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NUMERICAL ANALYSIS OF A DUAL-MIXED PROBLEM IN NON-STANDARD
BANACH SPACES∗

JESSIKA CAMAÑO†§, CRISTIAN MUÑOZ‡, AND RICARDO OYARZÚA‡§

Abstract. In this paper we analyze the numerical approximation of a saddle-point problem posed in non-standard
Banach spaces H(divp ,Ω) × Lq(Ω), where H(divp ,Ω) := {τ ∈ [L2(Ω)]n : divτ ∈ Lp(Ω)}, with p > 1
and q ∈ R being the conjugate exponent of p and Ω ⊆ Rn (n ∈ {2, 3}) a bounded domain with Lipschitz
boundary Γ. In particular, we are interested in deriving the stability properties of the forms involved (inf-sup
conditions, boundedness), which are the main ingredients to analyze mixed formulations. In fact, by using these
properties we prove the well-posedness of the corresponding continuous and discrete saddle-point problems by means
of the classical Babuška-Brezzi theory, where the associated Galerkin scheme is defined by Raviart-Thomas elements
of order k ≥ 0 combined with piecewise polynomials of degree k. In addition we prove optimal convergence of
the numerical approximation in the associated Lebesgue norms. Next, by employing the theory developed for the
saddle-point problem, we analyze a mixed finite element method for a convection-diffusion problem, providing
well-posedness of the continuous and discrete problems and optimal convergence under a smallness assumption on
the convective vector field. Finally, we corroborate the theoretical results with suitable numerical results in two and
three dimensions.
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1. Introduction. This paper is concerned with the solvability and numerical approx-
imation of the saddle-point problem: Given F ∈ [H(divp ,Ω)]′ and G ∈ [Lq(Ω)]′, find
(σ, u) ∈ H(divp ,Ω)× Lq(Ω) such that

(1.1)

∫
Ω

σ · τ +

∫
Ω

udivτ = F (τ ) ∀ τ ∈ H(divp ,Ω),∫
Ω

v divσ = G(v) ∀ v ∈ Lq(Ω),

where Ω ⊆ Rn (n = 2, 3) is a bounded domain with Lipschitz boundary Γ, and given p > 2n
n+2 ,

H(divp ,Ω) is the Banach space defined as

H(divp ,Ω) := {τ ∈ [L2(Ω)]n : divτ ∈ Lp(Ω)}

endowed with the norm

‖τ‖H(divp ,Ω) :=
(
‖τ‖2L2(Ω) + ‖divτ‖2Lp(Ω)

)1/2

,

and q ∈ R is the conjugate exponent of p satisfying 1
p + 1

q = 1. In particular, we are interested
in providing the stability properties of the forms involved (inf-sup conditions, boundedness),
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at the continuous and discrete level, which are the main requirements to deduce the well-
posedness of (1.1) and its Galerkin scheme and to derive the corresponding error analysis. We
believe that, by having these stability properties, one can easily analyze mixed formulations of
other interesting problems in fluid and solid mechanics. For instance, to approximate the flux
of certain concentration θ in a flow-transport system with θ satisfying the convection-diffusion
equation:

(1.2) −∆θ + v · ∇θ = g in Ω, θ = θD on Γ,

where v is a given function in [H1(Ω)]n representing the velocity of a viscous fluid occupying
the region Ω where the concentration is moving and g ∈ L2(Ω) and θD ∈ H1/2(Γ) are given
data, certainly the best option is to use a mixed method. To that end, we introduce the further
unknown σ := ∇θ in Ω and apply a suitable integration by parts formula to arrive at the
mixed variational formulation of (1.2): Find σ and θ in suitable spaces such that

(1.3)

∫
Ω

σ · τ +

∫
Ω

θ divτ = 〈τ · ν, θD〉Γ ,∫
Ω

ψ divσ −
∫

Ω

ψ(v · σ) =−
∫

Ω

gψ,

for all τ and ψ, where ν is the unit outward normal to Ω and 〈·, ·〉Γ is the duality pairing of
H−1/2(Γ) and H1/2(Γ) with respect to the L2(Γ)-inner product. Now, in order to define the
spaces for the corresponding unknowns and test functions, we notice that the first term of the
first equation of (1.3) is well defined if σ and τ are in [L2(Ω)]n. However, if σ ∈ [L2(Ω)]n,
then the second term of the second equation of (1.3) forces the test function ψ to live in a
space smaller than L2(Ω), and as a consequence, the term divσ shall be in a larger space than
L2(Ω). Indeed, by applying Cauchy-Schwarz and Hölder inequalities and then the continuous
injection of H1(Ω) into L4(Ω) (see, e.g., [21, Theorem 1.3.4]), we obtain that there exists a
constant c(Ω) such that∣∣∣∣∫

Ω

ψ(v · σ)

∣∣∣∣ ≤ ‖ψv‖[L2(Ω)]n‖σ‖[L2(Ω)]n ≤ ‖ψ‖L4(Ω)‖v‖[L4(Ω)]n‖σ‖[L2(Ω)]n

≤ c(Ω)‖ψ‖L4(Ω)‖v‖[H1(Ω)]n‖σ‖[L2(Ω)]n .

(1.4)

According to the above, we obtain that the mixed problem (1.3) is well defined if the unknown
θ and the test function ψ live both in L4(Ω), whereas σ and τ live in H(div4/3,Ω), where

H(div4/3,Ω) := {τ ∈ [L2(Ω)]n : divτ ∈ L4/3(Ω)}.

Observe that if v ∈ H1(Ω) ∩ L∞(Ω), in (1.4) we could have bounded v in the L∞-norm and
keep ψ and divσ in L2(Ω). However, since (1.2) is usually coupled with an equation modeling
the velocity v, the estimate of v in the H1-norm is required to analyze the full system. For
instance, in [10, 11] (see also [5, 7, 15, 20]) to analyze the well-posedness of a new augmented
mixed formulation for the Boussinesq model, which consists of a system of equations where
the Navier-Stokes equation is coupled with a convection-diffusion equation of the type (1.2), a
fixed-point strategy is proposed, where the estimate of the velocity in the convective term, at
first in the L4-norm and later in the H1-norm, is crucial to achieve the Lipschitz continuity
and the contractive property of the corresponding fixed-point operator. A similar approach
can be found in [2] for a flow-transport problem. We also remark that if v is in L2(Ω) or in
H(div), then the analysis below cannot be applied since the term |

∫
Ω
ψ(v · σ)| cannot be

bounded properly. In particular, the latter prevents the use of our approach when the velocity
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is modeled by Darcy’s law. We refer the reader to [3, 4] for this type of coupled models and
observe that in both contributions the heat equation is written in the standard primal form.

A more simple problem that also fits in the framework of (1.1) is the Poisson problem
with data f ∈ Lp(Ω), p > 2n

n+2 :

(1.5) −∆u = f in Ω and u = uD on Γ.

In fact, by setting σ = ∇u in Ω, it readily follows that −divσ = f ∈ Lp(Ω), and then,
integrating by parts, one easily arrive at (1.1) with F (τ ) = 〈τ · ν, uD〉Γ andG(v) = −

∫
Ω
f v.

Now, concerning the error analysis of mixed finite element methods in Lebesgue spaces,
among the few works available in the literature we could mention the paper [13] where the
author focuses on deriving the a priori error estimate in Lp, with 1 ≤ p ≤ ∞, of the numerical
approximation of the standard H(div,Ω) × L2(Ω) dual-mixed formulation of the Poisson
problem (1.5) in R2. Similarly, in [1] the authors focus on proving error estimates in Lp, with
1 ≤ p ≤ ∞, for the 3D Raviart-Thomas approximation of mixed problems. We emphasize
that in both papers the error analysis is derived by assuming that the unknowns σ and u are in
the standard Hilbert spaces H(div) and L2, which differs from our approach.

According to the above discussion, in this paper we analyze the solvability and numerical
approximation of the mixed variational formulation of problem (1.1) with p > 2n

n+2 . We
employ the classical Babuška-Brezzi theory to study the well-posedness of the continuous
problem. Since the Lebesgue and Sobolev spaces involved are not standard, the main drawback
appears when proving the corresponding inf-sup condition, which is overcome by using
suitable auxiliary problems. Similarly, we obtain that the associated Galerkin scheme, defined
by Raviart-Thomas elements of order k ≥ 0 and piecewise polynomials of degree k defined
on a regular mesh, is well posed and convergent. Next, we apply the theory developed for the
saddle-point problem (1.1) to analyze the convection-diffusion problem (1.3). More precisely,
we combine the stability properties of the forms defining (1.1) with the well-known Banach-
Nečas-Babuška theorem (cf. [14, Theorem 2.6]) and obtain that, under a smallness assumption
on the coefficient v in the H1-norm, problem (1.3) and its corresponding Galerkin scheme are
well-posed.

The rest of the article is organized as follows. In Section 2 we prove the well-posedness of
problem (1.1) by means of the classical Babuška-Brezzi theory. The corresponding Galerkin
scheme is defined and analyzed in Section 3. Next, in Section 4 we apply the results derived
in the previous sections to the convection-diffusion problem (1.2). Finally, several numerical
results illustrating the performance of the mixed method are presented in Section 5.

We end this section by fixing some notation. Throughout the rest of the paper, we utilize
the standard terminology for Lebesgue and Sobolev spaces, norms, and seminorms. In fact,
let O be a domain in Rn, n = 2, 3, with Lipschitz boundary ∂O. For r ≥ 0 and p ∈ [1,∞],
we denote by Lp(O) and W r,p(O) the usual Lebesgue and Sobolev spaces endowed with the
norms ‖ · ‖Lp(O) and ‖ · ‖W r,p(O), respectively. Note that W 0,p(O) = Lp(O). If p = 2, we
write Hr(O) in place of W r,2(O) and denote the corresponding Lebesgue and Sobolev norms
by ‖ · ‖0,O and ‖ · ‖r,O, respectively. For r ≥ 0, we write | · |r,O for the Hr-seminorm. The
space W 1,p

0 (O) is the space of functions in W 1,p(O) with vanishing trace on ∂O. Also, the
Hilbert space

H(div,O) :=
{
τ ∈ [L2(O)]n : div τ ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [6] or [18] for instance).
In what follows, we employ 0 to denote a generic null vector and use C and c, with or

without subscripts, bars, tildes or hats, to denote generic positive constants independent of the
discretization parameters, which may take different values at different places.
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Finally, given two Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), the norm in the product
space X × Y will be denoted in the sequel by ‖(·, ·)‖ and will be defined as

‖(x, y)‖ = ‖x‖X + ‖y‖Y .

2. Analysis of the continuous problem.

2.1. Preliminaries. Here, we introduce some notations and preliminary results that will
serve for the forthcoming analysis. We begin by defining the sign function sgn, given by

sgn(v) :=

{
1 if v ≥ 0,
−1 if v < 0,

for any scalar function v. It is quite clear that for a given v, v sgn(v) = |v|.
In the sequel we will make use of the well known Hölder, Poincaré, and Sobolev inequali-

ties:

(2.1)
∫

Ω

|fg| ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω), ∀ f ∈ Lp(Ω), ∀ g ∈ Lq(Ω), with 1
p + 1

q = 1,

(2.2) ‖w‖1,Ω ≤ CP |w|1,Ω ∀w ∈ H1
0(Ω),

and

(2.3) ‖w‖Lr(Ω) ≤ CSob‖w‖1,Ω ∀w ∈ H1(Ω) ,

{
r ≥ 1, if n = 2,

r ∈ [1, 6] if n = 3,

with CP > 0 and CSob > 0 depending only on |Ω|.

2.2. Well-posedness. In what follows we address the existence and uniqueness of a
solution of problem (1.1). To that end, and for the sake of simplicity, we now write our
problem in the classical variational setting and state the main properties of the bilinear forms
involved. We start by defining the spaces

H := H(divp ,Ω) and Q := Lq(Ω).

Then, defining the bilinear forms a : H×H→ R and b : H×Q→ R by

(2.4) a(σ, τ ) :=

∫
Ω

σ · τ and b(τ , v) :=

∫
Ω

v divτ ,

the variational formulation (1.1) reads: Find (σ, u) ∈ H×Q such that

(2.5)
a(σ, τ ) + b(τ , u) = F (τ ) ∀ τ ∈ H,

b(σ, v) = G(v) ∀ v ∈ Q.

Notice that, owing to the Hölder inequality (2.1), the bilinear forms a and b are bounded:

|a(σ, τ )| ≤ ‖σ‖H‖τ‖H ∀σ ∈ H, ∀ τ ∈ H,

|b(τ , v)| ≤ ‖v‖Q‖τ‖H ∀ τ ∈ H, ∀ v ∈ Q.

Throughout the rest of this section we employ the classical Babuška-Brezzi theory in
Banach spaces (e.g., [14, Theorem 2.34]) to conclude that (2.5) is well posed. This requires
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an inf-sup condition of b and two inf-sup conditions of a on the kernel of b. We start with the
inf-sup condition of b.

LEMMA 2.1. There exists β > 0 such that

(2.6) sup
τ∈H\0

b(τ , v)

‖τ‖H
≥ β‖v‖Q ∀ v ∈ Q.

Proof. Given v ∈ Q, we let τ̃ = −∇z, with z ∈ H1
0(Ω) being the unique solution of the

variational problem

(2.7)
∫

Ω

∇z · ∇w =

∫
Ω

sgn (v)|v|q−1w ∀w ∈ H1
0(Ω).

Notice that ∫
Ω

∣∣sgn (v)|v|q−1
∣∣p =

∫
Ω

|v|p(q−1) =

∫
Ω

|v|q < +∞,

which implies that sgn (v)|v|q−1 ∈ Lp(Ω). Then, since p > 2n
n+2 , it is well-known that

problem (2.7) is well posed. In turn, from (2.7) it readily follows that divτ̃ = sgn (v)|v|q−1.
As a consequence, we obtain that τ̃ ∈ H and

(2.8) ‖divτ̃‖Lp(Ω) = ‖|v|q−1‖Lp(Ω).

On the other hand, utilizing inequalities (2.1), (2.2), and (2.3), from (2.7) with w = z we
obtain

‖τ̃‖20,Ω ≤ ‖|v|q−1‖Lp(Ω)‖z‖Q ≤ CSob‖|v|q−1‖Lp(Ω)‖z‖1,Ω
≤ CPCSob‖|v|q−1‖Lp(Ω)|z|1,Ω = CPCSob‖|v|q−1‖Lp(Ω)‖τ̃‖0,Ω,

from which,

(2.9) ‖τ̃‖0,Ω ≤ CPCSob‖|v|q−1‖Lp(Ω).

In this way, from (2.8) and (2.9) we have

‖τ̃‖H ≤ (1 + C2
PC

2
Sob)

1/2‖|v|q−1‖Lp(Ω),

which together with the fact that

‖|v|q−1‖Lp(Ω) =

(∫
Ω

(|v|q−1)p
) 1

p

=

(∫
Ω

|v|q
) q−1

q

= ‖v‖q−1
Q

implies

(2.10) ‖τ̃‖H ≤ (1 + C2
PC

2
Sob)

1/2‖v‖q−1
Q .

Therefore, recalling that v sgn (v) = |v|, from the definition of τ̃ and (2.10), we obtain

sup
τ∈H\0

b(τ , v)

‖τ‖H
≥ b(τ̃ , v)

‖τ̃‖H
=

∫
Ω

v divτ̃

‖τ̃‖H
≥ (1 + C2

PC
2
Sob)

−1/2

∫
Ω

|v| |v|q−1

‖v‖q−1
Q

= (1 + C2
PC

2
Sob)

−1/2
‖v‖qQ
‖v‖q−1

Q

= (1 + C2
PC

2
Sob)

−1/2‖v‖Q,

which concludes the proof with β = (1 + C2
PC

2
Sob)

−1/2 > 0.
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We now let V be the kernel of b, that is

V := {τ ∈ H: b(τ , v) = 0, ∀ v ∈ Q} =

{
τ ∈ H:

∫
Ω

v divτ = 0, ∀ v ∈ Q

}
.

Observe that if τ ∈ V , then taking v = sgn (divτ )|divτ |p−1, which is clearly an element in
Q since∫

Ω

|v|q =

∫
Ω

∣∣sgn (divτ )|divτ |p−1
∣∣q =

∫
Ω

|divτ |(p−1)q =

∫
Ω

|divτ |p < +∞,

it follows that

0 =

∫
Ω

v divτ =

∫
Ω

sgn (divτ )|divτ |p−1divτ =

∫
Ω

|divτ |p = ‖divτ‖pLp(Ω),

and then divτ ≡ 0 in Lp(Ω). In this way,

V := {τ ∈ H : divτ ≡ 0 in Ω} .

The following lemma establishes the corresponding inf-sup conditions of a on V .
LEMMA 2.2. There exists α > 0 such that

(2.11) sup
τ∈V \{0}

a(ζ, τ )

‖τ‖H
≥ α‖τ‖H ∀ ζ ∈ V.

In addition,

(2.12) sup
ζ∈V

a(ζ, τ ) > 0 ∀ τ ∈ V \{0}.

Proof. Given τ ∈ V , from the definition of V , it readily follows that

a(τ , τ ) = ‖τ‖20,Ω = ‖τ‖2H,

which clearly implies (2.11) with α = 1. Moreover, the estimate (2.12) follows from (2.11)
and the fact that a(ζ, τ ) = a(τ , ζ) for all ζ, τ ∈ H.

The well-posedness of the continuous formulation (2.5) is provided now.
THEOREM 2.3. Let p > 2n

n+2 , F ∈ H′, and G ∈ Q′. Then there exists a unique solution
(σ, u) ∈ H×Q to (2.5). In addition, there exists C > 0, independent of the solution, such that

‖(σ, u)‖ ≤ C(‖F‖H′ + ‖G‖Q′).

Proof. Thanks to Lemmas 2.1 and 2.2, the proof follows from a straightforward application
of the Babuška-Brezzi theory in Banach spaces (see, e.g., [14, Theorem 2.34]).

3. The mixed finite element scheme.

3.1. Preliminaries. Let {Th}h>0 be a regular family of triangulations of Ω by triangles
T in R2 or tetrahedra in R3 of diameter hT such that h := max{hT : T ∈ Th}. Let us recall
that {Th}h>0 is said to be regular if there exists c > 0 such that

(3.1)
hT
ρT
≤ c, ∀T ∈ Th ∀h > 0,
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where ρT > 0 is the diameter of the largest circle or sphere contained in T . Then, for each
T ∈ Th, we let RTk(T ) be the local Raviart-Thomas element of order k ≥ 0, i.e.,

RTk(T ) := [Pk(T )]n ⊕ Pk(T )x,

where x := (x1, . . . , xn)t is a generic vector of Rn and Pk(T ) is the space of polynomials
defined on T of degree ≤ k. Hence, we define the following finite element subspaces to
approximate the unknowns σ ∈ H and u ∈ Q:

Hh := {τh ∈ H: τh|T ∈ RTk(T ), ∀T ∈ Th} ⊆ H,

Qh := {vh ∈ Q: vh|T ∈ Pk(T ), ∀T ∈ Th} ⊆ Q.
(3.2)

Then the conforming Galerkin scheme for (2.5) reads: Find (σh, uh) ∈ Hh ×Qh such that

(3.3)
a(σh, τh) + b(τh, uh) = F (τh) ∀ τh ∈ Hh,

b(σh, vh) = G(vh) ∀ vh ∈ Qh,

where a and b are the bilinear forms defined in (2.4).
Next, in Section 3.2 we proceed similarly as in [17, Section 4.2] and employ the discrete

Babuška-Brezzi theory to prove that problem (3.3) is well posed. To that end, we first need to
establish some preliminary results and definitions. We begin by introducing the approximation
properties of the finite element subspaces introduced above. To do that we first define the
space

Zp := {τ ∈ H(divp ,Ω): τ |T ∈ [W 1,p(T )]n, ∀T ∈ Th},

and let

Πk
h : Zp → Hh,

be the Raviart-Thomas interpolation operator, which is well defined in Zp (see, e.g., [14,
Section 1.2.7]) and is characterized by the identities∫

e

(Πk
h(τ ) · ν) ξ =

∫
e

(τ · ν) ξ ∀ ξ ∈ Pk(e), ∀ edge or face e of Th,

and ∫
T

Πk
h(τ ) ·ψ =

∫
T

τ ·ψ ∀ ψ ∈ Pk−1(T ), ∀ T ∈ Th (if k ≥ 1) .

In addition, it is well known (see, e.g., [14, Lemma 1.41]) that the following identity holds

(3.4) div(Πk
h(τ )) = Ph(divτ ) ∀ τ ∈ Zp,

where Ph : L2(Ω) → Qh is the corresponding orthogonal projection, which satisfies the
following error estimate (see [14, Section 1.6.3]): For each 0 ≤ t ≤ k + 1 and for each
w ∈W t,r(Ω), with 1 ≤ r ≤ ∞, it holds that

(3.5) ‖w − Ph(w)‖Lr(Ω) ≤ Cht|w|W t,r(Ω).

The following lemma establishes the local approximation properties of Πk
h.

LEMMA 3.1. Let r > 2n
n+2 . Then there exists C1 > 0 independent of h such that for each

τ ∈ [W l+1,r(T )]n, with 0 ≤ l ≤ k, and for each 0 ≤ m ≤ l + 1,

(3.6) |τ −Πk
h(τ )|[Wm,r(T )]n ≤ C1

hl+2
T

ρm+1
T

|τ |[W l+1,r(T )]n .
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Moreover, there exists C2 > 0 independent of h such that for each τ ∈ [W 1,r(T )]n, with
divτ ∈W l+1,r(T ) and 0 ≤ l ≤ k, and for each 0 ≤ m ≤ l + 1,

(3.7) |divτ − div(Πk
h(τ ))|Wm,r(T ) ≤ C2

hl+1
T

ρmT
|divτ |W l+1,r(T ).

Proof. Employing theLp-version of the Deny-Lions Lemma provided in [14, Lemma B.67]
and the local estimates given in [14, Lemma 1.101], one can proceed analogously as in [17,
Section 3.4.4] and prove that for any r > 2n

n+2 the estimates (3.6) and (3.7) hold. We omit
further details.

Owing to the regularity of the mesh (cf. (3.1)) and from the estimates (3.6) and (3.7), it is
not difficult to see that the following global estimate holds

‖τ −Πk
h(τ )‖0,Ω + ‖divτ − div(Πh(τ ))‖Lp(Ω)

≤ chl+1
{
|τ |[Hl+1(Ω)]n + |divτ |W l+1,p(Ω)

}
,

(3.8)

for all 0 ≤ l ≤ k + 1 and for all τ ∈ [H l+1(Ω)]n with divτ ∈W l+1,p(Ω).
REMARK 3.2. Notice that from the regularity of the mesh (cf. (3.1)) and from (3.6) with

m = 0 and m = 1, one can easily obtain, respectively, that

‖τ −Πk
h(τ )‖[Lr(T )]n ≤ C1

hl+2
T

ρT
|τ |[W l+1,r(T )]n ≤ Ĉ1h

l+1
T |τ |[W l+1,r(T )]n

and

|τ −Πk
h(τ )|[W 1,r(T )]n ≤ C2

hl+2
T

ρ2
T

|τ |[W l+1,r(T )]n ≤ Ĉ2h
l
T |τ |[W l+1,r(T )]n ,

which combined yields

(3.9) ‖τ −Πk
h(τ )‖[W 1,r(Ω)]n ≤ Chl|τ |[W l+1,r(Ω)]n ∀ τ ∈ [W l+1,r(Ω)]n.

The latter will be employed below in the proof of Lemma 3.3.

3.2. Analysis of the discrete problem. In this section we apply the discrete Babuška-
Brezzi theory to prove the well-posedness of the Galerkin scheme (3.3). We start by establish-
ing the discrete inf-sup condition for b.

LEMMA 3.3. There exists β∗ > 0 independent of h such that

(3.10) sup
τh∈Hh
τh 6=0

b(τh, vh)

‖τh‖H
≥ β∗‖vh‖Q ∀ vh ∈ Qh.

Proof. Given vh ∈ Qh, we set

ṽh :=

{
sgn (vh)|vh|q−1 in Ω,

0 in B\Ω,

where B ⊆ Rn is an open and bounded convex set containing Ω. Since vh ∈ Lp(Ω), a
well-known result on regularity of elliptic problems (see, e.g., [16]) implies that there exists a
unique weak solution ϕ ∈W 2,p(B) ∩W 1,p

0 (B) of the boundary value problem

−∆ϕ = ṽh in B and ϕ = 0 on ∂B,
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which satisfies

(3.11) ‖ϕ‖W 2,p(Ω) ≤ C‖ṽh‖Lp(B) = C‖|vh|q−1‖Lp(Ω) = C‖vh‖q−1
Q

with C > 0. Hence, we set τ̂ = −∇ϕ|Ω ∈ [W 1,p(Ω)]n and observe from (3.11) that

(3.12) ‖τ̂‖[W 1,p(Ω)]n ≤ C‖vh‖q−1
Q ,

which together with the continuous embedding from W 1,p(Ω) into L2(Ω) implies

(3.13) ‖τ̂‖0,Ω ≤ C‖vh‖q−1
Q .

Now, we let τ̂h = Πk
h(τ̂ ) and observe from (3.4) that

(3.14) divτ̂h = Ph(divτ̂ ) = Ph(sgn (vh)|vh|q−1).

In turn, utilizing the triangle inequality, the continuous embedding from W 1,p(Ω) into L2(Ω),
and the estimate (3.13), we obtain

‖τ̂h‖0,Ω ≤ ‖τ̂ − τ̂h‖0,Ω + ‖τ̂‖0,Ω ≤ c1‖τ̂ − τ̂h‖[W 1,p(Ω)]n + c2‖vh‖q−1
Q ,

which together with (3.9) with r = p and l = 0, and (3.12), imply

(3.15) ‖τ̂h‖0,Ω ≤ C‖vh‖q−1
Q .

Hence, using the fact that Ph is a continuous operator, from (3.14) and (3.15), we easily obtain

(3.16) ‖τ̂h‖H =
{
‖τ̂h‖20,Ω + ‖div(τ̂h)‖2Lp(Ω)

}1/2 ≤ ĉ‖vh‖q−1
Q ,

with ĉ > 0 independent of h. Therefore, from (3.14) and (3.16), we find

sup
τh∈Hh
τh 6=θ

b(τh, vh)

‖τh‖H
≥ b(τ̂h, vh)

‖τ̂h‖H
≥ 1

ĉ

∫
Ω

vh sgn (vh)|vh|q−1

‖vh‖q−1
Q

=
1

ĉ

‖vh‖qQ
‖vh‖q−1

Q

=
1

ĉ
‖vh‖Q,

which concludes the proof with β∗ = 1
ĉ .

We now look at the discrete kernel of b defined by

Vh := {τh ∈ Hh : b(τh, vh) = 0, ∀ vh ∈ Qh} .

Since divHh ⊆ Qh, it readily follows that

Vh = {τh ∈ Hh : divτh = 0 in Ω} .

The discrete version of Lemma 2.2 is shown next.
LEMMA 3.4. There exists α∗ > 0 independent of h such that

(3.17) sup
τh∈Vh

a(ζh, τh)

‖τh‖H
≥ α∗‖ζh‖H ∀ τh ∈ Vh.

Proof. According to the definition of Vh, the proof follows analogously to the proof of the
estimate (2.11) with α∗ = 1.
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We recall here that in finite-dimensional spaces the discrete versions of (2.11) and (2.12)
are equivalent, which is the reason why we only prove (3.17).

Owing to Lemmas 3.3 and 3.4, we are now in the position of establishing the solvability
and stability of the Galerkin scheme (3.3) and the corresponding a priori error estimate.

THEOREM 3.5. Let p > 2n
n+2 , F ∈ H′, and G ∈ Q′. Then there exists a unique solution

(σh, uh) ∈ Hh ×Qh to (3.3). In addition, there exist C1, C2 > 0 independent of h such that

‖(σh, uh)‖ ≤ C1

{
‖F |Hh

‖H′h + ‖G|Qh
‖Q′h

}
and

(3.18) ‖(σ − σh, u− uh)‖ ≤ C2

{
inf

τh∈Hh

‖σ − τh‖H + inf
vh∈Qh

‖u− vh‖Q
}
,

where (σ, u) ∈ H×Q is the unique solution of (2.5).
Proof. It follows from Lemmas 3.3 and 3.4 and a direct application of the discrete

Babuška-Brezzi theory.
We now provide the rate of convergence of our mixed finite element method.
THEOREM 3.6. Let p > 2n

n+2 , and let (σ, u) ∈ H × Q and (σh, uh) ∈ Hh × Qh

be the unique solutions of the continuous and discrete mixed formulations (2.5) and (3.3),
respectively. Assume that σ ∈ [Hl+1(Ω)]n, divσ ∈ W l+1,p(Ω), and u ∈ W l+1,q(Ω), with
0 ≤ l ≤ k. Then there exists C > 0 independent of h such that

(3.19) ‖(σ, u)− (σh, uh)‖ ≤ Chl+1
{
‖σ‖l+1,Ω + ‖divσ‖W l+1,p(Ω) + ‖u‖W l+1,q(Ω)

}
.

Proof. From the approximation property (3.5) with r = q and t = l+ 1, we easily obtain

(3.20) ‖u− Ph(u)‖Q ≤ Chl+1‖u‖W l+1,q(Ω).

Then, (3.19) readily follows from (3.8), (3.20), and the Céa estimate (3.18).

4. Analysis of a convection-diffusion problem. In this section we address the unique
solvability and numerical approximation of the convection-diffusion problem (1.3). To that
end we let d : H(div4/3,Ω)× L4(Ω)→ R be the bilinear form

d(τ , ψ) := −
∫

Ω

(v · τ )ψ,

and F : H(div4/3,Ω)→ R and G : L4(Ω)→ R be the functionals

(4.1) F (τ ) := 〈τ · ν, θD〉Γ and G(ψ) := −
∫

Ω

gψ.

Then it is clear that the mixed variational problem (1.3) reads as follows: Find
(σ, θ) ∈ H(div4/3,Ω)× L4(Ω) such that

(4.2)
a(σ, τ ) + b(τ , θ) = F (τ ),

b(σ, ψ) + d(σ, ψ) = G(ψ),

for all (τ , ψ) ∈ H(div4/3,Ω)× L4(Ω), where a and b are the bilinear forms defined in (2.4).
The unique solvability of (4.2) is derived in the next section.
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4.1. Analysis of the continuous problem. We begin this section by proving that F and
G (cf. (4.1)) are well defined and bounded. Let us first recall that given τ ∈ H(div,Ω), the
normal trace τ · ν is defined as the functional in H−1/2(Γ) given by (see, e.g., [17, Section
1.3.4])

(4.3) 〈τ · ν, ξ〉Γ =

∫
Ω

τ · ∇γ̃−1
0 (ξ) +

∫
Ω

γ̃−1
0 (ξ) divτ ∀ ξ ∈ H1/2(Γ),

where γ̃−1
0 : H1/2(Γ) → [H1

0(Ω)]⊥ is the right inverse of the well-known trace operator
γ0 : H1(Ω) → H1/2(Γ). Then, since γ̃−1

0 (ξ) ∈ H1(Ω), owing to the Sobolev embedding
H1(Ω) ⊂ L4(Ω), the last term in (4.3) is still well defined if divτ ∈ L4/3(Ω). This implies
that τ · ν ∈ H−1/2(Γ) for all τ ∈ H(div4/3,Ω), and as a result, the right-hand side of the
first equation of (1.1) is well defined. Moreover, it readily follows that there exists c(Ω) > 0
depending on |Ω| such that

| 〈τ · ν, ξ〉Γ | ≤ c(Ω)‖τ‖H(div4/3,Ω)‖ξ‖1/2,Γ, ∀ τ ∈ H(div4/3,Ω), ∀ ξ ∈ H1/2(Γ).

As a consequence of the latter and the Hölder inequality (2.1), it readily follows that F and G
are bounded:

|F (τ )| = | 〈τ · ν, θD〉Γ | ≤ c(Ω)‖θD‖1/2,Γ‖τ‖H(div4/3,Ω) ∀ τ ∈ H(div4/3,Ω),

|G(v)| ≤ ‖g‖L4/3(Ω)‖v‖L4(Ω) ∀ v ∈ L4(Ω).
(4.4)

Let us observe also that, owing to the Sobolev inequality (2.3), the bilinear form d is bounded:

(4.5) |d(τ , ψ)| ≤ CSob‖v‖1,Ω‖τ‖H(div4/3,Ω)‖ψ‖L4(Ω) ∀ (τ , ψ) ∈ H(div4/3,Ω)×L4(Ω).

The following result establishes the well-posedness of (4.2).
THEOREM 4.1. Let Ω ⊆ Rn, n = 2, 3, be a bounded domain with Lipschitz boundary Γ.

Assume that

(4.6)
CSob(β

2 + 4β + 2)

β2
‖v‖1,Ω ≤

1

2

with β > 0 being the constant of the inf-sup condition (2.6) with p = 4/3 and q = 4 and
CSob > 0 the constant in (2.3). Then there exists a unique solution (σ, θ) to (4.2) with
(σ, θ) ∈ H(div4/3,Ω)× L4(Ω). In addition, there exists C > 0 independent of the solution
such that

(4.7) ‖σ‖H(div4/3,Ω) + ‖θ‖L4(Ω) ≤ C(‖θD‖1/2,Γ + ‖g‖0,Ω).

Proof. Let us first define the global bilinear form given by

A : [H(div4/3,Ω)× L4(Ω)]× [H(div4/3,Ω)× L4(Ω)]→ R,
A((ζ, z), (τ , v)) = a(ζ, τ ) + b(τ , z) + b(ζ, v) + d(ζ, v),(4.8)

∀ (ζ, z), (τ , v) ∈ H(div4/3,Ω) × L4(Ω). In what follows we prove that A satisfies the
estimates

S1 := sup
(τ ,v)∈[H(div4/3,Ω)×L4(Ω)]\{0}

A((ζ, z), (τ , v))

‖(τ , v)‖
≥ γ‖(ζ, z)‖(4.9)

∀(ζ, z) ∈ H(div4/3,Ω)× L4(Ω),

S2 := sup
(τ ,v)∈H(div4/3,Ω)×L4(Ω)

A((τ , v), (ζ, z)) > 0(4.10)

∀ (ζ, z) ∈ H(div4/3,Ω)× L4(Ω)\{0},
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and apply the Banach-Nečas-Babuška theorem (cf. [14, Theorem 2.6]) to conclude the desired
result. We start with the verification of (4.9).

Let us first recall that the bilinear forms a and b are bounded with constants ‖a‖ = 1
‖b‖ = 1, respectively. Then, since the bilinear form b satisfies the inf-sup condition (2.6) and
a satisfies (2.11) with α = 1, by applying [14, Proposition 2.36] it is easy to see that
(4.11)

S̃1 := sup
(τ ,v)∈[H(div4/3,Ω)×L4(Ω)]\{0}

a(ζ, τ ) + b(τ , z) + b(ζ, v)

‖(τ , v)‖
≥ β2

β2 + 4β + 2
‖(ζ, z)‖.

Moreover, thanks to the continuity of d (cf. (4.5)) we readily obtain

Ŝ1 := sup
(τ ,v)∈[H(div4/3,Ω)×L4(Ω)]\{0}

|d(ζ, v)|
‖(τ , v)‖

≤ CSob‖v‖1,Ω‖ζ‖H(div4/3,Ω)

≤CSob‖v‖1,Ω‖(ζ, z)‖.

According, to the above, it follows that

S1 ≥ S̃1 − Ŝ1 ≥
(

β2

β2 + 4β + 2
− CSob‖v‖1,Ω

)
‖(ζ, z)‖,

which together with assumption (4.6) clearly implies (4.9) with γ := β2

2(β2+4β+2) .
Next, for (4.10) we let (ζ, z) ∈ [H(div4/3,Ω)× L4(Ω)]\{0} and observe that

(4.12) S2 ≥ S̄2 := sup
(τ ,v)∈[H(div4/3,Ω)×L4(Ω)]\{0}

A((τ , v), (ζ, z))

‖(τ , v)‖
.

In turn, since a(·, ·) is symmetric, the estimate (4.11) implies
(4.13)

S̃2 := sup
(τ ,v)∈[H(div4/3,Ω)×L4(Ω)]\{0}

a(τ , ζ) + b(ζ, v) + b(τ , z)

‖(τ , v)‖
≥ β2

β2 + 4β + 2
‖(ζ, z)‖,

and the continuity of d yields

Ŝ1 := sup
(τ ,v)∈[H(div4/3,Ω)×L4(Ω)]\{0}

d(τ , z)

‖(τ , v)‖
≤ CSob‖v‖1,Ω‖z‖L4(Ω)

≤CSob‖v‖1,Ω‖(ζ, z)‖.
(4.14)

Therefore, from (4.12), (4.13), and (4.14) we easily obtain

S2 ≥ S̄2 ≥ S̃2 − Ŝ2 ≥
(

β2

β2 + 4β + 2
− CSob‖v‖1,Ω

)
‖(ζ, z)‖,

which combined with (4.6) implies (4.10). We conclude the proof by observing that the
estimate (4.7) follows straightforwardly from (4.4), (4.9), and the fact that the embedding
L2(Ω)→ L4/3(Ω) is continuous.

REMARK 4.2. As mentioned before, to obtain the well-posedness of problem (4.2) we
assume that v is sufficiently small in the H1-norm (see (4.6) and (4.16) below for the discrete
problem). The latter, which corresponds to a preliminary result for the convection-diffusion
equation, prevents a case when advection is dominant in relative comparison to diffusion.
However, we continue investigating the possibility of getting rid of this strong assumption.
We also notice that a similar result can be obtained by applying the theory developed in [9].
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4.2. Finite element discretization of the convection-diffusion problem. Let Hh ⊆
H(div4/3,Ω) and Qh ⊆ L4(Ω) be the finite element spaces defined in (3.2), that is,

Hh := {τh ∈ H : τh|T ∈ RTk(T ), ∀T ∈ Th} ,
Qh := {vh ∈ Q : vh|T ∈ Pk(T ), ∀T ∈ Th} ,

where Th is a regular mesh. Then the Galerkin scheme of (4.2) reads: Find a solution
(σh, θh) ∈ Hh ×Qh such that

(4.15)
a(σh, τh) + b(τh, θh) = F (τh),

b(σh, ψh) + d(σh, ψh) = G(ψh),

for all (τh, ψh) ∈ Hh ×Qh.
The following theorem establishes the well-posedness of the Galerkin scheme (4.15) and

the corresponding a priori error estimate.
THEOREM 4.3. Let Ω ⊆ Rn, n = 2, 3, be a bounded polyhedral domain with Lipschitz

boundary Γ. Assume that

(4.16)
CSob(β

∗2 + 4β∗ + 2)

β∗2
‖v‖1,Ω ≤

1

2

with β∗ > 0 being the constant of the inf-sup condition (3.10) with p = 4/3 and q = 4.
Then there exists a unique solution (σh, θh) ∈ Hh × Qh to (4.15). In addition, there exists
C1, C2 > 0 independent of h such that

(4.17) ‖σh‖H(div4/3,Ω) + ‖θh‖L4(Ω) ≤ C1(‖θD‖1/2,Γ + ‖g‖0,Ω)

and

‖σ − σh‖H(div4/3,Ω) + ‖θ − θh‖L4(Ω) ≤ C2

{
inf

τh∈Hh

‖σ − τh‖H(div4/3,Ω)

+ inf
ψh∈Qh

‖θ − ψh‖L4(Ω)

}
.

(4.18)

Proof. Since a and b satisfy (3.17) and (3.10), respectively, with constants α∗ = 1 and
β∗ > 0, by proceeding analogously as in the proof of Theorem 4.1, it can be proved that
the global bilinear form A (cf. (4.8)) satisfies the discrete version of (4.9) with the constant
γ∗ = β∗2

2(β∗2+4β∗+2)
, that is,

(4.19) sup
(τ ,v)∈[Hh×Qh]\{0}

A((ζ, z), (τ , v))

‖(τ , v)‖
≥ γ∗‖(ζ, z)‖ ∀ (ζ, z) ∈ Hh ×Qh,

Then the existence and uniqueness of solution of problem (4.15) follow from a direct applica-
tion of the discrete version of the Banach-Nečas-Babuška theorem (cf. [14, Theorem 2.6]).
In turn, the estimate (4.17) follows from (4.4), (4.19), and the fact that the embedding
L2(Ω) → L4/3(Ω) is continuous. Finally, it is not difficult to see that the a priori error
estimate is a direct consequence of (4.19), the continuity of a, b, and d, and [14, Lemma 2.28].

The following theorem provides the theoretical rate of convergence of the Galerkin
scheme (4.15), under suitable regularity assumptions on the exact solution.
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THEOREM 4.4. Let Ω ⊆ Rn, n = 2, 3, be a bounded polyhedral domain with Lipschitz
boundary Γ. Assume that

CSob max

{
(β2 + 4β + 2)

β2
,

(β∗2 + 4β∗ + 2)

β∗2

}
‖v‖1,Ω ≤

1

2

with β > 0 and β∗ > 0 being the constant of the inf-sup conditions (2.6) and (3.10), respec-
tively, with p = 4/3 and q = 4. Let (σ, θ) ∈ H(div4/3,Ω)×L4(Ω) and (σh, θh) ∈ Hh×Qh

be the unique solutions of (4.2) and (4.15), respectively. Assume that σ ∈ [Hl+1(Ω)]n,
divσ ∈ W l+1,4/3(Ω), and θ ∈ W l+1,4(Ω), with 0 ≤ l ≤ k. Then there exists C > 0
independent of h such that

‖σ − σh‖H(div4/3,Ω) + ‖θ − θh‖L4(Ω) ≤ Chl+1
{
‖σ‖l+1,Ω + ‖divσ‖W l+1,4/3(Ω)

+ ‖θ‖W l+1,4(Ω)

}
.

Proof. The proof follows from the Céa estimate (4.18), (3.8), and (3.20).
REMARK 4.5. We end this section by observing that, instead of introducing the gradient

of θ as a further unknown to derive the saddle-point problem (4.2), we could have introduced
σ̃ = ∇θ − vθ as an additional unknown to obtain the mixed problem in conservative form:
Find (σ̃, θ) ∈ H(div4/3,Ω)× L4(Ω) such that

(4.20)
a(σ̃, τ ) + b(τ , θ)− d(τ , θ) = F (τ ),

b(σ̃, ψ) = G(ψ),

for all (τ , ψ) ∈ H(div4/3,Ω)×L4(Ω), where the bilinear forms a, b, and d, and the functionals
F andG are defined exactly as above. Then it is not difficult to realize that the same arguments
utilized above can be applied to obtain the well-posedness of (4.20) and of its corresponding
Galerkin approximation.

5. Numerical results. In this section we corroborate numerically the theory developed
for problem (1.1) as applied to the convection-diffusion problem (1.2). More precisely, in
what follows we present three examples illustrating the performance of the Galerkin scheme
(4.15) on a set of regular triangulations. Our implementation is based on a FreeFem++ code
(see [19]) in conjunction with the direct linear solver UMFPACK (see [12]).

We now introduce some additional notations. The individual errors are denoted by:

e(σ) := ‖σ − σh‖H(div4/3,Ω) and e(θ) := ‖θ − θh‖L4(Ω) .

Also, we let r(σ) and r(θ) be the experimental rates of convergence given by

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
and r(θ) :=

log(e(θ)/e′(θ))

log(h/h′)
,

where h and h′ denote two consecutive mesh sizes with errors e and e′.
EXAMPLE 5.1. In Example 5.1 we verify the theory for the two dimensional case. To

that end, we choose the domain Ω := (0, 1)2, the vector field v(x1, x2) := (ex1 , ex2)t and
take g and θD so that the exact solution is given by

(5.1) σ(x1, x2) :=

[
2x1 sin(πx2)
πx2

1 cos(πx2)

]
, θ(x1, x2) := x2

1 sin(πx2) .
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TABLE 5.1
EXAMPLE 5.1: Degrees of freedom, mesh sizes, errors, rates of convergence for the RT0-P0 (top part) and

RT1-P1 (bottom part) approximations of the convection-diffusion problem (4.2) in 2D .

N h e(σ) r(σ) e(θ) r(θ)

1512 0.1074 0.2124 – 0.0287 –
6124 0.0501 0.1042 0.9348 0.0137 0.9691

24273 0.0265 0.0516 1.1012 0.0069 1.0789
98206 0.0131 0.0257 0.9878 0.0034 0.9887

387402 0.0075 0.0128 1.2509 0.0017 1.2793
1541734 0.0039 0.0065 1.0506 0.0009 1.0384

N h e(σ) r(σ) e(θ) r(θ)

4800 0.1074 5.9189E-03 – 0.7287E-03 –
19520 0.0501 1.4383E-03 1.8570 0.1790E-03 1.8427
77520 0.0265 0.3610E-03 2.1639 0.0441E-03 2.1939

313952 0.0131 0.0882E-03 2.0013 0.0107E-03 2.0076
1239072 0.0075 0.0223E-03 2.4802 0.0027E-03 2.4576
4932320 0.0039 0.0056E-03 2.1196 0.0007E-03 2.1583

TABLE 5.2
EXAMPLE 5.2: Degrees of freedom, mesh sizes, errors, and rates of convergence for the RT0-P0 approximation

of the convection-diffusion problem (4.2) in 2D with a not essentially bounded vector field v .

N h e(σ) r(σ) e(θ) r(θ)

725 0.1205 0.0723 – 0.0087 –
2840 0.0627 0.0365 1.0467 0.0048 0.9170

11375 0.0318 0.0180 1.0389 0.0024 1.0332
45105 0.0181 0.0090 1.2345 0.0012 1.2360
178965 0.0095 0.0045 1.0842 0.0006 1.0812
711585 0.0056 0.0023 1.2814 0.0003 1.2910

EXAMPLE 5.2. Next in Example 5.2 we explore the performance of our mixed method
under the presence of a not essentially bounded vector field v. To that end we consider the
domain Ω := {(x1, x2) ∈ R2 : ‖(x1, x2)‖2 < 1

2} and define the function

φ(x1, x2) := ln(| ln(‖(x1, x2)‖2)|), ∀(x1, x2) ∈ Ω,

where ‖ · ‖2 denotes the Euclidean norm in R2. It is not difficult to see that φ ∈ H1(Ω) and
φ /∈ L∞(Ω). Then we set v(x1, x2) := φ(x1, x2)(1, 1)t, for all (x1, x2) ∈ Ω and compute
the data g and θD with the functions defined in (5.1).

EXAMPLE 5.3. Finally, in Example 5.3 we assess the capability of a 3D implementation
of the Galerkin scheme (4.15). Here, we choose the domain Ω := (0, 1)3, the vector field
v(x1, x2, x3) := (x2

1, x
2
2, 0)t and take g and θD so that the exact solution is given by

σ(x1, x2, x3) :=

x2(x3 + ex3+x1x2)
x1(x3 + ex3+x1x2)
ex3+x1x2 + x1x2

 e2x1+x2 ,

θ(x1, x2, x3) := ex3+x1x2 + x1x2x3 .

In Table 5.1, we summarize the convergence history for Example 5.1 considering a
sequence of regular triangulations. We observe there that the rates of convergence O(h) (when
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TABLE 5.3
EXAMPLE 5.3: Degrees of freedom, mesh sizes, errors, and rates of convergence for the RT0-P0 approximation

of the convection-diffusion problem (4.2) in 3D .

N h e(σ) r(σ) e(θ) r(θ)

168 0.7071 1.2336 – 0.8134 –
1248 0.3536 0.6276 0.9749 0.4231 0.9428
9600 0.1768 0.3154 0.9928 0.2137 0.9854

75264 0.0884 0.1579 0.9980 0.1071 0.9963
595968 0.0442 0.0790 0.9995 0.0536 0.9991
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FIG. 5.1. EXAMPLE 5.3: isosurfaces of θh (left) and θ (right), with N = 595968.

0 8 0 8 1 8.1

0 8 0 8 1 8.1

FIG. 5.2. EXAMPLE 5.3: σ1,h, σ2,h, σ3,h (from the left to the right, at the top) and σ1, σ2, σ3 (from the
left to the right, at the bottom) with N = 595968.

k = 0) andO(h2) (when k = 1) predicted by Theorem 4.4 are attained in all the cases. Similar
results can be seen in Table 5.2 for the example with a not essentially bounded vector field v
and in Table 5.3 for the 3D case. Next, in Figures 5.1 and 5.2 we provide the graphics of the
approximate (with RT0-P0) and exact solutions of Example 5.3. In Figure 5.1 we display the
isosurface of θh (to the left), and we compare it with its exact counterpart (to the right). In
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addition, in Figure 5.2 we display the components of the vector field σh (top) and we compare
them with their exact counterpart (bottom). Here, we display the section of the cube below
the plane x1 − x2 + x3 = 0.5. All the graphics were computed with N = 595968 degrees
of freedom. We observe there that the mixed finite element method provides very accurate
approximations to the unknowns. In addition, we notice that the choice of v in the three cases
leads to a good behavior of the numerical method. It is pertinent to mention here that the
actual influence of assumption (4.16) on the performance of the numerical approximation
of (4.2) in the examples is not analyzed in this work since it is outside of the original scope
of this paper and remains an open problem to be addressed in the future. However, there is
numerical evidence showing that when having non-symmetric structures as the one presented
in (4.2), the associate global matrix of the system becomes ill-posed as ‖d‖ is too large (see
[8, Section 7, Example 1]).
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