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A BLOCK ARNOLDI BASED METHOD FOR THE SOLUTION OF THE
SYLVESTER-OBSERVER EQUATION∗

L. ELBOUYAHYAOUI†, M. HEYOUNI‡, K. JBILOU§, AND A. MESSAOUDI¶

Abstract. This paper describes a new block method for solving multi-input Sylvester-observer equations that
arise in the construction of the well-known Luenberger observer. The proposed method is based on the block
Arnoldi process and generalizes to the multi-input case, the method proposed by Datta and Saad for the single input
Sylvester-observer equation. We give new algebraic properties and show how to construct the Luenberger observer by
solving a special large-scale Sylvester equation for which two unknown matrices are to be computed. The numerical
tests show that the proposed approach is effective and can be used for large-scale Luenberger observer problems.
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1. Introduction. Consider the Multi-Input Multi-Output (MIMO) linear time-invariant
dynamical system

˙̂x(t) = AT x̂(t) +B û(t), x̂(0) = x̂0,

ŷ(t) = CT x̂(t), t ≥ 0,
(1.1)

where x̂ ∈ Rn is the state vector, ŷ ∈ Rq is the output vector, and û ∈ Rp is the input vector.
The state matrix A ∈ Rn×n is assumed to be large and sparse, B ∈ Rn×p and the output
matrix C ∈ Rn×q . Throughout this paper we will assume that p, q � n.

In many situations the states x̂0 and x̂(t) are not explicitly known. Thus, as the state of the
system is generally not accessible, the objective of an observer is to obtain information about
these unknown states. This is done by estimating the state x̂(t) by another variable denoted by
x(t). The most commonly used technique is to design another control system related to the
system (1.1) whose entries consist of all the information available and whose output will be
precisely x(t). For more details on this subject, we refer to [5, Chapter 12] or [16, Chapter 4]
and to the references cited therein.

In [18], Luenberger proposed the construction of an approximation x(t) of the initial state
x̂(t) as follows

(1.2) ẋ(t) = ĤT x(t) +GT ŷ(t) +XT Bû(t), x(0) = x0,

where the unknown matrices Ĥ,G ∈ Rq×q andX ∈ Rn×q have to be determined. Luenberger
proposed to compute x(t) such that it approximates XT x̂(t). The system (1.2) is commonly
called a Luenberger observer and the matrices Ĥ , X , G are to be determined such that

(1.3) AX −X Ĥ = C G.
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Thus, under certain conditions, the difference between x(t) and XT x̂(t), where x̂(t) is
a solution of (1.1), converges to 0 as t increases [3, 5]. Indeed, differentiating the error
e(t) := x(t)−XT x̂(t) and using (1.1) and (1.2), we obtain

ė(t) = ẋ(t)−XT ˙̂x(t)

= ĤT x(t) +GT ŷ(t) +XT B û(t)−XT (AT x̂(t) +B û(t))

= ĤT e(t)−∆T
S x̂(t),

where ∆S := AX − X Ĥ − C G. So, if the matrices X , Ĥ and G satisfy (1.3), then
ė(t) = ĤT e(t), which gives

e(t) = exp(ĤT t) (x0 −XT x̂0), t ≥ 0.

Finally, requiring that the matrix Ĥ be stable (all the eigenvalues of Ĥ have negative real-
parts), it follows that the error e(t) tends to 0 as t increases. We point out that the construction
of the stabilizing system (1.2) is a hard task since if the error matrix ∆S is not exactly zero,
then the error e(t) may diverge even if Ĥ is stable.

To solve (1.3), a first approach involves choosing the matrices Ĥ and G and then solving
the Sylvester equation by a suitable method such as one of those described in [1, 5, 10].
However, generally these methods do not provide a well-conditioned solution X .

The matrix equation (1.3), where A, C are given matrices and H , X , G are to be found,
is called a Sylvester-observer equation. In [7], Datta and Saad proposed an elegant method
for the solution of equation (1.3) in the case where the system (1.1) is a Single-Input Single-
Output (SISO) system. By adapting this method and using the global Arnoldi process [15],
a generalization of the Datta–Saad method for the case rank(C) = r has been proposed
in [6]. To our knowledge, the methods described in [6, 7] are the only existing ones that
handled the case of large matrices. These methods have in common that they exploit the
resemblance between the Sylvester-observer equation and the Arnoldi recurrence stemming
from the classical and global Arnoldi processes. Furthermore, these two methods transform
by a particular assignment procedure an upper Hessenberg matrix into another one that has a
well-chosen set of eigenvalues.

Throughout this paper, the symbols ‖ · ‖2 and ‖ · ‖F denote the Euclidean norm and the
Frobenius norm, respectively. The superscript ·T denotes the transpose of a vector or a matrix.
0n×r ∈ Rn×r is the zero rectangular matrix with n rows and r columns, and Ir, 0r ∈ Rr×r
are the identity matrix and zero matrix of dimension r, respectively. The spectrum of a square
matrix Z is denoted by σ(Z).

In the present paper, we will use the block Arnoldi process and follow a similar approach
to that used in [6, 7]. Thus, letting Em = [0r, . . . , 0r, Ir]

T ∈ Rmr×r and taking G = Iq,
C = C̃ ETm ∈ Rn×mr, where C̃ ∈ Rn×r is of full rank, q = mr, and r � n, the Sylvester-
observer equation (1.3) becomes

(1.4) AX −X Ĥ = [0n×r, . . . , 0n×r, C̃] = C̃ ETm,

where the matrices A and C̃ are given, while Ĥ ∈ Rmr×mr and X ∈ Rn×mr are to be
determined such that

• Ĥ is a stable matrix, and
• the matrices A and Ĥ have a disjoint spectra, i.e., σ(A) ∩ σ(Ĥ) = ∅.

We mention that the condition q = mr is not restrictive since in the case when q=mr+r′

with 0 < r′ < r, we recover the case q = mr by simply introducing the following dynamical
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system

˙̂x(t) = AT x̂(t) +B û(t), x̂(0) = x̂0,

ŷ(t) = C
T
x̂(t), t ≥ 0,

(1.5)

where C = [C, 0n×(r−r′)] ∈ Rn×q′ , q′ = (m + 1) r, rank(C) = rank(C) = r, and

ŷ(t) = [ŷ(t)
T
, 0, . . . , 0]

T
∈ R(m+1) r. Indeed, it is easy to check that the dynamical systems

(1.1) and (1.5) are equivalent.
We point out that for small problems, several works for solving Sylvester-observer

equations have been published; see [3, 4, 20, 25]. Other existing numerical methods for
small to medium problems include a parallel algorithm described in [2] and an SVD-based
method proposed in [8]. However, the algorithms cited above cannot be applied to Sylvester-
observer equations whose coefficient matrix A is very large. We also mention that the analysis
given in [3] shows that the numerical stability of the Datta–Saad method can be significantly
improved if the eigenvalues of the matrix Ĥ are chosen well. We also point out that using the
global Arnoldi process to solve the Sylvester-observer equation yields an upper Hessenberg
matrix having exactly m prescribed eigenvalues each of multiplicity r. This is not the case
in the present work where the use of the block Arnoldi process allows certain control of the
multiplicity of the desired values.

The paper is organized as follows. In Section 2, we give some background on the block
Arnoldi process with some algebraic properties. Our proposed method for the Luenberger-
observer is developed in Section 3. More precisely, by using some matrix-valued polynomial
properties in the first part of Section 3, we show how to choose the initial block Arnoldi matrix.
Then in the second part of this section, we show how to replace the last block column of an
upper block Hessenberg matrix such that the resulting matrix has a desired set of eigenvalues.
We end Section 3 by showing how to construct the Luenberger-observer. A few numerical
experiments are discussed in Section 4.

2. The block Arnoldi process: background and notations.

2.1. Definitions and notations. Let A ∈ Rn×n, V ∈ Rn×r and m > 0 be an integer.
The mth block Krylov space associated with the pair (A, V ) denoted by Km(A, V ) is the
space of Rn×r spanned by the columns of the matrices V,AV, . . . , Am−1 V , i.e.,

Km(A, V ) = span{V,AV, . . . , Am−1 V }.

Thus, this space is defined by

Km(A, V ) =

{
m∑
i=1

Ai−1 V Ωi,Ωi ∈ Rr×r
}
,

which can also be written as

Km(A, V ) = {P(A) ◦ V,P ∈ Pm−1,r} ,

where Pm,r is the set of r×r matrix-valued polynomials of at most degreem, i.e., if ψi ∈ Rr×r
for i = 1, . . . ,m, then

ψ = (ψi) ∈ Pm,r ⇐⇒ ψ(t) =

m∑
i=0

ti ψi,
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and the ◦ notation [17, 23] is defined as follows

ψ(A) ◦ V =

m∑
i=0

Ai V ψi.

2.2. The block Arnoldi process. The block Arnoldi process can be seen as a natural
generalization of the classical Arnoldi process [19]. When applied to the pair (A, V ), where
V ∈ Rn×r, this process described by Algorithm 1 generates an orthonormal basis of the block
Krylov subspace Km(A, V ).

Algorithm 1: The block Arnoldi algorithm.

Compute the QR decomposition of V , i.e., [V1, H1,0] = QR(V );
for j = 1, . . . ,m do

W = AVj ;
for i = 1, . . . , j do

Hi,j = V Ti W ;
W = W − ViHi,j ;

end
Compute the QR decomposition of W , i.e., [Vj+1, Hj+1,j ] = QR(W );

end

We assume that during the m iterations of the above process, the upper triangular matrices
Hj+1,j are not rank deficient. In this case, Algorithm 1 constructs an orthonormal matrix Vm
and an upper block Hessenberg matrix Hm that satisfy

(2.1) AVm = VmHm + Vm+1Hm+1,m ETm,

where Vm = [V1, V2, . . . , Vm] ∈ Rn×mr, with Vi ∈ Rn×r and Hm = (Hi,j) ∈ Rmr×mr,
with Hi,j ∈ Rr×r. The matrix Em = [0r, . . . , 0r, Ir]

T is the last mr × r block column of
the identity matrix Imr. We recall that if k is the degree of the minimal polynomial of V
with respect to A, then there exists a matrix-valued polynomial Pk of degree k such that
Pk(A) ◦ V1 = 0n×r. In this case, the block Krylov subspace Kk is invariant under A, which
means that Kk = Kl for l ≥ k.

Notice that the orthonormal blocks Vi ∈ Rn×r generated by the block Arnoldi process
(Algorithm 1) can be expressed in terms of matrix-valued polynomials as

(2.2) Vi+1 = Pi(A) ◦ V1, for i = 0, . . . ,m,

where Pi is an r × r matrix-valued polynomial of degree i. The following proposition, given
in [9, 21], provides the key result that will allow us to use the block Arnoldi process for solving
the Sylvester-observer equation (1.4).

PROPOSITION 2.1. Up to a multiplicative scalar ρi ∈ R, the determinant of the matrix-
valued polynomial Pi(t) given by (2.2) is equal to the characteristic polynomial of the block
upper Hessenberg matrix Hi, i.e.,

det(Pi(t)) = ρi det(Hi − t Ii r).

3. The block Arnoldi process for the Sylvester-observer equation. As explained in
the introduction, the main part of the Luenberger problem is to determine an n×mr matrix
X and an mr ×mr matrix Ĥ such that they are solutions of the Sylvester-observer equation

AX −X Ĥ = [0n×r, . . . , 0n×r, C̃],
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and that σ(Ĥ) = Γ, where Γ := {µ1, . . . , µmr} is a set of mr suitably chosen scalars.
Taking advantage of the similarity between the previous Sylvester-observer equation

and (2.1), we begin by looking for a starting matrix Y such that the (m+ 1)st matrix Vm+1

obtained by applying the block Arnoldi process to the pair (A, Y ) is equal to C̃ = P(A) ◦ Y ,
which belongs to Km(A, Y ). However, this alone will not ensure that the spectrum of the
obtained upper block Hessenberg matrix Hm is equal to Γ. This leads us to use a block
assignment procedure in order to transform the matrix Hm into a new upper block Hessenberg
matrix Ĥm such that σ(Ĥm) = Γ.

3.1. Determining the initial block vector V1. To determine V1, we will use (2.2) and
Proposition 2.1. We seek Y ∈ Rn×r such that

(3.1) Pm(A) ◦ Y = C̃,

where det(Pm(t)) =
∏mr
i=1(t− µi) is the characteristic polynomial of Ĥm. Once the block

Y is computed, we determine V1 via the QR decomposition of Y , i.e., [V1, H1,0] = QR(Y ).
Now, let C̃ = [c̃1, c̃2, . . . , c̃r] with c̃i ∈ Rn and Λj+1 (for j = 0, . . . ,m− 1) is the r × r

diagonal matrix given by

(3.2) Λj+1 = diag(µ1+jr, µ2+jr, . . . , µr+jr).

As the prescribed values µ1, . . . , µmr are zeros of det(Pm(t)), we propose to take

Pm(t) =

m−1∏
j=0

φj+1(t) where φj+1(t) = (t Ir − Λj+1).

It is clear that det(Pm(t)) =
∏mr
i=1(t− µi).

Let p(i)m (i = 1, . . . , r) be the scalar polynomial of degree m defined by

(3.3) p(i)m (t) =

m−1∏
j=0

(t− µi+jr).

Then we give the following result that will be useful later.
LEMMA 3.1. For every Y ∈ Rn×r, we have

(3.4) Pm(A) ◦ Y =
[
p(1)m (A) y1, . . . , p

(r)
m (A) yr

]
.

Proof. Using [11, Proposition 1], we can verify that

(3.5) Pm(A) ◦ Y = (φ1 φ2 · · · φm)(A) ◦ Y = (φ1 φ2 · · · φm−1)(A) ◦ (φm(A) ◦ Y ).

Now, since φm(A) ◦ Y = AY − Y Λm =
(
(A− µ1+(m−1)r In) y1, . . . , (A− µmr In) yr

)
,

it follows that

φm−1(A) ◦ (φm(A) ◦ Y ) = A (φm(A) ◦ Y )− (φm(A) ◦ Y ) Λm−1

=

 m−1∏
j=m−2

(A− µ1+jr In) y1, . . . ,

m−1∏
j=m−2

(A− µr+jr In) yr

 .
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Thus, by induction and using (3.5), we obtain

Pm(A) ◦ Y = φ1(A) ◦ (φ2(A) ◦ (. . . ◦ (φm(A) ◦ Y )))

=

m−1∏
j=0

(A− µ1+jr In) y1, . . . ,

m−1∏
j=0

(A− µr+jr In) yr


=
[
p(1)m (A) y1, . . . , p

(r)
m (A) yr

]
,

which ends the proof.
Consequently, to obtain the solution Y of (3.1), it suffices to compute the r columns yi

which satisfy

(3.6) p(i)m (A) yi = c̃i.

To solve the r systems (3.6), we proceed as in [7], and so we seek yi such that

yi = f (i)(A) c̃i where f (i)(t) =
1

p
(i)
m (t)

=

m−1∏
j=0

1

(t− µi+jr)
.

As Y = [y1, . . . , yr] = [f (1)(A) c̃1, . . . , f
(r)(A) c̃r], referring to [5] and denoting by [p

(i)
m ]
′
(t)

the derivative of p(i)m (t), we get for i = 1, . . . , r the following expression

(3.7) f (i)(t) =
1

p
(i)
m (t)

=

m−1∑
j=0

1

[p
(i)
m ]
′
(µi+jr)× (t− µi+j r)

,

where the derivatives [p
(i)
m ]
′
(µi+j r) are given by

[p(i)m ]
′
(µi+j r) =

m−1∏
k=0
k 6=j

(µi+j r − µi+kr).

To guarantee that the fractions (3.7) are well defined, it is necessary to have

(3.8) µi+j r 6= µi+k r for j 6= k and j, k = 0, . . . ,m− 1.

Then, each yi is such that

(3.9) yi =

m−1∑
j=0

1

[p
(i)
m ]
′
(µi+j r)

z
(i)
j ,

where the z(i)j are the solutions of the linear systems

(3.10) (A− µi+j r I) z
(i)
j = c̃i, for i = 1, . . . , r and j = 0, . . . ,m− 1.

In order to solve these linear systems, we can apply independently a sparse direct method to
each of the mr shifted linear systems. In the present case, it may be preferable to use shifted
Krylov subspace methods. Such methods allow the computation of approximate solutions for
all the mr shift values by generating one only projected subspace [12, 13, 22, 24, 26]. Here,
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we suggest to use r times the restarted shifted Full Orthogonalization Method (rs-FOM) [22]
to solve the m shifted linear systems (A−µi+j r I) z

(i)
j = c̃i for j = 0, . . . ,m−1. The index

i is to be fixed when solving the above shifted linear systems.
Before summarizing the restarted shifted FOM algorithm for solving (3.10), we provide an

outline. The rs-FOM method described by Algorithm 2 makes use of the Arnoldi process [19]
applied to the pair (A, c̃) which constructs an orthonormal basis Vk = [v1, . . . , vk] ∈ Rn×k of
the Krylov subspace Kk(A, c̃) = span{c̃, A c̃, . . . , Ak−1 c̃} and an upper Hessenberg matrix
Hk = (hi,j) ∈ Rk×k. This method exploits the following two important properties; see,
e.g., [7, 22]:

1. The shift invariance property of Krylov subspaces, i.e.,

(3.11) Kk(A, c̃) = Kk(A− µ In, c̃),

and the classical and shifted Arnoldi relations

AVk = VkHk + vk+1 [0, . . . , hk+1,k],

(A− µ In)Vk = Vk (Hk − µ Ik) + vk+1 [0, . . . , hk+1,k].

2. The colinearity of the obtained residuals with the (k + 1)st basis vector vk+1.
The restarted shifted FOM(k) algorithm is summarized as follows:

Algorithm 2: The restarted shifted FOM(k)

Given A, C̃ = [c̃1, . . . , c̃r], Γ = {µ1, µ2, . . . , µmr}; k a nonzero integer;
for i = 1, . . . , r do

Set: J = {0, . . . ,m− 1}; Γi = {µi, µi+r, . . . , µi+(m−1) r};
r0 = c̃i, β

(j)
k = ‖r0‖2 and z(i)j = 0 for j ∈ J ; Set v1 = r0/β

(j)
k ;

Generate Vk,Hk by the Arnoldi process applied to (A, v1);
for j ∈ J do

y
(i+j r)
k = β

(j)
k (Hk − µi+j r Ik)

−1
e1;

Update z(i)j ← z
(i)
j + Vk y(i+j r)k ;

end
Eliminate converged systems; Update J ;
if J = ∅ then

exit;
end
Set β(j)

k = −hk+1,k (y
(i+j r)
k )

k
for each j ∈ J ;

Update v1 ← vk+1;
end

The shift invariance property (3.11) indicates that once a Krylov basis is generated for one
of the linear systems (3.10), it can also be reused for all other linear systems. Thus, we do
not need to construct an orthonormal basis for each shifted Krylov subspace Kk(A− µ In, c̃).
This strategy allows us to reduce the algorithmic cost considerably. For more details on the
FOM and the restarted shifted FOM methods, we refer to [7, 19, 22, 26].

We mention that for i = 1, . . . , r, each column yi of the matrix Y is simply computed
via (3.9). Moreover, applying m iterations of the block Arnoldi process to the pair (A, Y )
will produce an orthonormal matrix Vm and an upper block Hessenberg matrix that fulfill the
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Sylvester-observer equation

(3.12) AVm − VmHm = [0n×r, . . . , 0n×r, Vm+1Hm+1,m].

3.2. Assigning eigenvalues to the block upper Hessenberg matrix Hm. We begin this
section by noticing that the block vector Vm+1 appearing in (3.12) is generally not colinear
with C̃, and thus, the eigenvalues of the matrix Hm do not necessarily coincide with the mr
chosen scalars {µk}k=1,...,mr. Then, we have to transform Hm into a matrix Ĥm so that the
eigenvalues of the latter are exactly the mr selected scalars {µk}k=1,...,mr.

The particular case where Vm+1 and C̃ are colinear, i.e., C̃ = Vm+1 Ψm (where Ψm is
some r × r matrix), can be considered as a “happy” case. In this case, we can easily verify
that σ(Hm) = {µk}k=1,...,m r = Γ thanks to (2.2) and Proposition 2.1.

To construct the matrix Ĥm, we need to define the following sequence of matrices
Li ∈ Rmr×r:

• Let Ej = [0r, . . . , 0r, Ir, 0r, . . . , 0r]
T be the jth block column of the identity matrix.

• Let L1 ∈ Rmr×r be such that

(3.13) L1 = E1H1,0 = [HT
1,0, 0r, . . . , 0r]

T
,

where H1,0 is the upper triangular matrix appearing in the QR decomposition of Y ,
i.e., [V1, H1,0] = QR(Y ).

• For i = 1, . . . ,m, let

(3.14) Li+1 = Hm Li − Li Λi ∈ Rmr×r,

where Λi is given by (3.2). We notice that L(k)
i+1, the kth column of Li+1, is given by

(3.15) L
(k)
i+1 = (Hm − µk+(i−1) r Imr)L

(k)
i for k = 1, . . . , r.

• Let α ∈ Rr×r be defined as the product of the inverses of the (m− 1) block entries
of the lower subdiagonal of the block upper Hessenberg matrix Hm, i.e.,

(3.16) α =

m−1∏
i=1

H−1i+1,i.

Notice that Hi+1,i is invertible by assumption. Now, we give the following result that will be
useful later.

PROPOSITION 3.2. Let S = Lm+1. Then the matrix S can be expressed in terms of a
matrix-valued polynomial as

(3.17) S = Pm(Hm) ◦ L1.

Proof. By induction on i = 1, . . . ,m and using (3.15), it is easily seen that each column
S(k) of the matrix S can be expressed in terms of Hm and L(k)

1 using the polynomial p(k)m ,
since

S(k) = L
(k)
m+1 =

[
(Hm − µk+(m−1) r Imr)× · · · × (Hm − µk Imr)

]
L
(k)
1 ,

=

m−1∏
j=0

(Hm − µk+j r Imr)

 L(k)
1 = p(k)m (Hm)L

(k)
1 ,
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where the last equality is justified by the definition of p(k)m given in (3.3). Finally, using (3.4),
we get the desired result.

We also have the following result, which gives the transformed matrix Ĥm in terms of the
upper block Hessenberg matrix Hm.

PROPOSITION 3.3. The eigenvalues of the matrix Ĥm = Hm − S H−11,0 αETm are
µ1, . . . , µmr.

Proof. Let L = [L1, L2, . . . , Lm] ∈ Rmr×mr, where Li is defined by (3.14), and let B
be the bi-diagonal block matrix defined as follows

B =



Λ1 0 · · · 0

Ir Λ2
. . .

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 Ir Λm


.

It is easy to verify that the matrix L is an upper triangular matrix whose kth diagonal block
entry Lk,k (k = 1, . . . ,m) is given by

Lk,k = Hk,k−1 × · · · ×H2,1 ×H1,0 =

1∏
i=k

Hi,i−1.

We recall that the matrices Hi,i−1 are upper triangular matrices computed by a QR decomposi-
tion. These matrices are assumed to be nonsingular. Therefore the matrix L is also nonsingular.
In addition, by using (3.14), we have

Hm L− LB = [Hm L1, . . . ,Hm Lm−1,Hm Lm]

− [L1 Λ1 + L2, . . . , Lm−1 Λm−1 + Lm, Lm Λm]

= [Hm L1 − L1 Λ1 − L2, . . . ,Hm Lm−1 − Lm−1 Λm−1 − Lm,
Hm Lm − Lm Λm]

= [0mr×r, . . . , 0mr×r, S] .

Multiplying from the right by L−1, we get

Hm − [0mr×r, . . . , 0mr×r, S]L−1 = LB L−1.

But [0mr×r, . . . , 0mr×r, S] L−1 =
[
0mr×r, . . . , 0mr×r, S L−1m,m

]
= S H−11,0 αETm.

Finally, we get

Ĥm = Hm − S H−11,0 αETm = LB L−1,

which shows that Ĥm and B are similar and have the same eigenvalues µ1, . . . , µmr.
In the following lemmas, we state some useful results to be used later.
LEMMA 3.4. Let Vm and Hm be the matrices generated after m iterations of the block

Arnoldi process applied to the pair (A, Y ) and let P be a matrix-valued polynomial of degree
j < m. Then

(3.18) VTm (P(A) ◦ V1) = P(Hm) ◦ E1

and

(3.19) VTm (P(A) ◦ Y ) = P(Hm) ◦ L1,

where L1 is defined by (3.13).
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Proof. Using (2.1), we can show by induction that for j = 1, . . . ,m− 1, we have

(3.20) Aj V1 = VmHjm E1.

So, for every matrix-valued polynomial P of degree j < m such that P(t) =
∑j
i=0 t

i Ωi,
where Ωi ∈ Rr×r, we have

P(A) ◦ V1 =

j∑
i=0

Ai V1 Ωi =

j∑
i=0

VmHim E1 Ωi = Vm (P(Hm) ◦ E1).

Finally, since the matrix Vm is orthonormal, we have VTm (P(A) ◦ V1) = P(Hm) ◦E1, which
proves (3.18).

The second equality (3.19) can be proved as follows. Using the fact that Y = V1H1,0,
L1 = E1H1,0, and the relation (3.20), we get

VTm (P(A) ◦ Y ) =VTm

(
j∑
i=0

Ai V1H1,0Ωi

)
= VTm

(
j∑
i=0

VmHim E1H1,0 Ωi

)

=

j∑
i=0

Him L1 Ωi = P(Hm) ◦ L1,

which completes the proof.
LEMMA 3.5. Let Hm+1 = (Hi,j) ∈ R(m+1)r×(m+1)r be an upper block Hessenberg

matrix with Hi,j ∈ Rr×r and P a monic matrix-valued polynomial of degree m. Then

(3.21) ETm+1 (P(Hm+1) ◦ E1) = Hm+1,m × · · · ×H2,1.

Proof. To prove (3.21), we have to compute the products ETm+1 Him+1 E1, i = 1, . . . ,m.
Notice that ETm+1 Him+1 E1 is the (i+ 1)st entry of the first block column of Him+1, and as
Hm+1 is an upper block Hessenberg matrix, we can show that

ETm+1 Him+1 E1 = 0r for i = 0, 1, . . . ,m− 1,

and for i = m, we have

(3.22) ETm+1 Hmm+1 E1 = Hm+1,m × · · · ×H2,1.

Finally, from the above equalities, we deduce that for every monic matrix-valued polynomial
P of degree m, we have

ETm+1 P(Hm+1) ◦ E1 = Hm+1,m × · · · ×H2,1,

which completes the proof.
In the following result, we give a new expression for the matrix Ĥm, which is, from a

practical and computational point of view, more convenient than the first expression given in
Proposition 3.3.

PROPOSITION 3.6. Let Vm+1 = [Vm, Vm+1], and let Hm be the orthonormal and the
upper block Hessenberg matrices constructed by the block Arnoldi process at step m. Let also

(3.23) βm = (V Tm+1 C̃)
−1
Hm+1,m.
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Then the matrix Ĥm can be written as

(3.24) Ĥm = Hm − F ETm,

where F := VTm C̃ βm. Moreover, the matrix Ĥm satisfies the Arnoldi-like relation

(3.25) AVm − Vm Ĥm = C̃ βm ETm.

Proof. To prove (3.24), we have to show that F = VTm C̃ βm also can be written as

(3.26) F = S H−11,0 α.

To verify the above equality, we first notice that the matrix-valued polynomial Pm can be
expressed as

Pm(t) = (t Ir − Λm)Pm−1(t) = Q(t)Pm−1(t).

Therefore,

Pm(A) ◦ Y = (QPm−1)(A) ◦ Y
= Q(A) ◦ (Pm−1(A) ◦ Y )

= Q(A) ◦ (Vm (Pm−1(Hm) ◦ L1))

= AVm (Pm−1(Hm) ◦ L1)− (Vm (Pm−1(Hm) ◦ L1)) Λm.

Multiplying the last relation from the left by VTm, we get

VTm (Pm(A) ◦ Y ) = Hm (Pm−1(Hm) ◦ L1)− (Pm−1(Hm) ◦ L1) Λm

= Q(Hm) ◦ (Pm−1(Hm) ◦ L1)

= Pm(Hm) ◦ L1.

Now, using (3.17), it follows that

F = VTm C̃ βm = VTm (Pm(A) ◦ Y )βm = (Pm(Hm) ◦ L1)βm = S βm.

Due to the orthogonality of {V1, . . . , Vm+1} and to (3.20), we obtain

βm = (V Tm+1 C̃)
−1
Hm+1,m

=
(
V Tm+1 (Pm(A) ◦ Y )

)−1
Hm+1,m

=

(
m∑
i=0

Vm+1
TAi V1H1,0Ωi

)−1
Hm+1,m (where Ωi ∈ Rr×r and Ωm = Ir)

=
(
V Tm+1A

m V1H1,0 Ωm
)−1

Hm+1,m

=
(
V Tm+1 Vm+1 Hmm+1 E1H1,0

)−1
Hm+1,m

= H−11,0

(
ETm+1 Hmm+1 E1

)−1
Hm+1,m

= H−11,0α,

where, in the last equality, we used (3.22) and (3.16). Thus, we have a new expression for βm,

(3.27) βm =

m−1∏
i=0

H−1i+1,i,
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and we get the desired result (3.26). Finally, since Ĥm = Hm − S H−11,0 αETm, the relation
(3.24) follows immediately.

To prove (3.25), we notice that since, C̃ = Pm(A)◦Y , then C̃ ∈ Km+1(A, V1). Therefore
there exists Ωm ∈ Rmr×r and g ∈ Rr×r such that

C̃ = Vm Ωm + Vm+1g.

Using the fact that Vm+1 is orthonormal, we obtain

Ωm = VTmC̃ and g = V Tm+1 C̃.

Therefore,

C̃ βm = Vm Ωm βm + Vm+1 g βm

= Vm VTm C̃ βm + Vm+1 V
T
m+1 C̃ βm

= Vm F + Vm+1Hm+1,m,

where F = VTm C̃ βm. Multiplying C̃ βm from the right by ETm, we get

C̃ βm ETm = Vm F ETm + Vm+1Hm+1,m ETm.

Invoking (2.1), we obtain the Arnoldi-like relation (3.25),

AVm − VmHm + Vm F ETm = C̃ βm ETm.

To recover the Sylvester-observer form (1.4), we express the matrix equation (3.25) as

(3.28) AVm − Vm Ĥm =
[
0n×r, . . . , 0n×r, C̃ βm

]
and define D as the last block-column of the matrix AVm − Vm Ĥm, i.e., D = C̃ βm. Let
C̃+ = (C̃T C̃)

−1
C̃T be the pseudo-inverse of C̃. Then we can write βm = C̃+D. Now,

introducing the following block diagonal matrix

(3.29) Θ =


Ir 0r · · · 0r

0r
. . . . . .

...
...

. . . Ir 0r
0r · · · 0r β−1m

 ,
we rewrite (3.28) as follows

AVm Θ− Vm Θ Θ−1 Ĥm Θ =
[
0n×r, . . . , 0n×r, C̃

]
and finally take

(3.30) X = Vm Θ, and Ĥ = Θ−1 Ĥm Θ.

The block Arnoldi algorithm for solving the the multi-output Sylvester-observer problem is
summarized in Algorithm 3.
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Algorithm 3: The block Arnoldi algorithm for multi-output Sylvester-observer equation.

Input: A ∈ Rn×n, C̃ = (c̃1, . . . , c̃r) ∈ Rn×r with rank(C̃) = r and
Γ = {µ1, µ2, . . . , µmr} satisfying (3.8).

1. Solve the linear problem Pm(A) ◦ Y = C̃, i.e.,
(a) Solve the mr linear systems

(A− µi+j r Imr) z(i)j = c̃i

for i = 1, . . . , r and j = 0, . . . ,m− 1.
(b) For i = 1, . . . , r, compute

yi =

m−1∑
j=0

γj z
(i)
j where γj =

m−1∏
k=0
k 6=j

(µi+j r − µi+k r)


−1

.

2. Define Y = [y1, . . . , yr] and apply Algorithm 1 to the pair (A, Y ) to get

Vm+1 = [V1, . . . , Vm, Vm+1] and Hm = [Hi,j ].

3. Modify Hm to get Ĥ such that σ(Ĥ) = {µ1, µ2, . . . , µmr}, i.e.,

(a) Compute βm =
(
V Tm+1 C̃

)−1
, Hm+1,m =

∏m−1
i=0 H−1i+1,i and

F = VTm C̃ βm;
(b) Define Ĥm = Hm − F ETm.
(c) Compute Θ using (3.29).

4. Take X = VmΘ and Ĥ = Θ−1ĤmΘ.

REMARK 3.7. Before ending this section, we make a few remarks:
1. It should be noted from (3.8) that the parameter γj in step 1(b) of Algorithm 3 is well

defined. Moreover, we mention that this condition is the only constraint which must
be satisfied by the scalars µi. Thus these values are not inevitably all distinct.

2. The numerical tests we have performed show that computing βm in step 3(a) by
formula (3.27) gives better results than by using the formula (3.23). In this case, it is
more convenient to write (3.27) as follows

βm =

(
m−1∏
i=0

Hm−i,m−i−1

)−1
=

(
0∏

i=m−1
Hi+1,i

)−1
.

3. From (3.29), we see that Θ is nearly equal to the identity matrix apart from the last
r × r block. Thus, the solutions X and Ĥ given by (3.30) are not expensive to
compute. Moreover, since Vm is orthonormal,

‖X‖F = ‖Θ‖F = ‖β−1m ‖F .

4. Since m, r � n, the algorithmic cost of Algorithm 3 is generally dominated by the
solution of the mr shifted linear systems.

4. Numerical experiments. The numerical tests described in this section were carried
out on an Intel Core i5 workstation using MATLAB (version R2015a) and floating point
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FIG. 4.1. Figures for Example 4.1. Eigenvalues of A ( ·), Eigenvalues of Ĥ (◦), Scalars {µk}k=1,...,m r (+).
Top left: plot obtained with n = 1000, m = 3, r = 4. Top right: plot obtained with n = 1000, m = 6, r = 10.
Bottom left: plot obtained with n = 5000, m = 8, r = 2. Bottom right: plot obtained with n = 5000, m = 5,
r = 20.

arithmetic with 16 significant decimal digits. For solving the shifted linear systems, we used
Gaussian elimination or the restarted shifted FOM(k) method (Algorithm 2) with k = 50 and
a maximum of restmax = 50 restarts. We considered that a shifted system converged if the
norm of the corresponding residual is less or equal to tol = 10−10. The n × r block C̃ is
generated randomly via the MATLAB function C̃ = rand(n, r).

In all the tables, except for the last one, we reported the relative error norms for the
Sylvester-observer equation given by

SylvErr = ‖(A1X −X Ĥ)− C̃ETm‖2/‖C̃‖2

and the relative distance between the eigenvalues of Ĥ and the values of µ given by

EigErr = ‖σ(Ĥ)− Γ‖2/‖Γ‖2.

EXAMPLE 4.1. In this first example, the test matrix A = A1 is generated randomly
by the MATLAB command A_1=sparse(B−tril(B,−5)−triu(B,7)), where B=rand(n). The
set of prescribed values is Γ1 = {zk, z̄k}, where Re(z_k)= −7∗rand+min(real(eig(A))) and
Im(z_k) = rand for k = 1, . . . ,mr.

In Figure 4.1, we plotted the eigenvalues σ(A1) of the matrix A1 which are marked by
dots and the eigenvalues σ(Ĥ) of the matrix Ĥ which are marked by circles. The prescribed
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TABLE 4.1
Results for Example 4.1 with A = A1. The prescribed set of eigenvalues is Γ = Γ1. Here, we used Gaussian

elimination to solve the linear systems.

n m r SylvErr EigErr

1000 3 4 3.16× 10−15 8.13× 10−14

5000 8 2 2.27× 10−11 6.79× 10−08

1000 6 10 1.10× 10−11 4.28× 10−10

5000 5 20 2.13× 10−13 1.90× 10−09

values µ1, . . . , µmr are marked by plus signs. As can be seen from this figure and Table 4.1,
the obtained results are quite good.

EXAMPLE 4.2. For the second example, we consider two matrices: A2=(poisson,100),
where n = 10000, nnz(A2) = 49600 and A3=(wathen,70,100), where n = 21341 and
nnz(A3) = 330361. These matrices come from a set of test matrices collected by Higham [14]
and can be generated via the MATLAB function gallery . As these matrices are symmetric and
positive definite, we consider a set Γ = {µ1, . . . , µmr} of mr distinct negative real values. To
show the influence of the prescribed set of eigenvalues Γ, we consider three different choices
of Γ. More precisely, the considered sets are generated randomly by the MATLAB function
rand via Gamma=−c∗rand(m∗r,1), where c is a positive integer. The obtained results for
different values of c, m, and r are reported in Table 4.2a, Table 4.2b, and Table 4.2c. Again, in
these tables we report the relative error norms for the Sylvester-observer equation and between
the eigenvalues of Ĥ and the values of µ. We also report the conditioning number of the
approximation X .

As observed from the results of these tables, the accuracy is quite good even for small m.
We notice that as the matrices are sparse and structured, we can also use Gaussian elimination
for solving the shifted linear systems. In this case, and as shown in Table 4.2c, the results
obtained are better than those from the restarted shifted FOM method.

EXAMPLE 4.3. In this example, we considered the matrix given by Datta and Saad [7].
Let L = − diag(l1, . . . , lp) and D = diag(d1, . . . , dp), two diagonal matrices of size p× p.
Then

A = A4 =

[
0p Ip
L D

]
.

We mention that the eigenvalues of A4 are the solutions of the quadratic equations

x2 − dk x− lk = 0, k = 1, . . . , p.

Thus, taking dk = 2αk and lk = −(α2
k + β2

k) gives that σ(A4) = {λk, λ̄k}k=1,...,p, where
λk = αk + ı βk. In this experiment, the parameters αk, βk were random values uniformly
distributed in [-1, 1]. To choose Γ, the set of desired eigenvalues, we adopt the strategy
described in [3]. More precisely, we choose the µk to be zeros of a Chebyshev polynomial for
the interval [a+ ı b, a− ı b], where a = −1 + mind∈σ(A4) <(d) and b = maxd∈σ(A4) =(d).

Our experiments were run with n = 2 p = 20000 and we used different values of m
and r. We also point out that as the matrix A4 is sparse and structured, we used Gaussian
elimination to solve the shifted linear systems. The results displayed in Table 4.3a are those
obtained with mr distinct values µ1, . . . , µmr invariant under complex conjugation. These
parameters µk are zeros of the Chebyshev polynomial of the first kind of degree mr for the
interval [a+ ı b, a− ı b]. To compare with the global Arnoldi algorithm for multiple-output
Sylvester-observer equation [6], we give in Table 4.3b and Table 4.3c the results obtained with
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TABLE 4.2
Results for Example 4.2.

(a) Results for Example 4.2 with A = A2, n = 10000, m ∈ {3, 4, 5}, r ∈ {2, 5, 10}, c ∈ {1, 10, 30}. We used
here the restarted shifted FOM(50) to solve the linear systems.

m r c SylvErr EigErr κ(X)

3 2 1 5.13× 10−10 9.10× 10−10 1.09× 10+01

5 5 1 3.53× 10−08 2.34× 10−04 2.28× 10+00

3 5 10 1.32× 10−12 1.78× 10−11 1.75× 10+01

4 5 10 1.78× 10−13 2.72× 10−11 4.25× 10+01

4 5 30 9.89× 10−15 9.95× 10−11 1.21× 10+03

5 10 30 2.38× 10−13 2.17× 10−08 5.92× 10+03

(b) Results for Example 4.2 with A = A3, n = 21341, m ∈ {2, 3, 4}, r ∈ {5, 10}, c ∈ {10, 30}. We used the
restarted shifted FOM(50) to solve the linear systems.

m r c SylvErr EigErr κ(X)

2 5 10 1.04× 10−10 8.24× 10−09 4.59× 10+00

2 5 30 1.55× 10−13 6.65× 10−12 4.70× 10+00

3 10 10 4.25× 10−09 2.39× 10−08 5.17× 10+00

3 10 30 3.24× 10−10 3.22× 10−09 1.10× 10+01

4 5 10 3.85× 10−06 6.41× 10−05 5.54× 10+00

4 5 30 2.51× 10−09 7.55× 10−06 1.73× 10+01

(c) Results for Example 4.2 with A = A3, n = 21341, m ∈ {2, 3, 4}, r ∈ {5, 10}, c ∈ {10, 30}. Here Gaussian
elimination is used to solve the linear systems.

m r c SylvErr EigErr κ(X)

2 5 10 1.22× 10−13 2.97× 10−13 4.59× 10+00

2 5 30 3.25× 10−14 1.91× 10−13 4.70× 10+00

3 10 10 1.33× 10−11 2.39× 10−09 5.17× 10+00

3 10 30 1.62× 10−12 2.57× 10−10 1.10× 10+01

4 5 10 8.92× 10−09 1.00× 10−05 5.54× 10+00

4 5 30 2.82× 10−10 1.56× 10−07 1.73× 10+01

a prescribed set of m eigenvalues where each eigenvalue is of multiplicity r. The m distinct
values µ1, . . . , µm are zeros of the Chebyshev polynomial of the first kind of degree m for the
interval [a+ ı b, a− ı b]. The obtained results with the global Arnoldi process are given in
Table 4.3b while those with the block Arnoldi process are given in Table 4.3c.

We end this last set of experiments by illustrating that the method described in this work
allows us to control the multiplicities of the desired eigenvalues. We took m = 3 and r = 4
and Γ = {µ1, . . . , µ12} where µ1 = −1, µ2 = −2, µ3 = −3, µ4 = −2, µ5 = −3, µ6 = −4,
µ7 = −7, µ8 = −6, µ9 = −8, µ10 = −3, µ11 = −4 and µ12 = −5. Table 4.3d displays the
obtained set of eigenvalues σ(Ĥ) and the µks, k = 1, . . . ,mr in descending order. For this
example, the relative error norms were SylvErr = 7.01 × 10−14, EigErr = 3.85 × 10−14,
and κ(X) = 6.8625.

5. Conclusion. In this paper, we proposed a new method for solving Sylvester-observer
equations needed in the construction of the Luenberger observer. This method is a general-
ization of a single input technique introduced by Datta and Saad and is based on the block
Arnoldi process. We gave new algebraic properties and showed how to use the classical block
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TABLE 4.3
Results for Example 4.3.

(a) Results for Example 4.3 with A = A4, n = 20000, m ∈ {3, 5, 6, 7, 8}, r ∈ {3, 6, 10, 20}. We used Gaussian
elimination to solve the shifted linear systems.

m r SylvErr EigErr κ(X) time

3 10 7.94× 10−14 3.25× 10−14 2.83× 10+01 1.31
5 3 4.12× 10−13 1.02× 10−12 4.32× 10+01 0.62
5 6 2.33× 10−13 8.99× 10−13 5.39× 10+01 1.42
6 20 7.77× 10−13 1.01× 10−10 5.05× 10+00 6.00
7 20 1.36× 10−12 5.11× 10−09 4.78× 10+00 6.82
8 10 1.59× 10−11 6.66× 10−08 4.59× 10+00 3.87

(b) Results for Example 4.3 with A = A4, n = 20000, m ∈ {3, 5, 6, 7, 8}, r ∈ {3, 6, 10, 20}. Gaussian
elimination is used to solve the shifted linear systems. The global Arnoldi process was used to solve the Sylvester-
observer equation

m r SylvErr EigErr κ(X) time

3 10 6.93× 10−14 7.21× 10−14 8.49× 10+00 0.50
5 3 4.36× 10−14 3.23× 10−12 4.48× 10+00 0.32
5 6 1.52× 10−13 3.54× 10−12 6.68× 10+00 0.50
6 20 1.65× 10−13 8.80× 10−12 1.55× 10+01 1.79
7 20 1.58× 10−12 2.96× 10−10 1.70× 10+01 2.04
8 10 2.39× 10−12 1.91× 10−08 1.16× 10+01 1.29

(c) Results for Example 4.3 with A = A4, n = 20000, m ∈ {3, 5, 6, 7, 8}, r ∈ {3, 6, 10, 20}. Gaussian
elimination was used to solve the shifted linear systems and the block Arnoldi process was used to solve the Sylvester-
observer equation.

m r SylvErr EigErr κ(X) time

3 10 4.07× 10−14 1.53× 10−14 3.83× 10+01 0.67
5 3 3.19× 10−13 2.40× 10−12 4.85× 10+00 0.42
5 6 3.91× 10−13 2.74× 10−12 6.69× 10+00 0.68
6 20 2.74× 10−13 1.57× 10−11 7.71× 10+00 3.01
7 20 1.65× 10−12 5.34× 10−10 6.92× 10+00 3.67
8 10 7.69× 10−12 3.59× 10−08 4.74× 10+00 2.14

(d) Results for Example 4.3: the obtained set of eigenvalues σ(Ĥ) and the µks. The matrix is A = A4, n = 20000,
m = 3, r = 4 and the Gaussian elimination was used to solve the shifted linear systems.

Γ σ(Ĥ)

-1.000000000000000e+00 -1.000000000000000e+00
-2.000000000000000e+00 -1.999999999999913e+00
-2.000000000000000e+00 -1.999999999999990e+00
-3.000000000000000e+00 -2.999999999999960e+00
-3.000000000000000e+00 -2.999999999999990e+00
-3.000000000000000e+00 -3.000000000000323e+00
-4.000000000000000e+00 -3.999999999999596e+00
-4.000000000000000e+00 -4.000000000000048e+00
-5.000000000000000e+00 -5.000000000000042e+00
-6.000000000000000e+00 -5.999999999999949e+00
-7.000000000000000e+00 -7.000000000000256e+00
-8.000000000000000e+00 -7.999999999999893e+00
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Arnoldi algorithm to build the Luenberger observer. The presented numerical tests show that
the proposed approach can be quite effective for large-scale Luenberger observer problems.
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