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THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS∗
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Abstract. In the present paper, we first introduce a block variant of the Hessenberg process and discuss its
properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple
right-hand sides. More precisely, we define the block CMRH method for solving linear systems that share the same
coefficient matrix. We also show how to apply this process for solving discrete Sylvester matrix equations. Finally,
numerical comparisons are provided in order to compare the proposed new algorithms with other existing methods.
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1. Introduction. In this work, we are first interested in solving s systems of linear
equations with the same coefficient matrix and different right-hand sides of the form

(1.1) Ax(i) = y(i), 1 ≤ i ≤ s,

where A is a large and sparse n× n real matrix, y(i) is a real column vector of length n, and
s � n. Such linear systems arise in numerous applications in computational science and
engineering such as wave propagation phenomena, quantum chromodynamics, and dynamics
of structures [5, 9, 36, 39]. When n is small, it is well known that the solution of (1.1) can be
computed by a direct method such as LU or Cholesky factorization. Note that the factorization
needs to be carried out only once and the resulting upper and lower triangular systems are
solved at low cost.

Let Y = [y(1), . . . , y(s)] ∈ Rn×s, X = [x(1), . . . , x(s)] ∈ Rn×s, and assume that all s
vectors y(i) are available simultaneously. Then the above systems can be written as

(1.2) AX = Y.

In the last two decades, block Krylov subspace methods for block linear systems of the form
(1.2) have been developed. These iterative methods are suitable when n is large and when
the matrix A is not explicitly available. For symmetric and positive definite matrices A,
O’Leary presented in [31] a block conjugate gradient (BCG) method. Other variants of the
BCG algorithm and generalizations to nonsymmetric matrices were presented in [30, 31].
Generalizations of classical and robust Krylov methods for solving a linear system such as
GMRES, QMR, and BiCG-Stab to the block case are respectively considered in [28, 38, 40, 16],
[19], and [18]. Parallel implementations of block Krylov solvers are discussed in [3, 6, 7, 10]
and in the references therein.

We also consider, in this paper, the solution of the low-rank Sylvester matrix equation

(1.3) AX B −X = C FT ,

where X ∈ Rn×p, A ∈ Rn×n, B ∈ Rp×p, C ∈ Rn×r, and F ∈ Rp×r with r � min{n, p}.
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Matrix Sylvester equations have numerous applications in filtering and image restora-
tion [8]. They are also encountered in control and communication theory, model reduction
problems, feedback stabilization, and pole-placement problems [4, 13, 12]. In order to ensure
the existence of a unique solution, we assume that the matrices A and B of every Sylvester
matrix equation satisfy µi(A)µj(B) 6= 1 for all i = 1, . . . , n, j = 1, . . . , s, where µk(Z) is
the kth eigenvalue of the matrix Z.

2. The block Hessenberg process. If computations are carried out in exact arithmetic,
then similar to the classical Hessenberg process with pivoting strategy [41], the block Hessen-
berg process generates a lower trapezoidal basis Vm = [V1, . . . , Vm] ∈ Rn×ms of the block
Krylov subspace,

Km(A,R) = {X ∈ Cn×s |X =

m−1∑
i=0

AiRΩi; Ωi ∈ Rs×s for i = 0, . . . ,m− 1} ⊂ Cn×s,

where R is a given n× s column block vector.
The first block vector V1 is obtained by performing an LU decomposition with partial

pivoting of the given block vector R. This means if P1R = L1 Γ is the PLU decomposition of
R, where P1 ∈ Rn×n is a permutation matrix, L1 ∈ Rn×s is a unit lower trapezoidal matrix,
and Γ ∈ Rs×s is an upper triangular matrix, then

V1 = PT
1 L1 = RΓ−1.

We note that Γ and V1 can be computed using the lu Matlab function [V1,Γ] = lu(R).
Let ij (j = 1, . . . , s) be the index of the row of V1 corresponding to the j-th row of

L1, and let ei = [0, . . . , 0, 1, 0 . . . , 0]T be the i-th vector of the canonical basis of Rn. Then
we define p1 = (i1, . . . , is) and the n × s matrix Ẽ1 = [ei1 , . . . , eis ]T , which correspond
to the s first columns of P1. The vector p1 can be obtained using the max Matlab function
[∼, p1] = max(V1).

Now, suppose that block vectors V1, . . . , Vk have been computed and the permutation
vectors p2, . . . , pk updated. Then we can generate the block vectors U (k)

k+1 via

U
(0)
k+1 = AVk, and U

(i)
k+1 = AVk −

i∑
j=1

Vj Hj,k, for i = 1, . . . , k,

where the square matrices Hj,k ∈ Rs×s, j = 1, . . . , k, are such that

(2.1) U
(i)
k+1 ⊥ Ẽ1, . . . , Ẽi, for i = 1, . . . , k.

Thanks to the previous orthogonality condition, we have

Hj,k = (Vj(pj , :))
−1
U

(j)
k+1(pj , :), for j = 1, . . . , k.

Again, letting Pk+1 U
(k)
k+1 = Lk+1Hk+1,k be the PLU decomposition of U (k)

k+1, we obtain

Vk+1 = PT
k+1 Lk+1 = U

(k)
k+1H

−1
k+1,k,

and using the lu Matlab function, the (k + 1)-st block vector Vk+1 and the upper square
triangular matrix Hk+1,k are given by

[Vk+1, Hk+1,k] = lu(U
(k)
k+1).
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We end the derivation of the block Hessenberg process by letting ij be the index
row of Vk+1 which corresponds to the j-th row of Lk+1 (j = ks + 1, . . . , (k + 1)s),
pk+1 = (iks+1 . . . , i(k+1)s), and define Ẽk+1 = [eiks+1

, . . . , ei(k+1)s
].

We also observe that the max Matlab function allows us to update pk+1 by

[∼, pk+1] = max(Vk+1).

Finally, a complete statement of the resulting block Hessenberg algorithm reads as follows.

ALGORITHM 1: The block Hessenberg algorithm (with partial pivoting)
• Inputs: A an n× n matrix, R an n× s matrix and m an integer.
• Step 0. [V1, Γ] = lu(R); [∼, p1] = max(V1);
• Step 1. For k = 1, . . . ,m

U
(0)
k+1 = AVk;

for j = 1, . . . , k

Hj,k = (Vpj
(pj , :))

−1 U
(j−1)
k+1 (pj , :);

U
(j)
k+1 = U

(j−1)
k+1 − Vj Hj,k;

end(for)
[Vk+1, Hk+1,k] = lu(U

(k)
k+1); [∼, pk+1] = max(Vk+1);

end(For).

In exact arithmetic and after m steps, the above block Hessenberg procedure leads to the
following relation, for k = 1, . . . ,m,

A [V1, . . . , Vk]︸ ︷︷ ︸
=Vk

= [V1, . . . , Vk, Vk+1]︸ ︷︷ ︸
=Vk+1=[Vk, Vk+1]


H1,1 H1,2 . . . H1,k

H2,1 H2,2 . . . H2,k

0s H3,2 . . .
...

...
. . . . . .

...
0s . . . 0s Hk+1,k

 .

For k = m, the above relation can be rewritten as

AVm = Vm+1 H̃m(2.2)
= Vm Hm + Vm+1Hm+1,mET

m,(2.3)

where H̃m, Hm are respectively the (m + 1)s × ms and ms × ms block upper Hessen-
berg matrices whose non-zero block entries are the Hj,k generated by Algorithm 1 and
Em = [0s, . . . , 0s, Is]

T is the ms× s rectangular matrix whose m-th block element is Is, the
identity matrix of size s.

Letting Pm = (Ẽ1, . . . , Ẽm) ∈ Rn×ms, which is a permutation matrix, and using (2.1)
we also have

(2.4) PT
m Vm = Lm, ( with Lm ∈ Rms×ms),

where Lm is a unit lower triangular matrix. Now introducing VL
m := L−1m PT

m ∈ Rms×n,
we see that VL

m is a left inverse of Vm since, according to (2.4), we have VL
mVm = Ims.

Pre-multiplying (2.2) and (2.3), respectively, by VL
m+1 and VL

m, we get

(2.5) VL
m+1AVm = H̃m and VL

mAVm = Hm.
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3. The block Hessenberg and CMRH methods. To solve a single linear system, the
author in [34] proposed the CMRH method. The CMRH method can be interpreted as a
GMRES-like method but based on the Hessenberg reduction process with pivoting strategy
instead of the Arnoldi process [34, 35, 21, 33, 32]. A variant for dense linear systems and a
parallel implementation of the CMRH method are described in [14, 15, 24]. The analysis of
the performance of the CMRH algorithm combined with the boundary element method when
applied to acoustic problems is considered in [1]. In this section, we investigate the block
CMRH method for solving multiple linear systems. This new block method uses the block
Hessenberg process described in the last section.

Block Krylov subspace methods for solving (1.2) are iterative methods that generate
approximate solutions Xk ∈ Rn×s such that

Xk −X0 ∈ Kk(A,R0),

where R0 := Y −AX0 is the residual bock vector associated to an initial guess X0.
Let Vk = [V1, . . . , Vk] be the permuted trapezoidal matrix and H̃k be the upper block

Hessenberg matrix produced after k iterations of the block Hessenberg process applied to the
pair (A,R0). Then using (3), we can write

Xk = X0 + VkDk, where Dk ∈ Rks×s.

Since R0 = V1 Γ, we can use (2.3) and the first relation in (2.5) to get an expression for the
residual Rk associated to Xk,

Rk = R0 −AVkDk = V1 Γ− Vk+1 H̃kDk = Vk+1

(
E1 Γ− H̃kDk

)
,

where E1 ∈ R(k+1)s×s corresponds to the first s columns of the identity matrix I(k+1) s. Now,
using the last equality and requiring the minimal norm residual condition

(3.1) Xk = arg min
X∈X0+Kk(A,R0)

‖Y −AX‖F ,

we see that Dm is the solution of the full n× (k + 1)s least-squares problem

(3.2) min
D∈Rks×s

‖Vk+1(E1 Γ− H̃kD)‖.

Solving this problem requires computing the QR decomposition of Vk+1 Hk, which would
require O(n(ks)2) work and O(nks) storage. We would then obtain a method that is math-
ematically equivalent to block GMRES but useless in practice. So instead of solving (3.2),
we solve a smaller problem, namely minimizing just the norm of the coefficient block vector
in (3.2). Hence, we obtain Dk from the minimization problem

min
D∈Rks×s

‖E1 Γ− H̃kD‖.

If the matrix H̃k is of full rank, then H̃+
k = (H̃T

k H̃k)
−1

H̃T
k , the pseudo-inverse of H̃k, is well

defined, and so Dk = H̃+
k E1 Γ. Finally the k-th iterate of the block CMRH method is given

by

Xk = X0 + Vk H̃+
k E1 Γ.

It is clear that when k increases, the number of block vectors that must be stored increases
with k, so the computational and storage requirements grow with each iteration. To remedy

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

464 M. ADDAM, M. HEYOUNI, AND H. SADOK

this difficulty, we can use the algorithm iteratively, i.e., we can restart the algorithm every m
steps, where m is some fixed integer parameter. This restarted version of block CMRH is
denoted by BCMRH(m) and is described below.

ALGORITHM 2: BCMRH(m), the restarted block CMRH method
• Inputs: A an n× n matrix, Y an n× s block vector, m an integer.

X0 an initial guess, ε a desired tolerance.
• Step 0. Compute R0 = Y −AX0;
• Step 1. Apply Algorithm 1 to the pair (A,R0) to get Γ, Vm and H̃m;
• Step 2. Determine Dm as the solution of min

D∈Rms×s
‖E1 Γ− H̃mD‖;

• Step 3. Compute the approximate solution Xm = X0 + VmDm;
Compute Rm = Y −AXm;

• Step 4. If ‖Rm‖ ≤ ε Stop; else X0 = Xm, R0 = Rm; goto Step 1.

Before ending this section, we observe that instead of imposing the minimal norm
condition (3.1), we can use the following orthogonality condition

R̃k ⊥ Ẽ1, . . . , Ẽk,

which defines the block Hessenberg method. In this case (just as in the case of the block FOM
method [32, 40]) the block vector Dk is given as the solution of the ks × ks block linear
system

HkDk = E1 Γ,

where E1 ∈ Rks×s corresponds to the first s columns of the identity matrix Iks, meaning that
the k-th approximate solution of the block Hessenberg method is

Xk = X0 + Vk H−1k E1 Γ.

Finally, we observe that we get the algorithm of the block Hessenberg method by replacing
the instruction given in step 2 of Algorithm 2 by the following one:

• Step 2. Determine Dm as the solution of HmD = E1 Γ;

4. The low-rank Sylvester block Hessenberg method. In this section, we are con-
cerned with the solution of the low-rank Sylvester matrix equation (1.3). We show how to
apply the block Hessenberg process in order to obtain low-rank approximate solutions to (1.3).

Let Vm = (V1, . . . , Vm), Wm = (W1, . . . ,Wm) be the permuted trapezoidal matrices
generated by applying simultaneously m steps of Algorithm 1 applied to the pairs (A,C) and
(BT , F ), respectively. We recall that these matrices satisfy the following relations

AVm = Vm+1 H̃A
m = Vm HA

m + Vm+1H
A
m+1,mET

m(4.1)

and

BT Wm = Wm+1 H̃B
m = Wm HB

m +Wm+1H
B
m+1,mET

m,(4.2)

where HA
m = VL

mAVm, HB
m = WL

mBT Wm and Em ∈ Rmr×r is the m-th block of the
identity matrix Imr. We observe furthermore that there exists ΓA, ΓB ∈ Rr×r such that V1 and
W1, the first blocks of Vm and Wm, are given by the LU decomposition of C and F , i.e.,

C = V1 ΓA, and F = W1 ΓB.
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We also have

VL
m C = E1 ΓA and WL

m F = E1 ΓB,

where E1 is the mr× r matrix corresponding to the first r columns of the identity matrix Imr.
Following the ideas developed in [25, 26], we seek approximate solutions to (1.3) that

have the form

(4.3) Xm = Vm Ym WT
m

and satisfy the Galerkin-type condition

(4.4) VL
mRm (WL

m)T = 0,

whereRm = AXmB −Xm − C FT is the residual associated with Xm.
By multiplyingRm on the left by VL

m, on the right by (WL
m)T , and using Xm given by

(4.3), the Galerkin condition (4.4) can be rewritten as

0 = VL
m

[
AVm Ym WT

mB − Vm Ym WT
m − C FT

]
(WL

m)T

= (VL
mAVm)Ym (WT

mBWL
m)− Ym − (VL

m C) (WL
m F )T

= HA
m Ym (HB

m)T − Ym − (E1 ΓA) (E1 ΓB)T .(4.5)

If µi(HA
m) ·µj(HB

m) 6= 1, for all i, j = 1, . . . ,mr, then the unique solution of the reduced
discrete Sylvester equation (4.5) can be obtained using direct methods [2, 20]. We observe that
the computation of the approximate solution Xm requires matrix products of the three matrices
Vm, Ym, WT

m, and this becomes very expensive when m increases. Moreover, in order to
monitor convergence of Xm, we need to compute the residual Rm, which requires matrix
products with the large matrices A and B. Hence, to avoid the computations of expensive
matrix products, we derive an upper bound for the residual norm ‖Rm‖F , which allows us to
stop the iterations in the low-rank Sylvester extended block Hessenberg algorithm.

PROPOSITION 4.1. Let Ym be the exact solution of (4.5) and Xm = Vm Ym WT
m the

approximate solution to the discrete Sylvester equation (1.3) obtained after m iterations of the
block Hessenberg process applied to the pairs (A,C) and (BT , F ). Then, the residualRm

associated with Xm satisfies

(4.6) ‖Rm‖F ≤
√
n p (m+ 1)r

√
(α2 + β2 + γ2),

α = ‖HA
m YmEm (HB

m+1,m)
T ‖F , β = ‖T A

m+1,mET
m Ym HB

m‖F , and

γ = ‖HA
m+1,mET

m YmEm (HB
m+1,m)

T ‖F .

Proof. Since Vm+1, WT
m+1 can be respectively partitioned as Vm+1 = [Vm, Vm+1] and

WT
m+1 = [WT

m,W
T
m+1], using (4.1) and (4.2), we can show that Rm = Vm+1 ΩWT

m+1,
where

Ω =

[
Omr HA

m YmEm (HB
m+1,m)

T

HA
m+1,mET

m Ym HB
m HA

m+1,mET
m YmEm (HB

m+1,m)
T

]
.

Therefore, ‖Rm‖F ≤ ‖Vm+1‖F ‖Ω‖F ‖Wm+1‖F . Observe that

‖Ω‖2F = ‖HA
m YmEm (HB

m+1,m)
T ‖2F + ‖HA

m+1,mET
m Ym HB

m‖2F
+ ‖HA

m+1,mET
m YmEm (HB

m+1,m)
T ‖2F .
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Recall that Vm+1 ∈ Rn×(m+1)r, Wm+1 ∈ Rp×(m+1)r are obtained by applying permutation
matrices and that these matrices are lower trapezoidal with entries Vi,j , Wi,j , respectively,
such that Vi,j , Wi,j ≤ 1. From this, we deduce that

‖Vm+1‖F ≤
√
n ‖Vm+1‖1 ≤

√
n
√

(m+ 1)r,

‖Wm+1‖F ≤
√
p ‖Wm+1‖1 ≤

√
p
√

(m+ 1)r,

and this yields (4.6).
To reduce the computational cost, we observe that as ET

m = (Or×(m−1)r, Ir), the quanti-
ties α, β, and γ introduced in the previous theorem are be given by

α = ‖HA
m (Ym):,mr

(HB
m+1,m)

T ‖F ,
β = ‖HA

m+1,m (Ym)mr,: HB
m‖F ,

γ = ‖HA
m+1,mET

m (Ym)mr,mr (HB
m+1,m)

T ‖F ,

 where mr = (m− 1)r + 1 : mr.

Our experiments suggest that the upper bound (4.6) is a pessimistic one and that is more
appropriate to use the following estimate which we derived heuristically,

(4.7) ‖Rm‖F ≤
√

max(n, p)m
√

(α2 + β2 + γ2) =: rhm.

Finally, it is possible to getXm as a product of two low-rank matrices. We proceed as suggested
in [37, 23] by computing the singular value decomposition of Ym, i.e., Ym = Ṽ Σ W̃T , where
Σ = diag[σ1, σ2, . . . , σmr] is the diagonal matrix of the singular values of Ym sorted in
decreasing order.

Now, let Ṽl and W̃l be themr×l matrices of the first l columns of Ṽ and W̃ corresponding
respectively to the l singular values of magnitude greater than some tolerance τ . More precisely,
let l be the such that σl+1 ≤ τ < σl, then Ym ≈ Ṽl Σl W̃

T
l , where Σl = diag[σ1, . . . , σl].

Finally, setting ZA
m = Vm Ṽl Σl

1/2 and ZB
m = Wm W̃l Σl

1/2, it follows that

Xm ≈ ZA
mZB

m
T .

The algorithm of the Low-Rank Sylvester block Hessenberg method is summarized below.

ALGORITHM 4: The Low-Rank Sylvester Block Hessenberg method" (LRS-BH)
• Inputs: A an n× n matrix, B a p× p matrix, C an n× r matrix,

and F a p× r matrix.
• Step 0. Choose a tolerance ε > 0, mmax a maximum number of iterations,

k a step-size, and τ the tolerance for the truncated SVD.
• Step 1. For m = 1, 2, . . . , mmax

• Step 1.1 Update Vm and Wm and H̃A
m and H̃B

m by applying the mth step
of Algorithm 2 to the pairs (A,C) and (BT , F ) respectively.

• Step 1.2 If m is a multiple of k
Solve (4.5) and compute rhm given by (4.7);

• Step 1.3 If rhm < ε,
go to Step 2,

end(If).
end(If).

end(For).
• Step 2. Compute the SVD of Ym, i.e., Ym = Ṽ Σ W̃T ,

where Σ = diag[σ1, . . . , σmr] and σ1 ≥ . . . ≥ σmr;
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Find l such that σl+1 ≤ τ < σl and let Σl = diag[σ1, . . . , σl];
Form ZA

m = Vm Ṽl Σ
1/2
l and ZB

m = Wm W̃l Σ
1/2
l ;

• Step 3. The approximate solution Xm is given by Xm ≈ ZA
mZB

m
T .

5. Numerical experiments. We present the following numerical experiments to illus-
trate the behavior and performance of the proposed methods. The different algorithms have
been implemented in Matlab 7.9 and have been executed on a computer with an Intel Pentium-4
3.4GHz processor and 2028MBytes of RAM. The machine precision was 2.22 10−16.

Example 1. In this example, we provide some experimental results of using the restarted
block CMRH(m) method applied to (1.2) and compare its performance to that of restarted
block GMRES(m). In all examples, the starting guess was taken to be X0 = 0, and a
maximum number of 301 restarts was allowed for each algorithm. In all experiments, the
right-hand sides of the different systems are such that Y = AX∗, where X∗ is generated
randomly with coefficients uniformly distributed in [0, 1]. This choice enables us to compare
the error norm given by e = ‖X∗ − Xm‖F . In all examples in this set of experiments,
we took ε = 10−10, and the tests were stopped as soon as the residual norm Rm satisfies
‖Rm‖ = ‖Y −AXm‖2 ≤ ε‖Y ‖2.

Before describing the examples used to to show the efficiency of the proposed methods,
we list below some properties of the matrices that are used in Examples 1.1, 1.3, and 2.2.
These matrices come from the Matrix Market web collection which is a visual repository of
test data for use in comparative studies of algorithms for numerical linear algebra [29]. All
these matrices are real and nonsymmetric.

• rdb 3200l. This matrix comes from a computational fluid dynamics problem. It
is of size n = 3200 with a symmetric non-zero pattern and nnz = 18880 nonzero
entries. The average nonzeros per row and column is 5.9. The estimation of the
condition number is 2.71 103.

• add32. This matrix comes from a circuit simulation problem. It is real of size
n = 4960 with a symmetric non-zero pattern and nnz = 19848 nonzero entries. The
average nonzeros per row and column is 4. The estimation of the condition number
is 2.14 102.

• appu. This matrix is a random sparse matrix used in a set of benchmark examples
from the NASA AMES research center. It comes from a directed weighted random
graph and is of size n = 14000 with a symmetric non-zero pattern and nnz =
1853104 nonzero entries. The estimation of the condition number is 1.71 102.
• memplus. This matrix comes from a memory circuit problem. It is of size
n = 17758 with a symmetric non-zero pattern and nnz = 126150 nonzero entries.
The average nonzeros per row and column is 5.6. The estimation of the condition
number is 1.29 105.

• psmigr_3. This matrix comes from a memory circuit problem. It is of size
n = 3140 and has nnz = 543160 nonzero entries. The average nonzeros per row
and column is 1.7 102. The estimation of the condition number is 1.00 102.

• pde2961. This matrix comes from an economic problem. It is of size n = 2961
with a symmetric non-zero pattern and nnz = 14585 nonzero entries. The average
nonzeros per row and column is 4.9. The estimation of the condition number is
9.49 102.

Example 1.1. In this first set of experiments, we report the results obtained with four ma-
trices: rdb3200l, add32, appu, and memplus. The results are summarized in Table 5.1.
For the matrix memplus, we also compared the behavior of the preconditioned block CMRH
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(BC) and block GMRES (BG) algorithms. The obtained results with an ILUO preconditioner
[32] are listed in Table 5.2.

TABLE 5.1
Example 1.1. Results obtained with the Matrix-Market matrices rdb3200l, add32, appu, and memplus.

A m, s # restarts err. norm res. norm CPU time
m = 10 BC 301 4.24 10−6 1.37, 10−8 29.93

s = 5 BG 137 3.71 10−7 9.37, 10−8 20.35

m = 10 BC 301 2.57 10−5 7.5, 10−6 48.29

A=rdb3200l s = 10 BG 145 5.06 10−7 1.15, 10−7 51.76

n = 3200 m = 20 BC 59 2.92 10−7 7.77 10−8 4.28

nnz = 18880 s = 5 BG 67 3.96 10−7 8.72 10−8 6.26

m = 20 BC 50 3.25 10−7 8.04 10−8 12.67

s = 10 BG 47 6.32 10−7 1.05 10−7 19.20

m = 10 BC 15 1.24 10−8 1.48 10−11 0.31

s = 2 BG 16 4.28 10−8 2.39 10−11 0.34

m = 10 BC 18 6.13 10−8 6.97 10−11 1.06

A=add32 s = 5 BG 16 5.70 10−8 3.14 10−11 1.07

n = 4960 m = 10 BC 23 6.67 10−8 9.18 10−11 12.84

nnz = 23884 s = 20 BG 16 8.88 10−8 4.91 10−11 14.31

m = 10 BC 25 7.67 10−8 1.33 10−10 35.09

s = 40 BG 16 1.22 10−7 6.89 10−11 45.98

m = 5 BC 38 1.22 10−6 1.53 10−7 11.62

s = 5 BG 45 1.47 10−6 1.70 10−7 15.31

m = 5 BC 48 1.50, 10−6 1.76 10−7 26.46

A=appu s = 10 BG 44 1.97 10−6 2.20 10−7 29.64

n = 14000 m = 10 BC 14 8.26 10−7 9.76 10−8 10.39

nnz = 1853104 s = 5 BG 14 4.40 10−7 6.25 10−8 12.17

m = 10 BC 15 6.90 10−7 1.07 10−7 26.87

s = 10 BG 13 1.57 10−6 2.29 10−7 32.53

m = 20 BC 290 1.38 10−2 3.26 10−7 736.48

s = 5 BG 145 2.02 10−2 3.27 10−7 516.03

m = 20 BC 301 8.19 10−2 3.17 10−6 1680.91

A=memplus s = 10 BG 301 2.47 10−4 2.96 10−9 2758.09

n = 17758 m = 40 BC 118 6.81 10−6 3.24 10−10 1076,89

nnz = 126150 s = 5 BG 87 2.32 10−5 2.97 10−10 1123.91

m = 40 BC 130 5.20 10−6 3.22 10−10 2504.11

s = 10 BG 82 3.31 10−5 4.11 10−10 2515.09

As indicated in the tables of results, and except for a few cases, both methods are able to
obtain approximate solutions that satisfy the stopping criterion. In some instances, we also
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note that even if the block CMRH method needs more restarts than the block GMRES method,
the CPU time is in favor of the block Hessenberg based method. Indeed, the proposed block
Hessenberg process is cheaper than the block Arnoldi process.

TABLE 5.2
Example 1.1. Results obtained for the matrix memplus with ILU0 preconditioning.

A m, s # restarts err. norm res. norm CPU time
m = 20 BC 29 4.44 10−3 2.45 10−7 87.57

s = 5 BG 18 1.88 10−2 3.20 10−7 71.37

A=memplus m = 20 BC 51 4.16 10−6 3.15 10−10 326.22

n = 17758 s = 10 BG 35 1.81 10−5 3.07 10−10 325.58

nnz = 126150 m = 40 BC 14 1.37 10−6 6.22 10−11 132.06

s = 5 BG 11 3.01 10−6 7.72 10−11 147.02

m = 40 BC 14 1.79 10−6 7.80 10−11 287.80

s = 10 BG 10 5.13 10−6 9.97 10−11 316.16

Example 1.2. In this second set of experiments, the matrix A is obtained from the
centered finite difference discretization of the operator

LA(u) = ∆u− (x+ y2)
∂u

∂x
− (y − x2)

∂u

∂y
−
√
x2 + y2 u

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions. The number
of inner grid points in each direction is n0. Therefore, the dimension of the matrixA is n = n20.
The results reported in Table 5.3 are those obtained for n0 = 150 (i.e., n = 22500) and for
different values of m and s.

TABLE 5.3
Example 1.2. Results obtained with matrix A generated by discretizing the operator LA.

m, s # restarts err. norm res. norm CPU time
s = 5 BC 65 1.74 10−5 3.98 10−4 509.16

m = 40 BG 49 1.51 10−5 3.32 10−4 756.16

s = 5 BC 19 1.38 10−5 4.17 10−4 378.06

m = 80 BG 13 1.65 10−5 3.64, 10−4 380.72

s = 10 BC 87 1.77 10−5 4.29 10−4 2539.91

m = 40 BG 49 1.63 10−5 3.51 10−4 2292.31

s = 10 BC 19 7.89 10−6 2.48 10−4 7353.39

m = 80 BG 10 1.61 10−6 9.94, 10−5 6277.01

The results show that the block CMRH method gives better results than block GMRES
when the number of right-hand sides s is small. However, for relatively large values of s, the
block Arnoldi-based method is less time-consuming than the block Hessenberg based method.

Example 1.3. In Table 5.4 we compare the proposed method with matrix Krylov subspace
methods [22, 27], and we report the results of applying the global CMRH(m) (GC) and global
GMRES(m) (GG) to multiple linear systems with the matrices appu and psmigr_3.
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TABLE 5.4
Example 1.3. Results obtained when comparing with matrix Krylov subspace methods.

A m, s # restarts err. norm res. norm CPU time
BC 41 1.18 10−6 1.32 10−7 15.49

A=appu m = 5 BG 45 1.41 10−6 1.63 10−7 21.84

n = 14000 s = 5 GC 40 6.47 10−7 1.18 10−7 21.54

nnz = 1853104 GG 48 9.53 10−7 1.09 10−7 29.91

BC 5 1.02 10−8 2.41 10−9 1.53

A=psmigr_3 m = 10 BG 4 4.84 10−8 3.68, 10−9 1.39

n = 3140 s = 10 GC 14 4.15 10−8 4.94 10−9 3.51

nnz = 543162 GG 15 6.96 10−8 3.19, 10−9 4.17

Example 2. We report experimental results obtained by comparing the performances of
the Low-Rank Sylvester Block Hessenberg (LRSBH) given by Algorithm 4, the Low-Rank
Sylvester Block Arnoldi (LRSBA), and the Low-Rank Sylvester Global Arnoldi (LRSGA)
described in [17, 26]. In all the examples, the starting guess was taken to be X0 = 0, the
maximum size of the constructed Krylov subspaces was 150, and the matrices C and F of the
matrix Sylvester equations were generated randomly with coefficients uniformly distributed in
[0, 1]. All iterations were stopped as soon as the heuristic residual norm rhm, given by (4.7)
for the LRSBH algorithm, or the residual norm rbam (for the LRSBA algorithm) or the upper
bound rgam (for the LRSGA algorithm) were less than ε ‖C FT ‖2 with ε = 10−9.

Example 2.1. We compare the sharpness of the upper bounds (4.6) and (4.7) by plotting
the exact residual norm ‖Rm‖F = ‖ AXmB −Xm − C FT ‖F .

The four plots correspond to the results obtained when solving the discrete Sylvester
equation (1.3) with matricesA andB obtained from the centered finite difference discretization
of the operators

LA(u) = ∆u− x
√

1 + y2
∂u

∂x
− (1 + y2)

∂u

∂y
− (1 + x y)u,

LB(u) = ∆u− (y − x)
∂u

∂x
−
√

(x2 + y2)
∂u

∂y
− (x2 − y2)u,

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions. The number
of inner grid points in each direction was n0 for the operator LA and p0 for the operator
LB . Hence, the dimension of the matrices A and B are n = n20 and p = p20. The size of the
matrices and the rank of the matrices C, F is indicated in the title of each plot.

As seen from Figure 5.1 and as indicated in the previous section, the theoretical upper
bound (4.6) is pessimistic, and the heuristic upper bound (4.7) seems to be more accurate than
the first one.

Example 2.2. In this experiment, we report in Table 5.5 the results obtained for different
pairs of matrices (Ã, B̃) coming from the Matrix Market repository [29], and we compare
the performance of the LRSBH, LRSBA, and LRSGA methods. To ensure existence and
uniqueness of the tested discrete Sylvester equations, we take

A =
Ã

‖Ã‖1
and B =

B̃

‖B̃‖1
.

We also note that for these numerical tests, the low-order Sylvester equations are solved every
k iterations, and we took τ = 10−12 in Step 2 of Algorithm 4.
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FIG. 5.1. Comparison of the upper bounds (4.6) and (4.7) with the true residual norm.
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Ã = psmigr_3, n = 3140 LRSBH 8 1.29 10−5 1.69
B̃ = −add32, p = 14000 LRSBA 8 2.68 10−6 2.45

r = 10, k = 2 LRSGA 10 7.29 10−7 2.66

[6] J. BOLZ, I. FARMER, E. GRINSPUN, AND P. SCHRÖDER, Sparse matrix solvers on the GPU: conjugate
gradients and multigrid, ACM Trans. Graphics, 22 (2003), pp. 917–924.

[7] H. CALANDRA, S. GRATTON, J. LANGOU, X. PINEL, AND X. VASSEUR, Flexible variants of block restarted
GMRES methods with application to geophysics, SIAM J. Sci. Comput., 34 (2012), pp. A714–A736.

[8] D. CALVETTI AND L. REICHEL, Application of ADI iterative methods to the restoration of noisy images,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 165–186.

[9] R.W. CLOUGH AND J. PENZIEN, Dynamics of Structures, McGraw-Hill, 1975.
[10] R. D. DA CUNHA AND D. BECKER, Dynamic block GMRES: an iterative method for block linear systems,

Adv. Comput. Math., 27 (2007), pp. 423–448.
[11] H. DAI, Two algorithms for symmetric linear systems with multiple right-hand sides, Numer. Math. J. Chin.

Univ. (English Ser.), 9 (2000), pp. 91–110.
[12] B. N. DATTA, Numerical Methods for Linear Control Systems. Design and Analysis, Elsevier, San Diego,

2004.
[13] B. N. DATTA AND K. DATTA, Theoretical and computational aspects of some linear algebra problems in

control theory, in Computational and Combinatorial Methods in Systems Theory (Stockholm, 1985),
C. I. Byrnes and A. Lindquist, eds, North-Holland, Amsterdam, 1986, pp. 201–212.

[14] S. DUMINIL, A parallel implementation of the CMRH method for dense linear systems, Numer. Algorithms,
63 (2013), pp. 127–142.

[15] S. DUMINIL, M. HEYOUNI, P. MARION, AND H. SADOK, Algorithms for the CMRH method for dense linear
systems, Numer. Algorithms, 71 (2016), pp. 383–394.

[16] L. ELBOUYAHYAOUI, A. MESSAOUDI, AND H. SADOK, Algebraic properties of the block GMRES and block
Arnoldi methods, Electron. Trans. Numer. Anal., 33 (2008/09), pp. 207–220.
http://etna.ricam.oeaw.ac.at/vol.33.2008-2009/pp207-220.dir/
pp207-220.pdf

[17] A. EL GUENNOUNI, K. JBILOU, AND A. J. RIQUET, Block Krylov subspace methods for solving large
Sylvester equations, Numer. Algorithms, 29 (2002), pp. 75–96.

[18] A. EL GUENNOUNI, K. JBILOU, AND H. SADOK, A block version of BICGSTAB for linear systems with
multiple right-hand sides, Electron. Trans. Numer. Anal., 16 (2003), pp. 129–142.
http://etna.ricam.oeaw.ac.at/vol.16.2003/pp129-142.dir/pp129-142.pdf

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://etna.ricam.oeaw.ac.at/vol.33.2008-2009/pp207-220.dir/pp207-220.pdf
http://etna.ricam.oeaw.ac.at/vol.33.2008-2009/pp207-220.dir/pp207-220.pdf
http://etna.ricam.oeaw.ac.at/vol.16.2003/pp129-142.dir/pp129-142.pdf


ETNA
Kent State University and

Johann Radon Institute (RICAM)

THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS 473

[19] R. FREUND AND M. MALHOTRA, A Block-QMR algorithm for non-hermitian linear systems with multiple
right-hand sides, Linear Algebra Appl., 254 (1997), pp. 119–157.

[20] G. H. GOLUB, S. NASH, AND C. VAN LOAN, A Hessenberg-Schur method for the problem AX +XB = C,
IEEE Trans. Automat. Control, 24 (1979), pp. 909–913.

[21] M. HEYOUNI. Méthode de Hessenberg Généralisée et Applications, PhD. Thesis, Université des Sciences et
Technologies de Lille, Lille, 1996.

[22] , The global Hessenberg and global CMRH methods for linear systems with multiple right-hand sides,
Numer. Algorithms, 26 (2001), pp. 317–332.

[23] , Extended Arnoldi methods for large low-rank Sylvester matrix equations, Appl. Numer. Math., 60
(2010), pp. 1171–1182.

[24] M. HEYOUNI AND H. SADOK, A new implementation of the CMRH method for solving dense linear systems,
J. Comput. Appl. Math., 213 (2008), pp. 387–399.

[25] I. M. JAIMOUKHA AND E. M. KASENALLY, Krylov subspace methods for solving large Lyapunov equations,
SIAM J. Numer. Anal., 31 (1994), pp. 227–251.

[26] K. JBILOU, Low rank approximate solutions to large Sylvester matrix equations, Appl. Math. Comput., 177
(2006), pp. 365–376.

[27] K. JBILOU, A. MESSAOUDI, AND H. SADOK, Global FOM and GMRES algorithms for matrix equations,
Appl. Numer. Math., 31 (1999), pp. 49–63.

[28] H. L. LIU AND B. J. ZHONG, Simpler block GMRES for nonsymmetric systems with multiple right-hand sides,
Electron. Trans. Numer. Anal., 30 (2008), pp. 1–9.
http://etna.ricam.oeaw.ac.at/vol.30.2008/pp1-9.dir/pp1-9.pdf

[29] MATRIX MARKET WEB COLLECTION, http://math.nist.gov/MatrixMarket/.
[30] A. NIKISHIN AND A. YEREMIN, Variable block CG algorithms for solving large sparse symmetric positive

definite linear systems on parallel computers. I: General Iterative Scheme, SIAM J. Matrix Anal. Appl.,
16 (1995), pp. 1135–1153.

[31] D. P. O’LEARY, The block conjugate gradient algorithm and related methods, Linear Algebra Appl., 29
(1980), pp. 293–322.

[32] Y. SAAD, Iterative Methods for Sparse Linear Systems, PWS Publishing, New York, 1995.
[33] Y. SAAD AND M. H. SCHULTZ, GMRES: a generalized minimal residual algorithm for solving nonsymmetric

linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[34] H. SADOK, CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg reduction

algorithm, Numer. Algorithms, 20 (1999), pp. 303–321.
[35] H. SADOK AND D. B. SZYLD, A new look at CMRH and its relation to GMRES, BIT, 52 (2012), pp. 485–501.
[36] T. SAKURAI, H. TADANO, AND Y. KURAMASHI, Application of block Krylov subspace algorithms to the

Wilson-Dirac equation with multiple right-hand sides in lattice QCD, Comput. Phys. Comm., 181 (2010),
pp. 113–117.

[37] V. SIMONCINI, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci.
Comput., 29 (2007), pp. 1268–1288.

[38] V. SIMONCINI AND E. GALLOPOULOS, Convergence properties of block GMRES and matrix polynomials,
Linear Algebra Appl., 247 (1996), pp. 97–119.

[39] J. VIRIEUX AND S. OPERTO, An overview of full waveform inversion in exploration geophysics, Geophysics,
74 (2009). pp. WCC127–WCC152.

[40] B. VITAL, Etude de quelques méthodes de résolution de problèmes linéaires de grande taille sur multipro-
cesseur, PhD. Thesis, Université de Rennes, Rennes, 1990.

[41] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1988.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://etna.ricam.oeaw.ac.at/vol.30.2008/pp1-9.dir/pp1-9.pdf
http://math.nist.gov/MatrixMarket/

