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RUNGE-KUTTA METHODS REVISITED FOR A CLASS OF STRUCTURED
STRANGENESS-FREE DIFFERENTIAL-ALGEBRAIC EQUATIONS∗

VU HOANG LINH† AND NGUYEN DUY TRUONG‡

Abstract. Numerical methods for a class of nonlinear differential-algebraic equations (DAEs) of the strangeness-
free form are investigated. Half-explicit and implicit Runge-Kutta methods are revisited as they are applied to a
reformulated form of the original DAEs. It is shown that the methods preserve the same convergence order and the
same stability properties as if they were applied to ordinary differential equations (ODEs). Thus, a wide range of
explicit Runge-Kutta methods and implicit ones, which are not necessarily stiffly accurate, can efficiently solve the
class of DAEs under consideration. Implementation issues and a perturbation analysis are also discussed. Numerical
experiments are presented to illustrate the theoretical results.
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1. Introduction. In this paper, we consider the initial value problem (IVP) for nonlinear
differential-algebraic equations (DAEs) of the structured form

f
(
t, x(t), E(t)x′(t)

)
= 0,

g
(
t, x(t)

)
= 0,

(1.1)

on a compact interval I = [t0, T ] ⊂ R, where x ∈ C1(I;Rm), E ∈ C1(I;Rm1,m), and an
initial condition x(t0) = x0 is given, which is supposed to be consistent. We assume that
f = f(t, u, v) : I× Rm × Rm1 → Rm1 and g = g(t, u) : I× Rm → Rm2 , m1 +m2 = m,
are sufficiently smooth functions with bounded partial derivatives. Furthermore, we assume
that the unique solution of the IVP for (1.1) exists and that

(1.2)
[
fvE
gu

]
is nonsingular along the exact solution x(t).

Here fv and gu denote the Jacobian of f with respect to v and that of g with respect to u,
respectively. In the whole paper, unless confusion can arise, we will not display the variable(s)
of the functions explicitly.

The system (1.1) is a special case of DAEs of the form

f̄(t, x, x′) = 0,

ḡ(t, x) = 0,
(1.3)

where f̄ : I× Rm × Rm → Rm1 and ḡ : I× Rm → Rm2 are sufficiently smooth functions
with bounded partial derivatives and

(1.4)
[
f̄x′(t, x, x

′)
ḡx(t, x)

]
is nonsingular along the exact solution x(t).

DAEs of the form (1.3) satisfying (1.4) are said to be of strangeness-free form; see [13].
Numerical solutions by collocation methods and BDF methods are proposed in [13], which
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generalize those for semi-explicit index-1 DAEs; see [3, 8, 10]. For DAEs in general, the most
popular one-step methods are implicit Runge-Kutta (IRK) methods, which are stiffly accurate;
see [8, 10, 13, 15]. For semi-explicit DAEs, half-explicit Runge-Kutta (HERK) methods are
also proven to be efficient in certain cases; see [1, 8].

Though efficient numerical methods and software packages have already been fairly well
developed for general DAEs of lower index, the problem that motivates us to find efficient
methods for solving structured DAEs of the form (1.1) arises when we propose QR- and
SVD-based algorithms for approximating spectral intervals for linear DAEs; see [16, 18]. In
the course of approximating certain stability characteristics, we are to integrate matrix-valued
semi-linear DAEs on usually very long intervals, which form a special case of (1.1) and (1.3).
The use of half-explicit methods are extended to DAEs of the form (1.3) in [17]. It turns out
that for the class of matrix-valued DAEs investigated in [16, 18], the half-explicit methods
are significantly cheaper than the well-known implicit methods. However, it is also shown
there that DAEs (1.3) can be transformed into semi-explicit index-2 DAEs by a rearrangement
and a partitioning of the variables. This explains why the standard half-explicit Runge-Kutta
methods applied directly to (1.3) unfortunately suffer from order reduction with the exception
of low-order methods; see [17].

In this paper, we exploit the special structure of the DAEs (1.1) and show that a wider class
of Runge-Kutta methods are applicable. In particular, we demonstrate that after reformulating
the DAEs (1.1) in a very simple and obvious way, discretizations by Runge-Kutta methods
are essentially the same as those for the semi-explicit index-1 DAEs (2.1). Thus, all the
convergence and stability results of Runge-Kutta methods well-known for ODEs (see [2, 9])
are preserved. The idea of applying (implicit) Runge-Kutta methods to a reformulated form
instead of DAEs of standard form was first proposed in [11, 12], and it is shown that the
modified discretization schemes possess better stability properties for index-1 DAEs in the
so-called numerically qualified form. This approach is well discussed in the context of properly
formulated DAEs in [15]. Extensions of this idea to fully implicit index-2 DAEs are also
investigated in [4, 7]. In this paper, the same reformulating trick is used. However, avoiding
the projector-based decoupling as in [11, 12], we use rather a very simple transformation
to show that the discretization schemes applied to the reformulated DAEs are essentially
equivalent to those proposed for semi-explicit index-1 DAEs. Roughly speaking, in this
approach the reduction to semi-explicit form and the discretization commute. This explains
why the modified discretization schemes preserve all the order and stability properties. As a
major novelty of our results, all explicit Runge-Kutta methods can be adapted without order
reduction and stability loss. Furthermore, the same statement holds for implicit Runge-Kutta
methods, which are not necessarily stiffly accurate, a property that is usually required in the
DAE literature. Applying the modified Runge-Kutta methods to the test DAE introduced in
[14], the stability function turns out to be the same as that for the test ODE. Another alternative
approach for treating the instability is proposed in [14] for linear time-varying DAEs, where
the so-called spin-stabilized transformation is used. While the spin-stabilized matrix function
(together with its derivative) has to be approximated at each meshpoint, which is relatively
costly, in our approach we do not have to evaluate the transformation matrix explicitly. The
only extra cost comes from the evaluation of the derivative of the matrix function E, which
is assumed to be available by either an analytic formula or an appropriate finite difference
scheme.

The paper is organized as follows. In Section 2 we briefly review the use of Runge-Kutta
methods for semi-explicit index-1 DAEs which is helpful for later investigations. We also show
that, after a reformulation, the DAE (1.1) essentially is equivalent to a DAE in semi-explicit
form. We analyze the sensitivity of solutions for the DAE (1.1) and for the reformulated form
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in the linear case. In Section 3 we propose half-explicit and implicit Runge-Kutta methods for
the reformulated DAEs and discuss their convergence and stability. We also investigate the
influence of computational errors. Numerical results given in Section 4 illustrate the theoretical
results in Section 3. The paper is closed by some conclusions.

2. Preliminaries.

2.1. Runge-Kutta methods for semi-explicit index-1 DAEs. Semi-explicit index-1
DAEs are the simplest DAEs of the form

y′(t) = Φ
(
t, y(t), z(t)

)
,

0 = Γ
(
t, y(t), z(t)

)
,

(2.1)

on an interval I = [t0, T ]. The initial value (y0, z0) is assumed to be consistent, i.e.,
Γ(t0, y0, z0) = 0. Here, we assume that the functions Φ : I × Rm1 × Rm2 → Rm1 and
Γ : I × Rm1 × Rm2 → Rm2 are sufficiently smooth. Furthermore, it is assumed that the
Jacobian

(2.2) Γz
(
t, y(t), z(t)

)
is nonsingular in a neighborhood of the solution.

The convergence result established for Runge-Kutta methods for the semi-explicit DAE (2.1)
plays an important role in the analysis of the methods that we construct in this paper.

In order to construct numerical solutions, first we take a mesh t0 < t1 < · · · < tN . For
the sake of simplicity, here we consider only uniform meshes with stepsize h. All the results
and the proofs presented in this paper are extendable to the case of variable stepsizes. Suppose
that the coefficients of an s-stage RK method of order p are given in a Butcher tableau

c A

bT
with A = [aij ]s×s , b = [b1 b2 . . . bs]

T , c = [c1 c2 . . . cs]
T .

This method may be either explicit or implicit. On a sub-interval [tn, tn+1] we suppose that the
approximations yn ' y(tn), zn ' z(tn) are given. Let Yni ' y(tn + cih), Zni ' z(tn + cih)
be the internal stage approximations. The s-stage RK scheme for the DAE (2.1) (in the direct
approach) is written in the form

Yni = yn + h

s∑
j=1

aijΦ(Tj , Ynj , Znj),

0 = Γ(Ti, Yni, Zni), i = 1, 2, . . . , s,

yn+1 = yn + h

s∑
i=1

biΦ(Ti, Yni, Zni),

0 = Γ(tn+1, yn+1, zn+1),

(2.3)

where Ti = tn + cih, h = tn+1 − tn. If the original Runge-Kutta method is explicit, then
the corresponding discretization is called half-explicit. The condition (2.2) implies that in a
neighbourhood of the solution, we can solve z = χ(t, y) from the second equation of (2.1) by
the Implicit Function Theorem. Thus (2.1) becomes

(2.4) y′(t) = Φ̃(t, y),

where Φ̃(t, y) = Φ
(
t, y, χ(t, y)

)
. Next, we show that the y-component of the numerical

solution of (2.3) is exactly the same as the numerical solution of the RK method applied to the
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ordinary differential equation (ODE) (2.4). Then, we have the following convergence result
for the scheme (2.3); see [8, 10, 13].

THEOREM 2.1. Assume that (2.2) holds in a neighbourhood of the solution
(
y(t), z(t)

)
of (2.1) and the initial values are consistent. Given a Runge-Kutta method of order p, the
Runge-Kutta scheme (2.3) applied to the DAE (2.1) is convergent of order p, i.e.,

‖yn − y(tn)‖ = O(hp), ‖zn − z(tn)‖ = O(hp) for tn − t0 = nh ≤ const.

REMARK 2.2. If the original Runge-Kutta scheme is explicit, then the implementation
of the method (2.3) is rather simple. We evaluate the stage Yni explicitly and then solve the
algebraic equation for the stage Zni consecutively for i = 1, 2, . . . , s. Then, we calculate
yn+1 and again solve the algebraic equation for zn+1. The algebraic equations can be
solved efficiently by Newton’s method. The implementation of the implicit method is more
complicated. First, we have to solve a large nonlinear system for Yni and Zni, i = 1, 2, . . . , s,
simultaneously by Newton’s method. If the last row of A and bT are different, then we first
evaluate yn+1 and then solve the algebraic equation for zn+1. Otherwise, we set yn+1 = Yns
and zn+1 = Zns.

2.2. A reformulation. The main investigation of this paper is the numerical solution of
DAEs of the form (1.1). We will exploit the structure of the problem to construct numerical
methods which preserve the order as well as the stability properties of the ODE case. The
reformulation in this subsection is presented as a motivation of our approach and for the
analysis of the numerical methods but is not used for the implementation.

Due to the special structure, problem (1.1) can be rewritten into the form

f
(
t, x(t), (Ex)′(t)− E′(t)x(t)

)
= 0,

g
(
t, x(t)

)
= 0,

(2.5)

on an interval I = [t0, T ]. The condition (1.2) implies that E(t) is a full row-rank matrix-
valued function of size m1 ×m, (m1 ≤ m) and

rank(E(t)) = m1 for all t ∈ I.

Due to the existence of a smooth QR factorization (see [6]) there exists a pointwise orthogonal
matrix function Q̃ such that Q̃T Q̃ = I, EQ̃ = [E11 0], where E11 is an invertible lower
triangular m1 ×m1 matrix. Let us define the matrix function

(2.6) Q = Q̃

[
E−1

11 0
0 I

]
.

Hence, we obtain EQ = [I 0]. We introduce the change of variables x = Qy. Then, we
have

(Ex)′(t) = (EQy)′(t) =
(
[I 0]y

)′
(t).

Therefore, the state y can be partitioned as y = [yT1 , y
T
2 ]T , where y1 ∈ C1(I,Rm1),

y2 ∈ C1(I,Rm2). We obtain (Ex)′ = y′1. Hence, the DAEs (2.5) can be rewritten as

f
(
t, Qy, y′1 − E′Qy

)
= 0,

g
(
t, Qy

)
= 0.

(2.7)
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By invoking the Implicit Function Theorem, there exists a function f̃ such that the identity
y′1 − E′Qy = f̃(t, Qy) holds. Let us define F

(
t, y1, y2, y

′
1

)
= f̃(t, Qy) + E′Qy and

G
(
t, y1, y2

)
= g
(
t, Qy

)
. The condition (1.2) together with the definition of Q implies that[

fvE
gu

]
Q =

[
fvEQ
guQ

]
=

[
fv[I 0]

gu[Q(1) Q(2)]

]
=

[
fv 0

guQ
(1) guQ

(2)

]
is nonsingular along the solution. Here Q = [Q(1) Q(2)] and Q(1) ∈ C1(I,Rm,m1),
Q(2) ∈ C1(I,Rm,m2). Hence it follows that fv and guQ(2) are invertible as well. Hence,
the system (2.7) becomes

y′1 = F (t, y1, y2),

0 = G(t, y1, y2),
(2.8)

where the Jacobian Gy2 = guQ
(2) is nonsingular. This is an index-1 DAE of semi-explicit

form. Hence, the class of problems (1.1) can be solved efficiently by Runge-Kutta methods
after it is transformed into the form (2.8). However, an explicit realization of this transformation
is almost impossible in computational practice. We will first show that we can apply a Runge-
Kutta scheme directly to the reformulated DAE (2.5), and then we prove that the discretization
and the transformation are commutative. The latter means that essentially we apply the same
Runge-Kutta method to the transformed DAE (2.8). The Runge-Kutta methods applied to the
reformulated DAE (2.5) have the same order and the same stability properties as if they are
applied to semi-explicit DAEs of index 1. Here, the reformulation plays a key role since we
will (numerically) differentiate Ex instead of x. If we apply the same method to the original
DAE (1.1), then a loss of accuracy order and/or stability may happen; see the illustrative
numerical experiments and comparisons in Section 4.

2.3. Sensitivity analysis of solutions for linear strangeness-free DAEs. We will see
that the sensitivity analysis of solutions for linear DAEs of the form (1.1) is completely
different if we consider the reformulated form (2.5) instead of (1.1).

a) Consider the linear DAE

E11(t)x′1(t) + E12(t)x′2(t) = A11(t)x1(t) +A12(t)x2(t) + q1(t),

0 = A21(t)x1(t) +A22(t)x2(t) + q2(t),
(2.9)

whereEij ,Aij ∈ C(I,Rmi,mj ), qi ∈ C(I,Rmi), i, j = 1, 2, m1+m2 = m. The strangeness-
free condition (1.2) requires that the matrix

(2.10)
[
E11 E12

A21 A22

]
be nonsingular for all t ∈ I.

By an appropriate rearrangement of the variables, we may assume that A22 is nonsingular.
From the second equation of (2.9), we have

(2.11) x2 = −A−1
22 A21x1 −A−1

22 q2.

Differentiating both sides of (2.11), we then obtain

(2.12) x′2 = −A−1
22 A21x

′
1 −

(
A−1

22 A21

)′
x1 −

(
A−1

22 q2

)′
.

Substituting (2.11), (2.12) into the first equation of (2.9) yields

E11x
′
1 = A11x1 + q1,
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where

E11 = E11 − E12A
−1
22 A21, A11 = A11 + E12

(
A−1

22 A21

)′ −A12A
−1
22 A21,

q1 = q1 −A12A
−1
22 q2 + E12

(
A−1

22 q2

)′
.

It is easy to check that E11 is nonsingular by (2.10). Consequently, we obtain the ODE

x′1 = B1x1 + r1.

Here, B1 and r1 are defined as follows:

B1 = E
−1

11 A11, r1 = E
−1

11 q1 = E
−1

11

(
q1 −A12A

−1
22 q2 + E12

(
A−1

22 q2

)′)
.

By this analysis, the equations that we have just obtained appear as if the solution x depends
on the derivative of A−1

22 q2. However, this is not true as the next analysis shows.
b) Now, we consider the linear DAE in the reformulated form(

E1x
)′

(t) =
(
A1(t) + E′1(t)

)
x(t) + q1(t),

0 = A2(t)x(t) + q2(t),

for all t ∈ I, where x = [xT1 , x
T
2 ]T , E1 = [E11 E12], A1 = [A11 A12], A2 = [A21 A22].

By introducing again the transformation x(t) = Q(t)y(t) = Q(t)[yT1 (t), yT2 (t)]T with Q
defined by (2.6), we arrive at the system

y′1(t) = Ã11(t)y1(t) + Ã12(t)y2(t) + q1(t),

0 = Ã21(t)y1(t) + Ã22(t)y2(t) + q2(t),
(2.13)

where [Ã11 Ã12] =
(
A1 + E′1

)
Q, [Ã21 Ã22] = A2Q. From (2.10), it follows that Ã22 is

nonsingular. Therefore, the second equation of (2.13) leads to

(2.14) y2 = −Ã−1
22 Ã21y1 − Ã−1

22 q2.

Substituting (2.14) into the first equation of (2.13) yields the so-called essential underlying
ODE [5, 15]

y′1 =
(
Ã11 − Ã12Ã

−1
22 Ã21

)
y1 + q1 − Ã12Ã

−1
22 q2.

It is clearly seen that neither y nor x = Qy depends on the derivative of any expression
containing q2. The above comparison suggests that it is more reasonable to consider the
reformulated form (2.5) instead of (1.1).

3. Runge-Kutta methods for the reformulated DAE. In this section we will analyze
the use of half-explicit and implicit Runge-Kutta methods for the reformulated DAE (2.5).

3.1. Discretization by half-explicit Runge-Kutta schemes. First, we propose half-ex-
plicit Runge-Kutta methods (HERK) for the reformulated DAE. We take an arbitrary explicit
Runge-Kutta method, i.e., the coefficient matrix A = [aij ] associated with it is a strictly
lower triangular matrix. Consider a sub-interval [tn, tn+1], h = tn+1 − tn, and assume
that an approximation xn to x(tn) is given. Let us introduce Ti = tn + cih and the stage
approximations Ui ' x(Ti), Ki ' (Ex)′(Ti), i = 1, 2, . . . , s. We assume in addition that the
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function values Ei = E(Ti), E
′
i = E′(Ti) are available. Then, the s-stage HERK scheme for

the DAEs (2.5) reads as follows

U1 = xn,(3.1a)

EiUi = E(tn)U1 + h

i−1∑
j=1

aijKj ,(3.1b)

0 = f
(
Ti−1, Ui−1,Ki−1 − E′i−1Ui−1

)
,(3.1c)

0 = g(Ti, Ui), i = 2, 3, . . . , s,(3.1d)

E(tn+1)xn+1 = E(tn)U1 + h

s∑
i=1

biKi,(3.1e)

0 = f
(
Ts, Us,Ks − E′sUs

)
,(3.1f)

0 = g(tn+1, xn+1).(3.1g)

To verify the feasibility of this s-stage HERK scheme, we consider the (nonlinear) system
(3.1b), (3.1c), (3.1d) denoted as Hi(Ui,Ki−1) = 0 at the i-th stage, assuming that the
preceding values Uj and Kj−1, 1 ≤ j ≤ i− 1, are already determined and they approximate
the corresponding exact values with O(h) accuracy. We have

∂Hi
∂Ui

=

 Ei
0

gu(Ti, Ui)

 , ∂Hi
∂Ki−1

=

 ai,i−1hIm
fv(Ti−1, Ui−1,Ki−1 − E′i−1Ui−1)

0

 .
Consider a neighborhood of the exact solution x and the derivative of Ex defined by

Ω(h) =

{
[UTi KT

i−1]T ∈ Rm+m1 , ‖Ui − x(Ti)‖ ≤ Ch, ‖Ki−1 − (Ex)′(Ti−1)‖ ≤ Ch
}

for some positive constant C. It is easy to see that the assumption (1.2) holds if and only if

both fv and
[
E
gu

]
are nonsingular along the exact solution. One can verify without difficulty

that for sufficiently small h, the Jacobian ofHi is boundedly invertible, i.e., it is invertible and
the inverse as a function of h is bounded. The exact solution satisfies

Hi
(
x(Ti), (Ex)′(Ti−1)

)
= O(h).

By the Implicit Function Theorem, the system given by (3.1b), (3.1c), (3.1d) has a locally
unique solution (U∗i ,K

∗
i−1) that satisfies

‖U∗i − x(Ti)‖ = O(h), ‖Ki−1 − (Ex)′(Ti−1)‖ = O(h).

Similarly, the system (3.1e), (3.1f), (3.1g) has a locally unique solution (x∗n+1,K
∗
s ) that

satisfies

‖x∗n+1 − x(tn+1)‖ = O(h), ‖Ks − (Ex)′(Ts)‖ = O(h).

These nonlinear systems can be solved approximately, e.g., by Newton’s method.
If we assume in addition that ai,i−1 6= 0, for i = 2, . . . , s, and bs 6= 0, then the

computational cost for solving (3.1b)–(3.1g) is reduced by explicitly solving for Ki−1 and
Ks, respectively. The equations (3.1b) and (3.1e) yield

K1 =
E2U2 − E(tn)U1

ha21
,
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and

Ki−1 =
(EiUi − E(tn)U1

h
−

i−2∑
j=1

ai,jKj

) 1

ai,i−1
, i = 3, . . . , s,

Ks =
(E(tn+1)xn+1 − E(tn)U1

h
−
s−1∑
i=1

biKi

) 1

bs
.

At the i-th stage (i = 2, . . . , s), the approximation Ui can be determined from a nonlinear
system Fi(Ui) = 0 given by

0 = hf
(
Ti−1, Ui−1,

(EiUi − E(tn)U1

h
−

i−2∑
j=1

ai,jKj

) 1

ai,i−1
− E′i−1Ui−1

)
,

0 = g(Ti, Ui).

(3.2)

Here, we suppose that U1, U2, . . . , Ui−1, K1,K2, . . . ,Ki−2 are given sufficiently close to the
exact values. The Jacobian matrix of Fi with respect to Ui is

(3.3)
∂Fi
∂Ui

=

[ 1
ai,i−1

fv(Ti−1, Ui−1,Ki−1 − E′i−1Ui−1)Ei
gu(Ti, Ui)

]
.

For sufficiently small h, the system (3.2) has a locally unique solution U∗i , which can be
approximated by Newton’s method.

Next, the approximation Ki is obtained. Finally, a unique solution xn+1 at the time step
t = tn+1 is determined by the system Gn(xn+1) = 0, which is written as

0 = hf
(
Ts, Us,

(E(tn+1)xn+1 − E(tn)xn
h

−
s−1∑
i=1

biKi

) 1

bs
− E′sUs

)
,

0 = g(tn+1, xn+1),

(3.4)

where U1, U2, . . . , Us, K1,K2, . . . ,Ks−1 are already obtained. Here the Jacobian

(3.5)
∂Gn
∂xn+1

=

[
1
bs
fv(Ts, Us,Ks − E′sUs)E(tn+1)

gu(tn+1, xn+1)

]

is boundedly invertible for sufficiently small h. The locally unique solution x∗n+1 can be
approximated by Newton’s method as well.

REMARK 3.1. We note that the first equations of (3.2) and (3.4) are scaled by h. If
we do not apply the scaling, then the first block rows of the Jacobians in (3.3) and (3.5) are
multiplied by 1/h, which could increase the condition numbers of the Jacobians, in particular
when the stepsize h is very small. On the other hand, the scaling by h is natural since it helps
to balance the factor 1/h in the first equations of (3.2) and (3.4) as it is done for ODEs. Thus,
the formulations (3.2) and (3.4) are consistent with the formulas of the Runge-Kutta methods
for ODEs. That is why we suggest the scaling by h to the first equations of (3.2) and (3.4).
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3.2. Discretization by implicit Runge-Kutta schemes. The s-stage implicit Runge-
Kutta (IRK) scheme applied to the DAEs (2.5) reads as follows:

EiUi = E(tn)xn + h

s∑
j=1

aijKj ,(3.6a)

0 = f
(
Ti, Ui,Ki − E′iUi

)
,(3.6b)

0 = g(Ti, Ui), i = 1, 2, . . . , s,(3.6c)

E(tn+1)xn+1 = E(tn)xn + h

s∑
i=1

biKi,(3.6d)

0 = g(tn+1, xn+1).(3.6e)

By a similar argument as in the case of the HERK methods, it can be shown that if xn is given
sufficiently close to the exact value and h is sufficiently small, then the large system (3.6a),
(3.6b), (3.6c) is locally uniquely solvable for Ui and Ki, i = 1, 2, . . . , s.

Now we show that if the IRK is such that its coefficient matrix A is invertible, then the
system (3.6a), (3.6b), (3.6c) is reduced by explicitly solving for Ki, i = 1, 2, . . . , s. The set
of equations (3.6a) with i = 1, 2, . . . , s yields the linear system (A ⊗ Im1

)K = D, where
K = [KT

1 K
T
2 . . . KT

s ]T and D = [DT
1 D

T
2 . . . DT

s ]T with

Di =
EiUi − E(tn)xn

h
, i = 1, 2, . . . , s.

Let W = [wij ] = A−1, then we have

Ki =

s∑
j=1

wijDj =

s∑
j=1

wij
EjUj − E(tn)xn

h
, i = 1, 2, . . . , s.

Inserting these expressions into the equation of (3.6b), for convenience also multiplying both
sides by h, (3.6b), (3.6c) yield the nonlinear system Φn(U) = 0 of the form

0 = hf
(
Ti, Ui,

s∑
j=1

wij
EjUj − E(tn)xn

h
− E′iUi

)
,

0 = g(Ti, Ui), i = 1, 2, . . . , s,

(3.7)

where U = [UT1 UT2 . . . UTs ]T . Set

f iv = fv
(
Ti, Ui,

s∑
j=1

wij
EjUj − E(tn)xn

h
− E′iUi

)
,

f iu = fu
(
Ti, Ui,

s∑
j=1

wij
EjUj − E(tn)xn

h
− E′iUi

)
,
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and giu = gu(Ti, Ui), then the Jacobian matrix of Φn with respect to U is

∂Φn

∂U
=

hf1
u + w11f

1
vE1 − hf1

vE
′
1 w12f

1
vE2 · · · w1sf

1
vEs

g1u 0 0

w21f
2
vE1 hf2

u + w22f
2
vE2 − hf2

vE
′
2 · · · w2sf

2
vEs

0 g2u 0
...

...
. . .

...

ws1f
s
vE1 ws2f

s
vE2 · · · hfs

u + wssf
s
vEs − hfs

vE
′
s

0 0 gsu


.

(3.8)

We will show that J = ∂Φn

∂U is nonsingular for sufficiently small h and for xn in a small
neighbourhood of the exact solution.

LEMMA 3.2. Suppose that the condition (1.2) holds and A = [aij ] is invertible. Then
the Jacobian ∂Φn

∂U given in (3.8) is nonsingular for sufficiently small h and for xn in a small
neighborhood of the exact solution of problem (1.1).

Proof. By assumption and the definition W = A−1, it follows that the matrix

H̄ =



w11fvE w12fvE · · · w1sfvE
w11gu w12gu w1sgu

w21fvE w22fvE · · · ws2fvE
w21gu w22gu w2sgu

...
...

. . .
...

ws1fvE ws2fvE · · · wssfvE
ws1gu ws2gu wssgu


t=tn

= W ⊗
[
fvE
gu

]
t=tn

is boundedly invertible for sufficiently small h. Therefore, the matrix

(3.9) H̃ =



w11f
1
vE1 w12f

1
vE2 · · · w1sf

1
vEs

w11g
1
u w12g

2
u w1sg

s
u

w21f
2
vE1 w22f

2
vE2 · · · w2sf

2
vEs

w21g
1
u w22g

2
u w2sg

s
u

...
...

. . .
...

ws1f
s
vE1 ws2f

s
vE2 · · · wssf

s
vEs

ws1g
1
u ws2g

2
u wssg

s
u


= BJ̃

is boundedly invertible for sufficiently small h as well. Here,

J̃ :=



w11f
1
vE1 w12f

1
vE2 · · · w1sf

1
vEs

g1
u 0 0

w21f
2
vE1 w22f

2
vE2 · · · w2sf

2
vEs

0 g2
u 0

...
...

. . .
...

ws1f
s
vE1 ws2f

s
vE2 · · · wssf

s
vEs

0 0 gsu
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and

B :=



Im1
0 0 0 · · · 0 0

0 w11Im2
0 w12Im2

· · · 0 w1sIm2

0 0 Im 0 · · · 0 0
0 w21Im2 0 w22Im2 · · · 0 w2sIm2

...
...

...
...

. . .
...

...
0 0 0 0 · · · Im 0
0 ws1Im2

0 ws2Im2
· · · 0 wssIm2


,

where Im1
, Im2

are identity matrices. It is not difficult to verify that the matrix B is invertible.
Hence, it follows that the matrix J̃ in (3.9) is boundedly invertible for sufficiently small h
as well. Since J = J̃ + O(h), we conclude that the Jacobian matrix J = ∂Φn

∂U in (3.8) is
nonsingular for all sufficiently small h and for xn in a small neighbourhood of the exact
solution of problem (1.1).

Once the unique solution U is numerically determined, e.g., by Newton’s method, a
numerical approximation of K is immediately obtained. If the given Runge-Kutta method
is stiffly accurate, i.e., A is invertible and the last row of A and bT coincide, then we simply
set xn+1 = Us. Otherwise, the approximation xn+1 will be determined by solving the extra
system (3.6d), (3.6e), which is rewritten in the form Ln(xn+1) = 0. The associated Jacobian
of Ln is

∂Ln
∂xn+1

=

[
E
gu

]
t=tn+1

.

Since fv is invertible and

[
fvE
gu

]
=

[
fv 0
0 I

] [
E
gu

]

is nonsingular in a small neighborhood of the solution x(t), the Jacobian of Ln is boundedly
invertible. Therefore, the solution xn+1 of (3.6d), (3.6e) exists, and it is locally unique.

When implementing the IRK method (3.6), the numerical values of Ui, i = 1, 2, . . . , s,
are approximated from the system (3.7) by Newton’s method. However, for an easy implemen-
tation, the equation (3.7) is replaced by

0 = hf
(
Ti, Ui,

s∑
j=1

wij
EjUj − E(tn)xn

h
− E′iUi

)
,

0 =

s∑
j=1

wijg(Tj , Uj), i = 1, 2, . . . , s.

Here, we recall once again that the coefficients wij are the entries of W = A−1. Therefore,
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the system defining U is of the form Φ̄n(U) = 0, and the associated Jacobian matrix is

∂Φ̄n

∂U
=

hf1
u + w11f

1
vE1 − hf1

vE
′
1 w12f

1
vE2 · · · w1sf

1
vEs

w11g
1
u w12g

2
u w1sg

s
u

w21f
2
vE1 hf2

u + w22f
2
vE2 − hf2

vE
′
2 · · · w2sf

2
vEs

w21g
1
u w22g

2
u w2sg

s
u

...
...

. . .
...

ws1f
s
vE1 ws2f

s
vE2 · · · hfs

u + wssf
s
vEs − hfs

vE
′
s

ws1g
1
u ws2g

2
u wssg

s
u


.

(3.10)

We denote this Jacobian matrix by H . By ignoring all the terms of size O(h) appearing on the
right-hand side of (3.10), H can be approximated by

H̃ =



w11f
1
vE1 w12f

1
vE2 · · · w1sf

1
vEs

w11g
1
u w12g

2
u w1sg

s
u

w21f
2
vE1 w22f

2
vE2 · · · w2sf

2
vEs

w21g
1
u w22g

2
u w2sg

s
u

...
...

. . .
...

ws1f
s
vE1 ws2f

s
vE2 · · · wssf

s
vEs

ws1g
1
u ws2g

2
u wssg

s
u


,

which is boundedly invertible for sufficiently small h as we have seen in the proof of
Lemma 3.2. For simplicity, it can be further approximated by the “frozen” Jacobian

(3.11) H̄ =



w11fvE w12fvE · · · w1sfvE
w11gu w12gu w1sgu

w21fvE w22fvE · · · w2sfvE
w21gu w22gu w2sgu

...
...

. . .
...

ws1fvE ws2fvE · · · wssfvE
ws1g

1
u ws2gu wssgu


tn

= W ⊗
[
fvE
gu

]
t=tn

.

It is easy to calculate the inverse of H̄ , namely

H̄−1 = A⊗
[
fvE
gu

]−1

t=tn

.

Thus, at each time step, only one LU factorization of a matrix of size n by n is needed.
REMARK 3.3. In order to determine the approximation xn+1 at the time step t = tn+1, we

have to evaluate the derivatives E′(Ti), i = 1, 2, . . . , s. If the derivative of E is not available
analytically, then it can be approximated by appropriate finite difference formulas or by using
interpolation polynomials based on a set of nearby stage points. It is recommendable that the
order of the finite difference formulas should not be less than the order of the Runge-Kutta
method that we use; see the result on the analysis of the computational errors in Theorem 3.8
below.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

RUNGE-KUTTA METHODS REVISITED 143

REMARK 3.4. If the matrix A of the IRK method is lower triangular with nonzero
diagonal elements, i.e., we deal with a diagonally implicit Runge-Kutta method (DIRK), then
the implementation of the IRK scheme (3.6) and that of the HERK scheme (3.1) are almost
the same. Indeed, if we take a DIRK method with

A =


a11 0 0 · · · 0 0
a21 a22 0 · · · 0 0

...
...

...
. . .

...
...

as−1,1 as−1,2 as−1,3 · · · as−1,s−1 0
as,1 as,2 as,3 · · · as,s−1 as,s

 ,

then the system (3.6) becomes

EiUi = E(tn)xn + h

i∑
j=1

aijKj ,(3.12a)

0 = f
(
Ti, Ui,Ki − E′iUi

)
,(3.12b)

0 = g(Ti, Ui), i = 1, 2, . . . , s,(3.12c)

E(tn+1)xn+1 = E(tn)xn + h

s∑
i=1

biKi,(3.12d)

0 = g(tn+1, xn+1).(3.12e)

From the equation (3.12a), we find the expression for Ki, and by substituting the result
into (3.12b), we obtain a nonlinear system for Ui. Thus, we solve subsequently s nonlinear
systems for Ui, i = 1, 2, . . . , s. This procedure is similar to the implementation of the HERK
scheme (3.1). Finally, we solve the system (3.12d), (3.12e) for xn+1.

3.3. Convergence analysis. We now analyze the convergence of the HERK and the IRK
methods applied to the reformulated form (2.5). To obtain the convergence results for the
discretization schemes presented above, we begin with the following lemma.

LEMMA 3.5. The reduction of the form (2.5) to the form (2.8) and the discretization by
the HERK/IRK method commute, i.e., the following diagram is commutative:

DAE (2.5)
x(t) = Q(t)y(t)

- DAE (2.8)

?

HERK/IRK

Scheme (3.1)/(3.6)
?

HERK/IRK

Scheme (2.3)xn = Q(tn)yn -

Proof. Consider the DAE (2.8) on an interval [tn, tn+1]. We assume that y1,n, y2,n are
the approximations of y1(tn), y2(tn), respectively. Let the stage approximations be defined
by [V Ti HT

i ]T ' y(Ti) = y(tn + cih) = [yT1 (Ti) y
T
2 (Ti)]

T . The Runge-Kutta scheme (2.3)
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applied to the semi-explicit index-1 DAE (2.8) reads

Vi = y1,n + h

s∑
j=1

aijF
(
Tj , Vj , Hj

)
,

0 = G(Ti, Vi, Hi), i = 1, 2, . . . , s,

y1,n+1 = y1,n + h

s∑
i=1

biF
(
Ti, Vi, Hi

)
,

0 = G(tn+1, y1,n+1, y2,n+1).

(3.13)

Let Pi = F
(
Ti, Vi, Hi

)
be approximations to the derivatives y′1(Ti), i = 1, 2, . . . , s. By the

definition of F and G given when introducing (2.8), we have the equivalent system

Vi = y1,n + h

s∑
j=1

ai,jPj ,

0 = f
(
Ti, Qi[V

T
i HT

i ]T , Pi − E′iQi[V Ti HT
i ]T

)
,

0 = g(Ti, Qi[V
T
i HT

i ]T ), i = 1, 2, . . . , s,

y1,n+1 = y1,n + h

s∑
i=1

biPi,

0 = g(tn+1, Q(tn+1)yn+1).

(3.14)

Here we have set Qi = Q(Ti). On the other hand, we now show that the RK methods (3.1)
and (3.6) for (2.5) lead to the scheme (3.14) by the corresponding change of variables
xn = Q(tn)yn. Let us define [MT

i N
T
i ]T = Q−1

i Ui. Here the partition is done accord-
ing to the dimensions of the variables y1 and y2. By the definition of the matrix Q in (2.6), we
have

EiUi = EiQi(Qi)
−1Ui = [I 0](Qi)

−1Ui = [I 0][MT
i N

T
i ]T = Mi.

Similarly, we have

E(tn)xn = E(tn)Q(tn)(Q(tn))−1xn = [I 0][yT1,n y
T
2,n]T = y1,n.

Then, the RK schemes (3.1) and (3.6) can be rewritten as

Mi = y1,n + h

s∑
j=1

ai,jKj ,

0 = f
(
Ti, Qi[M

T
i N

T
i ]T ,Ki − E′iQi[MT

i N
T
i ]T

)
,

0 = g
(
Ti, Qi[M

T
i N

T
i ]T

)
, i = 1, 2, . . . , s,

y1,n+1 = y1,n + h

s∑
i=1

biKi,

0 = g
(
tn+1, Q(tn+1)yn+1

)
.

(3.15)

Clearly, the scheme (3.15) and the scheme (3.14) coincide.
The convergence of the RK scheme (3.6) immediately follows.
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THEOREM 3.6. Consider the IVP for the DAE (1.1) with consistent initial value, i.e.,
g(t0, x0) = 0. Suppose that (1.2) holds in a neighbourhood of the exact solution x(t). Then,
the IRK scheme (3.6) applied to the equivalent DAE (2.5) is convergent of order p, i.e.,

‖xn − x(tn)‖ = O(hp) as h→ 0

(tn ∈ [t0, T ] is fixed with tn − t0 = nh).
Proof. According to Lemma 3.5, the scheme (3.6) applied to the DAE (1.1) leads to the

scheme (3.13) for the problem (2.8). Namely, the relation xn = Q(tn)yn holds. By Theorem
2.1, we obtain

‖yn − y(tn)‖ = O(hp).

It follows that

‖xn − x(tn)‖ = ‖Q(tn)yn −Q(tn)y(tn)‖ ≤ ‖Q(tn)‖‖yn − y(tn)‖ = O(hp).

Similarly, we obtain the convergence of the half-explicit Runge-Kutta scheme (3.1).
THEOREM 3.7. Consider the IVP for the DAE (1.1) with consistent initial value, i.e.,

g(t0, x0) = 0. Suppose that (1.2) holds in a neighbourhood of the exact solution x(t). Then,
the HERK scheme (3.1) applied to the equivalent DAE (2.5) is convergent of order p, i.e.,

‖xn − x(tn)‖ = O(hp) as h→ 0

(tn ∈ [t0, T ] is fixed with tn − t0 = nh).

3.4. Absolute stability. In addition to the convergence analysis, we are also interested
in the absolute stability of the numerical methods. For ODEs, the well-known test equation
y′ = λy, where <λ ≤ 0, is used; see, e.g., [2, 9]. Here we analyze the absolute stability of the
RK schemes (3.1) and (3.6) via the following test equation for DAEs; see [14]. Consider the
linear DAE

(3.16)
[
1 − ωt
0 0

]
x′ =

[
λ ω(1− λt)
−1 (1 + ωt)

]
x,

where ω and λ are complex parameters, <λ ≤ 0, and x = [x1, x2]T . The system (3.16) is a
strangeness-free DAEs of the form (1.1), where

E(t) =
[
1 − ωt

]
.

Given initial data x1(0) = 1, x2(0) = 1, then the system (3.16) has the solution

x =

[
eλt(1 + ωt)

eλt

]
.

In [14], the concept of Dahlquist’s stability function is extended to DAEs by considering the
stability function R(z, w) defined for the test DAE (3.16). If we apply the half-explicit Euler
method which was proposed in [17] to the test DAE (3.16), then we obtain the DAE stability
function

R(z, w) =
1 + z + w

1 + w
,
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where z = λh,w = ωh, and h is the stepsize. For the implicit Euler method (see [14]), we
have the stability function

R(z, w) =
1− w

1− z − w
.

Next, we determine the DAE stability function for the half-explicit and implicit Runge-
Kutta methods presented in this section. The system (3.16) is reformulated as

(3.17)
([

1 − ωt
0 0

] [
x1

x2

])′
=

[
λ − λωt
−1 (1 + ωt)

] [
x1

x2

]
.

Applying the half-explicit Euler method, after some elementary manipulations, we obtain

x2,n+1 = (1 + λh)x2,n,

x1,n+1 = (1 + λh)(1 + ωtn+1)x2,n+1.

Therefore, we obtain the DAE stability function R(z, w) = 1 + z. In a similar way, if we
apply the implicit Euler method to the reformulated test equation (3.17), then we obtain the
DAE stability function

R(z, w) =
1

1− z
.

Note that these stability functions are exactly the stability functions of the Euler methods for
the ODE case. We now determine the DAE stability function R(z, w) in the general cases.
Applying the scheme (3.1) or (3.6) to the problem (3.16) yields

Mi = y1,n + h

s∑
j=1

aijKj ,(3.18a)

Ki = λ(U1,i − ωTiU2,i),(3.18b)
0 = −U1,i + U2,i + ωTiU2,i, i = 1, 2, . . . , s,(3.18c)

y1,n+1 = y1,n + h

s∑
i=1

biKi,(3.18d)

0 = −x1,n+1 + x2,n+1 + ωtn+1x2,n+1,(3.18e)

where y1,n = x1,n − ωtnx2,n, Mi = U1,i − ωTiU2,i, i = 1, 2, . . . , s. Let us set

M = [MT
1 MT

2 . . . MT
s ]T , K = [KT

1 K
T
2 . . . KT

s ]T , and 1 = [1 1 . . . 1]T .

Equation (3.18b) leads to Ki = λMi, i = 1, 2, . . . , s, hence it follows that

(3.19) K = λM.

Moreover, equation (3.18a) implies M = 1y1,n + hAK. Replacing K by (3.19), it is easily
seen that

(3.20) M = (I − hλA)−11y1,n.

From the system (3.18d)–(3.18e), we obtain

y1,n+1 = y1,n + hbTK,

x2,n+1 = x1,n+1 − ωtn+1x2,n+1 = y1,n+1,

x1,n+1 = (1 + ωtn+1)x2,n+1.

(3.21)
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Substituting (3.19), (3.20) into the first equation of (3.21) and taking z = hλ, we have

y1,n+1 =
(

1 + zbT (I − zA)−11
)
y1,n.

The second equation of (3.21) yields y1,n = x2,n. Therefore, we obtain

x2,n+1 =
(

1 + zbT (I − zA)−11
)
x2,n,

x1,n+1 = (1 + ωtn+1)x2,n+1.
(3.22)

From equation (3.22) and the definition of the stability function for DAEs (see [14]), we obtain
the stability function for both the scheme (3.1) and (3.6)

R(z, w) = 1 + zbT (I − zA)−11.

We conclude that the methods (3.1) and (3.6) applied to the reformulated test DAE (3.17)
preserve the stability property of the original (explicit or implicit) Runge-Kutta methods. This
fact will be particularly important when we approximate Lyapunov and Sacker-Sell spectral
intervals numerically; see [16, 18].

3.5. The influence of computational errors. When we implement the methods (3.1)
and (3.6) for the reformulated DAEs (2.5), certain computational errors arise, namely rounding
errors, errors caused by Newton’s method for solving nonlinear systems, and approximation
errors for the evaluation of E′. The accumulation of these errors will be discussed in this
section. For the sake of simplicity, first we consider the half-explicit Euler method and present
a rigorous perturbation analysis. Also for simplifying the notations in this part, we set

En = E(tn), En+1 = E(tn+1), E′n = E′(tn), for n = 0, 1, . . . , N − 1.

Furthermore, Ẽ′n is an approximation to E′(tn).
THEOREM 3.8. Suppose that x0, x̃0 are the exact and perturbed initial values, respectively.

Let {xn} be the solution of the half-explicit Euler scheme for the DAEs (2.5) and {x̃n} be the
perturbed solution defined by the following perturbed scheme

δn = hf
(
tn, x̃n,

En+1x̃n+1 − Enx̃n
h

− Ẽ′nx̃n
)
,

θn = g(tn+1, x̃n+1),
(3.23)

where h = tn+1 − tn. Let us denote θ−1 = g(t0, x̃0). We assume that the errors δn, θn, and
εn = Ẽ′n − E′n are sufficiently small for n = 0, 1, . . . , N − 1. Then there exist constants C,
K, L,M, and h0 such that for any mesh with h ≤ h0, the perturbed solution {x̃n} exists and
satisfies

‖x̃n − xn‖ ≤ C‖x̃0 − x0‖
+K max

0≤i≤N−1
‖εi‖+ L max

0≤i≤N−1
‖δi/h‖+M max

−1≤i≤N−1
‖θi‖(3.24)

for all n ≥ 0, provided that the initial error x̃0 − x0 is sufficiently small.
Proof. First, by the same argument used for verifying the feasibility of the HERK

methods (3.1), the perturbed system (3.23) has a locally unique solution x̃n+1, provided that
x̃n is sufficiently close to the exact value x(tn) and h is sufficiently small. By induction, we
will first prove the estimate (3.24), then the global existence of the sequence {x̃n} follows.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

148 V. H. LINH AND N. D. TRUONG

With the matrix Q defined by (2.6), we denote Qn = Q(tn) and introduce the transforma-
tion

xn = Qnyn = Qn(yT1,n, y
T
2,n)T , x̃n = Qnỹn = Qn(ỹT1,n, ỹ

T
2,n)T ,

which yields the transformed system

0 = f
(
tn, Qnỹn,

ỹ1,n+1 − ỹ1,n

h
− Ẽ′nQnỹn

)
− δn

h
,

0 = g(tn+1, Qn+1ỹn+1)− θn.

Due to the invertibility of fv and invoking the Implicit Function Theorem, there exists a
function F̃ = F̃ (t, y1, y2, δ) such that the system (3.23) is rewritten as

ỹ1,n+1 − ỹ1,n

h
− Ẽ′nQnỹn = F̃

(
tn, ỹ1,n, ỹ2,n, δn/h

)
,

0 = G(tn+1, ỹ1,n+1, ỹ2,n+1, θn).

Equivalently, we have

ỹ1,n+1 = ỹ1,n + hẼ′nQnỹn + hF̃
(
tn, ỹ1,n, ỹ2,n, δn/h

)
,

0 = G(tn+1, ỹ1,n+1, ỹ2,n+1, θn).
(3.25)

Here, the Jacobian matrix of G = G(t, y1, y2, θ) with respect to y2 is ∂G
∂y2

= guQ
(2), which

is nonsingular in a neighborhood of
(
t, y1(t), y2(t), 0

)
. According to the Implicit Function

Theorem, there exists a function χ = χ(t, y1, θ) such that

ỹ2,n+1 = χ(tn+1, ỹ1,n+1, θn).

According to the half-explicit Euler method applied to (2.5), xn+1 is determined from the
unperturbed system

0 = hf
(
tn, xn,

En+1xn+1 − Enxn
h

− E′nxn
)
,

0 = g(tn+1, xn+1).

In a similar way, we derive

y1,n+1 = y1,n + hE′nQnyn + hF̃
(
tn, y1,n, y2,n, 0

)
,

0 = G(tn+1, y1,n+1, y2,n+1, 0).
(3.26)

The second equation of (3.26) yields

y2,n+1 = χ(tn+1, y1,n+1, 0).

The main idea is as follows. By substituting the expressions of ỹ2,n+1 and y2,n+1 into
the first equations, the error estimation problem is equivalent to the stability estimation
problem of the standard Euler scheme, which is well-known. Thus, we estimate the difference
‖ỹ1,n+1 − y1,n+1‖ first, then a bound for ‖ỹn+1 − yn+1‖ is obtained. Finally, the estimate
for ‖x̃n+1 − xn+1‖ follows.

Let us denote cn = ỹ1,n − y1,n, dn = ỹ2,n − y2,n. Differentiating the equation
G(t, y1, χ(t, y1, θ), θ) = 0, we obtain Gy1 + Gy2χy1 = 0. Since Gy2 is nonsingular in
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a sufficiently small neighborhood of the exact solution, we have χy1 = −G−1
y2 Gy1 . By a

similar argument, we obtain χθ = −G−1
y2 Gθ. From the definition of G, we have Gθ = −I .

Thus, the equality χθ = G−1
y2 holds. Hence, there exist a constant C1 > 0 and a sufficiently

small h0 so that we have

(3.27) ‖dn+1‖ ≤ C1(‖cn+1‖+ ‖θn‖)

for all h ≤ h0. From the first equations of (3.25) and (3.26), we have

‖cn+1‖ ≤ ‖cn‖+ h‖(Ẽ′n − E′n)Qnỹn‖

+ h‖E′nQn(ỹn − yn)‖+ h‖F̃
(
tn, ỹ1,n, ỹ2,n, δn/h

)
− F̃

(
tn, y1,n, y2,n, 0

)
‖.

There exist positive constants K1 and C2 > 0 such that ‖(Ẽ′n − E′n)Qnỹn‖ ≤ K1‖εn‖ and
‖E′nQn(ỹn− yn)‖ ≤ ‖E′n‖‖Qn(ỹn− yn)‖ ≤ C2(‖cn‖+‖dn‖). By similar arguments, there
exist positive constants C3, C4, L1 such that

‖F̃
(
tn, ỹ1,n, ỹ2,n, δ̃n

)
− F̃

(
tn, y1,n, y2,n, 0

)
‖ ≤ C3‖cn‖+ C4‖dn‖+ L1‖δn/h‖
≤ C5‖cn‖+M1‖θn−1‖+ L1‖δn/h‖,

where C5 = C3 + C4C1,M1 = C4C1. Then, we have

‖cn+1‖ ≤ ‖cn‖+ hK1‖εn‖+ hC2(‖cn‖+ ‖dn‖)
+ hC5‖cn‖+ hM1‖θn−1‖+ hL1‖δn/h‖

≤ ‖cn‖+ hK1‖εn‖+ hC2
(
‖cn‖+ C1(‖cn‖+ ‖θn−1‖)

)
+ hC5‖cn‖+ hM1‖θn−1‖+ hL1‖δn/h‖

= (1 + hC̃0)‖cn‖+ h
(
K1‖εn‖+M2‖θn−1‖+ L1‖δn/h‖

)
(3.28)

for all n ≥ 0 and all h ≤ h0, where C̃0 = C2(1 + C1) + C5,M2 = C2C1 +M1. Set

η = K1 max
0≤i≤N−1

‖εi‖+M2 max
−1≤i≤N−1

‖θi‖+ L1 max
0≤i≤N−1

‖δi/h‖,

where we recall that θ−1 = g(t0, x̃0). Repeating the estimation (3.28) yields

‖cn+1‖ ≤ (1 + hC̃0)‖cn‖+ hη

≤ h‖η‖+ h(1 + hC̃0)η + (1 + hC̃0)(1 + hC̃0)‖cn−1‖
...

≤ 1

C̃0
(eC̃0(tn+1−t0) − 1)η + eC̃0(tn+1−t0)‖c0‖.

(3.29)

The last inequality in (3.29) is obtained from elementary ones that are also used in proving the
zero-stability of the Euler method; see [2, Chapter 3]. Let

C̃1 = max{ 1

C̃0
(eC̃0(tN−t0) − 1), eC̃0(tN−t0)}.

Then, we have

(3.30) ‖ỹ1,n+1 − y1,n+1‖ ≤ C̃1
(
‖ỹ1,0 − y1,0‖+ η

)
.
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Combining (3.30) and (3.27) yields

‖ỹ2,n+1 − y2,n+1‖ ≤ C1
(
C̃1(‖ỹ1,0 − y1,0‖+ η) + ‖θn‖

)
≤ C̃2(‖ỹ1,0 − y1,0‖+ η),

where C̃2 = C1(C̃1 + 1/M2). We now derive

‖x̃n+1 − xn+1‖ = ‖Qn+1(ỹn+1 − yn+1)‖ ≤ ‖Qn+1

(
ỹ1,n+1 − y1,n+1

ỹ2,n+1 − y2,n+1

)
‖

≤ µ1(‖ỹ1,n+1 − y1,n+1‖+ ‖ỹ2,n+1 − y2,n+1‖)

≤ µ1C̃1(‖ỹ1,0 − y1,0‖+ η) + µ1C̃2(‖ỹ1,0 − y1,0‖+ η)

≤ µ1(C̃1 + C̃2)(‖ỹ1,0 − y1,0‖+ η)

≤ µ1(C̃1 + C̃2)
(
‖Q−1

0 (x̃0 − x0)‖+ η
)

≤ µ1µ2(C̃1 + C̃2)‖x̃0 − x0‖+ µ1(C̃1 + C̃2)η

≤ C‖x̃0 − x0‖
+K max

0≤i≤N−1
‖εi‖+ L max

0≤i≤N−1
‖δi/h‖+M max

−1≤i≤N−1
‖θi‖,

where

C = µ1µ2(C̃1 + C̃2), L = µ1(C̃1 + C̃2)L1, M = µ1(C̃1 + C̃2)M2, K = µ1(C̃1 + C̃2)K1.

Thus, if h0 is sufficiently small, then by induction, the sequence {x̃n}Nn=0 exists for h ≤ h0,
n = 0, 1, . . . , N − 1, and the estimate (3.24) holds with the constants C, K, L, andM, which
are independent of h.

REMARK 3.9. The estimate (3.24) also gives us some suggestions for the practical
implementation. Actually, δn and θn come from two sources: from rounding errors of
magnitude O(ε), where ε is the machine error, and from approximation errors caused by
Newton’s method with a given stopping criterion. Due to the term δn/h on the right-hand side
of (3.24), on one hand, for moderate h, one can solve the nonlinear equations approximately
without harming the convergence order. It is easy to see that the tolerance of Newton’s method
should be prescribed at least as small as O(h2). On the other hand, if the step size h becomes
very small, then the rounding errors will accumulate and be dominant. If the stepsize is too
small, then the rounding errors may make the actual error blow up (and even may make the
existence of the actual numerical solution questionable). Similar implications can be stated for
the error εn as well. Finally, we note that the result of Theorem 3.8 actually generalizes the
well-known error analysis of the Euler method for ODEs.

REMARK 3.10. If in an implementation one avoids the scaling by h, then the first equation
of the perturbed system (3.23) is replaced by

δn = f
(
tn, x̃n,

En+1x̃n+1 − Enx̃n
h

− Ẽ′nx̃n
)
,

which obviously leads to another error bound that looks slightly different than (3.24). Namely,
the term δi/h is simply replaced by δi. However, due to Remark 3.1, for an efficient im-
plementation of the Runge-Kutta methods (3.1) and (3.6), the scaling by h applied to the
discretization of the differential part of DAE (1.1) is useful and highly recommended.

The arguments in this proof can be used in a similar way for the analysis of computational
errors for the general HERK and IRK schemes (3.1), (3.6). However, in the scope of this paper
it is omitted since we wish to avoid lengthy but rather technical estimations.
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TABLE 4.1
Errors of the solutions to the IVP (3.16) with ω = 100, λ = −1.

α = 0.5 Standard HERK2 method HERK2 method (3.1)
h = 0.1 Actual error in x1 Error order in x1 Actual error in x1 Error order in x1

h 1.0930e+002 – 9.7922e-002 –
h/2 5.3486e+001 1.0311 2.3546e-002 2.0562
h/4 2.3607e+001 1.1799 5.7751e-003 2.0276
h/8 9.2599e+000 1.3502 1.4302e-003 2.0137
h/16 3.2091e+000 1.5288 3.5587e-004 2.0068
h/32 9.9293e-001 1.6924 8.8758e-005 2.0034

h = 0.1 Actual error in x2 Error order in x2 Actual error in x2 Error order in x2

h 4.0881e-001 – 6.6154e-004 –
h/2 2.5432e-001 0.68479 1.5918e-004 2.0552
h/4 1.3317e-001 0.93334 3.9049e-005 2.0273
h/8 5.7892e-002 1.2018 9.6706e-006 2.0136
h/16 2.1089e-002 1.4568 2.4063e-006 2.0068
h/32 6.6539e-003 1.6643 6.0017e-007 2.0034

4. Numerical experiments. As an illustration of the schemes (3.1) and (3.6) for the
DAEs (1.1), we present some numerical experiments to demonstrate the convergence order
and also make a comparison with the corresponding standard schemes.

EXAMPLE 4.1. First, we consider the IVP for the test DAE (3.16) with some specified
values of the parameters λ and ω on the interval [0, 5].

We have solved this initial value problem by the 2-stage half-explicit Runge-Kutta methods
(HERK2) on uniform meshes with different stepsizes h. The underlying explicit 2-stage RK
methods are given by the following Butcher tableau:

0 0 0
α α 0

1− 1
2α

1
2α

(0 < α ≤ 1).

This class of methods is well-known to be of second order for strangeness-free DAEs;
see [17]. The methods are implemented in Matlab, and we compute the actual errors
max0≤n≤N |xi(tn)− xi,n|, i = 1, 2, for various stepsizes. The values of the parameters
λ, ω, and α are specified in the tables. We also calculate estimates for the numerical con-
vergence order. The numerical results in Tables 4.1, 4.2, and 4.3 for the components x1 and
x2 confirm that the HERK2 method (3.1) is convergent of second order, but the numerical
solutions by the standard HERK method proposed in [17] are unstable when w = ωh is not
sufficiently small.

EXAMPLE 4.2. We consider the nonlinear DAE

x1(x′1 + tx′2) = x1x2e
t + e2t + t cos tet − e2t sin t,

0 = e−tx1 − x2 + sin t− 1,
(4.1)

for t ∈ [0, 1] with the initial condition x(0) = [1 0]T . It is easy to see that the DAE (4.1) is
strangeness-free and that the exact unique solution is x1 = et, x2 = sin t.

First, we carry out numerical experiments for the half-explicit variants of the classical
4-stage Runge-Kutta method (HERK4) on uniform meshes with different stepsizes h. The
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TABLE 4.2
Errors of the solutions to the IVP (3.16) with ω = 100, λ = −1.

α = 1 Standard HERK2 method HERK2 method (3.1)
h = 0.1 Actual error in x1 Error order in x1 Actual error in x1 Error order in x1

h 1.1439e+000 – 2.3546e-002 –
h/2 4.8792e-001 1.2293 5.7751e-003 2.0276
h/4 1.8920e-001 1.3667 1.4302e-003 2.0137
h/8 6.5367e-002 1.5333 3.5587e-004 2.0068
h/16 2.0207e-002 1.6937 8.8758e-005 2.0034
h/32 5.7300e-003 1.8183 2.2163e-005 2.0017

h = 0.1 Actual error in x2 Error order in x2 Actual error in x2 Error order in x2

h 7.8179e-003 – 1.5918e-004 –
h/2 3.3141e-003 1.2382 3.9049e-005 2.0273
h/4 1.2815e-003 1.3707 9.6706e-006 2.0136
h/8 4.4226e-004 1.5349 2.4063e-006 2.0068
h/16 1.3666e-004 1.6943 6.0017e-007 2.0034
h/32 3.8747e-005 1.8184 1.4987e-007 2.0017

4-stage Runge-Kutta method of order 4 is given by the Butcher tableau

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0
1
6

2
6

2
6

1
6

.

The numerical results in Tables 4.4 and 4.5 clearly illustrate that the convergence order of the
standard HERK4 method presented in [17] is reduced, but that of the HERK4 in the form (3.1)
remains the same as that for ODEs.

Next, we solve the above initial value problem by the implicit midpoint method (IMID)
in the form (3.6), which has the following Butcher tableau:

1
2

1
2

1
.

Note that the midpoint Runge-Kutta method is of second order, and it is not stiffly accurate.
The numerical results are displayed in Table 4.6 and well illustrate the preservation of the
second order. In the last experiments, we implement a 2-stage implicit Runge-Kutta method
(IRK2) in the form (3.6), whose coefficients are given in the Butcher tableau

1
3

5
12

−1
12

1 3
4

1
4

3
4

1
4

.

This method is known to be of third order for ODEs. In Table 4.7, the numerical results are
displayed in the case that the Jacobian matrix of the Newton iteration is analytically given.
Table 4.8 displays the numerical results in the case that the Jacobian arising in the Newton
iteration is approximated by formula (3.11). We use as a stopping criterion for the Newton
iteration that the difference between two consecutive Newton iterates is smaller than h4.
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TABLE 4.3
Errors of solutions to IVP (3.16) with ω = −100, λ = −1.

α = 0.5 Standard HERK2 method HERK2 method (3.1)
h = 0.1 Actual error in x1 Error order in x1 Actual error in x1 Error order in x1

h 2.6219e+006 – 2.3312e-002 –
h/2 6.2102e+043 -124.16 5.7176e-003 2.0276
h/4 4.0796e+006 123.52 1.4159e-003 2.0137
h/8 1.4370e+001 18.115 3.5233e-004 2.0068
h/16 1.9556e+000 2.8774 8.7875e-005 2.0034
h/32 3.9783e-001 2.2974 2.1943e-005 2.0017

h = 0.1 Actual error in x2 Error order in x2 Actual error in x2 Error order in x2

h 5.2542e+003 – 1.5918e-004 –
h/2 1.2445e+041 -124.16 3.9049e-005 2.0273
h/4 8.1755e+003 123.52 9.6706e-006 2.0136
h/8 8.7111e-002 16.518 2.4063e-006 2.0068
h/16 1.3119e-002 2.7312 6.0017e-007 2.0034
h/32 2.7071e-003 2.2768 1.4987e-007 2.0017

TABLE 4.4
Errors of the solution x1 to the IVP (4.1) by standard HERK4 and HERK4 methods.

Standard HERK4 method HERK4 method (3.1)
h = 0.2 Actual error in x1 Error order in x1 Actual error in x1 Error order in x1

h 1.1600e-004 – 4.1224e-005 –
h/2 1.5930e-005 2.8642 2.4838e-006 4.0529
h/4 2.0815e-006 2.9361 1.5166e-007 4.0336
h/8 2.6583e-007 2.9690 9.3585e-009 4.0185
h/16 3.3582e-008 2.9847 5.8102e-010 4.0096
h/32 4.2198e-009 2.9924 3.6193e-011 4.0048
h/64 5.2886e-010 2.9962 2.2569e-012 4.0033
h/128 6.6190e-011 2.9982 1.3634e-013 4.0491

TABLE 4.5
Errors of the solution x2 to the IVP (4.1) by standard HERK4 and HERK4 methods.

Standard HERK4 method HERK4 method (3.1)
h = 0.2 Actual error in x2 Error order in x2 Actual error in x2 Error order in x2

h 4.2672e-005 – 1.5571e-005 –
h/2 5.8604e-006 2.8642 9.3492e-007 4.0579
h/4 7.6573e-007 2.9361 5.6984e-008 4.0362
h/8 9.7794e-008 2.9690 3.5129e-009 4.0198
h/16 1.2354e-008 2.9847 2.1799e-010 4.0103
h/32 1.5524e-009 2.9924 1.3575e-011 4.0052
h/64 1.9456e-010 2.9962 8.4865e-013 3.9997
h/128 2.4350e-011 2.9982 5.2403e-014 4.0175
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TABLE 4.6
Errors of the solution to the IVP (4.1) by the IMID method.

IMID method IMID method
h = 0.1 Actual error in x1 Error order in x1 Actual error in x2 Error order in x2

h 1.1184e-002 – 1.5136e-003 –
h/2 2.7900e-003 2.0031 3.7759e-004 2.0031
h/4 6.9713e-004 2.0008 9.4347e-005 2.0008
h/8 1.7426e-004 2.0002 2.3583e-005 2.0002
h/16 4.3563e-005 2.0000 5.8957e-006 2.0000
h/32 1.0891e-005 2.0000 1.4739e-006 2.0000
h/64 2.7227e-006 2.0000 3.6848e-007 2.0000
h/128 6.8067e-007 2.0000 9.2119e-008 2.0000

TABLE 4.7
Errors of the solution to the IVP (4.1) by the IRK2 method.

IRK2 method (3.6) IRK2 method (3.6)
h = 0.1 Actual error in x1 Error order in x1 Actual error in x2 Error order in x2

h 9.0149e-006 – 4.7991e-006 –
h/2 1.1346e-006 2.9901 6.0274e-007 2.9931
h/4 1.4207e-007 2.9976 7.5353e-008 2.9998
h/8 1.7769e-008 2.9991 9.4195e-009 2.9999
h/16 2.2216e-009 2.9997 1.1773e-009 3.0002
h/32 2.7773e-010 2.9999 1.4714e-010 3.0001
h/64 3.4712e-011 3.0002 1.8391e-011 3.0001
h/128 4.3379e-012 3.0004 2.2994e-012 2.9997

TABLE 4.8
Errors of the solution to the IVP (4.1) by the IRK2 method in the case of approximate Jacobian.

IRK2 method (3.6) IRK2 method (3.6)

h = 0.1 Actual error in x1 Error order in x1 Actual error in x2 Error order in x2

h 8.6234e-006 – 4.5654e-006 –
h/2 1.1388e-006 2.9208 6.0677e-007 2.9115
h/4 1.4207e-007 3.0028 7.5292e-008 3.0106
h/8 1.7781e-008 2.9982 9.4208e-009 2.9986
h/16 2.2267e-009 2.9974 1.1777e-009 2.9998
h/32 2.8010e-010 2.9909 1.4735e-010 2.9987
h/64 3.6075e-011 2.9569 1.8485e-011 2.9948
h/128 5.1550e-012 2.8070 2.3478e-012 2.9770

5. Conclusion. In this paper, we have revisited the Runge-Kutta methods for solving
structured strangeness-free DAEs of the form (1.1). It is shown that, instead of discretizing
directly the DAEs systems, we apply the half-explicit and implicit Runge-Kutta methods to
the reformulated form (2.5). Not only the convergence order and the stability are preserved,
but also some conditions on the Runge-Kutta methods are relaxed. In essence, here we
have shown that the reformulated form (2.5) behaves under discretization like a semi-explicit
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DAE of index 1, while the strangeness-free DAE (1.1) behaves like a semi-explicit DAE
of index 2 as explained in [17]. Thus, a wider class of methods can be used for efficiently
solving the DAEs (1.1). The numerical solutions by the discretization schemes proposed in
this paper also reflect better the stability characteristics (Lyapunov exponents, Sacker-Sell
spectral intervals) of the original differential-algebraic equations. Furthermore, integrators
with error control and automatic stepsize selection, which are based on popular embedded
Runge-Kutta pairs such as Dormand-Prince, and Runge-Kutta-Chebyshev methods, which are
well known for efficiently solving stiff problems, can be easily adopted to solving DAEs. In
addition, symmetric collocation such as Gauss methods, which are not stiffly accurate but have
good stability property in the context of boundary value problems, may also be considered for
solving BVPs for DAEs of the form (1.1). It is worth investigating these topics in the future.
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