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VECTOR ESTIMATES FOR f(A)b VIA EXTRAPOLATION∗

MARILENA MITROULI† AND PARASKEVI ROUPA†

Abstract. Let A ∈ Rp×p be a diagonalizable matrix and f a smooth function. We are interested in the problem
of approximating the action of f(A) on a vector b ∈ Rp, i.e., f(A)b, without explicitly computing the matrix
f(A). In the present work, we derive families of one-term, two-term, and three-term inexpensive approximations to
the quantity f(A)b via an extrapolation procedure. For a given diagonalizable matrix A, the proposed families of
vector estimates allow us to approximate the form WT f(A)U , for any matrices W,U ∈ Rp×m, 1 ≤ m� p, not
necessarily biorthogonal. We present several numerical examples to illustrate the effectiveness of our method for
several functions f for both the quantity f(A)b and the form WT f(A)U .
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1. Introduction. Let A ∈ Rp×p be a diagonalizable matrix, b a real vector of length
p, and f a smooth function defined on the spectrum of the matrix A. The aim of this work
is the approximation of the matrix vector product f(A)b without explicitly computing the
matrix f(A) by an extrapolation procedure. Furthermore, we apply estimates of f(A)b for
approximating expressions of the form WT f(A)U for any thin matrices W,U ∈ Rp×m,
1 ≤ m� p. The motivation for calculating the quantity f(A)b arises from applications in
which it is neither necessary to approximate the whole matrix f(A) nor feasible to compute
f(A) explicitly, especially when A is a large sparse matrix. Particularly, in applications, even
when A is sparse, the matrix f(A) is dense as long as A does not have a special structure (e.g.,
diagonal, triangular, block diagonal/triangular, etc.). Therefore, it is not feasible to deal with
the whole matrix f(A) when A is of large dimension since this is too expensive.

There are specific situations in which the action of f(A) on a vector b is desired. In
particular, f(A)b often appears in applications which originate from partial differential
equations [17]. It also arises in lattice quantum chromodynamics computations in chemistry
and physics; see [10] and references therein. In these applications, the sign function, sign(A),
is used, and the given matrix A is very large, sparse, and complex Hermitian. Furthermore,
it is often useful to compute f(A)b with f(A) = A1/2 and A being a symmetric positive
definite matrix. In problems arising in population dynamics and in neutron transport, the
numerical solution of stochastic differential equations which contain the quantity A1/2b is
needed [1]. In case of the given matrix A being also sparse, A1/2b appears in sampling from
a Gaussian process distribution [9]. In network analysis, the quantity exp(A)b determines
the total communicability, which serves as a global measure of how well the nodes in a
graph can exchange information. The total communicability of a node i can be defined as
the ith entry of the vector exp(A)1, where 1 is a vector with all elements equal to one,
i.e., TC(i) := (exp(A)1)i [2, 3]. Also, expressions of the form exp(−τA)b, where A is a
nonnegative definite matrix, appear in predicting the time evolution of electrical circuits and
in computing the transient solution of Markov chains [19].

Among the developed methods for the f(A)b-problem are those based on Krylov sub-
spaces (see [17, 16] and references therein); others employ rational approximations [10] and
polynomial approximations [9, 19]. The aim of this work is to introduce an alternative ap-
proach that utilizes extrapolation for estimating the quantity f(A)b. Specifically, we produce
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families of approximations of f(A)b for a diagonalizable matrix A ∈ Rp×p and a vector
b ∈ Rp via an extrapolation procedure. The derived family of one-term vector estimates ϕz
depends on a parameter z ∈ C. Optimal values (zopt)i for each entry of ϕz and bounds for
these values are obtained. Moreover, families of two-term {ϕ̂n,k, n, k ∈ Z} and three-term
{ϕ̃n,k,`, n, k, ` ∈ Z} vector estimates are generated. The behaviour of these families is tested
by several numerical examples, and very satisfactory relative errors are reported.

The paper is organized as follows. In Section 2, families of one-term, two-term, and
three-term vector estimates for the quantity f(A)b are derived. In Section 3, approximations
of expressions of the form WT f(A)U are found by using the previously derived estimates
for f(A)b. Numerical examples are reported in Section 4, and Section 5 contains concluding
remarks.

Throughout the paper, (·, ·) is the Euclidean inner product, for a vector x ∈ Rp we denote
by ‖x‖ the Euclidean vector norm, and xi denotes the ith entry of the vector x. For a matrix
A ∈ Rp×p, ‖A‖2 is the spectral norm, and κ2(A) is the spectral condition number of the
matrix A. Ik denotes the identity matrix of order k, ei is the ith column of the identity matrix
of suitable size, and 1 is a vector with all elements equal to one. The superscript T denotes the
transpose, the symbol ' means “approximately equal to”, and the symbol� means “much
smaller than”.

2. Vector estimates for f(A)b. In this section, we outline how the quantity f(A)b can
be approximated by an extrapolation procedure. This kind of extrapolation procedure was
introduced by Brezinski in [4] for approximating the norm of the error for the solution of linear
systems, and it was extended in [7] and [8]. In [5, 6] an extrapolation procedure was developed
for an approximation of the trace of powers of positive self-adjoint linear operators and an
approximation of the inverse of a linear operator on a Hilbert space, respectively. Families of
estimates for the bilinear form xTA−1y for any nonsingular matrix were derived in [14], and
in [13] families of estimates for the bilinear form y∗f(A)x for a Hermitian matrix were given.

In the present work, we derive families of one-term, two-term, and three-term vector
estimates for f(A)b, where A ∈ Rp×p is a diagonalizable matrix, b is a real vector of length
p, and f is a smooth function defined on the spectrum of A.

We assume that the matrix A has the factorization

A = QΛQ−1,

where

Q =
[
q1 q2 . . . qp

]
∈ Cp×p is nonsingular, Λ = diag[λ1, . . . , λp] ∈ Cp×p,

Q−1 =


q̂T1
q̂T2
. . .
q̂Tp

 ∈ Cp×p, qi, q̂i ∈ Cp×1, i = 1, 2, . . . , p.

The diagonal elements λi of the matrix Λ are the eigenvalues of A, which are real or appear in
complex conjugate pairs. The column vectors of Q are the right eigenvectors of A, and the
row vectors of Q−1 are the left eigenvectors of the matrix A. Since Q−1Q = Ip, it holds that
q̂Ti qj = δij for i, j = 1, 2, . . . , p, where δij is the Kronecker delta. For a function f defined
on the spectrum of the matrix A, the matrix f(A) ∈ Cp×p can be expressed as

f(A) = Qf(Λ)Q−1 =

p∑
j=1

f(λj)qjq̂
T
j .
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For any integer r ∈ Z and a vector b ∈ Rp, we define the vector moments vr ∈ Rp of the
matrix A as follows:

vr = Arb.

Each entry vr,i of the vector moment vr can be written as the following sum

(2.1) vr,i = eTi vr = eTi A
rb =

p∑
j=1

λrj(ei,qj)(q̂j ,b) =

p∑
j=1

λrjαj,iβj ,

where αj,i = (ei,qj), βj = (q̂j ,b), i, j = 1, 2, . . . , p. The function vector moment vf ∈ Cp
of the matrix A is defined as

vf = f(A)b.

For the entries vf,i, i = 1, 2, . . . , p, of the function vector moment vf , we have

(2.2) vf,i = eTi f(A)b =

p∑
j=1

f(λj)(ei,qj)(q̂j ,b) =

p∑
j=1

f(λj)αj,iβj .

An approximation of vf can be obtained without computing the factorization of A. Let us
keep k terms in the summation (2.2), that is,

(2.3) vf =


vf,1
vf,2

...
vf,p

 '

∑k
j=1 f(λ̃j,1)α̃j,1β̃j,1∑k
j=1 f(λ̃j,2)α̃j,2β̃j,2

...∑k
j=1 f(λ̃j,p)α̃j,pβ̃j,p

 =


∑k
j=1 f(λ̃j,1)m̃j,1∑k
j=1 f(λ̃j,2)m̃j,2

...∑k
j=1 f(λ̃j,p)m̃j,p

 .

The unknowns λ̃j,i and m̃j,i = α̃j,iβ̃j,i can be determined by imposing as interpolation
conditions the relation (2.1) for various nonnegative values of r, i.e.,

(2.4) vr =


vr,1
vr,2

...
vr,p

 '

∑k
j=1 λ̃

r
j,1α̃j,1β̃j,1∑k

j=1 λ̃
r
j,2α̃j,2β̃j,2
...∑k

j=1 λ̃
r
j,pα̃j,pβ̃j,p

 =


∑k
j=1 λ̃

r
j,1m̃j,1∑k

j=1 λ̃
r
j,2m̃j,2

...∑k
j=1 λ̃

r
j,pm̃j,p

 .

2.1. One-term vector estimates. By applying the summations of (2.3) for k = 1, each
entry of the function vector moment vf can be approximated by

vf,i ' f(λ̃1,i)m̃1,i, i = 1, 2, . . . , p,

where the unknowns λ̃1,i, m̃1,i are determined from the interpolation conditions (2.4) for
r = 0, 1, 2, i.e.,

v0,i ' m̃1,i,

v1,i ' λ̃1,im̃1,i ' λ̃1,iv0,i,
v2,i ' λ̃21,im̃1,i ' λ̃21,iv0,i.
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By solving the above system of equations, we arrive at the following compact formula for λ̃1,i:

(2.5) λ̃1,i = vj−10,i v
1−2j
1,i vj2,i, j = 0, 12 , 1, i = 1, 2, . . . , p.

We notice that in formula (2.5), if j takes any complex number, i.e., j = γ + iδ, then this
results again in the same value λ̃1,i. More specifically, for j = γ + iδ, it holds that

vγ+iδ−10,i v
1−2(γ+iδ)
1,i vγ+iδ2,i = (m̃1,i)

γ+iδ−1(λ̃1,im̃1,i)
1−2γ−2iδ(λ̃21,im̃1,i)

γ+iδ = λ̃1,i.

Therefore, we obtain a family of one-term vector estimates ϕz for vf .
PROPOSITION 2.1.

1. A family of one-term vector estimates {ϕz, z ∈ C} for the function vector moment
vf is given by

(2.6) ϕz,i = f
(
vz−10,i v

1−2z
1,i vz2,i

)
v0,i, z ∈ C, i = 1, 2, . . . , p.

2. The family of one-term vector estimates (2.6) satisfies the relation

(2.7) ϕz,i = f

(
ρzi
v1,i
v0,i

)
v0,i, z ∈ C,

where ρi = v0,iv2,i/v
2
1,i and v0,iv1,i 6= 0, for i = 1, 2, . . . , p. If v0,i = 0 or v1,i = 0,

then we can apply the formula (2.6) for z = 1 or z = 1
2 , respectively.

Proof. 1. By replacing the values of λ̃1,i in the expression vf,i ' f(λ̃1,i)v0,i, the formula
ϕz,i = f

(
vz−10,i v

1−2z
1,i vz2,i

)
v0,i is obtained for all i = 1, 2, . . . , p.

2. It holds that

ϕz,i = f
(
vz−10,i v

1−2z
1,i vz2,i

)
v0,i = f

(
vz0,iv

z
2,i

v2z1,i
· v1,i
v0,i

)
v0,i

= f

((
v0,iv2,i
v21,i

)z
· v1,i
v0,i

)
v0,i = f

(
ρzi
v1,i
v0,i

)
v0,i,

where ρi = v0,iv2,i/v
2
1,i. Therefore, ϕz,i = f

(
ρzi

v1,i
v0,i

)
v0,i.

The family of one-term vector estimates ϕz depends on a parameter z ∈ C. The following
lemma specifies the existence of optimal values (zopt)i, i = 1, 2, . . . , p, which lead to an exact
approximation of each entry of the vector moment vf .

LEMMA 2.2. Let A ∈ Rp×p be a diagonalizable matrix, f an invertible function, and
ρi = v0,iv2,i/v

2
1,i.

1. If ρi 6= 1, i = 1, 2, . . . , p, then there exists an optimal value (zopt)i given by

(zopt)i =
log
(
f−1

(
vf,i
v0,i

)
v0,i
v1,i

)
log(ρi)

such that ϕ(zopt)i,i gives the exact value of vf,i.
2. If ρi = 1, then the optimal value (zopt)i can be any complex number, i.e., ϕz,i = vf,i,

for all z ∈ C, i = 1, 2, . . . , p.
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Proof. 1. It holds that, for all i = 1, 2, . . . , p,

ϕ(zopt)i,i = vf,i
(2.7)⇒ f

(
ρ
(zopt)i
i

v1,i
v0,i

)
v0,i = vf,i ⇒ f

(
ρ
(zopt)i
i

v1,i
v0,i

)
=
vf,i
v0,i

⇒ ρ
(zopt)i
i

v1,i
v0,i

= f−1
(
vf,i
v0,i

)
⇒ ρ

(zopt)i
i = f−1

(
vf,i
v0,i

)
v0,i
v1,i

⇒ (zopt)i =
log
(
f−1

(
vf,i
v0,i

)
v0,i
v1,i

)
log(ρi)

,

where ρi = v0,iv2,i/v
2
1,i 6= 1.

2. If ρi = 1, then the relation (2.7) can be written as ϕz,i = f

(
v1,i
v0,i

)
v0,i, which is

independent of the parameter z ∈ C.
By the Cauchy-Schwarz inequality, we obtain a bound for each optimal value (zopt)i,

which is given in the following lemma.
LEMMA 2.3. Let A ∈ Rp×p be a diagonalizable matrix and f an increasing real-valued

function. If v0,i > 0, v1,i > 0, and ρi > 1, then an upper bound for the optimal value (zopt)i
is given by

(zopt)i ≤
log

(
f−1

(
κ2(Q)f(ρ(A))

‖b‖
v0,i

)
v0,i
v1,i

)
log(ρi)

,

where κ2(Q) is the spectral condition number of Q, the matrix of eigenvectors of A, and ρ(A)
is the spectral radius of A.

Proof. It holds that ‖f(A)‖2 ≤ κ2(Q) · f(ρ(A)) [16, p. 102]. By the Cauchy-Schwarz
inequality, we write

vf,i = (ei, f(A)b) ≤ |(ei, f(A)b)| ≤ ‖ei‖ · ‖f(A)b‖ ≤ ‖f(A)‖2 · ‖b‖
≤ κ2(Q) · f(ρ(A)) · ‖b‖.

Since v0,i > 0 and f is an increasing function, we have

f−1
(
vf,i
v0,i

)
≤ f−1

(
κ2(Q) · f(ρ(A)) · ‖b‖

v0,i

)
.

Considering that v1,i > 0, we obtain

f−1
(
vf,i
v0,i

)
v0,i
v1,i
≤ f−1

(
κ2(Q) · f(ρ(A)) · ‖b‖

v0,i

)
v0,i
v1,i

⇒ log

(
f−1

(
vf,i
v0,i

)
v0,i
v1,i

)
≤ log

(
f−1

(
κ2(Q) · f(ρ(A)) · ‖b‖

v0,i

)
v0,i
v1,i

)

⇒ (zopt)i ≤
log

(
f−1

(
κ2(Q) · f(ρ(A)) · ‖b‖

v0,i

)
v0,i
v1,i

)
log(ρi)

since ρi > 1.
REMARK 2.4. If the function f is decreasing, v0,i, v1,i are not both positive, and ρi is

either greater or less than 1, then a similar result as that of Lemma 2.3 can be obtained.
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REMARK 2.5. If the matrix A is normal, a sharper bound for the optimal value (zopt)i
is obtained. In particular, it holds that κ2(Q) = 1, hence, it is not necessary to compute the
matrix of eigenvectors Q.

Next, we provide a connection between the one-term vector estimate (2.6) for z = 0
with an estimate which can be obtained by the nonsymmetric Lanczos algorithm and the
nonsymmetric Gauss quadrature rules with one iteration [15]. In particular, the following
proposition holds for any matrix.

PROPOSITION 2.6. Let A ∈ Rp×p be a nonsymmetric matrix. Each element of the vector
estimate ϕ0 is equal to the estimate which is obtained by the nonsymmetric Lanczos algorithm
and the nonsymmetric Gauss quadrature with one iteration for the bilinear form eTi f(A)b
considering that (ei,b) 6= 0.

Proof. We apply the nonsymmetric Lanczos algorithm with initial vectors u = b
(ei,b)

and
ũ = ei [15, p. 43], which satisfy the relation (ũ,u) = 1. By keeping one iteration of this
algorithm, the Jacobi matrix J1 has only one element, i.e., J1 =

[
ũTAu

]
. It holds that

ũTAu = eTi Ab
1

(ei,b)
=
v1,i
v0,i

.

Therefore,

eTi f(A)b = (ei,b)f(ũTAu) = v0,if(
v1,i
v0,i

) = ϕ0,i,

for all i = 1, 2, . . . , p.
The family of one-term vector estimates ϕz provides an exact approximation in case that

the optimal values (zopt)i, i = 1, 2, . . . , p, can be specified a priori. In order to avoid this
difficulty, we keep more terms in the summations (2.4) and derive estimates with more than
one term.

2.2. Two-term vector estimates. By applying the summation in (2.3) for k = 2, each
entry of the function vector moment vf can be approximated by

vf,i ' f(λ̃1,i)m̃1,i + f(λ̃2,i)m̃2,i, i = 1, 2, . . . , p,

where the unknowns λ̃j,i, m̃j,i, j = 1, 2, are determined by the interpolation conditions (2.4)
for r = 0, 1, 2.

PROPOSITION 2.7. The two-term estimates for the vector moments vn satisfy the follow-
ing difference equation of order two,

vn+1,i − rivn,i + qivn−1,i = 0, n ∈ Z,

where ri = λ̃1,i + λ̃2,i ∈ C, qi = λ̃1,iλ̃2,i ∈ C, for all i = 1, 2, . . . , p.
Proof. It holds that vn+1,i ' λ̃n+1

1,i m̃1,i + λ̃n+1
2,i m̃2,i.

rivn,i =
(
λ̃1,i + λ̃2,i

)(
λ̃n1,im̃1,i + λ̃n2,im̃2,i

)
= λ̃n+1

1,i m̃1,i + λ̃1,iλ̃
n
2,im̃2,i + λ̃2,iλ̃

n
1,im̃1,i + λ̃n+1

2,i m̃2,i,

qivn−1,i =
(
λ̃1,iλ̃2,i

)(
λ̃n−11,i m̃1,i + λ̃n−12,i m̃2,i

)
= λ̃2,iλ̃

n
2,im̃1,i + λ̃1,iλ̃

n
2,im̃2,i.

From these relations, we observe that the difference equation vn+1,i − rivn,i + qivn−1,i = 0
is satisfied.
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We consider the system of equations

vn+1,i − rivn,i + qivn−1,i = 0, vn+2+k,i − rivn+1+k,i + qivn+k,i = 0, n, k ∈ Z.

The solution of this system is given by

ri =
vn−1,ivn+2+k,i − vn+1,ivn+k,i
vn−1,ivn+1+k,i − vn,ivn+k,i

, qi =
vn,ivn+2+k,i − vn+1,ivn+1+k,i

vn−1,ivn+1+k,i − vn,ivn+k,i
.

Also, for all i = 1, 2, . . . , p, we have

(2.8) λ̃1,i =
ri +

√
r2i − 4qi
2

and λ̃2,i =
ri −

√
r2i − 4qi
2

.

The solution of the system of the corresponding interpolation conditions is given by the
following formulae, for all i = 1, 2, . . . , p,

m̃1,i =
1

λ̃2,i − λ̃1,i
(λ̃2,iv0,i − v1,i), λ̃1,i 6= λ̃2,i,(2.9)

m̃2,i =
1

λ̃2,i − λ̃1,i
(v1,i − λ̃1,iv0,i), λ̃1,i 6= λ̃2,i.(2.10)

As a result, the following proposition provides a family of two-term vector estimates ϕ̂n,k for
the function vector moment vf .

PROPOSITION 2.8. A family of two-term vector estimates {ϕ̂n,k, n, k ∈ Z} for the
function vector moment vf is given by

(2.11) (ϕ̂n,k)i = f(λ̃1,i)m̃1,i + f(λ̃2,i)m̃2,i, n, k ∈ Z, i = 1, 2, . . . , p,

where λ̃1,i, λ̃2,i, m̃1,i, and m̃2,i are defined by the formulae (2.8), (2.9), and (2.10), respec-
tively.

REMARK 2.9. Let (ρ̂n,k)i = (vn−1,ivk+1,i)/(vn,ivk,i), for i = 1, 2, . . . , p. If for some i
it holds that vn−1,i = vn+k,i = 0 or (ρ̂n,n+k)i = 1 or r2i = 4qi, then the formula (2.11) does
not give an estimate for that specific selection of the pair (n, k) of parameters. In case that
n = k = 1, we find (ρ̂1,1)i = (v0,iv2,i)/v

2
1,i which is equal to ρi used in the one-term vector

estimates.

2.3. Three-term vector estimates. By keeping three terms in the summations in (2.3),
each entry of the vector moment vf can be approximated by

vf,i ' f(λ̃1,i)m̃1,i + f(λ̃2,i)m̃2,i + f(λ̃3,i)m̃3,i, i = 1, 2, . . . , p,

where the unknowns λ̃j,i, m̃j,i, j = 1, 2, 3, are determined by the interpolation conditions
(2.4) for r = 0, 1, 2.

PROPOSITION 2.10. The three-term estimates for the vector moments vn satisfy the
following difference equation of order three, i.e.,

vn+2,i − sivn+1,i + tivn,i − givn−1,i = 0, n ∈ Z,

where

si = λ̃1,i + λ̃2,i + λ̃3,i,

ti = λ̃1,iλ̃2,i + λ̃1,iλ̃3,i + λ̃2,iλ̃3,i, and

gi = λ̃1,iλ̃2,iλ̃3,i.

(2.12)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

186 M. MITROULI AND P. ROUPA

Proof. It holds that vn+2,i ' λ̃n+2
1,i m̃1,i + λ̃n+2

2,i m̃2,i + λ̃n+2
3,i m̃3,i,

sivn+1,i =
(
λ̃1,i + λ̃2,i + λ̃3,i

)(
λ̃n+1
1,i m̃1,i + λ̃n+1

2,i m̃2,i + λ̃n+1
3,i m̃3,i

)
= λ̃n+2

1,i m̃1,i + λ̃1,iλ̃
n+1
2,i m̃2,i + λ̃1,iλ̃

n+1
3,i m̃3,i + λ̃2,iλ̃

n+1
1,i m̃1,i

+ λ̃n+2
2,i m̃2,i + λ̃2,iλ̃

n+1
3,i m̃3,i + λ̃3,iλ̃

n+1
1,i m̃1,i + λ̃3,iλ̃

n+1
2,i m̃2,i + λ̃n+2

3,i m̃3,i,

tivn,i =
(
λ̃1,iλ̃2,i + λ̃1,iλ̃3,i + λ̃2,iλ̃3,i

)(
λ̃n1,im̃1,i + λ̃n2,im̃2,i + λ̃n3,im̃3,i

)
= λ̃2,iλ̃

n+1
1,i m̃1,i + λ̃1,iλ̃

n+1
2,i m̃2,i + λ̃1,iλ̃2,iλ̃

n
3,im̃3,i + λ̃3,iλ̃

n+1
1,i m̃1,i

+ λ̃1,iλ̃3,iλ̃
n
2,im̃2,i + λ̃1,iλ̃

n+1
3,i m̃3,i + λ̃2,iλ̃3,iλ̃

n
1,im̃1,i

+ λ̃3,iλ̃
n+1
2,i m̃2,i + λ̃2,iλ̃

n+1
3,i m̃3,i,

givn−1,i =
(
λ̃1,iλ̃2,iλ̃3,i

)(
λ̃n−11,i m̃1,i + λ̃n−12,i m̃2,i + λ̃n−13,i m̃3,i

)
= λ̃2,iλ̃3,iλ̃

n
1,im̃1,i + λ̃1,iλ̃3,iλ̃

n
2,im̃2,i + λ̃1,iλ̃2,iλ̃

n
3,im̃3,i.

These relations imply that the difference equation vn+2,i − sivn+1,i + tivn,i − givn−1,i = 0
is satisfied.

In order to find the parameters si, ti, gi, we consider the system of equations, for
n, k, ` ∈ Z,

vn+2,i − sivn+1,i + tivn,i − givn−1,i = 0,

vn+k+3,i − sivn+k+2,i + tivn+k+1,i − givn+k,i = 0,

vn+`+4,i − sivn+`+3,i + tivn+`+2,i − givn+`+1,i = 0.

The solution to these equations is found by applying the Symbolic Math Toolbox of MATLAB.
In the symbolically formulae we have made appropriate simplifications and finally obtain the
following expressions:

si =
vn,ivn+k,ivn+`+4,i − vn,ivn+`+1,ivn+k+3,i

wi

+
−vn+k,ivn+`+2,ivn+2,i + vn+k+1,ivn+`+1,ivn+2,i

wi

+
−vn+k+1,ivn−1,ivn+`+4,i + vn+`+2,ivn−1,ivn+k+3,i

wi

ti =
vn+1,ivn+k,ivn+`+4,i − vn+1,ivn+`+1,ivn+k+3,i

wi

+
−vn+k,ivn+`+3,ivn+2,i + vn+k+2,ivn+`+1,ivn+2,i

wi

+
−vn+k+2,ivn−1,ivn+`+4,i + vn+`+3,ivn−1,ivn+k+3,i

wi
,

gi =
vn,ivn+k+2,ivn+`+4,i − vn,ivn+`+3,ivn+k+3,i

wi

+
−vn+1,ivn+k+1,ivn+`+4,i + vn+1,ivn+`+2,ivn+k+3,i

wi

+
vn+k+1,ivn+`+3,ivn+2,i − vn+k+2,ivn+`+2,ivn+2,i

wi
,
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where

wi = vn,ivn+k,ivn+`+3,i − vn,ivn+k+2,ivn+`+1,i

− vn+1,ivn+k,ivn+`+2,i + vn+1,ivn+k+1,ivn+`+1,i

− vn+k+1,ivn+`+3,ivn−1,i + vn+k+2,ivn+`+2,ivn−1,i.

The formulae for the parameters λ̃1,i, λ̃2,i, and λ̃3,i, which are obtained by symbolically
solving the system of equations (2.12), are given by

λ̃1,i =
si
3
− (Ap)i

3 · 2 4
3

+
3ti − s2i

3 · 2 2
3 (Ap)i

− 2−
2
3 3−1/2

√√√√−(3ti − s2i + 2−
2
3 (Ap)

2
i

(Ap)i

)2

,(2.13)

λ̃2,i =
si
3
− (Ap)i

3 · 2 4
3

+
3ti − s2i

3 · 2 2
3 (Ap)i

+ 2−
2
3 3−1/2

√√√√−(3ti − s2i + 2−
2
3 (Ap)

2
i

(Ap)i

)2

,(2.14)

λ̃3,i = (Bp)i +
si
3

+
s2i − 3ti
9(Bp)i

,(2.15)

where

(Ap)i =

(
27gi + 3

√
3
√

4t3i − t2i s2i − 18tigisi + 27g2i + 4gis3i − 9tisi + 2s3i

) 1
3

and

(Bp)i =

gi
2
− tisi

6
+

√(
s3i
27
− tisi

6
+
gi
2

)2

+

(
ti
3
− s2i

9

)3

+
s3i
27

 1
3

.

The solution of the system of the corresponding interpolation conditions is given by

m̃1,i =
v2,i − λ̃2,iv1,i − λ̃3,iv1,i + λ̃2,iλ̃3,iv0,i(

λ̃1,i − λ̃2,i
)(

λ̃1,i − λ̃3,i
) ,(2.16)

m̃2,i = −v2,i − λ̃1,iv1,i − λ̃3,iv1,i + λ̃1,iλ̃3,iv0,i(
λ̃1,i − λ̃2,i

)(
λ̃2,i − λ̃3,i

) ,(2.17)

m̃3,i =
v2,i − λ̃1,iv1,i − λ̃2,iv1,i + λ̃1,iλ̃2,iv0,i(

λ̃1,i − λ̃3,i
)(

λ̃2,i − λ̃3,i
) .(2.18)

Therefore, we obtain a family of three-term vector estimates ϕ̃n,k,` for the function vector
moment vf .

PROPOSITION 2.11. A family of three-term vector estimates {ϕ̃n,k,`, n, k, ` ∈ Z} for
the function vector moment vf is given by

(2.19) (ϕ̃n,k,`)i = f(λ̃1,i)m̃1,i + f(λ̃2,i)m̃2,i + f(λ̃3,i)m̃3,i, n, k, ` ∈ Z,

where λ̃1,i, λ̃2,i, λ̃3,i, m̃1,i, m̃2,i, m̃3,i are defined by (2.13), (2.14), (2.15), (2.16), (2.17),
(2.18), respectively, for i = 1, 2, . . . , p.

REMARK 2.12. If for some i, it holds that vn+1,i = vn+k+2,i = vn+`+3,i = 0 or
(ρ̂n,n+k)i = (ρ̂n+`+2,n−1)i = (ρ̂n+k+1,n+`+1)i = 1, then the formula (2.19) does not
provide estimates for the specific selection of the triplet (n, k, `) of parameters.
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3. Estimates for W T f(A)U . In this section, we are interested in approximately evalu-
ating expressions of the form

WT f(A)U,

where A ∈ Rp×p is a diagonalizable matrix, f is a function defined on the spectrum of the
matrix A, and

W =
[
w1 w2 . . . wm

]
, wi ∈ Rp, i = 1, 2, . . . ,m,

U =
[
u1 u2 . . . um

]
, ui ∈ Rp, i = 1, 2, . . . ,m, with 1 ≤ m� p.

There are also approaches for approximating the form WT f(A)U , where the block WTU
is of full rank. In [12, 18] the form WT f(A)U is estimated based on block Gauss and
block anti-Gauss quadrature rules. The initial matrices are assumed to be biorthogonal, i.e.,
WTU = Im, or if not, then the matrices W , U can be biorthogonalized by the SVD. The
present extrapolation-based method works for arbitrary matrices U,W , and biorthogonality is
not required. We write the general form as

WT f(A)U =
[
w1 w2 . . . wm

]T
f(A)

[
u1 u2 . . . um

]
=


wT

1

wT
2
...

wT
m

 [ f(A)u1 f(A)u2 . . . f(A)um
]
.

We notice that each matrix vector product f(A)ui, i = 1, 2, . . . ,m, can be approximately
found by the one-term, two-term, and three-term vector estimates ϕz in (2.6), ϕ̂n,k in (2.11),
and ϕ̃n,k,` in (2.19), respectively. Specifically, we can formulate the following proposition:

PROPOSITION 3.1. Families of one-term, two-term, and three-term vector estimates for
the quantity WT f(A)U can be obtained by applying to each entry WT f(A)ui the one-term,
two-term, and three-term vector estimates WTϕz , WT ϕ̂n,k, WT ϕ̃n,k,`, respectively.

REMARK 3.2. In the same way, we can evaluate matrix functionals of the form xT f(A)y,
where x,y are real vectors of length p. This approach approximates matrix functionals of this
form without using the polarization identity, which was employed in other works such as in
[13, 14, 15].

4. Numerical implementation. In this section, we discuss the implementation of our
estimates by applying them to certain products f(A)b and matrix forms WT f(A)U . First,
we analyze the complexity of the obtained formulae.

4.1. Computation complexity of the estimates. The computational complexity of the
vector estimates for the quantity f(A)b and the form WT f(A)U is presented in Table 4.1.
In particular, the family of one-term vector estimates ϕz for f(A)b requires the calcula-
tion of only two matrix-vector products (mvps). Moreover, the complexity of the families
of two-term ϕ̂n,k and three-term ϕ̃n,k,` vector estimates depends on the values of the pa-
rameters. The computational complexity of the family ϕ̃n,k,` is of order O

(
µp2
)
, where

µ = max {n+ k + 3, n+ `+ 4}, for a dense matrix A of order p. In case that the given
matrix is banded with bandwidth s, the complexity is of order O (sp). The computational
complexity of the vector estimates for the form WT f(A)U for thin matrices W,U ∈ Rp×m,
1 ≤ m� p, depends on m, and the order is O

(
mp2

)
. When the given matrix A is banded

with bandwidth s, the complexity is of order O (msp).
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TABLE 4.1
Computational complexity of the vector estimates for f(A)b and WT f(A)U .

Matrix A f(A)b
ϕz ϕ̂n,k ϕ̃n,k,`

dense O
(
2p2
)

O
(
(n+ k + 2)p2

)
O
(
µp2
)

banded O (2sp) O ((n+ k + 2)sp) O (µsp)

WT f(A)U

WTϕz WT ϕ̂n,k WT ϕ̃n,k,`
dense O

(
2mp2

)
O
(
m(n+ k + 2)p2

)
O
(
mµp2

)
banded O (2msp) O (m(n+ k + 2)sp) O (mµsp)

TABLE 4.2
Relative errors for approximating f(A)b using the one-term vector estimate ϕ0.

function f(A) A−1 exp(A)
√
A

Rel. Error 8.6856e-17 1.3646e-15 5.4705e-15

For the families of two-term and three-term vector estimates {ϕ̂n,k, n, k ∈ Z} and
{ϕ̃n,k,`, n, k, ` ∈ Z}, a good choice for the pair or triplet of parameters are integers of small
values resulting in an inexpensive computation as seen in Table 4.1. By setting the first
parameter, for example, equal to 1, we can vary the values of the other three parameters,
usually from zero to 2 or 3 and compute a range of values for the estimates. By taking the
mean value of these approximations, we obtain a better estimation of the desired quantity.

4.2. Numerical examples. Subsequently, we present several numerical examples that
illustrate the performance of the derived families of vector estimates. All computations were
performed using MATLAB (R2015a) 64-bit on an Intel Core i7 computer with 16 Gb DDR4
RAM. In all the examples, we present tables with the relative errors for the approximation
by the families of vector estimates. The exact values are determined by evaluating the matrix
f(A) using MATLAB matrix functions such as expm, sqrtm, logm, etc. The sign function of
A is computed by the formula sign(A) = A(A2)−1/2. Throughout the examples, rand(p, 1)
denotes a random vector of length p with positive elements which is drawn from the uniform
distribution, and randn(p, 1) denotes a random vector of length p which is drawn from the
normal distribution.

Example 1: One-term vector estimates for f(A)b. We test a symmetric, positive
definite, and orthogonal matrix A = BTB of order p = 700, where B is the nearly orthogonal
symmetric eigenvector matrix of the second-order difference matrix, which is generated by
the MATLAB gallery function B = gallery(′orthog′, 700)∗. The elements of B are given by

Bij =
√

2
p+1 sin( ijπp+1 ). Let b be a vector of order p = 700 which is drawn from the normal

distribution. We estimate f(A)b for three different functions f by using the one-term vector
estimate ϕ0. Since the matrix A is orthogonal, the optimal value for the family parameter
is z = 0. This is an extension of the result in [14, Remark 4]. The results are reported in
Table 4.2.

Example 2: Two-term vector estimates for A1/2b. We consider the nonsymmetric
matrix A = dw256B of order p = 512, which arises in electromagnetic problems and is
selected from the SuiteSparse Matrix Collection [11]. This matrix is diagonalizable with

∗The MATLAB gallery: http://www.mathworks.com/help/matlab/ref/gallery.html
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TABLE 4.3
Relative errors for approximating A1/2b for the matrix A = dw256B of order p = 512 by the family of

two-term vector estimates for various values of the parameters n and k.

(n, k) Rel. Error Rel. Error
[b = rand(512,1)] [b = randn(512,1)]

(1,0) 9.9679e-4 7.7755e-4
(1,1) 1.9075e-3 1.1618e-3
(1,3) 3.6696e-3 1.3892e-3
(1,-2) 3.6671e-4 8.3626e-4
(0,4) 3.5097e-3 4.4683e-3
MRE 2.0901e-3 1.7266e-3

TABLE 4.4
Relative errors for approximating exp(A)b for the Poisson matrix of order p = 1600 by the family of three-term

vector estimates for various values of the parameters n, k and `.

(n, k, `) Rel. Error Rel. Error
[bi = tan(i)] [b = rand(1600, 1)]

(1,0,0) 1.6454e-6 1.6563e-10
(1,2,0) 2.8671e-4 5.8612e-5
(1,0,3) 4.0753e-8 6.7314e-6
(1,2,5) 1.9537e-6 4.5347e-6
(1,2,3) 9.2279e-2 1.5779e-5

positive eigenvalues and well conditioned (κ2(A) = 3.7328). We estimate the quantity A1/2b
for two different vectors b. We have chosen the vector b to be drawn from the uniform
distribution (second column of Table 4.3) and also from the normal distribution (third column
of Table 4.3). The approximation of these quantities is done by the family of two-term vector
estimates ϕ̂n,k (2.11) for several choices of the parameters n and k. The results are presented
in Table 4.3.

As we can notice in Table 4.3, by using the two-term vector estimates ϕ̂n,k for different
n, k, we achieve relative errors of order O(10−3) or O(10−4). In the last row of this table,
we record the mean relative error (MRE) of the derived estimates for different n, k.

Example 3: Three-term vector estimates for exp(A)b. We consider the Poisson
matrix of order p = 1600 [15]. This matrix is symmetric, positive definite, block tridiagonal
(sparse) with condition number κ2(A) = 6.8062e2 and arises from the five-point finite
difference approximation of the Poisson equation on a unit square with an m × m mesh,
m =

√
p = 40. The Poisson matrix is of the form A = tridiag(−Im, Tm,−Im), where each

block Tm = tridiag(−1, 4,−1) has dimension m = 40. The matrix A in this test example
is the Poisson matrix multiplied by a factor of 0.02, which is obtained by the MATLAB
gallery function A = 0.02 ∗ gallery(′poisson′, 40). Also, we choose two different vectors
b, namely, we consider the vector b such that the ith entry of b is equal to the tangent of the
corresponding index i, i.e., bi = tan(i), i = 1, 2, . . . , p (second column of Table 4.4). In the
second case, the vector b is drawn from the uniform distribution (third column of Table 4.4).

We approximate the quantity exp(A)b for these two vectors b. The estimation of these
quantities is done by the family of three-term vector estimates ϕ̃n,k,` (2.19) for several choices
of the parameters n, k, and `. The results are presented in Table 4.4.

As we can notice in Table 4.4, by using the three-term vector estimates ϕ̃n,k,` for different
values of the parameters n, k, `, we can achieve satisfactory relative errors. In particular, the
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TABLE 4.5
Relative errors for approximating f(A)b by the families of two-term and three-term vector estimates.

matrix A vector b function f(A) ϕ̂1,0 ϕ̃1,0,0

kms(800,0.2) rand(800,1) log(A) 1.8984e-2 8.2597e-4
kms(800,0.2) randn(800,1) sqrt(A) 1.3775e-3 4.8433e-5
rand(300)/100 rand(300,1) exp(A) 3.0348e-2 5.8355e-8
rand(300)/100 1 sqrt(A) 1.3289e-2 1.3277e-2

ex1 1 exp(A) 2.4133e-8 8.3008e-12
ex1 randn(216,1) exp(A) 5.3671e-7 2.8318e-11

Chem97ZtZ 1 sqrt(A) 7.2613e-3 6.4037e-3
Trefethen_500 randn(500,1) log(A) 6.8993e-3 6.0093e-3
Trefethen_500 rand(500,1) sign(A) 4.1969e-4 6.4524e-4

resulting relative errors are of order O(10−8) and O(10−10) if the initial vector b is a random
vector or bi = tan(i), i = 1, 2, . . . , p.

Example 4: Comparison of two-term and three-term vector estimates. In this exam-
ple, we compare the difference in performance between the two-term and the three-term vector
estimates. In particular, we approximate the quantity f(A)b for several matrices A, vectors b,
and different functions f . We evaluate f(A)b by the two-term vector estimate ϕ̂1,0 and the
three-term vector estimate ϕ̃1,0,0. We test with the kms matrix of order p = 800. This matrix
is symmetric, positive definite, and Toeplitz with elements Aij = 0.2|i−j|, and it can be found
in the MATLAB gallery. Also, we test with the diagonalizable matrix A ∈ R300×300 whose
elements are uniformly distributed [18]. This matrix is nonsymmetric and indefinite with
complex eigenvalues. It is generated by the MATLAB command A = rand(300)/100. The
other test matrices used are selected from the SuiteSparse Matrix Collection [11]. The matrices
ex1 (nonsymmetric) and Chem97ZtZ (symmetric) are diagonalizable with dimension p = 216
and p = 2541, respectively. The last test matrix is Trefethen_500, which is a symmetric,
positive definite matrix of order p = 500. The results are presented in Table 4.5. In particular,
in the last two columns of Table 4.5, we report the relative errors that are obtained with the
two-term vector estimate ϕ̂1,0 and the three-term vector estimate ϕ̃1,0,0, respectively.

In Table 4.5, we observe that the three-term vector estimates ϕ̃1,0,0 yield better relative
errors than the two-term version ϕ̂1,0.

Example 5: An application of A1/2b. We consider a covariance matrix A of order
p = 2000 whose entries are Aii = 1 + iα and Aij = 1

|i−j|β , where α, β ∈ R. We denote this
matrix as A = covariance(p, α, β). It is symmetric, positive definite of the form A = XXT ,
where X is the data matrix. In statistics, one of the most common problems concerns sampling
from a multivariate Gaussian distribution with a positive definite covariance matrix A [9]. In
this kind of problems, the product A1/2b appears, where b = randn(2000, 1). We test the
behaviour of the vector estimates ϕ̂1,0 and ϕ̃1,0,0 for different covariance matrices by varying
the values of the parameters α, β. The results are presented in Table 4.6. As we can notice in
this table, the behaviour of the estimates is almost the same for the tested covariance matrices,
and the corresponding relative errors of these estimates are satisfactory.

Example 6: Estimating the form W T exp(A)U , W TU = Im. We consider the
nonsymmetric, diagonalizable matrix A = rand(300)/100 as described in Example 4. We
approximate the form

WT exp(A)U,
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TABLE 4.6
Relative errors for approximating A1/2b for covariance matrices by the families of two- and three-term vector

estimates.

(α, β) ϕ̂1,0 ϕ̃1,0,0

(1, 1) 9.8098-4 2.3706e-4
(1, 3/4) 2.5919e-4 2.3214e-4
(1/2, 4) 1.2601e-4 1.0777e-5

TABLE 4.7
Relative errors for approximating the form WT exp(A)U with A nonsymmetric and WTU = I2.

ϕ̂n,k ϕ̃n,k,`
(n, k) Rel. Error (n, k, `) Rel. Error

(1, 0) 4.6408e-5 (1, 0, 0) 9.0910e-9
(1, 1) 9.0938e-5 (1,−4, 0) 4.7983e-6
(1, 2) 8.3419e-5 (1, 0, 1) 2.5599e-8
(1, 3) 8.3175e-5 (1, 0, 2) 2.5774e-8
(1, 7) 8.3169e-5 (1, 7, 3) 1.6071e-6

where [18]

W =
[
e1, 2e1 + 3e2

]
∈ R300×2, U =

[
e1 −

2

3
e2,

1

3
e2

]
∈ R300×2, WTU = I2.

In this example, we use the family of two-term vector estimates WT ϕ̂n,k (2.11) and the family
of three-term vector estimates WT ϕ̃n,k,` (2.19) for several parameter values. In Table 4.7, the
corresponding relative errors are reported. As we can notice in Table 4.7, a fair accuracy can
be achieved by using either the two-term or the three-term vector estimates. Nevertheless, the
family of three-term vector estimates gives better results. Specifically, the order of the relative
errors for WT ϕ̂n,k is O(10−5), and the order of the relative errors for WT ϕ̃n,k,` varies from
O(10−6) to O(10−9).

Example 7: Estimating the form W T f(A)U , W TU 6= Im. This example is similar
to one in [18]. Let A ∈ R100×100 be a symmetric, positive definite matrix with equidistantly-
spaced eigenvalues in the interval [ 52 , 4]. We generate this matrix by the relation A = QTDQ,
where D is the diagonal matrix which contains the given equidistant eigenvalues of A and Q
is an orthogonal matrix obtained by the MATLAB command Q = orth(randn(p, p)). We are
interested in approximating the form WT f(A)U , where

W =

[
3e1,

5

2
e2 + e3

]
∈ R100×2, U =

[
e1 +

1

2
e3, e2 + e3

]
∈ R100×2, WTU 6= I2.

We test five different functions f . We approximate this form by the two-term vector estimate
WT ϕ̂1,0 and the three-term vector estimate WT ϕ̃1,0,0. We report the corresponding relative
errors in Table 4.8. As can be noticed from this table, we can achieve satisfactory relative
errors by both the two-term and three-term estimates.

4.3. Comparison with other methods. In this section we compare the behaviour of
the derived families of vector estimates for the matrix vector product f(A)b and the form
WT f(A)U . In particular, we compare the proposed approximations of the product f(A)b
with the estimates obtained by the Arnoldi method [16] or a polynomial approximation which
is described in [9]. Also, we evaluate the form WT f(A)U approximately by using the block

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ESTIMATES FOR f(A)b VIA EXTRAPOLATION 193

TABLE 4.8
Relative errors for approximating the form WT f(A)U with A symmetric positive definite and WTU 6= I2.

f(A) ϕ̂1,0 ϕ̃1,0,0

A−1 2.6614e-4 2.7289e-5
exp(A) 1.1694e-3 9.8659e-6
log(A) 5.8018e-5 2.7359e-6√

A 1.0499e-5 3.3539e-7
sign(A) 4.3491e-16 1.4225e-12

TABLE 4.9
Relative errors for approximating f(A)b by the family of three-term vector estimates and the derived estimates

via the Arnoldi algorithm.

matrix A b f(A) Arnoldi approx. ϕ̃1,0,0 speedup

ex1 rand exp(A) 1.8002e-12 (ka = 6) 1.0731e-11 1.2
ex1 randn

√
(A) 3.0297e-2 (ka = 10) 2.9920e-2 2

dw256B randn log(A) 2.1910e-2 (ka = 3) 6.0449e-2 0.6
covariance(100,1,1) randn

√
A 2.1202e-4 (ka = 14) 2.3245e-4 2.8

(kms,100,0.2) randn exp(A) 3.6915e-6 (ka = 5) 1.4288e-6 1

Gauss and anti-Gauss algorithm which is described in [12]. The Matlab implementation of this
method can be found in http://bugs.unica.it/~gppe/soft/#blgaussexp.

Example 8: f(A)b: Arnoldi method vs. extrapolation. In this example, we compare
the vector estimates for f(A)b with the approximations by the Arnoldi algorithm. The results
are reported in Table 4.9, and the matrices in this table are described in the above examples.
Specifically, we record the number ka of required iterations of the Arnoldi algorithm to achieve
the same order of relative errors as those of the three-term vector estimates ϕ̃1,0,0. As we can
see in this table, the number of Arnoldi iterations depends on the matrix, for example, the
covariance matrix with parameters α = β = 1 requires 14 iterations to achieve almost the
same accuracy as the extrapolation estimate. Nevertheless, it is worth mentioning that the
Arnoldi method can achieve better approximations as the number of the iterations increases,
but then the complexity increases as well. In the last column of Table 4.9 we record the speedup
which is defined as the ratio of the number of required mvps of the Arnoldi approximation,
i.e., ka mvps, divided by the number of mvps for ϕ̃1,0,0, i.e., 5 mvps. The recorded value
expresses the speedup of the extrapolation method.

Example 9: f(A)b: Polynomial approximation vs. extrapolation. In this example
we compare the behaviour of the vector estimates with a polynomial approximation of f(A)b
for symmetric positive definite matrices that was introduced by Chen et al. in [9]. Specifically,
we estimate the product f(A)b for two different functions f with b = randn(p, 1) using
the two-term ϕ̂1,0 and the three-term ϕ̃1,0,0 vector estimates. Since b is a random vector, we
run the algorithm for computing ϕ̂1,0, ϕ̃1,0,0 ten times, and we calculate the mean relative
error. We compare the results of these vector estimates with the corresponding relative errors
reported in Tables 6.1 and 6.4 in [9] for some symmetric, positive definite matrices from the
SuiteSparse Matrix Collection [11].

As we can see in Table 4.10, the proposed extrapolation procedure and the polynomial
approximation achieve almost the same order of accuracy, but the polynomial approximation
requires kp = 200 iterations for these matrices. It is worth mentioning that this polynomial
approximation yields very satisfactory estimates for the product exp(A)b, [9].
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TABLE 4.10
Relative errors for approximating f(A)b by the families of two- and three-term vector estimates and a

polynomial approximation.

matrix A f(A) polyn. approx. ϕ̂1,0 ϕ̃1,0,0

Trefethen_2000 log(A) 1.8060e-4 3.3217e-3 3.1668e-3
plbuckle log(A) 1.0433e-2 6.9828e-2 5.4545e-2
plbuckle

√
A 2.87e-4 6.8554e-2 3.1275e-2

nasa1824
√
A 1.26e-3 1.2821e-1 9.5264e-2

nasa1824 log(A) 2.6332e-2 1.4220e-1 1.3022e-1

TABLE 4.11
Relative errors for approximating WT f(A)U by the families of two- and three-term vector estimates and block

Gauss/anti-Gauss quadrature.

matrix A block (anti) Gauss WT ϕ̂1,0 WT ϕ̃1,0,0

rand(300)/100 3.1969e-6 3.0993e-4 5.0143e-9
[8.8105e-3 sec] [1.1209e-2 sec] [9.5020e-3 sec]

A = QDQT 1.8063e-6 1.1683e-3 5.9752e-6
[9.2280e-3 sec] [4.3060e-3 sec] [9.4030e-3 sec]

Example 10: W T exp(A)U : Gauss/anti-Gauss quadrature vs. extrapolation. We
approximate the form WT exp(A)U , where

W =
[
e1, 2e1 + 3e2

]
∈ Rp×2 and U =

[
e1 −

2

3
e2,

1

3
e2

]
∈ Rp×2,

by using block Gauss and anti-Gauss quadrature and the proposed extrapolation procedure.
We test with two matrices in order to compare the behaviour of the estimates. In particular,
we use the nonsymmetric, diagonalizable matrix rand(300)/100 from Example 4 and the
symmetric matrix A = QTDQ with fixed eigenvalues as described in Example 7. The results
are presented in Table 4.11. The execution time in seconds is given in brackets in this table.
As we can see from the results, we achieve a fair accuracy with both the methods but the
accuracy depends on the matrix, too. The approach based on block Gauss and anti-Gauss
quadrature generally provides accurate values in short time. The proposed extrapolation
procedure attains fair estimates in comparable execution time as well. We notice that in some
cases the three-term vector estimates yield a better accuracy in shorter time.

5. Concluding remarks. In the present paper, we developed families of one-term ϕz ,
two-term ϕ̂n,k, and three-term vector estimates ϕ̃n,k,` for the action of the matrix f(A) on
a given vector b ∈ Rp, i.e., f(A)b, for any diagonalizable matrix A ∈ Rp×p. The family
of one-term vector estimates ϕz requires only two mvps, but the computation depends on
the knowledge of an appropriate value z ∈ C, which is difficult to determine. On the other
hand, the families of two-term {ϕ̂n,k, n, k ∈ Z} and three-term {ϕ̃n,k,`, n, k, ` ∈ Z} vector
estimates require more mvps with a complexity of quadratic order, but they allow for a broader
selection range of parameters values and attain very good relative errors. As it was shown in
the examples, good choices for the pair of parameters (n, k) in the two-term family ϕ̂n,k and
for the triplet of parameters (n, k, `) in the three-term family ϕ̃n,k,`, are small integers, which
also provide low complexity.

Moreover, the generated families of vector estimates for f(A)b were applied for ap-
proximations of WT f(A)U for any matrices U,W ∈ Rp×m, 1 ≤ m � p, not necessarily
biorthogonal. Furthermore, the described approach approximates matrix functionals of the
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form xT f(A)y, x,y ∈ Rp without requiring the polarization identity with half the complexity
of comparable methods. In most other approaches [13, 14, 15], the polarization identity is
always employed. The computed examples illustrate the effectiveness of the produced vector
estimates for f(A)b and the form WT f(A)U .

In conclusion, the advantage of the extrapolation vector estimates, when compared with
other methods, is that they are cheaper to evaluate and they can be easily implemented in
vectorized form. Their use is attractive when a direct computation is expensive and for
problems where high accuracy is not required.

The application of the proposed families of estimates in a parallel environment, which
could improve the speed of the computations, is under consideration.
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