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THE NUMBER OF ZEROS OF UNILATERAL POLYNOMIALS OVER
COQUATERNIONS AND RELATED ALGEBRAS∗

DRAHOSLAVA JANOVSKÁ† AND GERHARD OPFER‡

Abstract. We have proved that unilateral polynomials over the nondivision algebras in R4 have at most
n(2n− 1) zeros, when the polynomial has degree n. Moreover, we have created an algorithm for finding all zeros of
polynomials over these algebras using a real polynomial of degree 2n, called companion polynomial. The algebras in
question are coquaternions, Hcoq, nectarines, Hnec, and conectarines, Hcon. Besides the isolated and hyperbolic
zeros we introduce a new type of zeros, the unexpected zeros. There is a formal algorithm, and there are numerical
examples. In a tutorial section on similarity we show how to find the similarity transformation of two algebra elements
to be known as similar, where a singular value decomposition of a certain real 4× 4 matrix related to the two similar
elements has to be applied. We show that there is a strong indication that an algorithm by Serôdio, Pereira, and Vitória
[Comput. Math. Appl., 42 (2001), pp. 1229–1237], designed for finding zeros of quaternionic polynomials, is also
valid in the nondivision algebras in R4 and it produces—though with another technique—the same zeros as those
proposed in this paper.
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AMS subject classifications. 12D10, 12E10, 15A66, 1604

1. Introduction. We present an algorithm for finding all zeros of unilateral polynomials
of degree n in one of the algebras: Hcoq,Hnec,Hcon. Beyond the isolated and the hyperbolic
zeros, there will be a new type of zero which we will call an unexpected zero. As an
essential result we determine the maximal number of zeros of unilateral polynomials of
degree n over any of the noncommutative algebras in R4, in particular in coquaternions
(Hcoq), nectarines (Hnec), and conectarines (Hcon). These algebras are also nondivision
algebras, which means that there are noninvertible algebra elements different from the zero
element. The notation H will be reserved—in honor of Hamilton—for the field of quaternions;
see [8]. In order to support our result we have developed an algorithm for finding all zeros
of unilateral polynomials over the mentioned algebras. The explicit names of these algebras
were introduced by Cockle [1, 2] and Schmeikal [23] for the last two algebras. The letter A
will denote one of these three algebras. For algebras in general, see Garling [5]. Algebras in
RN are in many cases called geometric algebras [6]. If we write nondivision algebra(s), we
always mean the noncommutative nondivision algebras Hcoq, Hnec, Hcon.

For finding all zeros and their number of unilateral polynomials of degree n over quater-
nions H, see Janovská and Opfer [14] and also Serôdio, Pereira, and Vitória [24] and De Leo,
Ducati, and Leonardi [3]. The main ingredient in [14] for finding zeros of a quaternionic
polynomial of degree n is a real polynomial of degree 2n, which is called companion poly-
nomial by the authors of [14], and is denoted by q. At the end of this paper, we will explain
why the name companion polynomial is reasonable. In order to distinguish the zeros of the
given polynomial p from the solutions of q(z) = 0 we called these solutions roots of q. We
found that the number of zeros of quaternionic polynomials p cannot exceed the degree, which
coincides with a result published in 1965 by Gordon and Motzkin [7]. Since zeros may fill a
whole similarity class, the count of zeros must be per similarity class which contains a zero.
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The importance of the notion of similarity was already discovered in 1936 by Wolf [25]. For
nondivision algebras it is reasonable also to introduce the notion of quasi similarity. At a later
occasion, we will point out the few cases in which quasi similarity and similarity differ.

In another paper by Janovská and Opfer [11], we have introduced an algorithm for finding
zeros of unilateral coquaternionic polynomials also by the means of the real companion
polynomial q. The pairs of conjugate complex roots of q gave rise to a zero of p, however, for
the real roots of q we did not find a connection to the zeros of p. Any conclusion on how many
zeros may exist in A could not be established. In [11] we extended the search for zeros by
employing Newton’s method where a special technique described by Lauterbach and Opfer
in [17] was used. Other attempts to find zeros by Newton’s method can be found in [4, 16].

In this paper, we fill this gap and show how to find all zeros of unilateral polynomials
over A again by employing the companion polynomial, which also allows the conclusion
that there are maximally

(
2n
2

)
= n(2n− 1) zeros of a polynomial of degree n, for instance,

quadratic polynomials in Hcoq,Hnec,Hcon may have up to 6 and cubic polynomials up to 15
zeros. It will be shown that the essential gist is not to consider the individual real roots of the
companion polynomial, but to consider all pairs of real roots. A positive minimum number of
zeros does not exist in Hcoq,Hnec,Hcon, since it was shown in [11] that there are polynomials
without zeros. This is in some analogy with the fact that there are matrices in these algebras
which have no eigenvalues [10]. The algorithm for finding all zeros, which implies the above
upper bound, will be presented in the sequel.

2. Definitions and elementary properties. The polynomials considered here will have
the form

(2.1) p(z) =

n∑
j=0

ajz
j , aj , z ∈ A, an, a0 invertible.

Let A be one of the three algebras Hcoq,Hnec,Hcon, and if a specific algebra is chosen, we
say that p is a polynomial over A. The algebra of quaternions H is not included in this
investigation since there are already publications with algorithms for finding all zeros of
unilateral polynomials with quaternionic coefficients; see [3, 14, 24].

We denote algebra elements from A in the simple form a = (a1, a2, a3, a4). The four
units in any R4 algebra will be denoted by 1, i, j,k so that one can also use the representation

a = a1 + a2i+ a3j+ a4k, aj ∈ R, j = 1, 2, 3, 4.

For completeness we present the multiplication rules for Hcoq, Hnec, Hcon in Table 2.1.

TABLE 2.1
The three multiplication tables for Hcoq, Hnec, Hcon.

Hcoq 1 i j k

1 1 i j k
i i −1 k −j
j j −k 1 −i
k k j i 1

Hnec 1 i j k

1 1 i j k
i i 1 k j
j j −k −1 i
k k −j −i 1

Hcon 1 i j k

1 1 i j k
i i 1 k j
j j −k 1 −i
k k −j i −1

DEFINITION 2.1. Let G be any noncommutative algebra. The center of G, denoted by
CG, is the subset of G whose elements commute with all elements of G.

LEMMA 2.2. The center of all algebras in A is

CA = R,

where R is identified with algebra elements of the form (a, 0, 0, 0) ∈ A, a ∈ R.
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Proof. It is clear that R belongs to the center. Let a /∈ R. Then the assumption ab = ba
for all b ∈ A leads to a contradiction.

LEMMA 2.3. Let us denote the four units in A by

unit1 = 1, unit2 = i, unit3 = j, unit4 = k.

Then the product unitrunits is real if and only if r = s, 1 ≤ r, s ≤ 4.
Proof. In all three Tables 2.1 only the diagonal elements are real.
We denote the first component a1 of a = (a1, a2, a3, a4) by a1 = <(a) and call a1 the

real part of a in all algebras considered here. The multiplication rules and Lemma 2.3 imply

(2.2) <(ab) = <(ba) for all a, b ∈ A.

DEFINITION 2.4. Let a = (a1, a2, a3, a4) ∈ A. We define the conjugate of a, denoted
either by a or by conj(a), by

a = conj(a) = (a1,−a2,−a3,−a4).(2.3)

For the product aa we use the notation

abs2(a) = aa.(2.4)

The importance of these two notions is expressed in the following lemma.
LEMMA 2.5. Let a, b ∈ A. Then

1. ab = b a, a+ a = 2<(a),
2. abs2(a) = aa = aa ∈ R, abs2(a) = abs2(a),
3. a is invertible if and only if abs2(a) 6= 0.
4. Let abs2(a) 6= 0. Then

a−1 =
a

abs2(a)
·

5. The function abs2 : A → R defined in (2.4) is multiplicative, which means

(2.5) abs2(ab) = abs2(ba) = abs2(a)abs2(b).

For invertible a, (2.5) implies

1 = abs2(aa
−1) = abs2(a)abs2(a

−1).

6. abs2(a) =


a21 + a22 + a23 + a24 for a ∈ H,
a21 + a22 − a23 − a24 for a ∈ Hcoq,

a21 − a22 + a23 − a24 for a ∈ Hnec,

a21 − a22 − a23 + a24 for a ∈ Hcon.
Proof. See [11].
Since similarity is an important concept in our investigation we will repeat the essential

features.

2.1. Similarity and quasi similarity. We start with the principal definition.
DEFINITION 2.6. Let a, b ∈ A. Then a, b are said to be similar, denoted by a ∼ b, if

there is an invertible h ∈ A such that

(2.6) h−1ah = b.

We note that similarity is an equivalence relation. We call the transformation a→ h−1ah
a similarity transformation of a. We have a very simple lemma.
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LEMMA 2.7. Let a, b ∈ A.
1. Let a, b both be real. Then a, b are similar if and only if a, b are identical.
2. Let a or b be real but not both. Then a, b are not similar.

Proof. Real elements commute with all algebra elements. The defining equation (2.6)
under assumption 1 implies a = b. In the second case it also implies a = b. Because one of
the two elements a, b is not real and the other is real, the equation a = b can never be valid in
case 2.

THEOREM 2.8. Let a, b ∈ A be similar. Then,

(2.7) <(a) = <(b), abs2(a) = abs2(b).

Proof. We put b = h−1ah and apply (2.2): <(h−1ah) = <(hh−1a) = <(a) = <(b).
We apply (2.5) and (2.6): abs2(h−1ah) = abs2(h

−1)abs2(h)abs2(a) = abs2(a) = abs2(b).

The main question is now whether (2.7) implies similarity. Here we refer to [11,
Lemma 4.3]. This lemma says:

(2.8) Let a, b ∈ Hcoq\R and let (2.7) be valid. Then a ∼ b.

The proof is by matrix arguments, and it would also apply to Hnec and to Hcon instead of Hcoq.
However, for quaternions H, (2.7) is a necessary and sufficient condition for similarity without
any restriction. See also [21] for coquaternions, where the condition a, b /∈ R is omitted.

THEOREM 2.9. Let a, b ∈ Hcoq\R and a ∼ b. Then a similarity transformation,
expressed by an invertible h ∈ Hcoq can be found by computing the kernel (= null space) of
the homogeneous, singular matrix equation

Mh = 0,

where M is the real 4× 4 matrix equivalent to Sylvester’s equation

ah− hb = 0, h invertible.

See [12, 15]. The kernel of M can be computed by applying a singular value decomposition
to the matrix M. Details can be deduced from Example 2.11.

Let a ∈ A and abs2(a)− (<(a))2 = 0. In such a situation it is sometimes desirable that
(<(a), 0, 0, 0) and a are in the same similarity class. This can be achieved by slightly changing
the definition of similarity to the condition which is given in (2.7).

DEFINITION 2.10. Let a, b ∈ A. The two elements a, b are said to be quasi similar,
abbreviated as a

q∼ b, if (2.7) is valid. The quasi similarity classes will be denoted by [a]q .
Quasi similarity is also an equivalence relation. It is clear that similarity implies quasi

similarity and that

[a] ⊂ [a]q for all a ∈ A.

See [11] for more details.
EXAMPLE 2.11. Let a = (1, 5, 4, 3) ∈ Hcoq and b = (1, 1, 1, 0) ∈ Hcoq. According

to (2.8), these elements are similar in Hcoq and they are both quasi similar to 1 because of
<(a) = <(b) = abs2(a) = abs2(b) = 1. We will furnish a direct proof of a ∼ b by finding
the corresponding similarity transformation explicitly by using Theorem 2.9. For M we find
in this case (see [12])

(2.9) M =


0 −4 3 3
4 0 3 −5
3 3 0 −6
3 −5 6 0

 .
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This matrix M has rank 2 and, therefore, the corresponding kernel has dimension 2 which
implies that the kernel contains invertible elements. In order to find the corresponding similarity
transformation, we apply a singular value decomposition (abbreviated svd) to M and obtain
svd(M) = [U, S, V ] (using MATLAB notation) where U, S, V are again 4 × 4 matrices.
More details can be found in the classical reference by Horn and Johnson [9, p. 414]. The last
two columns of V contain two linearly independent vectors spanning the kernel. This result
can be found in standard textbooks; see, e.g., [19, p. 311]. These two vectors are here

(2.10) [h1, h2] =


−0.682852186027397 0.454741481629430
0.338967359220833 0.635870976388783
0.623898892364393 0.302521739509271
−0.171942413403282 0.545306229009106

 .
As elements of Hcoq, h1, h2 are invertible. Now we make the following numerical checks:

h−11 ah1 = (1.000000000000000, 1.000000000000003,

1.000000000000003,−0.000000000000004),
h−12 ah2 = (1.000000000000001, 1.000000000000000,

1.000000000000004,−0.000000000000001),
h1bh

−1
1 = (1.000000000000000, 5.000000000000009,

4.000000000000004, 3.000000000000008),

h2bh
−1
2 = (1.000000000000000, 5.000000000000002,

4.000000000000004, 2.999999999999999),

and the check is affirmative, a and b are indeed similar in Hcoq within computer precision.
The computations were carried out in MATLAB with about 15 significant decimal digits.

3. Finding zeros from similarity classes. We will treat the following problem: Given a
polynomial p over A and a quasi similarity class [z]q ⊂ A, which is known to contain a zero
z0 ∈ [z]q of p. How to find the zero? The main idea is to write the polynomial p in a formally
linear form. For this purpose, we use the identity

z2 = −abs2(z) + 2<(z)z,

which is valid in A and in H. It implies

zk = αk + βkz, αk, βk ∈ R,(3.1)
α0 = 1, β0 = 0,(3.2)

αk+1 = −abs2(z)βk, βk+1 = αk + 2<(z)βk k = 0, 1, . . . , n− 1.(3.3)

This means that for a given z ∈ A, the representation (3.1) is easily computable. For a
first application of (3.1) in H, see [20]. See also Horn and Johnson, [9, p. 87], for a matrix
equivalent of (3.1). If we restrict our attention to one quasi similarity class [z]q, then the
coefficients αk, βk, k ≥ 0, are constant on this class. This follows from (2.7). If we apply
(3.1) to all powers in the polynomial p, then we obtain

(3.4) p(z) =

n∑
k=0

akz
k =

n∑
k=0

ak(αk + βkz) =

n∑
k=0

αkak +

(
n∑

k=0

βkak

)
z =: A+Bz,
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and A,B ∈ A are constant on the quasi similarity class [z]q. Though we have written A,B
without arguments, they depend on z. More precisely, A,B depend on abs2(z) and on <(z)
but not fully on z.

THEOREM 3.1. In the representation p(z) = A+ Bz, let B be invertible on the given
class [z]q , and let [z]q contain a zero z0 of p. Then

z0 = −B−1A

is the only zero of p in [z]q . If A = B = 0, then all elements in [z]q are zeros of p.
Proof. From (3.4) it follows that p(z0) = 0. Let there be two distinct zeros, z0, z1 ∈ [z]q .

Then, p(z0) = A+Bz0 = 0 and p(z1) = A+Bz1 = 0, which implies B(z0 − z1) = 0. If
B is invertible, then z0 = z1 would follow, a contradiction. Thus, B is noninvertible if there
are two distinct zeros z1, z2 ∈ [z]q . The last part is obvious.

THEOREM 3.2. Let B 6= 0, but let B be noninvertible on the given class [z]q , and let [z]q
contain a zero of p. Assume that there is a real constant γ such that

A+ γB = 0.

Then, for all real α, the quantity

(3.5) z0 = αB + γ

is a zero of p, provided that z0 ∈ [z]q .
Proof. We have

p(z0) = A+Bz0 = −γB +B
(
αB + γ

)
= −γB + αBB + γB = 0.

The quasi similarity z0
q∼ z has to be checked separately and will restrict the possible values

of α.
LEMMA 3.3. Let in Theorem 3.2 <(B) 6= 0. Then there is at most one α which defines a

zero z0 which is contained in the quasi similarity class [z]q .
Proof. Since the real part is fixed in the whole quasi similarity class [z]q, the equation

<(z0) = <(αB + γ) = α<(B) + γ allows several real parts for varying α. This is a
contradiction.

DEFINITION 3.4. Zeros z0 of p with the property that there is no other zero in [z0]q
are called isolated. Zeros z0 with the property that all elements in [z0]q are zeros are called
hyperbolic. See [11, p. 139]. Zeros z0 which are computed by formula (3.5) are called
unexpected zeros.

It should be noted that the similarity classes [z] either contain infinitely many elements in
case [z] does not contain real elements or [z] consist of a single element, which is possible
only if z ∈ R. However, in A there are no quasi similarity classes which contain only one
element.

Examples related to the Theorems 3.1, 3.2 will be presented later.

4. The companion polynomial and its roots. Conjugation plays an important role in
the following definition.

DEFINITION 4.1. Let p be a polynomial of degree n of the form defined in (2.1). The real
polynomial q of degree 2n defined by
(4.1)

q(z) =

n∑
j,k=0

ajakz
j+k =

2n∑
`=0

b`z
`, b` =

min(`,n)∑
j=max(0,`−n)

aja`−j ∈ R, 0 ≤ ` ≤ 2n,

is called the companion polynomial of p.
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In [11, Lemma 6.2] it is shown that the coefficients b` defined in (4.1) are real. We will
reserve the word zeros for solutions z of p(z) = 0 and will use the word roots for the solutions
of q(z) = 0. Since q has even degree 2n and the coefficients b` of q are all real, there is an even
number 2n1 of complex roots and an even number 2n2 of real roots such that 2(n1+n2) = 2n
where n1 = 0 or n2 = 0 is possible. And it is clear that the complex roots always appear in
complex conjugate pairs. There is one important property of q, which will be used on certain
occasions, namely

(4.2) q(z) = p(z)p(z) for all z ∈ R.

It follows that a real zero of p will be a real double root of q since the reals commute with
all algebra elements. Note that p(z)p(z) = 0 does in general not imply p(z) = 0. In another
paper [11], we have called a z with p(z)p(z) = 0 a singular point of p. The companion
polynomial q, though not with that name, was already introduced 1941 by Niven [18]. In a
later paper (2004) it was called basic polynomial by Pogorui and Shapiro [20].

THEOREM 4.2. Let q be the companion polynomial of p, and let it have at least one pair
of complex conjugate roots c = u± vi, where u, v ∈ R, v > 0. Define

(4.3) s :=


u+ vi for A = Hcoq,

u+ vj for A = Hnec,

u+ vk for A = Hcon.

Then in [s]q there may be a zero s0 of p which can be found by applying one of the Theorems 3.1
or 3.2. In all cases abs2(s) = u2 + v2.

Proof. For H the proof is given in [14]. In [11] it is shown for A = Hcoq that under the
given conditions, [s]q contains a zero of p. The remaining part follows from Theorem 3.1. The
proof given in [11] can easily be extended to the remaining two algebras Hnec,Hcon.

Since there are at most n1 ≤ n pairs of complex conjugate roots, p may have at most n1
zeros derived from complex zeros of q. For H, the paper [14] contains a complete description
on how to find all (maximally n) zeros of p over H. An extension to two-sided polynomials
over H was given in [13].

THEOREM 4.3. Let the companion polynomial q of p have at least one pair of real roots,
r1, r2, and assume (without loss of generality) that r1 ≥ r2. Define

u :=
1

2

(
r1 + r2

)
, v :=

1

2

(
r1 − r2

)
,(4.4)

s :=


u+ vj or u+ vk for A = Hcoq,

u+ vi or u+ vk for A = Hnec,

u+ vi or u+ vj for A = Hcon.

(4.5)

Then in [s]q there may be a zero s0 of p which can be found by applying one of the Theorems 3.1
or 3.2. If r1 = r2, then s = u = r1 is a real zero of p and possibly also an unexpected zero
of p. See Example 4.9. In all cases abs2(s) = u2 − v2.

Proof. Let p(z) = A + Bz; see (3.4). The proof has to be made under three as-
sumptions: i: B is invertible, ii: A = B = 0, iii: B 6= 0 and B is not invertible. Assume
r1 > r2. Though we have written A,B without an argument, both A and B depend on s
and both are constant on [s]q. We will show that s and s0 are quasi similar which means
that (2.7), mentioned in Theorem 2.8, is valid for s, s0. The real part of s is <(s) = u, and
abs2(s) = u2 − v2 = (u+ v)(u− v) = r1r2 in all three algebras A. We have to show that

(4.6) <(s0) = u, abs2(s0) = u2 − v2 = r1r2.
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Let us assume that B is invertible. We have

<(s0) = −
1

2
(B−1A+B−1A) =

−1
2 abs2(B)

(BA+AB),

abs2(s0) = (−B−1A)(−B−1A) = abs2(A)

abs2(B)
·

We note that the powers sk, k ≥ 0, of s have the form

(4.7) sk =

{
uk + vkj for A = Hcoq,

uk + vki for A = Hnec and for A = Hcon,

where in all algebras

uk =
rk1 + rk2

2
, vk =

rk1 − rk2
2

, k = 0, 1, . . .

This can be shown by induction using j2 = 1 in Hcoq and i2 = 1 in Hnec and in Hcon. If we
compare sk from (4.7) with sk from (3.1) we obtain in A

αk = uk − u
vk
v
, βk =

vk
v
·

From here,

A =

n∑
k=0

αkak =

n∑
k=0

(
uk − u

vk
v

)
ak =

n∑
k=0

ukak −
u

v

n∑
k=0

vkak

=
1

2
(p(r1) + p(r2))−

u

2v
(p(r1)− p(r2))

=
−r2

r1 − r2
p(r1) +

r1
r1 − r2

p(r2),

B =

n∑
k=0

βkak =
1

v

n∑
k=0

vkak =
1

r1 − r2
(p(r1)− p(r2)) .

These formulas imply, by using (4.2) frequently,

abs2(A) = AA

=

(
−r2

r1 − r2
p(r1) +

r1
r1 − r2

p(r2)

)(
−r2

r1 − r2
p(r1) +

r1
r1 − r2

p(r2)

)
=

(
−r2

r1 − r2

)2

p(r1)p(r1) +

(
r1

r1 − r2

)2

p(r2)p(r2)

+

(
−r2

r1 − r2

)(
r1

r1 − r2

)
p(r1)p(r2) +

(
r1

r1 − r2

)(
−r2

r1 − r2

)
p(r2)p(r1)

= −2
(

r1r2
(r1 − r2)2

)
<
(
p(r1)p(r2)

)
.

abs2(B) = BB

=

(
1

r1 − r2

)2 (
p(r1)p(r1) + p(r2)p(r2)− 2<

(
p(r1)p(r2)

))
= −2

(
1

r1 − r2

)2

<
(
p(r1)p(r2)

)
,
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BA+AB =
1

r1 − r2

(
p(r1)− p(r2)

)( −r2
r1 − r2

p(r1) +
r1

r1 − r2
p(r2)

)
+

1

r1 − r2

(
−r2

r1 − r2
p(r1) +

r1
r1 − r2

p(r2)

)
(p(r1)− p(r2))

= 2
r1 + r2

(r1 − r2)2
<
(
p(r1)p(r2)

)
.

Finally, also using (2.2),

abs2(A)

abs2(B)
= r1r2, −BA+AB

2 abs2(B)
= u,

which coincides with (4.6). The last part of the theorem is obvious.
The motivation for the use of the formulas (4.4), (4.5) is taken from [10, Table 5], where

under certain conditions the two eigenvalues of a 2× 2 matrix are the sum and the difference
of two real numbers.

DEFINITION 4.4. Let a pair of real roots r1, r2 or a pair of conjugate complex roots
u± vi of the companion polynomial q have the property that it defines a zero s0 of the given
polynomial p by applying one of the Theorems 4.2, 4.3. Then we say that the pair of roots of q
generates a zero s0 of p.

THEOREM 4.5. Let p be a polynomial of degree n as defined in (2.1) over A. Then the
companion polynomial q of p generates at most n(2n− 1) zeros of p.

Proof. Let the companion polynomial q (defined in (4.1)) have only real roots such that
their number is 2n. Then the number of real pairs is

(
2n
2

)
= 2n(2n− 1)/2 = n(2n− 1) and

according to Theorem 4.3, each pair may generate a zero of p. In Example 7.1 below with a
polynomial of degree n = 3 we will show that the upper bound 2(2n− 1) = 15 of zeros will
be attained. Another example of a polynomial of degree 4 with the maximum number of zeros
n(2n− 1) = 28 is presented in Example 7.4.

We can more precisely estimate the number of zeros of p if the companion polynomial
has 2n1 (nonreal) complex roots and 2n2 real roots.

THEOREM 4.6. Let p be a polynomial of degree n over A, and let the roots of the
companion polynomial q be r1, r2, . . . , r2n. Assume that the first 2n1 roots are (nonreal)
complex and that the remaining 2n2 := 2n− 2n1 roots are real. Then the number of zeros of
p is

#{z : p(z) = 0} ≤ n1 +
(
2n− 2n1

2

)
= n1 + (n− n1)(2n− 2n1 − 1),

where all quasi similar zeros are counted as one zero. The maximum, n(2n− 1), is attained
for n1 = 0 when there are no complex roots of q and when all real roots of q are pairwise
distinct.

Proof. The result follows from formulas (4.3) and (4.5) in Theorems 4.2, 4.3. In (4.3)
there are at most n1 complex roots with positive imaginary part, and in (4.5) there are at most(
2n−2n1

2

)
real pairs.

EXAMPLE 4.7. We start with an extremely simple example. Let

p(z) = d− z, z, d ∈ A.

Then the companion polynomial is

q(z) = z2 − 2<(d)z + abs2(d),
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and the zeros of q are <(d)±
√
(<(d))2 − abs2(d). The formally linear form of p is

p(z) = A+Bz, A = d,B = −1,

and A,B do not depend on z, and B is always invertible. Thus, independent of q, we have

z0 = −AB−1 = −d(−1)−1 = d,

and z0 is an isolated zero of p.
EXAMPLE 4.8. Let

p(z) = (z − 1)(z − 2) = z2 − 3z + 2

=
(
− abs2(z) + 2

)
+
(
2<(z)− 3

)
z =: A(z) +B(z)z

be a polynomial over A. The companion polynomial q is in all algebras A and in H

q(z) = z4 − 6z3 + 13z2 − 12z + 4,

and the zeros of q are in all cases 1, 1, 2, 2. For H this implies that 1 and 2 are real zeros of
p, and there are no other zeros of p in H. Let A = Hcoq. There are three distinct real pairs
(1, 1), (1, 2), (2, 2). We apply Theorem 4.3 and find for the first and the last pair s = 1, s = 2,
respectively, and A(1) = 1, A(2) = −2, B(1) = −1, B(2) = 1. This implies

s0 = −B(1)−1A(1) = 1, s0 = −B(2)−1A(2) = 2,

and both zeros s0 of p are isolated. However, in Hcoq the pair (1, 2) defines, using the same
theorem, s = 1

2 (3 + j) or s = 1
2 (3 + k), and in both cases we have A = B = 0 and the above

mentioned (similar) zeros are hyperbolic zeros. Thus, p over Hcoq has 3 zeros. The same is
valid in Hnec and in Hcon if we apply Theorem 4.3 correspondingly.

We will furnish an example which shows by an application of Theorem 3.2 the existence
of unexpected zeros.

EXAMPLE 4.9. For a ∈ A but a /∈ R and (<(a))2 − abs2(a) = 0, we define

p(z) := z2 − 2az + a2

= (−abs2(z) + a2) + 2(<(z)− a)z =: A(abs2(z)) +B(<(z))z.

It is easy to see that p(a) = 0. In this case the companion polynomial is

q(z) = (z −<(a))4.

It defines only one pair of real roots
(
<(a),<(a)

)
, and the evaluation of A and B at s = <(a)

yields

(4.8) A = −abs2(<(a)) + a2 = −(<(a))2 + a2, B = 2(<(a)− a).

LEMMA 4.10. In Example 4.9 we have

B 6= 0, <(B) = 0, B noninvertible, A = −<(a)B.

Proof. The first two properties follow from the last part of (4.8). For the third one we have

BB = 4(<(a)− a)(<(a)− a) = 4
(
(<(a))2 −<(a)(a+ a) + aa

)
= 4(aa− (<(a))2) = 0.
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Thus, B is noninvertible. Finally,

−<(a)B = −2(<(a))2+2<(a)a = −(<(a))2−abs2(a)+2<(a)a = −(<(a))2+a2 = A.

This lemma implies that Theorem 3.2 is applicable, which shows that for all real α

z0 = αB + <(a) = 2α(<(a)− a) + <(a)

is a zero of p. Let a = (a1, a2, a3, a4). Then the zeros have the form

z0 = (a1, αa2, αa3, αa4) for all α ∈ R.

Thus, they are all quasi similar to a1 = <(a) and are unexpected zeros. However, not all
elements quasi similar to <(a) belong to that quasi similarity class. The unexpected zeros
consist of an infinite subset of [<(a)]q but do not exhaust this set.

It should be noted that the similarity classes [z] either contain infinitely many elements,
in which case [z] does not contain real elements, or [z] consist of a single element, which is
possible only if z ∈ R. However, in A there are no quasi similarity classes which contain only
one element.

5. All zeros of p are generated by roots of q. We will show that all zeros of p are
generated by roots of q.

THEOREM 5.1. Let p have a zero s0 where the similarity class [s0] contains an element
of the form

s := u+ vi, if p is a polynomial over Hcoq,

s := u+ vj, if p is a polynomial over Hnec,

s := u+ vk, if p is a polynomial over Hcon, u, v ∈ R, v > 0 in all cases.

Then there exists a (nonreal) complex s such that q(s) = 0 and s generates s0.
Proof. The result follows from Theorem 6.10 for coquaternions in [11], which can be

adapted to the other two algebras Hnec,Hcon.
In the paper [11, p. 146], we have written with respect to the algebra of coquaternions:

“The previous theorem tells us that we can find all zeros of p employing the companion
polynomial provided that the zero has a complex number in its equivalence class. ... but
all others cannot be found." This is now not true anymore. We are able to find all zeros by
employing the companion polynomial, and the gap is closed by Theorem 5.2.

THEOREM 5.2. Let p have a zero s0 where the similarity class [s0] contains an element
of the form (see also (4.5))

s := u+ vj, if p is a polynomial over Hcoq,

s := u+ vi, if p is a polynomial over Hnec or over Hcon, u, v ∈ R, v > 0 in all cases.

Then there exists a pair of real, distinct roots r1, r2 of q which generates s0.
Proof. In all three algebras it is easy to retrieve s from s0 uniquely. And the equations

(r1 + r2)/2 = u, (r1 − r2)/2 = v have the unique solution r1 = u + v, r2 = u − v. For
the further proof we will use the identity for the companion polynomial q taken from [11,
Formula (6.3)], which reads

q(z) = abs2(A) + 2<(BA)z + abs2(B)z2.
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For the coefficients of this real quadratic equation we insert the results from the proof of
Theorem 4.3. Then the standard solutions of q(z) = 0 are z = r1 and z = r2. Thus, the real
pair r1, r2 generates s0.

COROLLARY 5.3. All unilateral polynomials of degree n over Hcoq,Hnec,Hcon have at
most n(2n− 1) zeros, which means that there are at most n(2n− 1) similarity classes which
contain zeros.

Proof. In Theorem 4.5 we have shown that a polynomial may have n(2n− 1) zeros. In
Theorems 5.1, 5.2 we have shown that this number cannot be exceeded.

6. An algorithm to find all zeros of polynomials over A. In order to find all zeros of
a given polynomial p over A, we follow the steps of Algorithm 6.1.

ALGORITHM 6.1. Algorithm for finding all zeros of a polynomial p over A defined
in (2.1) by means of the companion polynomial.

1. Let a0, a1, . . . , an be the coefficients of the polynomial p over A. Assume that an is
invertible.

2. Define an empty list of zeros of p.
3. Compute the real coefficients c0, c1, . . . , c2n of the companion polynomial q by

formula (4.1).
4. Compute all 2n real and complex roots of q by a standard routine.

for all complex roots u+ vi with v > 0 of q do
5. Define the algebra element root = (u, v, 0, 0) if A = Hcoq.
6. Define the algebra element root = (u, 0, v, 0) if A = Hnec.
7. Define the algebra element root = (u, 0, 0, v) if A = Hcon.
8. Compute A,B at root by using formula (3.4).
9. Apply Theorems 3.1, 3.2.

10. If the result is a zero s0, then add s0 to the list of zeros of p. Also note the type of
zero (isolated, hyperbolic, unexpected).
end for
for all real pairs r1, r2 of the roots of q do [do not distinguish between (r1, r2)

and (r2, r1)]
11. Define u = (r1 + r2)/2, v = abs

(
(r1 − r2)/2

)
.

12. Define the algebra element root = (u, 0, v, 0) if A = Hcoq.
13. Define the algebra element root = (u, v, 0, 0) if A = Hnec.
14. Define the algebra element root = (u, v, 0, 0) if A = Hcon.
15. Repeat all steps from 8. to 10.

end for
The result of this algorithm is a list of zeros of p, where the number of entries may vary from
0 to n(2n− 1). The list may contain multiple entries.

REMARK 6.2. In order to produce an executable program from Algorithm 6.1, the
following computational steps must be possible:

1. Adding and multiplying algebra elements
2. Finding the companion polynomial
3. Finding roots of real polynomials
4. Finding A,B
5. Finding inverses of algebra elements
6. Evaluating a polynomial over A at an algebra element in A

All these steps can be easily accomplished if one makes use of the overloading technique
offered by MATLAB.
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7. Examples. We present a few numerical examples.
EXAMPLE 7.1. For the coquaternionic polynomial p of degree 3 defined by the coefficients

a3 = (2, 2,−1, 0), a2 = (−1, 0,−5,−1), a1 = (−4,−5, 1, 1), a0 = (2,−2, 2, 3),

we have presented 8 zeros in [11, Table 10.1]. In this case the companion polynomial q of
degree six is defined by the coefficients b6 = 7,−14,−59, 24, 61,−6, b0 = −5, and it has
exactly 6 pairwise distinct real zeros. With this paper we know that there must be 15 zeros of p.
In Table 7.1 we present the missing 7 zeros. The other examples [11, Examples 10.2–10.4]
have the correct number of zeros.

TABLE 7.1
The seven missing zeros of Example 10.1 in [11].

1.410018698387151, 40.927688450784920, −26.484628029183256, −31.296139541593462
2.078329585493254, 35.227789879357942, −23.037052468108019, −26.708143691872522
1.780207170581877, −3.512185413662750, 3.899454035433289, 1.136051036343325

−0.820915616403146, −0.132277571822474, 0.994132668916126, −0.607528109039788
−1.119038031314515, −0.708374333154589, 0.481092542977948, −1.004459188532533
−0.331689112894335, 70.975467125897083, −43.119928985136582, −56.379387168520203
−0.629811527805284, 0.558924803050916, −0.631505659586322, −0.225026759123903

If we measure the error of the zeros z of Table 7.1 by

e :=
||p(z)||
||z||

,

where || · || is the Euclidean norm in R4, then in all cases e ≤ 10−10.
EXAMPLE 7.2. We consider a slightly altered polynomial in the coquaternions Hcoq,

namely π(z) = p(z)(z − 1), where p is the polynomial defined in Example 7.1. We expect
the same zeros of p as before with the additional zero z = 1. However, the companion
polynomial q has degree 8 and could define maximally 28 zeros. The coefficients of q are
b8 = 7,−28,−24, 128,−46,−104, 68, 4, b0 = −5. The computed roots rj ,1 ≤ j ≤ 8, of q
are all real and the double root 1 is listed as r5 and r6. For the cases (r5, rj), (r6, rj), j > 6,
we found A+B = 0, A 6= 0, B 6= 0, B not invertible, and <(B) 6= 0 such that Lemma 3.3
applies and indicates that these pairs do not define a zero of p. The pair (5, 6) defines the
zero 1, and all other pairs define the zeros known from Example 7.1. Altogether there are 16
zeros as expected.

EXAMPLE 7.3. The above polynomial p in algebra Hnec defines a companion polyno-
mial q with two real roots and two pairs of complex conjugate roots. Thus, p has three zeros.
The polynomial π(z) = p(z)(z − 1) in Hnec, where p is defined in Example 7.1 and is of
degree 4, has 4 zeros.

EXAMPLE 7.4. The same polynomial p in Hcon defines a companion polynomial q with
4 real roots and one pair of complex conjugate roots. Thus, p has 7 zeros. The polynomial
π(z) = p(z)(z − 1), again in Hcon, where p is defined in Example 7.1 and is of degree 4, has
8 zeros.

We will end this section with a rare species of a polynomial p, namely one which has
degree n = 4 where the corresponding companion polynomial q has only real roots.

EXAMPLE 7.5. Let A = Hcoq and

p(z) = (1, 1,−2, 0)z4 + (4, 2, 0, 3)z3 + (−4, 0, 2, 4)z2 + (−4,−2,−4, 0)z + (3, 2, 1,−3).
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The polynomial is not monic, but the highest coefficient is invertible in Hcoq, and one could
divide all coefficients by the highest coefficient. However, this does not effect the zeros of p.
The companion polynomial is

q(x) = −2x8 + 12x7 + 11x6 − 84x5 − 30x4 + 98x3 − 24x+ 3,

and the 8 roots of q (by roots of MATLAB) are

r1 = −2.111197229212920, r5 =0.584463189626376,
r2 = −1.264898455994286, r6 =0.767284309708206,
r3 = −0.580911934832195, r7 =2.860897723805642,
r4 = 0.134343403046716, r8 =5.610018993852465.

Applying Theorem 4.3 we obtain 28 possible similarity classes defined by

uj,k = 0.5(rk + rj) + 0.5(rk − rj)j or 0.5(rk + rj) + 0.5(rk − rj)k,
j = 1, 2, . . . 8, k = j + 1, j + 2, . . . , 8,

which may contain zeros. Checking these similarity classes by Theorem 3.1, we find that
the formally linear polynomial form p(z) = A + Bz has in all cases the property that B is
invertible which means that all 28 pairs (rj , rk), j < k, define a zero of p and that all these
zeros belong to a similarity class of the form [a+

√
−b j], b < 0. The zero of p corresponding

to the pair (r1, r2) is

x1 = (−1.688047842603601,−0.168989609556503, 0.405751318682548, 0.207313190398666),

and the zero corresponding to the pair (r7, r8) is

x28 = (4.235458358828954,−7.292058894146280, 6.971671162937881, 2.541523372096755).

This example shows that the maximal number of zeros, n(2n− 1) = 28, is attained.
For n > 4 we were not able to find coquaternionic polynomials of degree n where the

corresponding companion polynomial q of degree 2n had 2n real roots. This implies the
following problem: Given n > 4, can we find a coquaternionic polynomial of degree n with
the maximal number of

(
2n
2

)
zeros?

If one is interested in polynomials over commutative algebras, then one should consult [11,
22].

8. A relation to an algorithm by Serôdio, Pereira, and Vitória. The algorithm pub-
lished in [24] is tailored to the quaternionic case. It is based on the companion matrix of a
monic polynomial over H,

(8.1) p(z) := zn + an−1z
n−1 + · · ·+ a0, z, aj ∈ H, j = 0, 1, . . . , n− 1, a0 6= 0

and the quaternionic companion matrix is

C :=


0 0 . . . 0 −a0
1 0 . . . 0 −a1

. . . . . .

0 0
. . . 0 −an−2

0 0 . . . 1 −an−1

 .
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Now, the 2n real or complex eigenvalues of C are determined by transferring C to a real
2n× 2n matrix. These eigenvalues are used to apply Niven’s algorithm resulting in the zeros
of p. For details, see [24].

The results of our observations are put into the following conjecture.
CONJECTURE 8.1. Let p be the polynomial defined in (8.1) over H or over A. Then

the 2n real or complex eigenvalues of C coincide with the 2n real or complex roots of the
corresponding companion polynomial of p.

This conjecture is based on many numerical experiments, and for degree n ≤ 3 we can
prove it. This means that the algorithm [24] can also be extended to algebras in A, and the
algorithms [11, 14] and [24] produce the same zeros, provided that Conjecture 8.1 is true.

This connection between the companion matrix and the companion polynomial also
justifies the name companion polynomial.

9. Epilogue. The algebra elements considered here have an isomorphic image in 2× 2
matrices. Details are given in [11] including the form of the matrices. This means that the
whole paper could have been based on matrix equations. The details would be different, but
the main results would be the same. As authors we had to make a decision and our decision
favored algebra elements.

In [11] one also finds that the three algebras A are isomorphic. Here one also has to make
a decision. If a certain problem has to be solved in two distinct, but isomorphic algebras, say
A1 and A2, then one can apply the isomorphism rules to reduce the problem in Algebra A2

to algebra A1 and solve it there. The solution then has to be be retransformed to algebra A2.
Another technique, which we prefer, is the adaption of the algebraic rules to the corresponding
algebras. In our computer program we could adapt the algebraic rules to the rules for one
specific algebra by just setting one integer variable to the corresponding algebra number.
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