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ANY ADMISSIBLE HARMONIC RITZ VALUE SET IS POSSIBLE FOR GMRES∗

KUI DU†, JURJEN DUINTJER TEBBENS‡, AND GÉRARD MEURANT§

Abstract. It is known that the harmonic Ritz values are the zeros of the GMRES residual polynomials. In this
paper we show that any decreasing GMRES residual norm history is possible with any prescribed finite harmonic Ritz
values in every iteration of the GMRES process. In addition, we characterize the admissible harmonic Ritz values
when GMRES stagnates during some iterations, and show that with any prescribed, in this sense admissible harmonic
Ritz values, any non-increasing GMRES residual norm history is possible. We also present a parameterization of
the class of matrices and right-hand sides yielding prescribed GMRES residual norms and prescribed admissible
harmonic Ritz values.
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1. Introduction. The Generalized Minimum Residual (GMRES) iterative method due to
Saad and Schultz [41] is one of the most popular Krylov methods for solving large, sparse,
nonsingular and non-Hermitian linear systems Ax = b. During several decades, intensive
research has been invested in convergence analysis of GMRES. The convergence behavior
of Hermitian counterparts of GMRES like the CG [23] and MINRES methods [37] can well
be explained by the distribution of the eigenvalues of A. An important question in GMRES
convergence analysis is to determine to what extent eigenvalues influence the convergence of
the method.

Mathematically, the GMRES convergence may be governed not only by the eigenvalues of
A. This was shown very clearly in a series of papers by Arioli, Greenbaum, Pták and Strakoš
[1, 21, 22]. These papers show that for any chosen sequence of positive, non-increasing
numbers, there exists a class of right-hand sides and matrices, whose nonzero eigenvalues can
be prescribed, giving residual norms that coincide with the given non-increasing sequence.
GMRES residual norm convergence curves are, in this sense, independent of the eigenvalues of
A. In [31] closed-form expressions for the GMRES residual norms were derived as functions
of the eigenvalues and eigenvectors of A as well as the right-hand side b. These expressions
show precisely how the residual norms depend on the eigenvalues, the pairwise differences
of eigenvalues and on the eigenvectors (or principal vectors if A is not diagonalizable). In a
nutshell, when the matrixA is normal, the dependence of the residual norms on the eigenvectors
is mild. But in the general case, GMRES convergence may depend strongly on the eigenvectors
in addition to the eigenvalues of A. Several papers look for approaches other than eigenvalue
analysis to explain GMRES convergence. Some examples are approaches based on the field
of values [12], potential theory [26], pseudospectra [35, 46], the polynomial numerical hull
[20], comparison with GMRES for non-Euclidean inner products [39] or decomposition into
normal plus low-rank [24]. Even if they can be very suited for particular problems, none of
the approaches appears to represent a universal tool to explain the convergence behavior of the
GMRES method.
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The GMRES method uses the Arnoldi process [2] to compute an orthonormal basis of
the Krylov subspace. The Arnoldi process generates upper Hessenberg matrices Hk whose
eigenvalues (the so-called Ritz values) are often used as approximations of the eigenvalues
of A. In the CG method there is a strong correlation between the convergence of Ritz values
to eigenvalues and the convergence of CG-iterates to the solution of the linear system [47].
Another relevant question for GMRES convergence is to know how the (potential) convergence
of the Ritz values is related to the GMRES residual norms; see, i.e., [48]. An answer was
given in [9] where it was shown that one can construct right-hand sides and matrices with
prescribed eigenvalues, prescribed GMRES residual norms and prescribed Ritz values at every
GMRES iteration.

The convergence speed of the GMRES method in practice is often such that the method
needs to be accelerated somehow. While the most popular way to do so is through the use of a
preconditioner, significant attention has been paid to so-called deflation techniques (which
may be incorporated into preconditioning themselves). Based on spectral information about A
which is obtained during the GMRES process, the influence of eigenvalues which are assumed
to hamper convergence is eliminated. Among a large number of proposed deflation techniques,
some examples are described in [3, 6, 7, 8, 14, 15, 17, 18, 25, 27, 28, 32, 33, 34, 38]. Even
if, in general, no eigenvalues might hamper convergence at all according to the results by
Arioli, Greenbaum, Pták and Strakoš [1, 21, 22], deflation methods have shown to be able to
accelerate GMRES in many applications. Information about the spectrum of A is extracted,
during the GMRES process, from either the Ritz values or from the harmonic Ritz values
(though some deflation methods are more focused on Ritz vectors in relation with multigrid
techniques [43, 44]). Harmonic Ritz values are mostly preferred over ordinary Ritz values
and this may have two main reasons: First, harmonic Ritz values are related to an Arnoldi
process involving A−1 and appear to be more suited to find eigenvalues close to zero than
ordinary Ritz values. Precisely eigenvalues close to zero are often assumed to be responsible
for slow GMRES convergence. Second, harmonic Ritz values are more strongly connected
to GMRES residual norms: Every GMRES residual vector is the product of a polynomial in
A with the initial residual vector and the roots of this residual polynomial are the harmonic
Ritz values [36]. The ordinary Ritz values are in fact the roots of the residual polynomials
of the Full Orthogonalization method (FOM) [40], which is closely related to GMRES but
which does not minimize the residual norms [19]. One therefore expects that the extent to
which GMRES residual norms are independent of ordinary Ritz values is not the same for
harmonic Ritz values; the latter should be strongly influencing residual norms because of
their immediate relation with the GMRES residual polynomial. In this paper we show that,
surprisingly, GMRES residual norms are independent of harmonic Ritz values as well. More
precisely, our main result shows that one can construct right-hand sides and matrices with
prescribed eigenvalues, prescribed GMRES residual norms and prescribed harmonic Ritz
values at every GMRES iteration.

This paper is organized as follows. In the next section, we introduce some notation and
define harmonic Ritz values sets that are admissible with respect to GMRES residual norms.
Section 3 addresses FOM residual norms in relation with ordinary Ritz values. Section 4
contains the main result of the paper on prescribed GMRES residual norms in combination
with prescribed harmonic Ritz values. In Section 5 we illustrate the result with some small
numerical examples and Section 6 contains closing remarks. To facilitate the discussion, we
shall adopt the following notation. For a matrix A, let aij , Ak, Ak, and A∗ denote the i, j
entry, the upper-left k × k submatrix, the upper-left (k + 1)× k submatrix, and the conjugate
transpose of A, respectively. The complex conjugate of a scalar z is z, and ek represents the
kth column of the identity matrix of appropriate order.
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2. Preliminaries. Let a nonsingular matrix A ∈ Cn×n and a vector b ∈ Cn be given.
For an initial guess x0 ∈ Cn, GMRES [41] approximates the exact solution of Ax = b at
step k by the vector xk ∈ x0 +Kk(A, r0) that minimizes the Euclidean norm of the residual
rk = b−Axk, i.e.,

‖rk‖ = min
x∈x0+Kk(A,r0)

‖b−Ax‖ = min
v∈Kk(A,r0)

‖r0 −Av‖,

where the Krylov subspace is defined as

Kk(A, r0) = span{r0, Ar0, . . . , Ak−1r0}.

Due to this minimization property, the residual vector rk is the orthogonal projection of r0
onto (AKk(A, r0))⊥, the orthogonal complement of AKk(A, r0). It can therefore be uniquely
expressed as

(2.1) rk = pk(A)r0,

where pk(z) is the GMRES residual polynomial of the kth iteration. It is of degree at most k
and has the value one at the origin; see, for example, [45].

The Arnoldi process [2] constructs an orthonormal basis of Kk(A, r0). We assume that
the Arnoldi process for the pair {A, r0} does not break down before the nth iteration. Then
after n iterations the process has generated the Arnoldi decomposition

AV = V H,

where V is unitary and H is irreducible upper Hessenberg. The k eigenvalues {µ(k)
j }kj=1 of

the eigenvalue problem

Hkw = µw

are called Ritz values at step k of the Arnoldi process for {A, r0}. We will rather call them
ordinary Ritz values to clearly distinguish them from harmonic Ritz values. The k eigenvalues
{θ(k)j }kj=1 of the generalized eigenvalue problem

(2.2) H∗kHkw = θH∗kw, k < n,

are called harmonic Ritz values at step k of the Arnoldi process for {A, r0}. We do not
consider here harmonic Ritz values resulting from a shift of the original spectrum to find close
to zero eigenvalues, i.e., we always assume implicitly zero shifts. Because H is irreducible
upper Hessenberg, H∗kHk is non-singular and thus no harmonic Ritz value θ(k)j can be zero.

However, when Hk is singular, some of the harmonic Ritz values θ(k)j are infinite.

LEMMA 2.1 ([5, 16]). The GMRES residual polynomial pk(z) in (2.1) can be expressed
as

pk(z) =

k∏
j=1

(1− z

θ
(k)
j

),

where {θ(k)j }kj=1 are the harmonic Ritz values at step k.

THEOREM 2.2. Let Θ(k) denote the k-tuple of the (not necessarily mutually distinct)
harmonic Ritz values at step k:

Θ(k) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k ).
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If GMRES applied to {A, r0} stagnates from step k + 1 to step k +m (k +m ≤ n− 1), i.e.,

‖rk‖ = ‖rk+1‖ = · · · = ‖rk+m‖,

then, for i = 1 : m, the (k + i)-tuple of the harmonic Ritz values at step k + i is

Θ(k+i) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k ,∞, · · · ,∞).

Proof. Because rk is the orthogonal projection of r0 onto (AKk(A, r0))⊥, rk+1 is the or-
thogonal projection of r0 onto (AKk+1(A, r0))⊥, and because AKk(A, r0) ⊆ AKk+1(A, r0),
‖rk‖ = ‖rk+1‖ implies rk = rk+1. Therefore, ‖rk‖ = ‖rk+1‖ = · · · = ‖rk+m‖ implies
rk = rk+1 = · · · = rk+m.

It follows from rk = rk+1 = · · · = rk+m and the uniqueness of the GMRES residual
polynomial that

pk(z) = pk+1(z) = · · · = pk+m(z).

Then the statement of the theorem is a direct consequence of Lemma 2.1.

Theorem 2.2 shows that if one prescribes GMRES to have some stagnating iterations, this
puts conditions on the corresponding harmonic Ritz values. We will show later that these are
the only conditions which prescribed residual norms can impose. Even if the proof follows
in a later section, we give the definition of admissible harmonic Ritz values with respect to
chosen residual norms already discussed here.

DEFINITION 2.3. For prescribed GMRES residual norms

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rn−1‖ ≥ ‖rn‖ = 0,

we call a set of tuples of nonzero complex and infinite numbers

Θ = {Θ(1), Θ(2), . . . , Θ(n)}
= {θ(1)1 , (θ

(2)
1 , θ

(2)
2 ), · · · , (θ

(n)
1 , θ

(n)
2 , . . . , θ(n)n )}

an admissible harmonic Ritz value set if the tuples in Θ satisfy the property in Theorem 2.2.
We have here, in contrast with (2.2), considered the harmonic Ritz values Θ(n) for the

nth iteration. The convention is that they coincide with the ordinary Ritz values for the nth
iteration and thus with the eigenvalues of A. Before showing that admissible harmonic Ritz
values can be chosen independently of GMRES residual norms we take a look at the somewhat
simpler but analogue problem for ordinary Ritz values and FOM residual norms.

3. Ordinary Ritz values and the FOM method. For an initial guess x0, FOM approxi-
mates the exact solution of Ax = b at step k by the vector xFk ∈ x0 + Kk(A, r0), such that
the residual rFk = b−AxFk is orthogonal to Kk(A, r0), i.e.,

rFk ⊥ Kk(A, r0).

This translates to FOM iterates being of the form

(3.1) xFk = x0 + V (k)y(k),

where y(k) is obtained by solving

(3.2) Hky
(k) = ‖r0‖e1,
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and V (k) consists of the first k columns of V . Then, the residual is rFk = −hk+1,ke
T
k y

(k)vk+1

and the norm of the residual vector is

(3.3) ‖rFk ‖ = hk+1,k |eTk y(k)|.

The latter relation holds in fact for any Q-OR method [13].
As mentioned in the introduction, the roots of the FOM residual polynomial pFk such that

rFk = pFk (A)r0 (with pFk (0) = 1) are the ordinary Ritz values at iteration k [19]. Nevertheless,
as we will show next, the FOM residual norm can be fully independent of the corresponding
Ritz values. To gain more insight into the FOM residual norm, let us analyze the entries of
y(k) in (3.2). The matrix H in (2.2) can be factored as

(3.4) H = U−1CU,

where U is upper triangular with real positive entries on the diagonal and C is the companion
matrix of the eigenvalues of H (and of A); see for instance [29] or [10] where the factorization
process is described. Note that

hj+1,j =
uj,j

uj+1,j+1
, j = 1, . . . , n− 1,

with ui,j denoting the entries of U with u1,1 = 1/‖r0‖. The matrix U is linked to the Krylov
matrix

K = [r0, Ar0, . . . , A
n−1r0]

and to the matrix of the basis vectors V by KU = V ; see, e.g., [9, 10, 11].
The principal submatrix Hk of H in (3.2) can be factored in a similar way with a

companion matrix revealing the eigenvalues of Hk, which are the ordinary Ritz values. This
was done in [11]. However, since the notation we use here is a little bit different, we reformulate
this result.

THEOREM 3.1. The upper Hessenberg matrix Hk computed in the Arnoldi process, for
k < n, can be factored as

(3.5) Hk = U−1k C(k)Uk,

where Uk is the principal submatrix of order k of U obtained from the Krylov matrix K and
the unitary matrix V through KU = V , and C(k) is the companion matrix for the Ritz values
at iteration k. Moreover,

C(k) = Ek +
[
0 · · · 0 − 1

uk+1,k+1
U1:k,k+1

]
,

where Ek is a square down-shift matrix of order k,

Ek =


0
1 0

. . .
. . .
1 0

1 0

 ,

and U1:k,k+1 is the vector of the first k components of the (k + 1)st column of U .
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Proof. Clearly

Hk =
[
Ik 0

]
H

[
Ik
0

]
=
[
Ik 0

]
U−1CU

[
Ik
0

]
,

where Ik is the identity matrix of order k. Let

[
Ik 0

]
U−1 =

[
U−1k Z

]
, U

[
Ik
0

]
=

[
Uk
0

]
.

Since C = En +
[
0 · · · 0 s

]
, it yields

Hk =
[
U−1k Z

] [ EkUk
e1e

T
k Uk

]
= U−1k EkUk + Ze1e

T
k Uk.

The vector Ze1 of length k is made of the first k components of the (k + 1)st column of U−1,
and is −U−1k U1:k,k+1/uk+1,k+1. Factoring U−1k on the left and Uk on the right gives the
result.

Theorem 3.1 shows that the coefficients of the characteristic polynomial πk(λ) = λk +
αk−1λ

k−1 + · · ·+ α0 of Hk are

(3.6)

 α0

...
αk−1

 =
1

uk+1,k+1
U1:k,k+1 =

1

uk+1,k+1

u1,k+1

...
uk,k+1

 .
The roots of the polynomial πk are the ordinary Ritz values at iteration k. From Theorem 3.1
we also have for y(k) in (3.1), assuming that Hk is nonsingular,

y(k) = ‖r0‖H−1k e1 = ‖r0‖U−1k [C(k)]−1Uke1 = U−1k [C(k)]−1e1.

If we write the companion matrix C(k) as

C(k) =

[
0 −α0

Ik−1 −α̂

]
,

with α0 6= 0 since we assumed Hk to be nonsingular, then the inverse of the companion matrix
is

(3.7) [C(k)]−1 =

[
−α̂/α0 Ik−1
−1/α0 0

]
.

Therefore

eTk y
(k) = − 1

α0 uk,k
= − uk+1,k+1

uk,k u1,k+1
= − 1

u1,k+1 hk+1,k
.

Using (3.3), we have for iteration k, where FOM iterates exist,

(3.8) ‖rFk ‖ =
1

|u1,k+1|
.

This result was proved with a more complicated proof in [11] and holds for any Q-OR method.
If Hk is singular, then α0 = 0 and so is u1,k+1.
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We remark that uk+1,k+1, . . . , u1,k+1 are the coefficients (in descending order of powers)
of another polynomial whose roots are the ordinary Ritz values at the kth iteration of the
Arnoldi process. This holds as well for the FOM (or Q-OR) residual polynomial pFk which is
scaled such that pFk (0) = 1. As a by-product of Theorem 3.1 we have that the coefficients of
pFk are 

1
u2,k+1

u1,k+1

...
uk,k+1

u1,k+1
uk+1,k+1

u1,k+1

 =
1

u1,k+1

 u1,k+1

...
uk+1,k+1

 .

If we write u1,k+1 as u1,k+1 = |u1,k+1| eφk+1i, then

 u1,k+1

...
uk+1,k+1

 =
1

‖rFk ‖
eφk+1i


1

u2,k+1

u1,k+1

...
uk,k+1

u1,k+1
uk+1,k+1

u1,k+1

 .

Thus the matrix Uk+1 can be factorized as

Uk+1 = Ûk+1Dk+1, Dk+1 =


1
‖r0‖

eφ2i

‖rF1 ‖
. . .

eφk+1i

‖rFk ‖

 ,

and the non-zero entries of the columns of Ûk+1 are the coefficients of the residual polynomials
whose roots are the ordinary Ritz values. Hence, the entries of Ûk+1 depend only on the
ordinary Ritz values for the iterations 1 to k. If the matrix, the right-hand side and the starting
vector are real, the coefficients eφji are just ±1.

The above shows that it is straightforward to construct linear systems with prescribed
FOM residual norms and, at the same time, prescribed ordinary Ritz values. An example is
the linear system Hx = e1 where H is computed according to (3.4) with U being of the form

U = ÛnDn,

where the kth column of Ûn is chosen to be the unique FOM polynomial whose roots are the
ordinary Ritz values prescribed for the kth iteration. Dn is chosen to contain the prescribed
FOM residual norms, with arbitrary angles φj . Other examples result from choosing a unitary
matrix Q and considering the system Q∗HQx = Q∗e1.

4. Prescribed GMRES residual norms and harmonic Ritz values. We have seen in
the previous section that arbitrary ordinary Ritz values can be generated during the Arnoldi
process. We now show a relation between ordinary and harmonic Ritz values in terms of the
decomposition (3.5) that was used to generate arbitrary ordinary Ritz values. If GMRES does
not stagnate at step k, i.e., ‖rk‖ < ‖rk−1‖, then the harmonic Ritz values defined in (2.2) can
also be seen as the eigenvalues of the matrix

(4.1) Ĥk = Hk + h2k+1,kH
−∗
k eke

T
k ,
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since Hk is nonsingular. This follows from multiplication of (2.2) with H−∗k from the left.
The following theorem was proved in [30]. For the convenience of the reader we give the
proof again using the notation of this paper.

THEOREM 4.1. For k < n assume that Hk is nonsingular. Then the matrix Ĥk defined in
(4.1) can be written as Ĥk = U−1k Ĉ(k)Uk, with Uk being upper triangular,

Ĉ(k) = C(k) − 1

uk+1,k+1u1,k+1
UkU

∗
k e1e

T
k

being a companion matrix where C(k) is the companion matrix in Hk = U−1k C(k)Uk.

Proof. Let us first consider H−∗k ek. We have H−∗k = U∗k [C(k)]−∗U−∗k . Since Uk is upper
triangular we obtain U−∗k ek = 1

uk,k
ek with uk,k real and positive. Using (3.7) and taking the

(Hermitian) transpose, we have

[C(k)]−∗ek = − 1

ᾱ0
e1.

Finally we obtain

H−∗k ek = − 1

uk,k ᾱ0
U∗k e1.

On the other hand, we have hk+1,k = uk,k/uk+1,k+1. Then

Ĥk = U−1k C(k)Uk −
uk,k

u2k+1,k+1 ᾱ0
U∗k e1e

T
k .

Let us factor U−1k on the left and Uk on the right. We obtain

Ĥk = U−1k [C(k) − uk,k
u2k+1,k+1 ᾱ0

UkU
∗
k e1e

T
k U
−1
k ]Uk.

We remark that eTk U
−1
k = 1

uk,k
eTk . Hence Ĥk is similar to the matrix

Ĉ(k) = C(k) − 1

u2k+1,k+1ᾱ0
UkU

∗
k e1e

T
k = C(k) − 1

uk+1,k+1u1,k+1
UkU

∗
k e1e

T
k ,

where we used (3.6). The second term on the right-hand side modifies only the last column.
Therefore, Ĉ(k) is a companion matrix.

COROLLARY 4.2. Under assumptions of Theorem 4.1, the coefficients of the characteristic
polynomial of Ĥk, whose roots are the harmonic Ritz values, are given by the negative of the
last column of Ĉ(k), that is, by

(4.2) −Ĉ(k)ek =
1

uk+1,k+1

u1,k+1

...
uk,k+1

+
1

uk+1,k+1u1,k+1
UkU

∗
k e1.

Before we formulate the main theorem, we need the following auxiliary results.

LEMMA 4.3. For k < n, the GMRES residual norms ‖rk‖ and ‖rk−1‖ satisfy

|u1,k+1|2 =
1

‖rk‖2
− 1

‖rk−1‖2
, ‖rk‖ = (

k+1∑
l=1

|u1l|2)−1/2.
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Proof. Using the well-known relationship

1

‖rFk ‖2
=

1

‖rk‖2
− 1

‖rk−1‖2

between the FOM and GMRES residual norms [4] and using (3.8), we immediately obtain the
first claim. Then

k+1∑
l=1

|u1l|2 =
1

‖rk‖2
− 1

‖rk−1‖2
+

1

‖rk−1‖2
− 1

‖rk−2‖2
+ · · ·+ 1

‖r0‖2
=

1

‖rk‖2
.

THEOREM 4.4. Let

Θ = {θ(1)1 , (θ
(2)
1 , θ

(2)
2 ), · · · , (θ

(n)
1 , θ

(n)
2 , . . . , θ(n)n )}

be any admissible harmonic Ritz value set for prescribed GMRES residual norms ρk, 0 ≤ k <
n, where

ρ0 ≥ ρ1 ≥ · · · ≥ ρn−1 > 0

are any non-increasing sequence of real positive numbers. Let H = U−1CU where C is the
companion matrix with eigenvalues θ(n)1 , θ

(n)
2 , . . . , θ

(n)
n , and the upper triangular matrix U is

constructed as follows. Let u11 = 1/‖r0‖. For 1 ≤ k < n, if ρk < ρk−1, then let

u1,k+1 =
β0
|β0|

√
1/ρ2k − 1/ρ2k−1,

uk+1,k+1 =
1

|β0|ρ2k
√

1/ρ2k − 1/ρ2k−1

,

uj,k+1 = βj−1uk+1,k+1 −
eTj Uk U

∗
k e1

u1,k+1
, j = 2, . . . , k,

where βj , 0 ≤ j ≤ k − 1, are the coefficients of the polynomial

λk + βk−1λ
k−1 + · · ·+ β1λ+ β0

with roots {θ(k)j }kj=1. If ρk = ρk−1, let u1,k+1 = 0, uk+1,k+1 be an arbitrarily chosen
positive real number, and uj,k+1, 2 ≤ j ≤ k, be arbitrarily chosen complex numbers. Then
GMRES applied to {H, ‖r0‖e1} generates the residuals rk with ‖rk‖ = ρk and the harmonic
Ritz value set Θ.

Proof. By the construction of the first row of U and using Lemma 4.3, the residual rk of
the GMRES applied to {H, e1} satisfies ‖rk‖ = ρk.

If ρk < ρk−1, by (4.2), straightforward calculations yield

−Ĉ(k)ek =

 β0
...

βk−1

 .
Therefore, the harmonic Ritz values at step k are {θ(k)j }kj=1.
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If ρk = ρk−1, according to Theorem 2.2, the harmonic Ritz values at step k are then
{θ(k−1)1 , θ

(k−1)
2 , · · · , θ(k−1)k−1 ,∞}. We now show why this is true with any choice of uj,k+1,

2 ≤ j ≤ k, and any positive real choice of uk+1,k+1. By construction, we have

Hk = U−1k+1

[
0
Ik

]
Uk.

For simplicity, we write

Uk+1 =

[
Uk t
0 s

]
, t =

[
0
t̂

]
.

Then

Hk = U−1k

[
0 0

Ik−1 −t̂/s

]
Uk

and

H∗kHk = U∗k


[
0 Ik−1

]
U−∗k U−1k

[
0

Ik−1

]
−
[
0 Ik−1

]
U−∗k U−1k t/s

−(t/s)∗U−∗k U−1k

[
0

Ik−1

]
(t∗U−∗k U−1k t+ 1)/s2

Uk.
Thus, the harmonic Ritz values at step k are the eigenvalues of the generalized eigenvalue
problem
[
0 Ik−1

]
U−∗k U−1k

[
0

Ik−1

]
−
[
0 Ik−1

]
U−∗k U−1k t/s

−(t/s)∗U−∗k U−1k

[
0

Ik−1

]
(t∗U−∗k U−1k t+ 1)/s2

 y = θ

[
0 Ik−1
0 −t̂∗/s

]
U−∗k U−1k y.

Multiplying by
[
Ik−1 0
t̂∗/s 1

]
on both sides yields[0 Ik−1

]
U−∗k U−1k

[
0

Ik−1

]
−
[
0 Ik−1

]
U−∗k U−1k t/s

0 1/s2

 y = θ

[
0 Ik−1
0 0

]
U−∗k U−1k y.

Therefore, the set of harmonic Ritz values at step k consists of one infinite value and the
eigenvalues of the generalized eigenvalue problem

(4.3)
[
0 Ik−1

]
U−∗k U−1k

[
0

Ik−1

]
ỹ = θ

[
0 Ik−1

]
U−∗k U−1k

[
Ik−1

0

]
ỹ.

Straightforward calculations yield[
0 Ik−1

]
U−∗k U−1k

[
Ik−1

0

]
= [U−1k

[
0

Ik−1

]
]∗U−1k

[
Ik−1

0

]
(4.4)

= [U−1k

[
0

Ik−1

]
]∗
[
Ik−1

0

]
U−1k−1

= [
[
Ik−1 0

]
U−1k

[
0

Ik−1

]
]∗U−1k−1

= [U−1k−1C
(k−1)]∗U−1k−1

= [C(k−1)]∗U−∗k−1U
−1
k−1.
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By (4.4), Hk−1 = U−1k−1C
(k−1)Uk−1, and

H∗k−1Hk−1 = U∗k−1
[
0 Ik−1

]
U−∗k U−1k

[
0

Ik−1

]
Uk−1,

and we know that the eigenvalues of the generalized eigenvalue problem (4.3) are {θ(k−1)j }k−1j=1 .
This completes the proof.

THEOREM 4.5. Let Θ, {ρk}n−1k=0 and H be given as in Theorem 4.4. Then GMRES
applied to {A, r0} generates the residuals rk with ‖rk‖ = ρk and the harmonic Ritz value set
Θ if and only if there exists a unitary matrix Q such that A = QHQ∗ and r0 = ρ0Qe1.

Proof. If GMRES applied to {A, r0} generates the residuals rk with ‖rk‖ = ρk, we have
the Arnoldi decomposition AV = V H and H = U−1CU , where C is the companion matrix
with eigenvalues θ(n)1 , θ

(n)
2 , . . . , θ

(n)
n , and U is upper triangular with real positive diagonal

entries. For 1 ≤ k < n, we know from Lemma 4.3 that

|u1,k+1| =
√

1/ρ2k − 1/ρ2k−1.

If ρk < ρk, we write

u1,k+1 =
√

1/ρ2k − 1/ρ2k−1e
φk+1 i.

Let βj , 0 ≤ j ≤ k − 1, be the coefficients of the polynomial

λk + βk−1λ
k−1 + · · ·+ β1λ+ β0

with roots {θ(k)j }kj=1. As the coefficients βj coincide with the entries of −Ĉ(k)ek, equating
the first row in (4.2) and using Lemma 4.3 gives

β0 =
u1,k+1

uk+1,k+1
+

eT1 UkU
∗
k e1

uk+1,k+1u1,k+1

=

√
1/ρ2k − 1/ρ2k−1e

φk+1 i

uk+1,k+1
+

1/ρ2k−1

uk+1,k+1

√
1/ρ2k − 1/ρ2k−1e

φk+1 i

=


√

1/ρ2k − 1/ρ2k−1

uk+1,k+1
+

1/ρ2k−1

uk+1,k+1

√
1/ρ2k − 1/ρ2k−1

 eφk+1 i

=
eφk+1 i

uk+1,k+1ρ2k

√
1/ρ2k − 1/ρ2k−1

.

Therefore, φk+1 must be the angle of β0, i.e.,

eφk+1 i = β0/|β0|,

and then the first and (k + 1)st entry of Uek+1 satisfy

u1,k+1 =
β0
|β0|

√
1/ρ2k − 1/ρ2k−1,

uk+1,k+1 =
1

|β0|ρ2k
√

1/ρ2k − 1/ρ2k−1

.
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The entries uj,k+1 follow from the corresponding rows in equation (4.2):

uj,k+1 = βj−1uk+1,k+1 −
eTj UkU

∗
k e1

u1,k+1
, j = 2, . . . , k.

If ρk = ρk−1, then u1,k+1 = 0. As proved in Theorem 4.4, uk+1,k+1 can be an arbitrary
positive real number and ui,k+1, 2 ≤ j ≤ k can be arbitrary complex numbers.

Conversely, if there exists a unitary matrix Q such that A = QHQ∗ and r0 = ρ0Qe1, by
the invariance under unitary similarity transformations of residual norms as well as generated
Hessenberg matrices (see, for example, [45]) and Theorem 4.4, GMRES applied to {A, r0}
generates the residuals rk with ‖rk‖ = ρk and the harmonic Ritz value set Θ.

The last two theorems represent a parameterization of the class of matrices and right-hand
sides generating, when GMRES is applied to a member of the class, prescribed residual norms
and prescribed admissible harmonic Ritz values. The freedom left over when prescribing
these quantities simultaneously, is in the unitary similarity transformations of the linear system
with Q (which incorporates as well the choice of the phase angles of the first row of U ). If
stagnation is prescribed, then there is additional freedom in the choice of the non-zero entries
of the corresponding row of U - they can be chosen arbitrarily except for the diagonal entry
which must be positive real.

5. Numerical illustration. We have proved that any GMRES convergence history is
possible with any admissible harmonic Ritz values in every iteration. In order to illustrate the
strength of this result we describe a few extreme situations. We consider a very small but not
fully academic example and first show that in this example harmonic Ritz values explain the
behavior of GMRES much better than ordinary Ritz values.

Consider the one-dimensional convection-diffusion problem on the unit interval [0, 1]

−νu′′ + u′ = f, u(0) = u(1) = 0,

discretized with finite differences on a regular grid with n inner nodes using upwind differences
for the convective term. This gives a linear system where the system matrix A is tridiagonal
with entries

A = h−2 tridiag(−ν − h, 2ν + h,−ν), h = 1/(n+ 1);

see, e.g., [42, Section 4]. In the convection dominated case, ν � h2 and A is close to a scaled
transposed Jordan block and in particular non-normal. Let the source term f be nonzero only
around the first inner node 1/(n + 1), with the value one at that node. Then the right-hand
side b is e1. If we have ν = 0.001 and n = 5, the matrix A is

A =


6.072 −0.036 0 0 0
−6.036 6.072 −0.036 0 0

0 −6.036 6.072 −0.036 0
0 0 −6.036 6.072 −0.036
0 0 0 −6.036 6.072

 , ‖W ∗W − I5‖ ≈ 3.953,

where W denotes the normalized eigenvector matrix of A (A is diagonalizable but not normal).
GMRES generates the residual norms

(5.1) ‖r0‖ = 1, ‖r1‖ = 0.7050, ‖r2‖ = 0.5751, ‖r3‖ = 0.4978, ‖r4‖ = 0.4451.

The convergence is slow and clearly sublinear. If ordinary Ritz values influence GMRES
convergence speed as suggested in [48], then we expect similar slow convergence (or possibly
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divergence) of the ordinary Ritz values. The ordinary Ritz values for the individual iterations
are represented with circles in Figures 5.1 and 5.2. We see that, on the contrary, they seem
to converge already in the very first step, where an exact eigenvalue was found. The second
iteration finds two more eigenvalues and further iterations show smooth convergence reminding
of interlacing eigenvalues for Hermitian matrices.
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0.5
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5 5.5 6 6.5 7
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1

FIG. 5.1. Spectrum (plusses) and ordinary Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied to A and e1.
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FIG. 5.2. Spectrum (plusses) and ordinary Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied to A and e1.

The behavior of the harmonic Ritz values, on the other hand, corresponds much better to
that of GMRES in this example. The harmonic Ritz values for the individual iterations are
shown in Figures 5.3 and 5.4. They stay away from the eigenvalues for all iterations and do
not even seem to converge to other values, but ‘dance’ around the spectrum.

This example seems to indicate that the convergence of harmonic Ritz values is, in general,
closely related to that of GMRES. But as we have proved in the previous sections, this is not
the case. We can for instance, using Theorem 4.1, generate another upper Hessenberg matrix
H such that it generates with the right-hand side e1 the same residual norms (5.1) as A but
with harmonic Ritz values that are identical with the nicely converging ordinary Ritz values in
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FIG. 5.3. Spectrum (plusses) and harmonic Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied to A (or H̃) and e1.
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FIG. 5.4. Spectrum (plusses) and harmonic Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied to A (or H̃) and e1.

Figures 5.1 and 5.2. This matrix H is

H =


3.054 1.064 −0.486 0.296 4.8
3.036 5.073 0.560 −0.297 −4.829

0 4.016 5.566 0.351 4.829
0 0 4.522 5.769 −4.781
0 0 0 4.826 10.898

 , ‖W ∗W − I5‖ ≈ 3.988,

where we rounded to three decimal places; the matrix is not much less normal than A. The
ordinary Ritz values of this matrix H are displayed in Figures 5.5 and 5.6. They seem to be,
except for an outlier, often close to the exact eigenvalues in spite of slow GMRES convergence.

There is no reason either why the harmonic Ritz values would not behave, with the same
residual norms (5.1), in a counter-intuitive manner midway between perfect convergence and
plain divergence. For instance, they could have converged in step one, diverge in step two,
converge in step three and diverge again in the last step. An example of this behavior is given
in Figures 5.7 and 5.8.
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FIG. 5.5. Spectrum (plusses) and ordinary Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied to H and e1.
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FIG. 5.6. Spectrum (plusses) and ordinary Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied to H and e1.
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FIG. 5.7. Spectrum (plusses) and harmonic Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied to Ĥ and e1.
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FIG. 5.8. Spectrum (plusses) and harmonic Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied to Ĥ and e1.
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FIG. 5.9. Spectrum (plusses) and ordinary Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied to Ĥ and e1.

The upper Hessenberg matrix Ĥ generating with e1 such harmonic Ritz values and the
residual norms (5.1) is

Ĥ =


3.0541 −16.1873 −10.0627 −35.309− 45.281i −88.268 + 97.75i
3.0359 2.4280 1.5833 −4.692− 12.494i −34.712 + 15.306i

0 18.5186 12.7967 38.158 + 40.78i 94.067− 99.876i
0 0 1.2108 4.737 + 11.131i 15.109− 4.888i
0 0 0 4.162 7.345− 11.131i

 ,

with ‖W ∗W − I5‖ ≈ 3, 999, where we rounded to three decimal places. The ordinary Ritz
values of this matrix Ĥ , behaving somewhat counter-intuitively as well, are displayed in
Figures 5.9 and 5.10.

Finally, Theorem 4.1 also shows how to generate the same non-converging harmonic Ritz
values from the original convection-diffusion problem, see Figures 5.3 and 5.4, but at the same
time, force faster, linear convergence of GMRES residual norms, e.g.,

‖r0‖ = 1, ‖r1‖ = 0.1, ‖r2‖ = 0.01, ‖r3‖ = 0.001, ‖r4‖ = 0.0001.
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FIG. 5.10. Spectrum (plusses) and ordinary Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied to Ĥ and e1.
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FIG. 5.11. Spectrum (plusses) and ordinary Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied to H̃ and e1.

The upper Hessenberg system matrix H̃ for the corresponding constructed linear system
is

H̃ =


11.951 −29.196 196.433 −1474.331 11797.602
1.201 6.138 0.005 1.747 −13.995

0 0.907 6.082 0.268 −0.049
0 0 0.806 6.077 0.884
0 0 0 0.755 0.111

 ,

with ‖W ∗W − I5‖ ≈ 2.252, where we again rounded to three decimal places. Even if this
last matrix has some larger entries in its first row, its departure from normality as measured
by ‖W ∗W − I5‖ does not seem to deteriorate. The ordinary Ritz values of the matrix H̃ this
time behave similarly to the harmonic Ritz values and are displayed in Figures 5.11 and 5.12.

6. Conclusion. In this paper we have shown that one can construct right-hand sides and
matrices with a prescribed spectrum such that GMRES residual norms and harmonic Ritz
values are also prescribed. This can be done with prescribed infinite harmonic Ritz values
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FIG. 5.12. Spectrum (plusses) and ordinary Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied to H̃ and e1.

corresponding to prescribed stagnation iterations for GMRES. Hence, there need be no relation
whatsoever between GMRES convergence and harmonic Ritz values.

The results described above raise some questions about the behavior of restarting methods
for GMRES using deflation. There are many practical examples where using the harmonic
Ritz vectors improves the convergence of restarted GMRES; see [34]. It will be interesting to
find theoretical reasons for the fact that these deflation methods work in many cases despite
of our results showing that there need be no relationship between GMRES convergence and
harmonic Ritz values.

Software. At http://www.cs.cas.cz/duintjertebbens/duintjertebbens_soft.html the reader
can find MATLAB functions to create matrices and initial vectors with the parametrization in
this paper.
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