conditions on the left-hand side of (4.2)
will be beneficial; see the subsequent Section 4.2.

4.2. Coarse space with Neumann boundary conditions. In order to improve the coarse
space and, in particular, to be able to prove an estimate for the condition number, we introduce
some slight but significant modifications to the method. In particular, we define a new type of
MsFEM basis functions by prescribing different values on the edges, we slightly modify the
right-hand side of the eigenvalue problem, and we replace the left-hand side of the eigenvalue
problem.

We first define ηkhij to be a slab of k layers of fine elements around the edge eij ; cf. Fig-
ure 4.1. For the definition of the modified MsFEM basis functions, we replace the definition
of the values on the edges (2.8) by the following: find ϕ̂P ∈ V h(eij) such that

(4.4)
aηkh

ij

(
Heij→ηkh

ij
(ϕ̂P ),Heij→ηkh

ij
(θ)
)

= 0 ∀θ ∈ V h0 (eij) ,

ϕ̂P (P ′) = δP,P ′ ∀ vertices P ′.

As before, the interface values of ϕ̂P are extended discrete harmonically into the interior
according to (2.7). We denote the resulting MsFEM type coarse space as

VMsFEM−Ô,k :=

(⊕
v∈V

span {ϕ̂P }

)
.

If ηkhij = Ωeij := Ωi ∪ Ωj ∪ eij , i.e., if the slab coincides with the complete subdomains, then
we denote the space as VMsFEM−Ô.

For the right-hand side of the eigenvalue problem, instead of using a scaled L2-inner
product on the edge, we use

b̃eij (u, v) :=
1

h2

(
Aweij (u), weij (v)

)
L2(Ωeij ) ,(4.5)

where

(4.6)

weij : V h0 (eij)→ V h0 (Ωeij ),

v 7→ weij (v) :=

{
v in all interior nodes of eij ,
0 on all other nodes in Ωeij .
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The corresponding norm is defined as

‖u‖2b̃,eij := b̃eij (u, u) .(4.7)

In addition to that, we replace the Dirichlet boundary condition on the left-hand side of the
eigenvalue problem by a Neumann boundary condition and obtain the eigenvalue problem:

aηkh
ij

(
Heij→ηkh

ij
(τ∗,eij ),Heij→ηkh

ij
(θ)
)

= λ∗,eij b̃eij (τ∗,eij , θ) ∀θ ∈ V h0 (eij) .(4.8)

In this version of the eigenvalue problem, no Dirichlet boundary conditions are prescribed
on ∂ηkhij \ eij . The coarse basis functions v∗,eij are again obtained by selecting eigenmodes
with eigenvalues up to a certain threshold and by extending these values on the edge discrete
harmonically to the subdomains, i.e., by solving (4.3).

The resulting coarse space depends on the width of ηkhij and the threshold tol for the
selection of the eigenvalues. If the width of ηkhij consists of k layers of fine elements in each
of the subdomains Ωi and Ωj , then the resulting coarse space is

V tolACMS−N,k = VMsFEM−Ô,k ⊕

⊕
e⊂Γ
e edge

span {vk,e : λk,e ≤ tol}

 ,

and if ηkhij = Ωeij , then the coarse space is denoted as V tolACMS−N; see Section 6 for the proof
of the condition number bound of the corresponding Schwarz operator.

4.3. Using a lumped mass matrix. The solution of generalized eigenvalue problems
can be expensive, and therefore a typical criticism concerns the construction of the adaptive
coarse spaces (in the off line stage). In order to reduce the computational cost for the solution
of the generalized eigenvalue problem, one can lump the mass matrix on the right-hand side.

In particular, for the edge eij , both eigenvalue problems (4.2) and (4.8) can be written in
discrete form as

SeijV = λBeijV(4.9)

using the Schur complement Seij where all degrees of freedom except for those on the interior
edge have been eliminated. Depending on which version of the ACMS coarse space is used,
zero Dirichlet boundary conditions have been applied only to endpoints of the edge (Neumann
version) or to all degrees of freedom on (∂Ωi ∪ ∂Ωj) \ eij (Dirichlet version). The matrix
Beij corresponds to the scaled mass matrix on the edge, i.e., to the discretization of the bilinear
form (4.5) (Neumann version) or (4.1) (Dirichlet version).

Now, since the mass matrix is spectrally equivalent to its diagonal, we can replace Beij
by diag

(
Beij

)
in (4.9) and obtain

diag
(
Beij

)−1
SeijV = λV

or, in a symmetric version,

diag
(
Beij

)−1/2
Seij diag

(
Beij

)−1/2
W = λW

with diag
(
Beij

)1/2
V = W in a computationally inexpensive step.

Thus, we are able to solve a standard eigenvalue problem instead of a generalized eigen-
value problem. We denote the corresponding coarse spaces with a bar, i.e., as V tol

ACMS−D̄
,

V tol
ACMS−N̄

. Accordingly, we write V tol
ACMS−N̄,k

for the slab version.
As we will observe in Section 7, lumping the mass matrix does not affect the performance

of the preconditioner.
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4.4. Properties of the spectral projection. We consider the projection onto the space
spanned by the discrete harmonic extensions of the selected eigenfunctions, i.e., by {vk,e} e⊂Γ

e edge
,

Πv :=
∑
e⊂Γ
e edge

∑
λk,e≤tol

b̃e (v, vk,e) vk,e.(4.10)

This projection, which will be part of the construction of a stable decomposition of the two-
level Schwarz preconditioner in Section 6, has some typical properties which are summarized
in the following lemma for the Neumann version of the eigenvalue problem; cf. (4.8). However,
the properties in case of the Dirichlet version can be shown analogously. The proof of the next
lemma is based on arguments from classical spectral theory and follows arguments which are
standard in the theory of adaptive coarse spaces; see, e.g., [30, Lemma 5.3], [38, Lemma 2.11],
and [31, Lemma 4.6].

LEMMA 4.1. For an edge e, consider the eigenvalue problem (4.8) and the corresponding

eigenpairs {(τk,e, λk,e)}
dim(V h

0 (e))
k=1 , and let vk,e be the discrete harmonic extension of τk,e;

cf. (4.3). Then, the projection

Πev :=
∑

λk,e≤tol

b̃e (v, vk,e) vk,e

is orthogonal with respect to the bilinear form

a∗,e,η (u, v) := aη (He→η(u),He→η(v)) ,(4.11)

and therefore

|v|2a,∗,e,η = |Πev|2a,∗,e,η + |v −Πev|2a,∗,e,η .

The semi-norm is defined as

|u|2a,∗,e,η := a∗,e,η (u, u) .(4.12)

In addition, the estimate

‖v −Πev‖2b̃,e ≤
1

tol
|v −Πev|2a,∗,e,η

holds.
Proof. We have

a∗,e,η (vk,e, vl,e) = a∗,e,η (τk,e, τl,e) = b̃e (τk,e, τl,e) = b̃e (vk,e, vl,e) = 0 ∀k 6= l

and

|vk,e|2a,∗,e,η = |τk,e|2a,∗,e,η = λk,e,

‖vk,e‖2b̃,e = ‖τk,e‖2b̃,e = 1.

Therefore, since

v =

dim(V h
0 (e))∑

k=1

b̃e (v, vk,e) vk,e ∀v ∈ V h0 (e) ,
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eij

Ωi

Ωj

eij

FIG. 4.2. Heuristic construction of the edge-based coarse basis functions in ACMS-R in order to avoid
eigenvalue problems; see Section 4.5: coefficient function on the two subdomains Ωi and Ωj (left), coefficient function
on the edge eij (top,right), and the resulting two coarse basis functions (bottom,right).

we obtain

|v|2a,∗,e,η =

∣∣∣∣∣∣
∑

λk,e≤tol

b̃e (v, vk,e) vk,e

∣∣∣∣∣∣
2

a,∗,e,η

+

∣∣∣∣∣∣
∑

λk,e>tol

b̃e (v, vk,e) vk,e

∣∣∣∣∣∣
2

a,∗,e,η

= |Πev|2a,∗,e,η + |v −Πev|2a,∗,e,η .

Moreover,

‖v −Πev‖2b̃,e =

∥∥∥∥∥∥
∑

λk,e>tol

b̃e (v, vk,e) vk,e

∥∥∥∥∥∥
2

b̃,e

=
∑

λk,e>tol

b̃e (v, vk,e) ‖vk,e‖2b̃,e

=
∑

λk,e>tol

b̃e (v, vk,e)
1

λk,e
|vk,e|2a,∗,e,η ≤

1

tol

∑
λk,e>tol

b̃e (v, vk,e) |vk,e|2a,∗,e,η

=
1

tol

∣∣∣∣∣∣
∑

λk,e>tol

b̃e (v, vk,e) vk,e

∣∣∣∣∣∣
2

a,∗,e,η

=
1

tol
|v −Πev|2a,∗,e,η .

Since

Πv =
∑
e⊂Γ

Πev,

the projection Π inherits the bounds for the local projections Πe. In particular, this will be
essential in the proofs of Section 6.

4.5. Heuristic construction of edge functions. In order to reduce the cost for the com-
putation of the edge-based coupling basis functions even further, one can construct the trace
values by inspecting the values of the coefficient function. In particular, we construct one basis
function for each heterogeneity with a high coefficient intersecting an edge and extend these
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values discrete harmonically to the interior of the subdomain. Precisely, we set the functions
to one for those degrees of freedom which belong to an element inside a heterogeneity with
a high coefficient and to zero elsewhere; cf. Figure 4.2. Therefore, we define a tolerance tol
which characterizes the threshold for the identification of a coefficient jump: we identify a
coefficient jump if the contrast of the coefficient, At1

At2
or At2

At1
, of two neighboring elements t1

and t2 is larger than tol.
We denote the resulting coarse space, which consists of the constructed edge-based basis

functions and the ACMS vertex-specific basis functions, as V tolACMS−R. Let us note that the
vectors constructed from this approach could also be used in other ACMS approaches as
initial values in iterative methods for eigenvalue problems. The first results for the use of the
V tolACMS−R coarse space can be found in [21] and in the master thesis of the third author.

5. Related adaptive coarse spaces for overlapping Schwarz. While there are several
different approaches to define adaptive coarse spaces for overlapping Schwarz preconditioners,
we would like to mention two of them (in Section 5.2 and Section 5.3) which are closely related
to our approach. But first, we will describe an early approach by Galvis and Efendiev [16] in
the subsequent Section 5.1.

5.1. Local spectral multiscale coarse spaces. In [16], Galvis and Efendiev proposed to
circumvent the need for a weighted Poincare inequality∫

Ω

A(x)v2 dx ≤ C
∫

Ω

A(x) (∇v)
2
dx

with a constant C which depends on the contrast of the coefficient maxx∈Ω A(x)
minx∈Ω A(x) by using

eigenfunctions as coarse space functions.
Therefore, the eigenvalue problem

div (A(x)∇ψωP

k ) = λiA(x)ψωP

k

on the union of the neighboring subdomains (“coarse grid blocks”)

ωP :=
⋃

T∈τH ,P∈T

T

of the vertex P of the coarse mesh is considered. The discrete form of the eigenvalue problem
is: find ψωP

i ∈ Ṽ h (ωP ) :=
{
v ∈ V h (ωP ) : v|∂ωP∩∂Ω = 0

}
such that

AωPψωP

k = λkM
ωPψωP

k ,(5.1)

where AωP is the stiffness matrix obtained from the bilinear form aωP
(·, ·) and MωP is the

generalized mass matrix obtained from the bilinear form∫
ωP

A(x)uv dx.

Now let {χP } P∈Γ
P vertex

be a partition of unity, which is subordinated to the covering

{ωP } P∈Γ
P vertex

of Ω with χP ∈ V h (Ω) and |∇χP | ≤ 1
H . Then, the coarse basis functions are

given as

ΦP,k = Ih (χPψ
ωP

k ) for P ∈ Γ vertex and 1 ≤ i ≤ LP ,
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where LP is the number of eigenfunctions selected from the eigenvalue problem on the patch
ωP . The local spectral multiscale coarse space is then defined as

VLSM := {ΦP,k : P ∈ Γ, 1 ≤ k ≤ LP } .

For a two-level Schwarz preconditioner using this coarse space, the authors prove the
condition number bound

κ
(
M−1
LSMK

)
≤ C

(
1 +

H2

δ2

)
,

where the constant C depends on the number of eigenfunctions selected for the coarse space
but not on the contrast of the coefficient function and the mesh size. However, the solution of
the eigenvalue problems (5.1) is quite expensive: each eigenvalue problem is defined on the
(coarse) neighborhood ωP of a coarse node, i.e., it involves all neighboring subdomains of a
vertex in the domain decomposition. Moreover, in this approach, unnecessary coarse space
functions can be added to the coarse space resulting from the interior part of the subdomain.

As a result, improved approaches were proposed later. For example in [17], the authors
have presented an improved version, where the dimension of the coarse space is reduced by
introducing a suitable second partition of unity which modifies the scaling of the mass matrix.
Hence, basis functions which correspond to interior inclusions are eliminated.

We will now describe the two approaches, [11] and [19], which are more closely related
to our new algorithm. The authors there, like us, use smaller eigenvalue problems, i.e.,
eigenvalue problems on lower-dimensional manifolds instead of volumes in order to further
reduce computational costs.

5.2. Coarse spaces based on local Dirichlet-to-Neumann maps. In [11], Dolean et
al. have introduced a coarse space that is related to the ACMS approach. However, the
corresponding eigenvalue problems are defined on the complete boundary of the overlapping
subdomains, i.e., they are defined using the Schur complements on the subdomain boundaries
∂Ω′i; see (5.2).

In particular, on each overlapping subdomain Ω′i, the eigenvalue problem is given by

div (A(x)∇vk) = 0 in Ω′i,

A(x)
∂vk
∂ni

= λkA(x)vk on ∂Ω′i,

where ∂
∂ni

is the derivative in normal direction. The corresponding variational formulation is∫
Ω′i

A(x)∇vk · ∇w dx = λk

∫
∂Ω′i

tri (A(x)) vkw ds ∀w ∈ H1 (Ω′i) ,

where triA (x) := lim
y∈Ω′i→x

A (x) for a.e. x ∈ ∂Ω′i. In discrete form, the eigenvalue problem

can be written as

(5.2) S
(i)
Γ′ v

(i)
k,Γ′ = λkM

(i)
Γ′ v

(i)
k,Γ′ .

Here, M (i)
Γ′ corresponds to the 1D mass matrix on ∂Ω′i, and S(i)

Γ′ corresponds to the Schur
complement where the interior degrees of freedom of the overlapping subdomains have been
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eliminated. Then, v(i)
k,Γ is extended discrete harmonically to Ω′i and denoted by v(i)

k . The
corresponding coarse space is given by

VDtN := span
{

ΦHi,k : 1 ≤ i ≤ N and 1 ≤ k ≤ mi

}
,

where mi is the number of eigenfunctions selected in the subdomain Ω′i. The basis functions
are defined by

ΦHi,k := Ih
(
χiv

(i)
k

)
,

and the functions {χi}Ni=1 form a partition of unity corresponding to the overlapping decom-
position {Ω′i}

N
i=1 with

χi(xj) :=
dist (xj , ∂Ω′i)∑

xj∈Ω′l

dist (xj , ∂Ω′l)
.

In order to prove the condition number estimate

κ
(
M−1

DtNK
)
≤ C +

N
max
i=1

1

δλ
(i)
mi+1

,

the authors assume a quasi-monotone coefficient function A. Here, δ denotes the width of the
overlap.

Note that the eigenvalue problems are still rather large since each corresponds to the
degrees of freedom on the complete boundary of a single overlapping subdomain.

5.3. Spectral harmonically enriched multiscale coarse space. In [18, 19], Gander et
al. have introduced a coarse space that is very closely related to our approach of using the
ACMS space as a coarse space: first, MsFEM basis functions corresponding to the vertices of
the decomposition are used in the coarse space, second, eigenvalue problems on the degrees of
freedom of the edges of the nonoverlapping decomposition are employed.

In particular, the eigenvalue problem

āeij

(
ψkeij , v

)
= λkeij b̄eij

(
ψkeij , v

)
∀v ∈ V h0 (eij)

is considered, where

āeij (u, v) :=
(
Aeij ,max(x)Dxtu,Dxtv

)
,(5.3)

b̄eij (u, v) := h−1
∑
xk∈eij

βku (xk) v (xk) and(5.4)

βk :=
∑

{t∈τh:k∈dof(t)}

At.

Here, Aeij ,max is defined as in (2.9), At is the constant coefficient on the element t ∈ τh, Dxt

denotes the tangent derivative with respect to the edge eij , and xk correspond to the finite
element nodes on the edge. Eigenfunctions corresponding to the first meij eigenvalues are
selected and extended discrete harmonically by solving

aΩl

(
pkeij , v

)
= 0 ∀v ∈ V h0 (Ωl) , l = 1, . . . , N,

pkeij = ψkeij on eij ,

pkeij = 0 on Γ \ eij .
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The Spectral Harmonically Enriched Multiscale (SHEM) coarse space is then given by

VSHEM := VMsFEM−O⊕

⊕
eij⊂Γ

span
{
pkeij : k ≤ meij

} .

Using this choice, the authors are able to prove an estimate for the condition number of the
preconditioned system

κ
(
M−1

SHEMA
)
≤ C

(
1 +

1

λm+1

)
,

where λm+1 := max
eij⊂Γ

{
λ
meij
eij

}
.

The authors thus use the bilinear form on the edge (rather than a Schur complement).
The eigenvalue problems are small and local and therefore inexpensive to set up and solve.
However, a drawback of this coarse space is that, due to the reduction of the eigenvalue
problem to the edges, the coarse space can become large for certain coefficient functions where
a much smaller coarse space would be sufficient; cf. Section 7, where we observe that this
smaller coarse space will be found by the non-economic versions of the new methods described
in this paper, i.e., by using the eigenvalue problems from Section 4.1 or Section 4.2. Of course,
if in the economic versions the slab is wide enough, then the resulting adaptive method will
also be successful. Note that among our methods, only the methods from Section 4.2 are
covered by our theory in Section 6. The SHEM coarse space could be interpreted as the limit
case of our slab variants, where the slab is reduced such that no extensions are used. Since we
always use extensions in our eigenvalue problems, in our theory, we never have to estimate
from volumes to edges and vice versa.

6. Convergence analysis for the overlapping Schwarz method with the ACMS coarse
space. To prove an estimate for the convergence of the OS-ACMS preconditioner, we essen-
tially have to prove the existence of a stable decomposition; cf., e.g., [40]. Therefore, we have
to provide a suitable coarse interpolation I0 into the coarse space

V0 =

 ⊕
P∈Γ

P vertex

span {ϕ̂P }

⊕
⊕

e⊂Γ
e edge

span {vk,e : λk,e ≤ tol}

 ,

in particular, into the spaces V tolACMS−N or V tolACMS−N,k. We construct I0 by pointwise
interpolation

IMsFEMu :=
∑
P∈Γ

P vertex

u (P ) ϕ̂P(6.1)

to the coarse multiscale space VMsFEM−Ô,k (see also (4.4)) and the projection Π onto the
space spanned by the edge-based coupling eigenfunctions; cf. (4.10).

We start with the proof of a lemma which states the a∗,e,η-stability of the MsFEM
interpolation operator.

LEMMA 6.1. The MsFEM interpolation operator, which is defined in (6.1), is stable with
respect to the |·|2a,∗,eij ,ηkh

ij
-semi-norm, i.e.,

|IMsFEMv|2a,∗,eij ,ηkh
ij
≤ |v|2a,∗,eij ,ηkh

ij
∀v ∈ V h (eij) .
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Proof. The MsFEM interpolation is exact on the vertices of the nonoverlapping decompo-
sition, i.e.,

IMsFEMv (P ) = v (P )

for all vertices P ∈ Γ. Furthermore, the MsFEM basis functions are defined as energy
minimizing functions with respect to |·|a,∗,eij ,ηkh

ij
and the corresponding boundary values;

cf. (4.4). Therefore, IMsFEMv is the energy minimal extension of the values of v on the
vertices to the edges, and thus

|IMsFEMv|2a,∗,eij ,ηkh
ij
≤ |v|2a,∗,eij ,ηkh

ij
∀v ∈ V h (eij) .

We define the coarse component of the stable decomposition as

u0 := I0u := IMsFEMu+ Π (u− IMsFEMu) ∈ V0,

which we use to prove the existence of a stable decomposition. For the proof, we also need the
following useful lemma.

LEMMA 6.2. Let u ∈ V h (Ω), u0 := I0u := IMsFEMu+ Π (u− IMsFEMu). Then,∣∣weij (u− u0)
∣∣2
a,Ωi
≤ 4Cinv

tol

(
|u|2a,Ωi

+ |u|2a,Ωj

)
,

where Cinv > 0 is a constant arising from the use of an inverse equality on the elements. It is
independent of H , h, and the contrast of the coefficient function. The operator weij is defined
in (4.6).

REMARK 6.3. The constantCinv depends only on the shape parameter of the triangulation
and the polynomial degree of the shape functions; see, e.g., [41, Section 3.6], where also an
explicit upper bound for Cinv is given.

Proof. From the construction of weij and a standard inverse inequality, we obtain∣∣weij (u− u0)
∣∣2
a,Ωi
≤ Cinv ‖u− u0‖2b̃,eij .

Using the properties of the projection Π, cf. Lemma 4.1, we obtain

‖u− u0‖2b̃,eij = ‖u− IMsFEMu−Π (u− IMsFEMu)‖2b̃,eij

≤ 1

tol
|u− IMsFEMu−Π (u− IMsFEMu)|2a,∗,eij ,ηkh

ij

≤ 1

tol
|u− IMsFEMu|2a,∗,eij ,ηkh

ij
.

Now, the a∗,eij ,ηkh
ij

-stability of the MsFEM interpolation operator yields

|u− IMsFEMu|2a,∗,eij ,ηkh
ij
≤ 2 |u|2a,∗,eij ,ηkh

ij
+ 2 |IMsFEMu|2a,∗,eij ,ηkh

ij

≤ 4 |u|2a,∗,eij ,ηkh
ij

= 4
∣∣∣Heij→ηkh

ij
(u)
∣∣∣2
a,ηkh

ij

(6.2)

≤ 4
(
|u|2a,Ωi

+ |u|2a,Ωj

)
;

cf. Lemma 6.1. We would like to point out that the harmonic extension in (6.2) is essential
to treat the comb-like coefficients as in Figure 7.3. If the slab ηkhij does not cover the whole
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Ω◦i

Ωi \ Ω◦i
Ω̃i \ Ωi

2h

FIG. 6.1. In our proof of theorem 6.4, we consider a partition of unity corresponding to an overlapping
decomposition with overlap h. The corresponding regions Ω◦i (white), Ωi \Ω◦i (light gray), and Ω̃i \Ωi (dark gray)
are depicted.

high-coefficient structure, then the resulting coarse space may grow significantly; cf. Table 7.3.
This is also the case if the technique in [19, Equation 23] is used. This highlights the fact that
the SHEM coarse space can be viewed as the limit case where the width of the slab is zero.

Finally, we obtain

∣∣weij (u− u0)
∣∣2
a,Ωi
≤ 4Cinv

tol

(
|u|2a,Ωi

+ |u|2a,Ωj

)
.

Now, we are able to prove the existence of a stable decomposition.
LEMMA 6.4 (Stable Decomposition). For each v ∈ V = V h (Ω), there exists a decom-

position u =
N∑
i=0

RTi ui with ui ∈ Vi = V h (Ω′i) such that

N∑
i=0

|ui|2a,Ω′i ≤ C
2
0 |u|

2
a,Ω ,

where C2
0 =

(
20 + 118(Ne)2Cinv

tol

)
. The constant Ne denotes the maximum number of edges

that a single subdomain may have.
Proof. We first consider the estimate of the coarse component and proceed subdomain by

subdomain. Using

|u0|2a,Ω =

N∑
i=1

|u0|2a,Ωi
,

Lemma 6.2, and the fact that u0 is discrete harmonic on each subdomain Ωi, we obtain

|u0|2a,Ωi
≤ 2

(
|H∂Ωi→Ωi (u)|2a,Ωi

+ |H∂Ωi→Ωi (u− u0)|2a,Ωi

)
≤ 2

|u|2a,Ωi
+Ne

∑
eij⊂∂Ωi

∣∣weij (u− u0)
∣∣2
a,Ωi


≤ 2 |u|2a,Ωi

+
8NeCinv

tol

∑
eij⊂∂Ωi

(
|u|2a,Ωi

+ |u|2a,Ωj

)
.(6.3)
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Now, we consider the local components ui := Ih (θi (u− u0)) based on the partition of
unity {θi}Ni=1 with

θi(xj) :=
dist

(
xj , ∂Ω̃i

)
∑

xj∈Ω̃k

dist
(
xj , ∂Ω̃k

)

and
{

Ω̃i

}N
i=1

being an overlapping decomposition with overlap h corresponding to the

nonoverlapping decomposition {Ωi}Ni=1; see, e.g., [40, Lemma 3.4]. Note that this over-
lapping decomposition is only used for this proof and can therefore differ from the overlapping
decomposition {Ω′i}

N
i=1 used in the first level of the preconditioner; cf. Section 3. However,

since the overlap of the decomposition {Ω′i}
N
i=1 is at least h, we always have Ω̃i ⊆ Ω′i, and

thus ui ∈ Vi.
Therefore,

u =

N∑
i=0

RTi ui

and

|ui|2a,Ω′i = |ui|2a,Ω̃i
= |ui|2a,Ω̃i\Ωi

+ |ui|2a,Ωi\Ω◦i
+ |ui|2a,Ω◦i ;

cf. Figure 6.1 for a graphical representation of the regions Ω̃i \ Ωi, Ωi \ Ω◦i , and Ω◦i .
Now, analogously to (6.3), we have

|ui|2a,Ω◦i ≤ |u− u0|2a,Ωi
≤ 2 |u|2a,Ωi

+ 2 |u0|2a,Ωi

≤ 2 |u|2a,Ωi
+ 2

2 |u|2a,Ωi
+

8NeCinv

tol

∑
eij⊂∂Ωi

(
|u|2a,Ωi

+ |u|2a,Ωj

)
≤ 6 |u|2a,Ωi

+
16NeCinv

tol

∑
eij⊂∂Ωi

(
|u|2a,Ωi

+ |u|2a,Ωj

)
.

Furthermore, we have

|ui|2a,Ωi\Ω◦i
≤ 2 |ui − (u− u0)|2a,Ωi\Ω◦i

+ 2 |u− u0|2a,Ωi\Ω◦i

≤ 2
∣∣Ih ((1− θi) (u− u0))

∣∣2
a,Ωi\Ω◦i

+ 4 |u|2a,Ωi
+ 4 |u0|2a,Ωi

= 2

∣∣∣∣∣∣
∑

eij⊂∂Ωi

Ih
(
(1− θi)weij (u− u0)

)∣∣∣∣∣∣
2

a,Ωi\Ω◦i

+ 4 |u|2a,Ωi
+ 4 |u0|2a,Ωi

= 2

∣∣∣∣∣∣
∑

eij⊂∂Ωi

1

2
weij (u− u0)

∣∣∣∣∣∣
2

a,Ωi\Ω◦i

+ 4 |u|2a,Ωi
+ 4 |u0|2a,Ωi

≤ 1

2
Ne

∑
eij⊂∂Ωi

∣∣weij (u− u0)
∣∣2
a,Ωi\Ω◦i

+ 4 |u|2a,Ωi
+ 4 |u0|2a,Ωi
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≤ 1

2
Ne

∑
eij⊂∂Ωi

∣∣weij (u− u0)
∣∣2
a,Ωi

+ 4 |u|2a,Ωi
+ 4 |u0|2a,Ωi

≤ 2NeCinv

tol

∑
eij⊂∂Ωi

(
|u|2a,Ωi

+ |u|2a,Ωj

)

+ 4 |u|2a,Ωi
+ 4

2 |u|2a,Ωi
+

8NeCinv

tol

∑
eij⊂∂Ωi

(
|u|2a,Ωi

+ |u|2a,Ωj

)
≤ 12 |u|2a,Ωi

+
34NeCinv

tol

∑
eij⊂∂Ωi

(
|u|2a,Ωi

+ |u|2a,Ωj

)
and

|ui|2a,Ω̃i\Ωi
=
∣∣Ih(θi(u− u0))

∣∣2
a,Ω̃i\Ωi

≤ Ne
∑

eij⊂∂Ωi

∣∣Ih(θiweij (u− u0))
∣∣2
a,Ω̃i\Ωi

≤ 1

4
Ne

∑
eij⊂∂Ωi

∣∣weij (u− u0)
∣∣2
a,Ωj

≤ NeCinv

tol

∑
eij⊂∂Ωi

(
|u|2a,Ωi

+ |u|2a,Ωj

)
.

In both derivations, we have used thatweij (u−u0) = u−u0 on the closed edge ēij . Therefore,
we get

N∑
i=0

|ui|2a,Ω =

N∑
i=1

(
|u0|2a,Ωi

+ |ui|2a,Ω̃i\Ωi
+ |ui|2a,Ωi\Ω◦i

+ |ui|2a,Ω◦i
)

≤
N∑
i=1

20 |u|2a,Ωi
+

59NeCinv

tol

∑
eij⊂∂Ωi

(
|u|2a,Ωi

+ |u|2a,Ωj

)
≤

(
20 +

118 (Ne)
2
Cinv

tol

)
|u|2a,Ω .

From Lemma 6.4, we directly obtain a condition number estimate for the preconditioned
system.

THEOREM 6.5. The condition number of the ACMS two-level Schwarz operator is
bounded by

κ
(
M−1

ACMSA
)
≤

(
20 +

118 (Ne)
2
Cinv

tol

)(
N̂c + 1

)
.

The constant N̂c is an upper bound for the number of overlapping subdomains each point
x ∈ Ω may belong to. All constants are independent of H , h, and the contrast of the coefficient
function A.

REMARK 6.6. Let us note that the condition number estimate is qualitatively similar to
condition number estimates for adaptive FETI-DP in two dimensions; see [31, Theorem 4.16,
Theorem 5.1].
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FIG. 7.1. Discontinuous coefficient function A with different types of channels and inclusions intersecting
the interface. The light blue color corresponds to a coefficient of Amin = 1.0 and the dark blue color to a high
coefficient of Amax; 1/H = 4.

TABLE 7.1
Numerical results for the coefficient function in Figure 7.1 with varying contrast Amax/Amin: tolerance for

the selection of the eigenfunctions, iteration counts, condition numbers, and resulting coarse space dimension for
different coarse space variants; 1/H = 4, H/h = 30, and δ = 2h. The new theory presented in this paper covers
the two coarse spaces marked in bold face.

Amax = 104 Amax = 106 Amax = 108

V0 tol it. κ dimV0 tol it. κ dimV0 tol it. κ dimV0

VMsFEM - 134 7.83·103 9 - 196 7.82·105 9 - 276 7.82·107 9

V tol
ACMS-D 10−1 21 4.74 69 10−1 22 4.75 69 10−1 22 4.75 69
V tol

ACMS-D̄ 10−1 21 4.74 69 10−1 22 4.75 69 10−1 22 4.75 69

Vtol
ACMS-N 10−2 22 5.09 69 10−2 23 5.09 69 10−2 26 5.10 69

V tol
ACMS-N̄ 10−2 22 5.09 69 10−2 23 5.09 69 10−2 26 5.10 69

Vtol
ACMS-N,1 10−2 19 4.34 69 10−2 20 4.35 69 10−2 21 4.35 69

V tol
ACMS-N̄,1 10−2 19 4.34 69 10−2 20 4.35 69 10−2 21 4.35 69

VSHEM 10−3 19 4.32 69 10−3 20 4.33 69 10−3 20 4.33 69

V tol
ACMS-R 2.0 24 6.50 69 2.0 24 6.50 69 2.0 24 6.50 69

Proof. Since we use exact local solvers, we directly obtain

κ
(
M−1

ACMSA
)
≤C2

0

(
N̂c + 1

)
,

where C2
0 is the constant of the stable decomposition; cf. [40, Lemma 3.11] and the follow-up

discussion and the proof of [12, Theorem 4.1]. We obtain the final estimate using Lemma 6.4.

Let us note that in the numerical experiments considered in Section 7, we have N̂c = 4.

7. Numerical results. We present numerical results which illustrate the robustness of
our overlapping Schwarz method with the ACMS coarse space and which support our theory.
Our numerical experiments also show that the dimension of our adaptive coarse space is
usually small, i.e., our iterative method does not degenerate to a direct solver. This is important
since, as in other domain decomposition methods with adaptive coarse spaces, the condition
number is determined by the user, but the dimension of the resulting coarse space is determined
by the algorithm and, in general, only known ex post.

In all numerical tests, we discretize (2.1) with f ≡ 1 using piecewise bilinear finite
elements and solve the resulting linear system with the preconditioned conjugate gradient
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FIG. 7.2. Discontinuous coefficient functions A: circles and a channel intersecting several edges (left); comb-
shaped inclusions intersecting the horizontal edges (right). The light blue color corresponds to a coefficient of
Amin = 1.0 and the dark blue color to a high coefficient of Amax; 1/H = 4.

TABLE 7.2
Results for the coefficient functions in Figure 7.2: tolerance for the selection of the eigenfunctions, iteration

counts, condition numbers, and resulting coarse space dimension for different coarse space variants; 1/H = 4,
H/h = 30, and δ = 2h; maximum coefficient Amax = 108 .

Coeff. function A from Figure 7.2 (left) Coeff. function A from Figure 7.2 (right)
V0 tol it. κ dimV0 tol it. κ dimV0

VMsFEM - 313 1.36·108 9 - 281 3.77·107 9
V tol

ACMS-D 2·10−1 31 30.00 33 10−2 52 44.74 33
V tol

ACMS-D̄ 2·10−1 38 30.00 33 10−1 52 44.74 33

Vtol
ACMS-N 10−2 27 7.14 33 10−2 41 13.22 33

V tol
ACMS-N̄ 10−2 27 7.14 33 10−2 41 13.22 33

Vtol
ACMS-N,1 10−2 30 6.91 45 10−2 29 6.47 93

V tol
ACMS-N̄,1 10−2 30 6.91 45 10−2 29 6.47 93

VSHEM 10−3 28 6.92 45 10−3 29 6.39 93

V tol
ACMS-R 2.0 33 8.33 45 2.0 30 6.58 93

method and a relative stopping criterion,
∥∥r(k)

∥∥
2
/
∥∥r(0)

∥∥
2
< 10−8, where r(0) and r(k) are

the initial and k-th unpreconditioned residuals, respectively.
We consider the different variants of the ACMS coarse spaces in the numerical exper-

iments. By V tolACMS−D, we denote the method from Section 4.1, where Dirichlet boundary
conditions are used. By V tolACMS−N, we denote the method described in Section 4.2, where
Neumann boundary conditions are used. In both cases tol is the user-defined tolerance. If
mass lumping is used, then we denote the space by V tol

ACMS−D̄
or V tol

ACMS−N̄
, respectively.

For the Neumann versions, we also consider variants using harmonic extensions only on
slabs of width h; see Section 4.2. These are denoted as V tolACMS−N,1 or, when lumping the
mass matrix, as V tol

ACMS−N̄,1
.

In the method V tolACMS−N,1 (cf. Section 4.2), the left-hand side of the eigenvalue problem
is assembled using discrete harmonic functions supported only on narrow slabs of width h
(cf. Figure 4.1), and in the methods V tolSHEM and V tolACMS−R, the work for the assembly and
construction of the left-hand sides of the eigenvalue problems corresponds only to the degrees
of freedom on the open edge. Therefore, we denote these four approaches as “economic”. Let
us note that the support of the right-hand side in all eigenvalue problems never exceeds a slab
of width h and is therefore not affected.

In the non-economic approaches (i.e., V tolACMS−N, V tol
ACMS−N̄

, V tolACMS−D, and V tol
ACMS−D̄

),
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FIG. 7.3. Discontinuous coefficient function A with many connected channels intersecting the interface. The
light blue color corresponds to a coefficient of Amin = 1.0 and the dark blue color to a high coefficient of Amax;
1/H = 4.

TABLE 7.3
Results for the coefficient functions in Figure 7.3: tolerance for the selection of the eigenfunctions, iteration

counts, condition numbers, and resulting coarse space dimension for different coarse space variants; 1/H = 4,
H/h = 40, and δ = 2h; maximum coefficient Amax = 108 .

Coeff. function A from Figure 7.3
V0 tol it. κ dimV0

VMsFEM 463 1.94·108 9
V tol

ACMS−D 10−2 45 23.02 57
V tol

ACMS−D̄
10−2 45 23.02 57

Vtol
ACMS−N 10−2 40 25.94 57

V tol
ACMS−N̄

10−2 40 25.94 57

Vtol
ACMS−N,1 10−2 21 5.17 213

V tol
ACMS−N̄,1

10−2 21 5.17 213

VSHEM 10−3 23 5.03 213
V tol

ACMS−R 2.0 26 6.22 213

harmonic extensions to the complete subdomains are used leading to a higher computational
cost. However, the use of the coefficient information on the complete subdomain can be
beneficial: the resulting coarse space can be significantly smaller; see Table 7.2.

In all tables, we highlight in bold face the methods Vtol
ACMS−N and Vtol

ACMS−N,1, which
are supported by our theory; see Section 6.

As described in Section 4.3, all methods which are denoted by a bar, i.e., V tol
ACMS−D̄

,
V tol

ACMS−N̄
, and V tol

ACMS−N̄,1
, use a lumped mass matrix. Here, the eigenvalue problems can

be transformed into standard eigenvalue problems with small computational effort, which
leads to another reduction of computational work; this holds true also for the SHEM coarse
space. However, we observe that lumping the mass matrix does not significantly affect the
performance of the methods; cf. Tables 7.1, 7.2, 7.3, and 7.4.

In Table 7.1, for the coefficient function illustrated in Figure 7.1, we compare the different
approaches of adaptive coarse spaces. We observe that for this problem the MsFEM coarse
space VMsFEM is not sufficient: the condition number and the number of iterations is large
since the MsFEM coarse space cannot cope with several heterogeneities intersecting an
edge. For all other methods, a small condition number κ (below 10) of the preconditioned
operator can be obtained (if the tolerance tol is chosen appropriately) resulting in a number of
approximately 20 conjugate gradient iterations. We also observe that all methods are robust
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TABLE 7.4
Results for the coefficient function in Figure 7.1: iteration counts, condition numbers, and resulting coarse

space dimension for different coarse space variants; 1/H = 4, H/h = 30, and δ = 2h; maximum coefficient
Amax = 108.

1 LobPCG it. Direct eigensolver
V0 it. κ dimV0 it. κ dimV0

V 10−2

ACMS−D 22 4.75 69 22 4.75 69

V 10−1

ACMS−D̄
22 4.75 69 22 4.75 69

V10−2

ACMS−N 23 5.09 69 23 5.09 69

V 10−2

ACMS−N̄
23 5.09 69 23 5.09 69

V10−2

ACMS−N,1 20 4.35 69 20 4.35 69

V 10−2

ACMS−N̄,1
20 4.35 69 20 4.35 69

VSHEM 20 4.33 69 20 4.33 69

with respect to variations in the contrast of the coefficient function. Note that the size of the
coarse space is identical in all cases of adaptive coarse spaces.

At first sight, the results are similar for the coefficient functions depicted in Figure 7.2
(left and right); see Table 7.2. However, now the dimensions of the coarse spaces differ. In the
methods where the construction of the eigenvalue problem is economic, the coarse space is
larger. The reason is that, e.g., for the ring-like structure in Figure 7.2 (left), these methods
cannot detect that the ring is a connected structure and thus a single eigenvector is sufficient.
This is even more pronounced for the comb-like structures in Figure 7.2 (right).

To investigate this effect further, we have considered the coefficient function in Figure 7.3,
where on each edge a comb-like structure is placed in addition to a small inclusion. Here, for
each edge, the non-economic coarse spaces adds two eigenvalues to the coarse space resulting
in a dimension of 9 + 48 = 57. On the other hand, for the economic versions (which includes
VSHEM), for each horizontal and vertical edge, 9 and 8 eigenvectors are used, respectively.
As a result, the coarse space is larger by a factor of almost 4 for the economic versions;
see Table 7.3. It is clear that for an (artificial) example of a very fine comb on a very fine
grid the coarse space constructed from the economic versions can be larger by an arbitrary
factor compared to our coarse spaces V tolACMS−D and V tolACMS−N (or the corresponding lumped
versions V tol

ACMS−D̄
and V tol

ACMS−N̄
).

It is clear that the solution of the eigenvalue problems can be costly. First, note that we
need to solve only standard eigenvalue problems instead of generalized eigenvalue problems.
In particular, for the versions with a lumped mass matrix this is computationally inexpensive;
see Section 4.3.

To show how the computational cost can be reduced further, in Table 7.4, we present
numerical experiments where the eigenvalue problems are solved approximately by using only
one iteration of LobPCG [32] using the Cholesky decomposition of the Schur complement
matrix as a preconditioner: instead of the eigenfunctions corresponding to the smallest
eigenvalues of (4.9), we solve for the smallest eigenvalues of

−BeijV = λSeijV

and use the inverse of Seij as the preconditioner in the LobPCG iteration. The initial vectors
were generated randomly using a normal distribution, and then one step of the power iteration
for S−1

eij was applied to obtain a better initial guess. Note that this step only requires one
additional forward-backward substitution since the Cholesky decomposition of Seij computed
before the LobPCG iteration can be used. A block size of 3 was chosen, i.e., a block of three
eigenvector approximations is computed in each LobPCG iteration. The results show that
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a single iteration of LobPCG is sufficient and gives the same results as a direct eigensolver
(LAPACK) for the coefficient function in Figure 7.1; see Table 7.4. The cost for approximating
the eigenvectors thus is comparable to a Cholesky decomposition of the Schur complement
Seij on the edge. Let use note that LobPCG as an eigensolver for the computation of the
adaptive coarse spaces in FETI-DP has been already successfully used in [29].

In some methods, the choice of the tolerance tol is more difficult than in others. In
the methods using Neumann boundary conditions (i.e., V tolACMS−N, V tol

ACMS−N̄
, V tolACMS−N,1,

V tol
ACMS−N̄,1

, VSHEM) there is a clear spectral gap, and we observe that the tolerance tol can
be chosen relatively easy for different values of H/h; in our experiments, we can indeed use
tol = 10−2 for all our computations. However, for the methods using Dirichlet conditions,
the choice is more difficult since the gap in the spectrum is smaller.

Let us note that currently, in the construction of the adaptive coarse space, we have not
taken advantage of the fact that the MsFEM space also removes certain bad eigenvalues.
Therefore, in the best case, the size of our coarse space could be reduced by one for each edge
with a heterogeneity.

The method described here for overlapping domain decompositions is related (as well as
the other approaches [11, 16, 17, 19]) to the approach in [30] for the FETI-DP and BDDC
methods, where also a Poincaré inequality is replaced by an eigenvalue problem. However, for
nonoverlapping domain decomposition, to obtain robustness for certain cases, an additional
eigenvalue problem is needed to replace an extension theorem.

8. Conclusion. We have introduced an overlapping Schwarz method using an ACMS-
based coarse space. This coarse space uses eigenvalue problems on edges. We then have
shown that the condition number of the method can be controlled independently of the hetero-
geneities in the problem, and, finally, we have provided supporting numerical experiments.
We have observed that our coarse space can be smaller by a large factor compared to other
competing coarse spaces for special coefficient functions while still remaining computationally
inexpensive. Indeed, we have also shown numerically that the approximation of the local
eigenvectors by a single iteration of preconditioned LobPCG may be sufficient. Among the
competing approaches that generate small coarse spaces, to the best of our knowledge, our
approach uses eigenvalue problems with the smallest dimension.
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