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BLOCK KRYLOV SUBSPACE METHODS FOR FUNCTIONS OF MATRICES∗

ANDREAS FROMMER†, KATHRYN LUND†‡, AND DANIEL B. SZYLD‡

Abstract. A variety of block Krylov subspace methods have been successfully developed for linear systems and
matrix equations. The application of block Krylov methods to compute matrix functions is, however, less established,
despite the growing prevalence of matrix functions in scientific computing. Of particular importance is the evaluation
of a matrix function on not just one but multiple vectors. The main contribution of this paper is a class of efficient
block Krylov subspace methods tailored precisely to this task. With the full orthogonalization method (FOM) for
linear systems forming the backbone of our theory, the resulting methods are referred to as B(FOM)2: block FOM for
functions of matrices.

Many other important results are obtained in the process of developing these new methods. Matrix-valued inner
products are used to construct a general framework for block Krylov subspaces that encompasses already established
results in the literature. Convergence bounds for B(FOM)2 are proven for Stieltjes functions applied to a class of
matrices which are self-adjoint and positive definite with respect to the matrix-valued inner product. A detailed
algorithm for B(FOM)2 with restarts is developed, whose efficiency is based on a recursive expression for the error,
which is also used to update the solution. Numerical experiments demonstrate the power and versatility of this new
class of methods for a variety of matrix-valued inner products, functions, and matrices.

Key words. matrix functions, restarted Krylov subspace methods, block Krylov subspace methods, global
methods
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1. Introduction. Many applications in scientific computing require the efficient compu-
tation of f(A)B, where f is a scalar function defined on an n× n matrix A andB is a block
vector in Cn×s. RegardingB as a collection of columns bi,

B := [b1|...|bs],

one might consider applying methods for a single vector, such as those described in [12, 27]
or the newly proposed restarted Arnoldi methods [24, 25, 26], to each problem f(A)bi. It is
well known for linear systems, however, that block Krylov approaches treating all columns bi
at once can be computationally advantageous; see, e.g., [3, 33, 46, 50, 52, 59, 60, 61, 63]. It is
therefore reasonable to consider block Krylov methods for computing f(A)B.

Others have considered block Krylov methods for f(A)B before. Lopez and Simoncini
developed a block Krylov method for exp(A)B in such a way that the so-called geometric
properties ofB are preserved, but they did not undertake a convergence analysis [44]. Benner,
Kürschner, and Saak applied Krylov and integral-based methods to compute log(A)B but did
not develop a block-based theory in any detail [6]. Al-Mohy and Higham proposed a direct
method for computing exp(A)B based on the scaling and squaring method and a truncated
Taylor series approximation [2]. This method is indeed dominated by matrix-block-vector
multiplications AB, which can make it superior to Krylov methods. However, the two Krylov
methods the authors of [2] compare it with do not feature blocks, unlike the ones we propose
here.
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Our development draws from two main sources: Krylov methods for matrix functions and
the block full orthogonalization method (BFOM) for linear systems, which reduces to block
conjugate gradients (BCG) when the matrix considered is Hermitian positive definite (HPD).

1.1. Krylov methods for f(A)b. There is an expansive body of literature devoted to
methods for computing f(A)b for f more general than the exponential or logarithm and b
a single vector. We focus on methods that approximate f(A)b by a Krylov subspace such
as those in [1, 7, 23, 24, 25, 26, 39, 54]. These methods have been referred to as Arnoldi or
Lanczos methods for matrix functions, depending on whether the matrix A is Hermitian. For
the sake of the framework developed herein, we propose a new nomenclature. We refer to all
such methods as full orthogonalization methods (FOM) for functions of matrices, or (FOM)2

for short, due to the inherent connections between these methods and FOM theory, which
we recapitulate in Section 3. In particular, we generalize [24, 25], which use quadrature to
compute stable restarted approximations to f(A)b, where f is a Stieltjes function.

1.2. Block Krylov methods. Block Krylov subspace methods for computing A−1B
comprise an even larger body of literature, inadvertently causing some ambiguity as to what
one means by a “block" Krylov method. We propose the following three categories to describe
the variety of methods found in the literature.

Classical block methods. These are methods related to Dianne O’Leary’s 1980 seminal
paper on block conjugate gradients [50]. BCG has been explored thoroughly in the literature
[3, 10, 17, 48, 49, 53] along with other block methods such as BGMRES [33, 34, 46, 58, 59,
60, 61]. A survey of classical block Krylov methods is given in [56].

Global block methods. Global GMRES and global FOM were first introduced in 1999
in [40] for matrix equations. Additional global methods can be found in [5, 9, 22, 36, 52, 67].

Loop-interchange block methods. These methods are not as historically established as
the classical and global methods. Rather, they have been proposed as an implementation
alternative to the non-block approach in which the systems are solved sequentially, one column
after another. While it is likely that such methods have been considered before, they are first
formally named and developed in [52].

We denote the FOM variant of each of the above classes as ClBFOM, GlBFOM, and
LiBFOM, respectively. A detailed description clarifying what precisely differentiates all three
classes is developed later in this paper.

1.3. Advantages of blocks. There is no difference between the matrix-block productAV
and the concatenation of matrix-vector products [Av1 | . . . |Avs]; indeed,
AV = [Av1 | . . . |Avs]. However, from the standpoint of computational efficiency, for-
mulating an algorithm in terms of matrix-block products leads to an improved process for
a number of reasons described in, e.g., [4, 16, 18, 38]. For one, matrix-block products only
require that A be accessed once, versus s times if each column Avi is computed independently.
Reducing the number of timesAmust be accessed is advantageous when computer architecture
(i.e., machine-specific properties of the CPU, GPU, or other hardware accelerators) renders
memory access costly. The advantage increases when A is not explicitly stored or must be
generated anew each time it is accessed. In a parallel environment, block methods present
additional advantages since they reduce communication among processors.

Building a Krylov subspace based on block vectors instead of column vectors also “en-
riches" the theoretical Krylov subspace from which approximations are drawn. Classical block
methods, for example, use information from all columns ofB to generate approximations to
each column ofX leading to potentially more accurate approximations per iteration and con-
sequently faster convergence. Methods such as multi-preconditioned GMRES [30], enlarged
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Krylov subspace conjugate gradients [31], and augmented Krylov subspace methods [62, Sec-
tion 9] apply this principle even more generally to speed up convergence. We do not, however,
explore such techniques further in the present work.

1.4. Notation. Let ⊗ denote the Kronecker product between two matrices. With Id
denoting the identity matrix of size d× d, we define the standard unit vector êdk ∈ Cd as the
kth column of Id. The standard unit block vector Êk ∈ Cms×s is defined as Êk := êmk ⊗ Is.
We do not distinguish notationally between the matrix A ∈ Cn×n as an operator on Cn, i.e.,
v → Av, andA as an operator on Cn×s, i.e., V = [v1 | · · · | vs]→ AV = [Av1 | · · · | Avs].

1.5. Outline. In Section 2, we introduce the concept of a matrix-valued inner product
〈〈·, ·〉〉S for block vectors with values in a ∗-algebra S ⊂ Cs×s. The ∗-algebra S together with
〈〈·, ·〉〉S are fundamental in the sense that they yield different kinds of block Krylov subspaces
and notions of block orthogonality. We develop a general block Arnoldi process based on
〈〈·, ·〉〉S encompassing the three classes of block approaches mentioned in Section 1.2. In
Section 3, we show how each choice of S together with 〈〈·, ·〉〉S determines a specific BFOM
for linear equations, and we derive a “true” scalar-valued inner product from 〈〈·, ·〉〉S, which
allows for a convergence analysis of BFOM for matrices self-adjoint and positive definite
with respect to 〈〈·, ·〉〉S. Section 4 then details our main contributions. We expound the BFOM
for functions of matrices (B(FOM)2), show how such methods can be stably restarted, and
provide a convergence proof for an important class of functions and matrices. In Section 5 we
illustrate the performance of the classical, global, and loop-interchange versions of restarted
B(FOM)2 in comparison to the non-block approach with some numerical experiments.

2. Block Krylov subspaces. The use of matrix-valued functions in the analysis of block
Krylov methods is not new; see, e.g., the right bilinear form of [21], the � product of [9], or
the block inner product of [28]. Neither is the notion of a matrix-valued inner product novel;
see, e.g., literature on matrix-valued orthogonal polynomials [11, 32].

Let S be a *-subalgebra of Cs×s with identity, i.e., S is a vector subspace containing Is that
is closed under matrix multiplication and conjugate transposition. An immediate consequence
of these properties is that any scalar-valued polynomial of an element in S is also an element
of S. In particular, S contains the inverses C−1 of all its nonsingular elements C ∈ Cs×s
since C−1 can be expressed as a scalar polynomial in C. The following generalizes the
notion of an inner product to a bilinear operator mapping Cn×s ×Cn×s to S and serves as the
foundation for our framework.

DEFINITION 2.1. A mapping 〈〈·, ·〉〉S from Cn×s × Cn×s to S is called a block inner
product onto S if it satisfies the following conditions for allX,Y ,Z ∈ Cn×s and C ∈ S:

(i) S-linearity: 〈〈X,Y C〉〉S = 〈〈X,Y 〉〉SC and
〈〈X + Y ,Z〉〉S = 〈〈X,Z〉〉S + 〈〈Y ,Z〉〉S,

(ii) symmetry: 〈〈X,Y 〉〉S = 〈〈Y ,X〉〉∗S,
(iii) definiteness: 〈〈X,X〉〉S is positive definite ifX has full rank, and 〈〈X,X〉〉S = 0s if

and only ifX = 0.
Note that by condition (ii) the matrix 〈〈X,X〉〉S is always Hermitian, and conditions (i)

and (ii) together imply that 〈〈X + Y C,Z〉〉S = 〈〈X,Z〉〉S + C∗〈〈Y ,Z〉〉S. Also, since 〈〈·, ·〉〉S
is continuous, (iii) implies that 〈〈X,X〉〉S is positive semidefinite whenX is rank-deficient.
The following definition is related to a generalization of the notion of norm.

DEFINITION 2.2. A mapping N which maps all X ∈ Cn×s with full rank to a matrix
N(X) ∈ S is called a scaling quotient if for all such X there exists Y ∈ Cn×s such that
X = Y N(X) and 〈〈Y ,Y 〉〉S = Is.
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The scaling quotient N(X) is nonsingular since forX of full rank the matrix

〈〈X,X〉〉S = N(X)∗〈〈Y ,Y 〉〉SN(X) = N(X)∗N(X)

is positive definite.1 For arbitrary S, the Hermitian matrix 〈〈X,X〉〉1/2S lies in S since the
matrix square root can be represented as a scalar polynomial acting on 〈〈X,X〉〉S. The operator
(〈〈·, ·〉〉S)1/2 is thus a scaling quotient with Y = X〈〈X,X〉〉−1/2

S . Provided it lies in S, the
Cholesky factor of 〈〈X,X〉〉S is a scaling quotient as well.

We call a pair of block vectors X and Y 〈〈·, ·〉〉S-orthogonal if 〈〈X,Y 〉〉S = 0s, and we
call a block vector X 〈〈·, ·〉〉S-normalized if 〈〈X,X〉〉S = Is. Combining the two notions, a
set of block vectors {X1, . . . ,Xm} is called 〈〈·, ·〉〉S-orthonormal when 〈〈Xi,Xj〉〉S = δijIs,
where δij is the Kronecker delta. Clearly, ifX has full rank,XN(X)−1 is 〈〈·, ·〉〉S-normalized.

The following three combinations of S, 〈〈·, ·〉〉S, and N , whose block inner products were
first deduced in [22], satisfy the above definitions.

EXAMPLE 2.3 (Classical). SCl = Cs×s and 〈〈X,Y 〉〉Cl
S = X∗Y . The scaling quotient

NCl(X) is the factor R from the economical QR factorization of X , i.e., X = QR with
Q ∈ Cn×s and R ∈ Cs×s. Equivalently, R = L∗, with L denoting the Cholesky factor of
〈〈X,X〉〉Cl

S = X∗X .
EXAMPLE 2.4 (Global). SGl is the set of scalar multiples of Is, and the inner product is

〈〈X,Y 〉〉Gl
S = trace(X∗Y )Is. The scaling quotient is given as NGl(X) = ‖X‖F Is.

EXAMPLE 2.5 (Loop-interchange). SLi is the set of diagonal matrices, and
〈〈X,Y 〉〉Li

S = diag(X∗Y ), where diag is the operator that sets to zero all the off-diagonal
entries of a given square matrix while preserving its diagonal. For X = [x1| . . . |xs], the
scaling quotient ofX is given by

NLi(X) =

‖x1‖2
. . .

‖xs‖2

 .
Further interesting block inner products exist. One might consider “hybrid” block

inner products that combine two of the above three examples. For example, if s = pq
we can take SHy as the set of all block diagonal matrices with blocks of size q × q. For
X = [X1 | · · · |Xp] ∈ Cn×s with Xi ∈ Cn×q, and similarly for Y ∈ Cn×s, we can then
define

(2.1) 〈〈X,Y 〉〉Hy
S =

X
∗
1Y1

. . .
X∗pYp

 ,
which is a hybrid of 〈〈X,Y 〉〉Cl

S and 〈〈X,Y 〉〉Li
S in some sense. See Figure 2.2 for depictions

of S associated to Examples 2.3–2.5.
For our work, the following natural extension of self-adjointness to blocks turns out to be

the most appropriate.
DEFINITION 2.6. A matrix A ∈ Cn×n is 〈〈·, ·〉〉S-self-adjoint if for allX,Y ∈ Cn×s,

〈〈AX,Y 〉〉S = 〈〈X, AY 〉〉S.

1This equality also explains why we do not extend the concept of a scaling quotient to rank deficient X . Then,
at least one of the two, Y or N(X), are necessarily rank-deficient, and it seems impossible to guarantee that
X = Y N(X) can be fulfilled for general 〈〈·, ·〉〉S.
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classical global loop-interchange hybrid

S Cs×s CIs Is ⊗ C Ip ⊗ Cq×q , s = qp

〈〈X,Y 〉〉S X∗Y trace(X∗Y )Is diag(X∗Y ) diag(X∗1Y1, . . . ,X∗pYp)

N(X)
R, where
X = QR

‖X‖F Is diag(‖x1‖ , . . . , ‖xs‖) (X∗X)1/2

FIG. 2.1. Depictions and descriptions of block inner products used in numerical examples.

For the block inner products 〈〈·, ·〉〉S from Examples 2.3–2.5, A being 〈〈·, ·〉〉S-self-adjoint
reduces to A being Hermitian in the usual sense, i.e., A = A∗.

DEFINITION 2.7. Given a set of block vectors {Xk}mk=1 ⊂ Cn×s, the S-span of {Xk}mk=1

is defined as

spanS{X1, . . . ,Xm} :=

{
m∑
k=1

XkCk : Ck ∈ S

}
.

Note that spanS{X1, . . . ,Xm} is indeed a subspace of Cn×s. We can then define the mth
block Krylov subspace with respect to A,B, and S as

K S
m(A,B) := spanS{B, AB, . . . , Am−1B}.

To illustrate how the choice of S affects the structure of K S
m(A,B), we look at the Krylov

subspaces associated to Examples 2.3–2.5. The classical block inner product gives rise to what
is historically known as the block Krylov space; see [33, 34] for a more detailed description
of this space along with a useful notion of block grade. On the other hand, the global and
loop-interchange block inner products give rise to special subspaces of K Cl

m (A,B):

K Cl
m (A,B)=

{
m−1∑
k=0

AkBCk : Ck ∈ Cs×s
}

;

K Gl
m (A,B)=span{B, AB, . . . , Am−1B} =

{
m−1∑
k=0

AkBck : ck ∈ C

}
,

K Li
m (A,B)=Km(A, b1)×. . .×Km(A, bs)=

{
m−1∑
k=0

AkBDk : Dk ∈ Cs×s is diagonal

}
,

where Km(A, bi) := span{bi, Abi, . . . , Am−1bi} ⊂ Cn.

We can determine 〈〈·, ·〉〉S-orthonormal bases of these spaces with a block Arnoldi-type
process, detailed in Algorithm 1. As in the non-block case, the process simplifies to a Lanczos-
type process with a three-term recurrence if A is 〈〈·, ·〉〉S-self-adjoint. For this case, one could
also derive a coupled two-term recurrence version as is used for BCG in, e.g., [50].

The block Arnoldi process breaks down for some k ifW does not have full rank, because
then N(W ) does not exist andW cannot be 〈〈·, ·〉〉S-normalized. This case actually represents
a lucky breakdown and can be cured by reducing the dimension s accordingly for subsequent
iterations. We implement such deflation in our numerical experiments, but, for simplicity of
presentation, we do not discuss it any further here. For now, we thus assume that Algorithm 1
runs without breakdowns up to iteration m, i.e., that we obtain
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Algorithm 1: Block Arnoldi and Block Lanczos.
Given :A,B, S, 〈〈·, ·〉〉S, N , m

1 Compute B = N(B) and V1 = BB−1

2 if A is 〈〈·, ·〉〉S-self-adjoint then
3 Set V0 = 0, H0,1 = B
4 for k = 1, . . . ,m do
5 W = AVk − Vk−1Hk−1,k

6 Hk,k = 〈〈Vk,W 〉〉S
7 W = W − VkHk,k

8 Compute Hk+1,k = N(W ) and Vk+1 = WH−1
k+1,k

9 Set Hk,k+1 = H∗k+1,k

10 else
11 for k = 1, . . . ,m do
12 ComputeW = AVk
13 for j = 1, . . . , k do
14 Hj,k = 〈〈Vj ,W 〉〉S
15 W = W − VjHj,k

16 Compute Hk+1,k = N(W ) and Vk+1 = WH−1
k+1,k

17 Return B, Vm = [V1| . . . |Vm],Hm = (Hj,k)mj,k=1, Vm+1, and Hm+1,m

(i) a 〈〈·, ·〉〉S-orthonormal basis {Vk}m+1
k=1 ⊂ Cn×s such that each Vk has full rank and

K S
m(A,B) = spanS{Vk}mk=1,

(ii) a block upper Hessenberg matrixHm ∈ Sm×m, and
(iii) Hm+1,m ∈ S,

all satisfying the block Arnoldi relation

(2.2) AVm = VmHm + Vm+1Hm+1,mÊ
∗
m,

where Vm = [V1| . . . |Vm] ∈ Cn×ms, and

Hm =


H1,1 H1,2 . . . H1,m

H2,1 H2,2 . . . H2,m

. . . . . .
...

Hm,m−1 Hm,m

 .
Figure 2.2 illustrates the block Arnoldi relation. By construction, each block entry Hj,k is
an element of S, so it is therefore natural to regard Hm as an operator which maps Sm, the
subspace of Cms×s whose block vectors take entries from S, onto itself. We will always do so
in this paper and stress this by noting thatHm ∈ Sm×m.

How the choice of S affects the structure ofHm is depicted in Figure 2.3. In the classical
case (top left),Hm is a block upper Hessenberg matrix, in which the only blocks with a fixed
structure are the block lower diagonal elements, which are upper triangular. The global and
loop-interchange cases (top right) produce a comparatively sparse pattern. In particular, the
global case producesHm = H ⊗ Is for some m×m upper Hessenberg matrix H . A hybrid
inner product results in a structure whose sparsity is “in between” that of the classical and
loop-interchange structures.
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n

n

ms (m+1)s ms

(m+1)s

FIG. 2.2. Illustration of the block Arnoldi relation.
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FIG. 2.3. Sparsity patterns ofH4 for different block inner products and s = 4, with q = 2 for the hybrid example.

2.1. Matrix polynomials and λ-matrices. Since

K S
m(A,B) = spanS{B, AB, . . . , Am−1B} =

{
m∑
k=1

Ak−1BCk : Ck ∈ S

}
,

there is an inherent connection between the Krylov subspace K S
m(A,B) and polynomials

with matrix coefficients.
Let {Cj}mj=0 ⊂ S, with Cm 6= 0s, and let P : Cs×s → Cs×s be given by

P (Λ) =
∑m
j=0 ΛjCj . We denote the space of all such P by Pm(S) and refer to its elements

as matrix polynomials of degree m. By P̄m(S), we denote the subset of matrix polynomials in
Pm(S) with C0 = Is. In the special case when Λ = λIs for a scalar λ, P (λ) =

∑m
k=0 λ

kCk
can thus be regarded as a mapping from C to Cs×s and is called a λ-matrix. For more on the
properties of P (Λ) and P (λ) and how they relate to each other, see [15, 29, 43].
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Given a matrix polynomial P ∈ Pm(S), one can extract its matrix coefficients {Cj}mj=0

and define the action of P on an n× n matrix A paired with an n× s block vectorB via the
operation ◦ as follows:2

(2.3) P (A) ◦B :=

m∑
k=0

AkBCk.

In fact, P (A) ◦B could be viewed as a matrix polynomial in its own right with coefficients
BCk ∈ Cn×s. However, we find it more appropriate to think of the object P (A) ◦B in terms
of the underlying matrix polynomial or λ-matrix P with coefficients Ck ∈ S.

With the operator ◦, we can succinctly describe the block Krylov subspace K S
m(A,B) as

(2.4) K S
m(A,B) = {P (A) ◦B : P ∈ Pm−1(S)} .

3. Block full orthogonalization methods (BFOM). In this section, we recast the con-
vergence theory of block full orthogonalization methods (BFOM) for linear systems in terms
of our new generalized framework. To start, recall that K S

m is the S-span of the 〈〈·, ·〉〉S-
orthonormal Arnoldi basis block vectors V1, . . . ,Vm, which, using Vm = [V1 | · · · | Vm]
(see (2.2)), can be stated as

(3.1) K S
m(A,B) = {VmY : Y ∈ Sm}.

In particular, we haveB = V1B = VmÊ1B with the unit block vector Ê1 ∈ Sm as defined
in Section 1.4.

Given a block Krylov subspace K S
m(A,B) and the block inner product 〈〈·, ·〉〉S, we now

define the mth BFOM approximation to be the block vectorXm ∈ K S
m(A,B) satisfying the

block Galerkin condition

(3.2) Rm := B −AXm is 〈〈·, ·〉〉S-orthogonal to K S
m(A,B).

THEOREM 3.1. Assume that Hm : Sm → Sm is nonsingular, and put Ym = H−1
m Ê1.

Then

(3.3) Xm := VmYmB

belongs to K S
m(A,B) and satisfies the block Galerkin condition (3.2).

Proof. Since B ∈ S and Ym ∈ Sm, we have that YmB ∈ Sm and thusXm ∈ K S
m(A,B)

by (3.1). Using the block Arnoldi relation (2.2) and the fact thatB = VmÊ1B, it holds that

Rm = B −AXm = VmÊ1B −AVmYmB

= VmÊ1B − (VmHm + Vm+1Hm+1,mÊ
∗
m)YmB

= −Vm+1Hm+1,mÊ
∗
mYmB

= Vm+1Cm with Cm := −Hm+1,mÊ
∗
mYmB ∈ S.(3.4)

Thus, since Vm+1 is 〈〈·, ·〉〉S-orthogonal to K S
m(A,B) by construction, so is Vm+1Cm, imply-

ing that (3.3) satisfies (3.2).
We say that Rm and Vm+1 are cospatial since, by (3.4), the columns of each span the

same s-dimensional subspace in Cn.

2The notation ◦ is attributed to Gragg in [41].
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It is also helpful to consider the polynomial representations of Xm and Rm. Since
Xm ∈ K S

m(A,B), we know there exists Qm−1 in Pm−1(S) such thatXm = Qm−1(A) ◦B.
Then

Rm = B −AXm = B −A(Qm−1(A) ◦B) = A0BIs − (AQm−1(A)) ◦B
= Pm(A) ◦B,(3.5)

where Pm(λ) := Is − λQm−1(λ) ∈ P̄m(S).

3.1. Convergence results for BFOM. We analyze the convergence of BFOM with a
general block inner product 〈〈·, ·〉〉S in the case that the matrix A is 〈〈·, ·〉〉S-self-adjoint and
positive definite in a sense to be defined shortly. Our results reduce to what is well-known for
BCG in the case of the classical block inner product [50]. For the global and loop-interchange
block inner products, the results are directly related to what is known for CG for a single
right-hand side, and we briefly discuss this at the end of the section.

Assume that A is HPD and let 0 < λmin ≤ λmax denote the smallest and largest
eigenvalues of A, respectively. The following constants play an important role:

(3.6) κ :=
λmax

λmin
, c :=

√
κ− 1√
κ+ 1

, and ξm :=
1

cosh(m ln c)
=

2

cm + c−m
.

If κ = 1, then we set ξm = 0. Our goal is to mimic the well-known convergence result for
(non-block) CG stated in the following theorem; see, e.g., [45, Chapter 8] and [55, Chapter 6].
This result uses the A-norm ‖x‖A := 〈x, Ax〉1/22 .

THEOREM 3.2. The error em for the CG iterate at step m satisfies

‖em‖A = min
x∈Km(A,b)

‖x∗ − x‖A ≤ ξm ‖e0‖A ≤ 2cm ‖e0‖A .

3.1.1. A scalar inner product and norm. To deduce results like those of Theorem 3.2
in our block framework, we introduce a scalar inner product 〈·, ·〉S : Cn×s × Cn×s → C:

(3.7) 〈X,Y 〉S := trace 〈〈Y ,X〉〉S.

The properties of 〈〈·, ·〉〉S from Definition 2.1 ensure that (3.7) is a true inner product on Cn×s,
which further induces the norm

‖X‖S := 〈X,X〉
1
2

S .

We note that in the case of Examples 2.3 and 2.5, the resulting norms ‖·‖Cl
S and ‖·‖Li

S are
both identical to the Frobenius norm ‖·‖F, while in the case of Example 2.4, we have that
‖·‖Gl

S = s ‖·‖F.
DEFINITION 3.3. A matrix A ∈ Cn×n, as an operator on Cn×s, is called
(i) 〈·, ·〉S-self-adjoint if for allX,Y ∈ Cn×s we have 〈AX,Y 〉S = 〈X, AY 〉S,

(ii) 〈·, ·〉S-positive definite if in addition, for all nonzero X ∈ Cn×s, we have that
〈X, AX〉S > 0.
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REMARK 3.4. The following assertions follow immediately from the definition.
(i) If A is 〈〈·, ·〉〉S-self-adjoint, then A is also 〈·, ·〉S-self-adjoint. The converse does not

necessarily hold.
(ii) For A 〈·, ·〉S-positive-definite, spec(A) ⊂ (0,∞).
As for (ii), we note that whether we regard A ∈ Cn×n as an operator on Cn or on Cn×s,

it has the same spectrum, albeit the geometric multiplicities of the eigenvalues are multiplied
by s for the latter.

LEMMA 3.5. Let p be a scalar-valued polynomial with real coefficients, and let A be
〈·, ·〉S-self-adjoint. Then

‖p(A)‖S = max
λ∈spec(A)

|p(λ)| .

Proof. As a 〈·, ·〉S-self-adjoint operator on Cn×s, A admits an 〈·, ·〉S-orthonormal basis of
eigenvectors from Cn×s, implying that its operator norm ‖A‖S is given as

‖A‖S = max
λ∈spec(A)

|λ| .

Since p has real coefficients, the operator p(A) is also 〈·, ·〉S-self-adjoint, and it holds that
spec(p(A)) = {p(λ) : λ ∈ spec(A)}. This directly gives ‖p(A)‖S = maxλ∈spec(A) |p(λ)|.

When A is 〈·, ·〉S-positive definite, we have for any rational function g, which is defined
and positive on (0,∞), a g(A)-weighted inner product and norm, defined as

〈X,Y 〉S-g(A) := 〈X, g(A)Y 〉S, ‖X‖S-g(A) := 〈X,X〉
1
2

S-g(A).

We will particularly need the cases g(z) = z−1 and g(z) = (z + tI), t ≥ 0, in Theorem 4.5.
Lemma 3.5 carries over to the g(A)-weighted inner products.

LEMMA 3.6. Let p be a scalar-valued polynomial with real coefficients, g : (0,∞)→(0,∞)
a rational function, and A be 〈·, ·〉S-positive-definite. Then

‖p(A)‖S-g(A) = max
λ∈spec(A)

|p(λ)|.

Proof. Since A is 〈·, ·〉S-self-adjoint, it also is 〈·, ·〉S-g(A)-self-adjoint due to

〈AX,Y 〉S-g(A) = 〈AX, g(A)Y 〉S = 〈X, Ag(A)Y 〉S = 〈X, g(A)AY 〉S = 〈X, AY 〉S-g(A).

An application of Lemma 3.5 for the 〈·, ·〉S-g(A) inner product leads to the desired result.
The scalar inner product 〈·, ·〉S induces a traditional, scalar notion of 〈·, ·〉S-orthogonality,

and similarly for the g(A)-weighted versions. Trivially, 〈〈·, ·〉〉S-orthogonality implies 〈·, ·〉S-
orthogonality since 〈〈Y ,X〉〉S = 0s implies 〈X,Y 〉S = trace

(
〈〈Y ,X〉〉S

)
= 0, and likewise

for the g(A)-weighted cases. The converse, however, is not true. For example, consider the
classical block inner product (Example 2.3) on C3×2, let v := [1, 0, 0]T , w := [0, 1, 0]T , and
define Y := [v|w],X := [w|v]. Then

〈〈Y ,X〉〉Cl
S =

[
v∗w v∗v
w∗w w∗v

]
=

[
0 1
1 0

]
,

implying that X and Y are not block orthogonal, whereas trace [ 0 1
1 0 ] = 0 implies that X

and Y are 〈·, ·〉Cl
S -orthogonal.
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3.1.2. A variational characterization and error bounds. We denote by P the
〈·, ·〉S-A-orthogonal projector onto a subspace K of Cn×s. It then follows that for any
Y ∈ Cn×s,

‖Y −PY ‖S-A = min
X∈K

‖Y −X‖S-A ,

and that

‖Y −Z‖S-A = min
X∈K

‖Y −X‖S-A

⇐⇒ Z ∈ K and Y −Z is 〈·, ·〉S-A-orthogonal to K .
(3.8)

We are now in a position to formulate the following generalization of Theorem 3.2.
THEOREM 3.7. Let A ∈ Cn×n be 〈〈·, ·〉〉S-self-adjoint and 〈·, ·〉S-positive definite, and

let B ∈ Cn×s be a block right-hand-side vector. Then the BFOM error Em = X∗ −Xm

satisfies

(3.9) ‖Em‖S-A = min
X∈K S

m(A,B)
‖X∗ −X‖S-A ≤ ξm ‖E0‖S-A ,

with ξm from (3.6).
Proof. SinceXm satisfies the block Galerkin condition (3.2),Rm is 〈〈·, ·〉〉S-orthogonal

and, consequently, 〈·, ·〉S-orthogonal to K S
m(A,B). Then for all V ∈ K S

m(A,B),

0 = 〈Rm,V 〉S = 〈AEm,V 〉S = 〈Em,V 〉S-A.

Since Em = X∗ −Xm with Xm ∈ K S
m(A,B), applying (3.8) gives the equality in (3.9).

To prove the inequality in (3.9), we make use of the polynomial characterization of the block
Krylov subspace K S

m(A,B) given in (2.4). We thus have that

(3.10) ‖Pm(A) ◦E0‖S-A = min
P∈P̄m(S)

‖P (A) ◦E0‖S-A ,

where Pm is the BFOM residual polynomial as in (3.5). By the embedding

p(λ) = 1 +

m∑
i=1

γiλ
i ↪→ Pp(λ) = Is +

m∑
i=1

(γiIs)λ
i,

we can regard P̄m(C) as a subspace of P̄m(S) with Pp(A) ◦X = p(A)X . Along with (3.10)
and Lemma 3.6, this gives that

‖Pm(A) ◦E0‖S-A ≤ ‖p(A)E0‖S-A ≤ max
λ∈spec(A)

|p(λ)| · ‖E0‖S-A for any p ∈ P̄m(C).

If we now take p as the (scaled) Chebyshev polynomial of degreem for the interval [λmin, λmax]
(as in, e.g., [55, Chapter 6]), then maxλ∈[λmin,λmax] |p(λ)| ≤ ξm, leading to the inequality
in (3.9).

To put Theorem 3.7 in perspective, consider the specific block inner products 〈〈·, ·〉〉S
from Examples 2.3–2.5. In the classical and loop-interchange cases, ‖X‖S-A = ‖X‖A-F =√

trace(X∗AX), and in the global case, ‖X‖S-A = s ‖X‖A-F. Thus, in all three cases,
Theorem 3.7 gives that

(3.11) ‖Em‖A-F ≤ ξm ‖E0‖A-F .
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For the classical case, this result is contained in unpublished work by Eisenstat [20], who
rewrites results from [50] in terms of the A-weighted Frobenius norm. In the loop-interchange
case, we can use the standard CG error bound from Theorem 3.2 for each column as an
alternative way to arrive at (3.11). In the global case, the estimate (3.11) can also be obtained
as follows. Let A = Is ⊗A. Then solving the block linear system AX = B with GlBFOM
is identical to solving Avec(X) = vec(B) with FOM [36, Theorem 1], where vec is the
operator that reshapes an n × s block vector into an ns × 1 vector. Since A and A have
identical spectra, κ, c, and ξm are just as in (3.6). Applying Theorem 3.2 we obtain that

‖vec(Em)‖A ≤ ξm ‖vec(E0)‖A .

Converting everything back to block form gives (3.11).
It is worth mentioning that since the *-algebras for the three examples are nested as

SGl ⊆ SLi ⊆ SCl, the variational characterization from Theorem 3.7 directly provides the
comparison

(3.12)
∥∥ECl

m

∥∥
A-F ≤

∥∥ELi
m

∥∥
A-F ≤

∥∥EGl
m

∥∥
A-F .

4. BFOM for functions of matrices: B(FOM)2. We begin this section by considering
a generic function f : D ⊂ C→ C and an n× n matrix A along with a starting block vector
B, a block inner product 〈〈·, ·〉〉S on Cn×s with scaling quotient N , and corresponding outputs
from the Arnoldi process (Algorithm 1) fulfilling the block Arnoldi relation (2.2). Assuming
f(A)B exists, we define the B(FOM)2 approximation to f(A)B as

(4.1) Fm := Vmf(Hm)Ê1B,

where, just asHm, the matrix function f(Hm) is considered as an operator from Sm to Sm.
If we can express f as a contour integral of the form

(4.2) f(z) =

∫
Γ

g(t)

z + t
dt,

then3 f(A)B =
∫

Γ
g(t)(A+ tI)−1B and

(4.3) Fm =

∫
Γ

g(t)Vm(Hm + tI)−1Ê1B dt.

A crucial connection to BFOM for systems of equations now arises. The block Arnoldi
algorithm is shift invariant, i.e., the block Arnoldi procedure for A+ tI produces the same
basis Vm as the process for A, as well as the same block Arnoldi relation, but with the matrix
Hm replaced byHm + tI . Therefore, for each t ∈ Γ, the block vector Vm(Hm + tI)−1Ê1B
appearing in (4.3) is precisely the mth BFOM approximation to the solutionX(t) of the block
linear system (A+ tI)X(t) = B.

Note that f(Hm) is not necessarily defined when f(A) is, because Hm could have an
eigenvalue on which f is not defined or not sufficiently smooth. We now show that if f is
defined and sufficiently smooth on an appropriate superset of spec(A), then f(Hm) is defined
as well. Recall that for an operator H on a Hilbert space T with inner product 〈·, ·〉, the field
of values F〈·,·〉(H) is given as

F〈·,·〉(H) =

{
〈Hx, x〉
〈x, x〉

: x ∈ T, x 6= 0

}
,

3We refer to, e.g., [27, 37] for a discussion of why and when this definition of a matrix function coincides with
the standard definition based on interpolating polynomials.
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and that the field of values contains the spectrum of H . We use the field of values for A as
an operator on Cn×s with the inner product 〈·, ·〉S and forHm as an operator on Sm with the
inner product 〈·, ·〉Vm defined as

〈X,Y 〉Vm := 〈VmX,VmY 〉S, X,Y ∈ Sm,

where Vm is the matrix of the block Arnoldi vectors; see (2.2). The following lemma relates
the two field of values.

LEMMA 4.1. We have

F〈·,·〉Vm
(Hm) ⊂ F〈·,·〉S(A).

Proof. We first observe that by the Arnoldi relation (2.2), we have that

〈X,HmX〉Vm
= 〈VmX,VmHmX〉S
= 〈VmX, AVmX〉S − 〈VmX,Vm+1Hm+1,mÊ

∗
mX〉S

= 〈VmX, AVmX〉S.

The last equality holds since 〈〈VmX,Vm+1Hm+1,mÊ
∗
mX〉〉S = 0s, which one can see by

breaking VmX into components and applying the fact that the Vj are orthonormal. Clearly,
VmX ∈ Cn×s. Since, moreover, 〈VmX,VmX〉S = 〈X,X〉Vm

, this gives the desired
result.

As a direct consequence, we obtain the following sufficient condition for the existence of
f(Hm).

THEOREM 4.2. If the function f is defined and sufficiently smooth on F〈·,·〉S(A), then
f(Hm) : Sm → Sm is well defined, and consequently, so is the approximation Fm given
by (4.1).

In the remainder of this section we concentrate on Cauchy-Stieltjes functions as a special
class of functions closely related to those of the form (4.2) and develop a restart approach
for B(FOM)2 on such functions. It is important to note that, in principle, the B(FOM)2

approximation (4.1) and restart technique can be used for any f of the form (4.2), particularly
analytic functions. We, however, develop a theory for Stieltjes functions and 〈〈·, ·〉〉S-self-
adjoint, 〈·, ·〉S-positive definite matrices A only.

4.1. Stieltjes functions. A Stieltjes or Cauchy-Stieltjes function is a function f , with
f : C \ (−∞, 0]→ C, that can be written as a Riemann-Stieltjes integral as follows:

(4.4) f(z) =

∫ ∞
0

1

z + t
dµ(t),

where µ is monotonically increasing and nonnegative on [0,∞) with
∫∞

0
1
t+1 dµ(t) < ∞.

The relation between (4.4) and (4.2) becomes obvious if µ is differentiable since then g = µ′.
Stieltjes functions are a particular case of Markov-type functions [24, 42]. The matrix Stieltjes
function f(A) is defined if A has no eigenvalues on (−∞, 0]. If F〈·,·〉S(A) ∩ (−∞, 0] = ∅,
then by Theorem 4.2 the B(FOM)2 approximation Fm = Vmf(Hm)Ê1B exists.

Many important functions are Stieltjes functions. For example, for α ∈ (0, 1),

(4.5) z−α =
sin((1− α)π)

π

∫ ∞
0

1

z + t
dµ(t), with dµ(t) = t−α dt,

and

log(1 + z)

z
=

∫ ∞
0

1

z + t
dµ(t), with dµ(t) =

{
0 dt 0 ≤ t ≤ 1,

t−1 dt t > 1.

For more information on Stieltjes functions, see, e.g., [35].
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4.2. Restarts. The computation of a sufficiently accurate Fm faces many limitations in
practice since Krylov methods tend to suffer from steep storage requirements as the number
of basis vectors m increases and even more so in the case of block bases. For linear systems,
restarts are the standard approach for mitigating this issue. Based on work for the non-block
case in [25], we develop a numerically stable and efficient restart approach for B(FOM)2. The
key is to use the integral representation for f to develop an integral representation for the error
of the B(FOM)2 approximation Fm. As we will see, this integral representation is defined in a
fundamentally different way compared to the non-block case, but we can nevertheless apply
a variant of B(FOM)2 to it to approximate the error. The error approximation is ultimately
defined in a recursive fashion and updated each time a new block basis is computed. Note that
the norm of the error approximation can be used as a stopping criterion, an important issue
when approximating matrix functions.

Updating the function approximation with an error approximation is the only established
approach in the literature for restarting (FOM)2 for a single vector [1, 19, 25, 39]. Modifications
to this technique include varying cycle lengths or choosing more than one block vector for
generating the next basis, as is done with thick restarts [24] or recycling [51]. However, for
the sake of simplicity, we assume that the number of basis vectors computed per cycle m
is constant and that only one block vector, specifically the last basis vector V (k)

m+1 from the
previous cycle, is used as the starting vector for computing the basis vectors of the next cycle.

4.2.1. Restarted BFOM for shifted linear systems. Essential to the development of a
restart procedure for B(FOM)2 is a theory for the restarted BFOM for the shifted linear systems
(A+ tI)X∗(t) = B, t ≥ 0, which we now expound. We begin by fixing m, the number of
block basis vectors that are generated and stored at a time in the block Arnoldi process, and
henceforth refer to it as the cycle length. Using a superscript (k) to index quantities from
a given cycle and prescribing X(0)

m (t) := 0, the restarted BFOM approximation to X∗(t)
obtained after the (k + 1)st cycle is given as

(4.6) X(k+1)
m (t) := X(k)

m (t) +Z(k)
m (t), k = 0, 1, . . . ,

with Z(k)
m (t) defined as the BFOM approximation to Z(k)

∗ (t) in the block residual equation

(A+ tI)Z
(k)
∗ (t) = R(k)

m (t), with R(k)
m (t) := B − (A+ tI)X(k)

m (t).

Consider the first cycle. By the shift invariance of the block Arnoldi relation (2.2) and by the
cospatial relation (3.4), we have that

R(1)
m (t) = V

(1)
m+1C

(1)
m (t), with

C(1)
m (t) := −H(1)

m+1,mÊ
∗
mY

(1)
m (t)B and Y (1)

m (t) := (Hm + tI)−1Ê1,

where the cospatiality factor C(1)
m (t) depends on t, while the block basis vector V (1)

m+1 does
not.

Instead of starting the second cycle withR(1)
m (t), we can just as well start it with V (1)

m+1

since the two are cospatial. We then obtain the block basis {V (2)
1 = V

(1)
m+1, . . . ,V

(2)
m+1},

which block spans K S
m(A,V

(2)
1 ) and is again independent of t. If we then take

Z(1)
m (t) := V(2)

m Y
(2)
m (t)C(1)

m (t) with Y (2)
m (t) :=

(
H(2)
m + tI

)−1
Ê1,

we observe, again by the cospatial relation in (3.4), that the residual to the equation
(A+ tI)Z∗(t) = R

(1)
m (t) for the approximation Z(1)(t) satisfies

R(1)
m (t)− (A+ tI)Z(1)

m (t) = −V (2)
m+1H

(2)
m+1,mÊ

∗
mY

(2)
m (t)C(1)

m (t),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

114 A. FROMMER, K. LUND, AND D. B. SZYLD

showing that the residualR(1)
m (t)− (A+ tI)Z

(1)
m (t) is 〈〈·, ·〉〉S-orthogonal to K S

m(A,V
(2)

1 ),
thus satisfying the block Galerkin condition (3.2). This implies that Z(1)

m (t) is indeed the
BFOM approximation for the residual equation (A + tI)Z

(1)
∗ (t) = R

(1)
m (t). The residual

R
(2)
m (t) of the updated approximationX(2)

m (t) = X
(1)
m (t) +Z

(1)
m (t) is then given as

R(2)
m (t) = R(1)

m (t)− (A+ tI)Z(1)
m (t) = −V (2)

m+1H
(2)
m+1,mÊ

∗
mY

(2)
m (t)C(1)

m (t).

Defining C(2)
m (t) := −H(2)

m+1,mÊ
∗
mY

(2)
m (t) leads to a succinct expression for the cospatiality

relationship betweenR(2)
m (t) and V (2)

m+1,

R(2)
m (t) = V

(2)
m+1C

(2)
m (t)C(1)

m (t).

Inductively, if we start the (k + 1)st cycle with the (m + 1)st block basis vector from the
previous cycle, i.e., if we take V (k+1)

1 = V
(k)
m+1, we then obtain for all k ≥ 1 and t ≥ 0 that

Z(k)
m (t) = V(k+1)

m Y (k+1)
m (t)C(k)

m (t) · · ·C(1)
m (t) with Y (k)

m (t) =
(
H(k)
m + tI

)−1
Ê1,(4.7)

R(k)
m (t) = V

(k)
m+1C

(k)
m (t) · · ·C(1)

m (t),(4.8)

where

(4.9) R(k+1)
m (t) = R(k)

m (t)− (A+ tI)Z(k)
m (t),

with

C(1)
m (t) = −H(1)

m+1,mÊ
∗
mY

(1)
m (t)B,

C(j)
m (t) = −H(j)

m+1,mÊ
∗
mY

(j)
m (t), j = 2, . . . , k.(4.10)

4.2.2. An integral representation of the B(FOM)2 error. We are now ready to state
our central result on restarted B(FOM)2. All integrals occurring in the following theorem are
assumed to exist.

THEOREM 4.3. Let f be a Stieltjes function. For k ≥ 1 and t ≥ 0 with the matrices
C

(j)
m (t) ∈ S as in (4.10), define the matrix-valued function ∆(k)

m (z) of the complex variable z
as

(4.11) ∆(k)
m (z) :=

∫ ∞
0

(z + t)−1C(k)
m (t) · · ·C(1)

m (t) dµ(t).

Let

F (1)
m := V(1)

m f
(
H(1)
m

)
Ê1B = V(1)

m

∫ ∞
0

(
H(1)
m + tI

)−1
Ê1B dµ(t)

be the B(FOM)2 approximation to f(A)B after the first cycle. For k ≥ 1 put

D̃(k)
m := V(k+1)

m

(
∆(k)
m

(
H(k+1)
m

)
◦ Ê1

)
(4.12)

:= V(k+1)
m

∫ ∞
0

(
H(k+1)
m + tI

)−1
Ê1C

(k)
m (t) · · ·C(1)

m (t) dµ(t),

F (k+1)
m := F (k)

m + D̃(k)
m .
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Then, for k = 0, 1, . . ., the kth B(FOM)2 approximation errorD(k+1)
m := f(A)B − F (k+1)

m

is given as

D(k+1)
m = ∆(k+1)

m (A) ◦ V (k+1)
m+1

:=

∫ ∞
0

(A+ tI)−1V
(k+1)
m+1 C(k+1)

m (t) · · ·C(1)
m (t) dµ(t).

(4.13)

Before starting the proof, we note that the representations (4.12) and (4.13) are not of
the form “matrix function times a block vector”, as is the main object of our efforts f(A)B.
Rather, they are more closely related to the action of a matrix polynomial on a matrix and
block vector pair, as defined by the operator ◦ in (2.3). By analogy, we have thus extended the
meaning of ◦ to integrals with matrix-valued coefficients in the definitions of (4.12) and (4.13).
With this in mind, one can see that the correction D̃(k)

m = V(k+1)
m

(
∆

(k)
m

(
H(k+1)
m

)
◦ Ê1

)
to

the approximation F (k)
m is the natural extension of the B(FOM)2 approximation to the matrix

function ∆(k)
m (A) ◦ V (k)

m+1 = D
(k)
m in the space K S

m(A,V
(k+1)

1 ) with V (k+1)
1 = V

(k)
m+1.

Proof of Theorem 4.3. We will make use of the restarted BFOM iteratesX(k)
m (t) together

with their updates Z(k)
m (t), their errors E(k)

m (t) := X∗(t) − X(k)
m (t), and their residuals

R
(k)
m (t) from equations (4.6), (4.7), and (4.8). Note that, in particular, for all k = 0, 1, . . ., the

error representation forD(k+1)
m from (4.13) is equivalent to

D(k+1)
m =

∫ ∞
0

(A+ tI)−1R(k+1)
m (t) dµ(t).

We obtain (4.13) for k = 0 via

D(1)
m = f(A)B − F (1)

m =

∫ ∞
0

(A+ tI)−1B − V(1)
m Y

(1)
m (t)B dµ(t)

=

∫ ∞
0

(A+ tI)−1B −X(1)
m (t) dµ(t)

=

∫ ∞
0

(A+ tI)−1R(1)
m (t) dµ(t).

Inductively then, for k ≥ 1, we express

D(k+1)
m = f(A)B − F (k+1)

m = f(A)B − (F (k)
m + D̃(k)

m ) = D(k)
m − D̃(k)

m

and use (4.7) and (4.8) to obtain that

D(k+1)
m =

∫ ∞
0

(A+ tI)−1R(k)
m (t) dµ(t)

−V(k+1)
m

∫ ∞
0

(
H(k+1)
m + tI

)−1
Ê1C

(k)
m (t) · · ·C(1)

m (t) dµ(t)

=

∫ ∞
0

(A+ tI)−1R(k)
m (t)−Z(k)

m (t) dµ(t)

=

∫ ∞
0

(A+ tI)−1
(
R(k)
m (t)− (A+ tI)Z(k)

m (t)
)

dµ(t)

=

∫ ∞
0

(A+ tI)−1R(k+1)
m (t) dµ(t),

with the last equality holding by (4.9).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

116 A. FROMMER, K. LUND, AND D. B. SZYLD

Theorem 4.3 provides the restart technique for our proposed B(FOM)2 algorithm given as
Algorithm 2. Note that the cospatial factors C(k)

m (t) can be retrieved for any t as longH(k)
m is

stored for all k. We employ numerical quadrature to evaluate the integral defining D̃(k)
m , but

one should note that the choice of quadrature rule does not affect the integral representation of
the error for the next cycle.

Algorithm 2: B(FOM)2 with restarts.
Given :f , A,B, S, 〈〈·, ·〉〉S, N , m, tol

1 Run Algorithm 1 with inputs A,B, S, 〈〈·, ·〉〉S, N , and m to obtain V(1)
m ,H(1)

m ,
H

(1)
m+1,m, V (1)

m+1, and B

2 Compute F (1)
m = V(1)

m f
(
H(1)
m

)
Ê1B

3 for k = 1, 2, . . . , until convergence do
4 Determine C(k)

m (t) to define the new error function ∆(k)
m (z)

5 Run Algorithm 1 with inputs A, V (k)
m+1, S, 〈〈·, ·〉〉S, N , and m to obtain V(k+1)

m ,
H(k+1)
m , H(k+1)

m+1,m, and V (k+1)
m+1

6 Compute D̃(k)
m := V(k+1)

m ∆
(k)
m

(
H(k+1)
m

)
◦ Ê1, where ∆(k)

m (z) is evaluated via
quadrature

7 Compute F (k+1)
m := F

(k)
m + D̃

(k)
m

4.3. Error bounds and convergence results. It remains to investigate when Algorithm 2
produces a convergent sequence of approximations to f(A)B. The following lemma is
important in this context.

LEMMA 4.4. Let A be 〈·, ·〉S-positive-definite, and let g : (0,∞)→ (0,∞) be a scalar
rational function. Also, let gmin and gmax denote the minimum and maximum values of g on
spec(A), respectively. Then

√
gmin ‖V ‖S ≤ ‖V ‖S-g(A) ≤

√
gmax ‖V ‖S .

Proof. Since A is 〈·, ·〉S-positive definite, its spectrum is positive and A has a 〈·, ·〉S-
orthonormal eigenbasis, i.e., there exist {λj}nsj=1 ⊂ C and {Qj}nsj=1 ⊂ Cn×s such that
AQj = λjQj and 〈Qj ,Qk〉S = δjk. Given any V ∈ Cn×s, expand it in terms of this basis
as V =

∑ns
j=1 βjQj . Then

‖V ‖2S-g(A) = 〈g(A)V ,V 〉S = 〈
ns∑
j=1

g(λj)βjQj ,

ns∑
j=1

βjQj〉S =

ns∑
j=1

g(λj)|βj |2,

and thus

gmin

ns∑
j=1

|βj |2 ≤ ‖V ‖2S-g(A) ≤ gmax

ns∑
j=1

|βj |2.

Noting that
∑ns
j=1 |βj |2 = ‖V ‖2S leads to the desired result.

Define the following shifted versions of (3.6):

(4.14) κ(t) :=
λmax + t

λmin + t
, c(t) :=

√
κ(t)− 1√
κ(t) + 1

, and ξm(t) :=
1

cosh(m ln c(t))
.

Note that for all t ≥ 0, 0 ≤ ξm(t) < 1, and limt→∞ ξm(t) = 0; see [24, Proposition 4.2].
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The following theorem generalizes the results of [24, Lemma 4.1 and Theorem 4.3] to the
block case. Incidentally, its proof also shows that the improper integral representation (4.13)
for the error is finite under the given assumptions on A, which at the same time implies that
the restarted B(FOM)2 approximations are all well-defined.

THEOREM 4.5. Let f be a Stieltjes function, A ∈ Cn×n 〈〈·, ·〉〉S-self-adjoint and 〈·, ·〉S-
positive definite, andB ∈ Cn×s. LetD(k)

m from (4.13) be the error of the restarted B(FOM)2

approximation after k cycles of length m. Then, with the quantities defined in (4.14), we have

(4.15)
∥∥∥D(k)

m

∥∥∥
S-A
≤ ‖B‖S

√
λmax

∫ ∞
0

ξm(t)k√
λmin + t

√
λmax + t

dµ(t) ≤ γξm(0)k,

where γ = ‖B‖S
√
λmaxf(

√
λminλmax). In particular, B(FOM)2 converges for all cycle

lengths m.
Proof. We begin by writing the errorD(k)

m as an integral over the shifted restarted BFOM
error as

D(k)
m =

∫ ∞
0

(A+ tI)−1R(k)
m dµ(t) =

∫ ∞
0

E(k)
m (t) dµ(t).

The norm can be passed through the integral (see, e.g., [57, Lemma 2.1]) to give∥∥∥D(k)
m

∥∥∥
S-A
≤
∫ ∞

0

∥∥∥E(k)
m (t)

∥∥∥
S-A

dµ(t).

Using Lemma 4.4, we have for any V ∈ Cn×s that

‖V ‖2S-A+tI = 〈V ,V 〉S-A + t〈V ,V 〉S = ‖V ‖2S-A + t ‖V ‖2S
≥ ‖V ‖2S-A + t

λmax
‖V ‖S-A = λmax+t

λmax
‖V ‖2S-A ,

implying that ‖V ‖S-A ≤
√

λmax

λmax+t ‖V ‖S-A+tI . Then

(4.16)
∥∥∥E(k)

m (t)
∥∥∥
S-A
≤
√

λmax

λmax + t

∥∥∥E(k)
m (t)

∥∥∥
S-A+tI

.

Repeated application of Theorem 3.7 to
∥∥∥E(k)

m (t)
∥∥∥
S-A+tI

gives that

(4.17)
∥∥∥E(k)

m (t)
∥∥∥
S-A+tI

≤ ξm(t)k
∥∥∥E(1)

0 (t)
∥∥∥
S-A+tI

.

Since E(1)
0 (t) = X∗(t), we can use Lemma 4.4 to bound∥∥∥E(1)

0 (t)
∥∥∥2

S-A+tI
= 〈(A+ tI)−1B, (A+ tI)(A+ tI)−1B〉S = ‖B‖2S-(A+tI)−1

≤ 1

λmin + t
‖B‖2S .

(4.18)

Combining (4.16), (4.17), (4.18), we obtain that

(4.19)
∥∥∥D(k)

m

∥∥∥
S-A
≤ ‖B‖S

√
λmax

∫ ∞
0

ξm(t)k√
λmin + t

√
λmax + t

dµ(t),
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which is the first inequality in (4.15). The bound to the right of (4.19) is increased if we replace
ξm(t) by ξm(0) since ξm(t) is a monotonically decreasing function of t [24, Proposition 4.2].
Moreover, the geometric mean

√
λminλmax satisfies

1√
λmin + t

√
λmax + t

≤ 1√
λminλmax + t

,

so that ∫ ∞
0

ξm(t)k√
λmin + t

√
λmax + t

dµ(t) ≤ ξm(0)k
∫ ∞

0

1√
λminλmax + t

dµ(t).

Observing that the integral on the right is just f(
√
λminλmax) leads to the second inequality

in (4.15).

5. Numerical experiments. In this section, we illustrate the behavior of restarted
B(FOM)2 for a variety of functions—not all of which are Stieltjes—and matrices—not
all of which are 〈〈·, ·〉〉S-self-adjoint or 〈·, ·〉S-positive definite. While timings and compu-
tational effort, especially in comparison to the non-block method, are important in practice,
we do not devote much attention to them here, as the main purpose of these examples is
to establish the versatility and applicability of B(FOM)2. Four versions are implemented:
ClB(FOM)2, GlB(FOM)2, LiB(FOM)2, and HyB(FOM)2 (which takes 〈〈·, ·〉〉Hy

S as in (2.1) and
NHy(X) := sqrtm(X∗X)), along with the non-block approach of [24] applied to each
column sequentially, referred to as (FOM)2. For all four corresponding block inner products,
A = A∗ implies that A is 〈〈·, ·〉〉S-self-adjoint.

5.1. Expressions for the matrix error function. We consider three functions, z−α,
log(z+1)

z , and exp(z). For the respective integral representation of the error functions we use
the quadrature rules detailed in [25], which we briefly recapitulate here.

5.1.1. f(z) = z−α, 0 < α < 1. Applying the Cayley transform t = δ 1−x
1+x , for some

δ > 0, to (4.5), we use N -node Gauss-Jacobi quadrature for the interval [−1, 1] (as in, e.g.,
[13]) and find

D̃(k)
m ≈ −cα,δ

N∑
j=1

wj
1 + xj

V(k+1)
m (H(k+1)

m + tjI)−1Ê1C
(k)
m (tj) . . . C

(1)
m (tj),

with the Gauss-Jacobi nodes {xj}Nj=1, weights {wj}Nj=1, and {tj := δ
1−xj

1+xj
}Nj=1. As discussed

in [25], the algorithm is not sensitive to the choice of δ, so we take δ = 1.

5.1.2. f(z) = log(z + 1)/z. With the Gauss-Legendre nodes {xj}Nj=1, weights
{wj}Nj=1, and transformed nodes {tj := 2

1−xj
}Nj=1, we obtain

D̃(k)
m ≈

N∑
j=1

wj
1− xj

V(k+1)
m (H(k+1)

m + tjI)−1Ê1C
(k)
m (tj) · · ·C(1)

m (tj).

5.1.3. f(z) = exp(z). Although the exponential is not a Stieltjes function, we can
still apply the framework developed in this paper to the Cauchy integral form,

exp(z) =
1

2πi

∫
Γ

exp(t)

t− z
dt.
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Based on work in [64, 65, 66], the authors of [25] recommend taking Γ as a parabolic contour
parametrized as

γ(s) = a+ is− cs2, s ∈ R.

Here, a and c are chosen anew for each restart cycle to ensure that Γ encloses the eigenvalues of
the matrixHm. The infinite interval of integration for s is truncated for a given error tolerance
tol by the truncation parameter s0 :=

√
a− log(tol)/c, so that |exp(γ(±s0))| = tol.

From the N -point midpoint rule on [−s0, s0], we obtain the nodes sj := s0( 2j−1
N ), for

j = 1, . . . , N . Defining wj := exp(γ(sj))γ
′(sj) and tj := −γ(sj), we then approximate the

error approximation as

D̃(k)
m ≈ s0

Nπi

N∑
j=1

wjV(k+1)
m (H(k+1)

m + tjI)−1Ê1C
(k)
m (tj) · · ·C(1)

m (tj).

5.2. Remarks on the implementation. We highlight some aspects relevant to an imple-
mentation of the algorithms described in this paper.

The first aspect pertains to breakdowns of the block Arnoldi process due to the occurrence
of a rank-deficient block vector W in Algorithm 1. For the global method, this situation
implies thatW = 0, i.e., that K Gl

m has reached its maximal size, the algorithm has converged,
and f(A)B = F

(k)
m . In a similar fashion for the loop-interchange method, a zero entry in

the i-th diagonal position of 〈〈W ,W 〉〉Li
S indicates that the process has converged for the ith

column ofB, so this column can be discarded and the process can continue with the remaining
ones.

The classical method, however, faces a more complicated issue. Algorithm 1 may generate
singular block entries Hk+1,k even when none of the columns has converged due to possible
linear dependence amongst columns of the basis vector Vk. A number of methods have been
proposed to manage this phenomenon; see, e.g., [8, 33] and references therein. We employ
[8, Algorithm 7.3], which uses a rank-revealing QR (RRQR) factorization of W to detect
near and exact linear dependence. The RRQR acts as the scaling quotient NCl instead of
the standard economic QR factorization. We demonstrate the behavior of a RRQR-based
implementation of the classical method versus the non-deflated implementation in Section 5.4.

The other key aspect is that we use quadrature to evaluate the error function (4.11), which
directly affects the quality of the solution update D̃(k)

m . Specifically, we implement adaptive
quadrature, in which the number of nodes is increased by

√
2 until the difference between two

consecutive applications of the quadrature rule is less than a given tolerance. The final number
of nodes is stored, and in the next cycle, slightly fewer nodes are first used in an attempt to
decrease the computational effort; if they are not sufficient, the nodes are increased again until
the tolerance is met, and so on. For all examples in this paper, the quadrature tolerance is set
to be the same as the convergence tolerance.

As we have access to the exact solution f(A)B (or, rather, a machine-accurate approx-
imation to it) for each example in this paper, we use D(k)

m , i.e., the difference between the
approximation F (k)

m and f(A)B, to measure convergence. A process is regarded as convergent
when

∥∥∥D(k)
m

∥∥∥
A-F

is below a given error tolerance, which is specified for each example.

All experiments are run on a Dell desktop with a Linux 64-bit operating system, an
Intel R©CoreTM i7-4770 CPU @ 3.40 GHz, and 32 GB of RAM. In the plots, we abbreviate
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ClB(FOM)2, GlB(FOM)2, LiB(FOM)2, and (FOM)2 as Cl, Gl, Li, and nB, respectively, where
“nB" stands for “non-block." 4

5.3. B(FOM)2 on a random tridiagonal HPD matrix. Our first example consists of
the function f(z) = z−1/2 acting on a 100 × 100 HPD tridiagonal matrix A with random
entries with a condition number of O(102). We let B be a random 100 × 10 matrix, i.e.,
s = 10, and the cycle length m is set to 5, while the error tolerance is set to 10−10. For the
hybrid method, q = 5; i.e., SHy consists of 10× 10 matrices with 5× 5 blocks on the diagonal.
With this example we illustrate that while the error bound given in Theorem 4.5 is valid, it is
too far from the actual values of the error to be used as a predictor of convergence, which one
can see by comparing the black solid line at 101 with the rest of the convergence curves in
Figure 5.1. (Note that GlB(FOM)2, LiB(FOM)2, and (FOM)2 all have nearly identical error
curves and therefore appear to overlap each other. In fact, LiB(FOM)2 and (FOM)2 should
be identical in exact arithmetic.) Since ξm(0) is very close to 1, this bound cannot precisely
predict the convergence exhibited by the actual error curves. We therefore do not include it in
the rest of the convergence plots.
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FIG. 5.1. Convergence history for computing A−1/2B, where A ∈ C100×100 is a random tridiagonal HPD
matrix and B ∈ C100×10 is random.

5.4. Discretized two-dimensional Laplacian and f(z) = z−1/2. We now take A to
be the real, symmetric positive definite matrix arising from the second-order central difference
discretization of the negative two-dimensional Laplacian operator with 100 grid points in each
spatial dimension, so that n = 104. We look at two differentB with s = 10, the first having
full rank and the second being rank deficient. We also run two versions of ClB(FOM)2, one
with deflation and one without, as described in Section 5.2, in order to observe the effects of
rank deficiency on the stability of ClB(FOM)2. For both cases, the cycle length is m = 25,
and the error tolerance is 10−6. HyB(FOM)2 is not run for this set of examples due to the
complexity of developing an adequate deflation procedure. We takeB = u⊗ I10, where u is

4A package of our routines written in Matlab can be found at https://gitlab.com/katlund/
bfomfom-main.
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the vector of dimension 103 whose entries are all 1 and I10 is the 10× 10 identity, makingB
full rank.

The left part of Figure 5.2 displays the results forB having full rank. One can see that
all methods attain the desired accuracy with roughly the same number of cycles. The error
curves for ClB(FOM)2 with and without deflation coincide as well as those of LiB(FOM)2,
(FOM)2, and GlB(FOM)2, leading to what may appear to be only two curves. However, for a
given cycle, GlB(FOM)2 is slightly less accurate than LiB(FOM)2 or (FOM)2, and all are less
accurate than ClB(FOM)2, as predicted by the comparative result (3.12).

For the right part of Figure 5.2, the first column ofB is a linear combination of the four
other columns. The right figure shows that ClB(FOM)2 stagnates almost immediately because
it does not react to the rank deficiency of B. Indeed, when computing R in the economic
QR-factorization ofB as a scaling quotient, the algorithm treats the R factor as full rank since
the smallest element on the diagonal is of O(10−11), i.e., neither exactly nor numerically
zero. Taking inverses introduces enough numerical error so that by the next cycle, the basis
vector (now inaccurate) has full rank. It halts once the code detects that the norm of the error
is no longer monotonically decreasing. In contrast, ClB(FOM)2 with deflation converges
correctly, albeit with slow runtime. This is due to the comparatively high cost for the RRQR
factorization. Although the cost per cycle is still high compared to, e.g., GlB(FOM)2 and
(FOM)2, significantly fewer cycles are required overall.
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FIG. 5.2. Convergence history for A−1/2B, where A ∈ C104×104 is the discretized two-dimensional
Laplacian. Left: B ∈ C104×10 has linearly independent columns. Right: the first column of B is a linear
combination of other columns.

It is important to note that this situation is contrived, and linear dependence amongst the
columns of basis vectors is unlikely to occur in most practical situations. However, given how
slow the runtime of ClB(FOM)2 with deflation is in our Matlab implementation—roughly 20
times slower in the full-rank example—we do not examine it in further examples. Furthermore,
given the excellent performance of GlB(FOM)2, which requires no special treatment of rank
deficiencies, tailoring ClB(FOM)2 to work in rank deficient cases may not be necessary.

5.5. Overlap Dirac operator and f(z) = sign(z). Quantum chromodynamics (QCD)
is an area of theoretical particle physics in which the strong interaction between quarks and
gluons is studied. Simulations are carried out on a four-dimensional space-time lattice, where
each lattice point is assigned 12 variables and each variable corresponds to a combination of
three colors and four spins. One must solve systems involving the overlap Dirac operator, de-
scribed, e.g., in [23, 47]. The solution of such systems entails the computation of sign(Q)Ê1,
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where the matrix Q represents a periodic nearest-neighbor coupling on the lattice and Ê1

is the first 12 unit vectors of the lattice space. The matrix Q is large, sparse, complex and
Hermitian if the chemical potential is zero, which is what we consider here.

We take an 84 lattice such that n = 12 · 84 = 49152 and A = Q2 ∈ C49152×49152. Using
sign(z) = (z2)−1/2z, we compute sign(Q)Ê1 as A−1/2B, where B = QÊ1 ∈ C49152×12.
We set the error tolerance to 10−6 and vary the cycle length, letting m ∈ {25, 50, 100, 150}.
We also include HyB(FOM)2 in this series of tests, with q = 4.
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FIG. 5.3. Number of cycles versus the cycle length for the overlap Dirac operator example.

Figure 5.3 shows the correlation between the cycle length and the number of cycles
required to converge. Aside from GlB(FOM)2 requiring one extra cycle when m = 50,
all methods require the same number of cycles to converge for a given m. In which case,
a computationally less intensive method, such as LiB(FOM)2 or GlB(FOM)2, should be
preferred since ClB(FOM)2 does not take advantage of the extra information in its larger
approximation space as m increases.

5.6. Bus power system and log(z + 1)/z. We now consider the Stieltjes function
f(z) = log(z + 1)/z and its action on the S-admittance matrix A of a bus power system,
specifically matrix HB/1138_bus of the University of Florida Sparse Matrix Collection [14].
The symmetric matrix A has a condition number of O(106), and its sparsity pattern is given
in the left of Figure 5.4. The block vectorB has random entries, and we vary the number of
its columns, i.e., s ∈ {2, 6, 12, 24}, while the cycle length m is kept constant at m = 50. We
include HyB(FOM)2 in this set of tests as well, with q ∈ {1, 2, 4, 6}. Note that with q = 1,
HyB(FOM)2 is arithmetically equivalent to LiB(FOM)2.

As shown in Figure 5.4, LiB(FOM)2 and (FOM)2 require roughly the same number of
cycles to converge, with GlB(FOM)2 requiring the next largest number of cycles. For both
ClB(FOM)2 and HyB(FOM)2, the cycle count decreases as s increases. Since SCl = Cs×s, the
classical method obtains its iterates from the largest possible block Krylov space among the
methods. In particular, it takes information from m · s = 50s columns, which, as s increases,
becomes quite large relative to the problem size n = 1138, hence why ClB(FOM)2 benefits so
substantially from the additional columns in this example. Considering that HyB(FOM)2 is
a mixture of LiB(FOM)2 and ClB(FOM)2, it is noteworthy that the method exhibits trends
closer to those of ClB(FOM)2 than of LiB(FOM)2.

5.7. Convection-diffusion equation and exp(z). In the final example, we look at the
action of the exponential on a series of matrices that vary in degree of non-symmetry. The
matrices correspond to the standard finite differences discretization of a two-dimensional
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convection-diffusion equation on [0, 1]× [0, 1] with a constant convection field and convection
parameter ν. We use 350 discretization points in each dimension and a scaling parameter of
2 · 10−3, resulting in matrices of size 3502 × 3502 = 122, 500× 122, 500. We look at three
matrices Aν , for ν ∈ {0, 100, 200}. When ν = 0, Aν is real symmetric; otherwise, Aν is
non-symmetric.

B(FOM)2 converges in every scenario, as exhibited by the plots in Figure 5.5. In each
figure, the curves for ClB(FOM)2 and HyB(FOM)2 overlap with each other and likewise the
curves for GlB(FOM)2, LiB(FOM)2, and (FOM)2, resulting in what appears to be only two
curves. For a given ν, each method requires the same number of cycles: 4 for ν = 0, 6 for
ν = 100, and 9 for ν = 200.

6. Conclusions. As matrix functions are featured more in scientific computing, it is
vital that a solid theoretical foundation be laid for the methods used to evaluate them. In this
work, we have built such a foundation for block Krylov methods for matrix functions within a
framework that generalizes existing theory for block Krylov methods for linear systems. This
framework, which hinges on a *-subalgebra S, a block inner product 〈〈·, ·〉〉S, and a scaling
quotient N , opens up avenues for new block Krylov methods, as demonstrated by the success
of our hybrid method in the numerical examples.

We have also established a variational characterization of and convergence theory for
B(FOM)2 in the case of 〈〈·, ·〉〉S-self-adjoint and 〈·, ·〉S-positive definite matrices and Stieltjes
functions, drawing heavily on conjugate gradients theory. While the resulting convergence
bounds are shown to be too pessimistic in practice, they comprise a necessary theoretical
component for B(FOM)2. Additionally, in our formulation of B(FOM)2, not only do we
account for restarts, but we do so in an efficient way via the matrix error function ∆(k)

m and
additive correction D̃(k)

m . The variety of numerical experiments we have presented show that
updating with D̃(k)

m leads to stable approximations F (k)
m .

It is also clear from our numerical experiments that the classical block inner product
may not always be the most efficient computationally. In several cases, it requires nearly
the same number of cycles to reach the desired accuracy as the global or loop-interchange
methods, which are much cheaper to implement due to the sparsity structure of their respective
∗-algebras. As demonstrated by the bus power system examples, however, the classical method
is advantageous when s is large relative to the system size. Because of such differences in
performance, our generalized framework becomes all the more important since one can choose
a block inner product that suits the problem at hand without having to conduct a new analysis.
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FIG. 5.4. Left: Sparsity pattern of the bus power system matrix. Right: Number of cycles needed for convergence
versus s, the number of columns.
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FIG. 5.5. Convergence histories for computing exp(Aν)B, where Aν ∈ C122,500×122,500 is the fi-
nite differences stencil of a two-dimensional convection-diffusion equation with varying convection parameters
ν ∈ {0, 100, 200}, and B ∈ C122,500×10 has random entries.
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