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Abstract. In this paper we present a new algorithm for solving the symmetric tridiagonal eigenvalue problem
that works by first using a Cayley transformation to convert the symmetric matrix into a unitary one and then uses
Gragg’s implicitly shifted unitary QR algorithm to solve the resulting unitary eigenvalue problem. We prove that
under reasonable assumptions on the symmetric matrix this algorithm is backward stable. It is comparable to other
algorithms in terms of accuracy. Although it is not the fastest algorithm, it is not conspicuously slow either. It is
approximately as fast as the symmetric tridiagonal QR algorithm.
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1. Introduction. In the past few decades a considerable number of fast and stable
algorithms have been developed for the solution of the symmetric matrix eigenvalue problem.
Arguably no other class of matrices has enjoyed such success, with one exception, unitary
matrices. Unitary matrices share many of the same properties as symmetric ones: normality,
localized eigenvalues, and special condensed forms, which allow to represent symmetric and
unitary matrices with two vectors. These similarities often allow one to immediately adapt the
symmetric algorithms to the unitary ones.

In this paper we will work in the other direction, albeit in a roundabout way. Instead of
developing a new algorithm that works directly with the symmetric matrix, we first convert
the symmetric matrix into a unitary one via a Cayley transformation and then solve the unitary
eigenvalue problem using Gragg’s unitary QR algorithm [8].

Moving between symmetric and unitary matrices using Cayley transformations is not
a new idea. Perhaps the first instance involving the spectrum of an operator appeared in
1930 when von Neumann used a Cayley transformation to prove the spectral theorem for
unbounded self-adjoint operators [11]. In 1968 Franklin used Cayley transformations to count
the eigenvalues of a general matrix that lie in a half-plane [6]. More recently, Gemignani
applied a Cayley transformation to turn a unitary eigenvalue problem into a symmetric one,
which is ultimately where our inspiration comes from [7].
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The curious reader might be thinking Why would one do this? Ultimately we did it
because we could. First, a fast and stable version of Gragg’s algorithm is now freely available
as part of the Fortran 90 library eiscor [2, 3]. Previously such an implementation was not
available, and now that it is, it seems only fitting to put it to good use. Second, we will show in
this paper that transforming between symmetric and unitary problems can be done stably and
efficiently, which leads to a new stable algorithm for solving symmetric tridiagonal eigenvalue
problems. It is about as accurate as other well-known algorithms, and it is faster than one
might expect. Although it is not the fastest algorithm available, it is comparable in speed with
the symmetric, tridiagonal QR algorithm.

The paper is organized as follows. In Section 2 we discuss the main idea of using a Cayley
transformation to transform a symmetric eigenvalue problem into a unitary one and then state
our algorithm. We also discuss the details of our implementation and show that the complexity
is O(n2) where n is the size of the matrix. In Section 3 we give a proof of backward stability.
In Section 4 we perform some numerical experiments that illustrate the speed and accuracy of
our algorithm. Finally, in Section 5 we give our concluding remarks.

Unless stated otherwise the following are assumed true. The matrix T is real, symmetric,
and tridiagonal. The matrix I is the identity. The letter u denotes the unit round off. The
letter i is the imaginary unit, i2 = −1. If A is an n× n matrix we denote the entry of A in
row j and column k by Ajk. We denote by A the matrix whose entries satisfy Ajk = Ajk,
and we denote by AT the matrix whose entries satisfy (AT )jk = Akj for all j, k = 1, . . . , n.
Similarly we define AH by the identity AH = AT .

2. Solving the symmetric eigenvalue problem. Let ϕ be the Cayley transformation1

ϕ(z) = (i− z)(i+ z)−1.

The function ϕ maps the interval [−1, 1] to the semicircle {z = eiθ : θ ∈ [−π/2, π/2]} and
all other points on the real line into the remainder of the unit circle. Figure 2.1 illustrates ϕ
graphically using a few isolated points.

−100 −2 −1 1 2

−i

i

ϕ(T )

ϕ−1(T )

FIG. 2.1. Illustration of how ϕ maps points from the real line to the unit circle. Points in [−1, 1] (dots) are
mapped to the right half of the unit circle. All other points (squares and triangle) are mapped to the left half. The
yellow triangle shows how ϕ maps real numbers with large absolute value close to the point −1 on the unit circle.

Given a symmetric T ∈ Rn×n, define

ϕ(T ) = (iI − T )(iI + T )−1 = (iI + T )−1(iI − T ).

1The transformation used by von Neumann is −ϕ(z).
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By direct computation we find that ϕ(T )Hϕ(T ) = I , so ϕ(T ) is unitary. If the eigenvalues of
T are the real numbers λ1, . . . , λn, then the eigenvalues of ϕ(T ) are the numbers ϕ(λ1), . . . ,
ϕ(λn) on the unit circle.

Let QR = (iI − T ) be a QR factorization of (iI − T ) such that the diagonal entries of R
are real. Since (iI + T ) = −(iI − T ) we have that (iI + T ) = −QR, and we can now write
ϕ(T ) using Q and R

ϕ(T ) = −QRR−1QT .

Since Q, QT , and ϕ(T ) are unitary, we know that the product RR−1 must also be unitary.
This, together with the fact that RR−1 is upper triangular, implies that RR−1 is a diagonal
matrix. Since the diagonal entries of R are also real we have that RR−1 = I . This gives the
following factorization for ϕ(T )

ϕ(T ) = −QQT .

The unitary matrix Q will always have complex entries, and thus QT is not the inverse of Q.
We will show that Q requires only O(n) storage and can be computed in O(n) operations.

With the matrix ϕ(T ) in hand we now wish to compute its eigenvalues, which we will
later use to recover the eigenvalues of T . To compute the eigenvalues of ϕ(T ) we use a
variant of the implicitly shifted unitary QR algorithm first proposed by Gragg [8]. This
algorithm reduces a unitary upper Hessenberg matrix to diagonal form in O(n2) operations
using Francis’s implicitly shifted QR algorithm [4, 5]. Since the product −QQT is unitary but
not upper Hessenberg, we must first reduce it to upper Hessenberg form. We will show that
this reduction can be done stably in O(n2) operations. More precisely, we can compute an
upper Hessenberg matrix U such that

U = Y Hϕ(T )Y(2.1)

for some unitary Y . Our algorithm does not actually compute Y .
It is well known that unitary upper Hessenberg matrices can be represented by O(n)

parameters. One such representation uses a factorization into n− 1 rotations and a diagonal
matrix. Once U is in such a compressed form, the unitary QR algorithm of Gragg [8] can now
be applied to U . This algorithm iteratively computes a unitary diagonal matrix Σ such that

ZHUZ = Σ

for some unitary Z. Thus, the diagonal entries of Σ are the eigenvalues of ϕ(T ). The
algorithm does not actually compute the transforming matrix Z. Letting W = Y Z we get the
eigendecomposition

ϕ(T ) = WΣWH .

To recover the eigenvalues of T one simply needs to apply ϕ−1 to the eigenvalues of ϕ(T ). It
is straightforward to show that the inverse of ϕ is

ϕ−1(z) = i(1− z)(1 + z)−1.

Applying this to ϕ(T ) we get

T = ϕ−1(ϕ(T )) = Wϕ−1(Σ)WH ,

which will be useful in our backward error analysis. The steps described above are summarized
in Algorithm 1. As we will see in Section 3, Algorithm 1 is normwise backward stable
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Algorithm 1 Symmetric eigenvalues via unitary QR.
Require: T real, symmetric, and tridiagonal

1) compute QR = (iI − T ), which gives ϕ(T ) = −QQT (not formed explicitly)
2) compute unitary upper Hessenberg U such that U = Y Hϕ(T )Y
3) compute unitary diagonal Σ such that Σ = ZHUZ
4) compute ϕ−1(Σ) to get the eigenvalues of T

whenever the norm of T is close to 1. To avoid instabilities, our implementation first computes
α > 0 such that α‖T‖2 ≈ 1. There are many ways to calculate such an α, and we have opted
to use a combination of Gershgorin’s theorem and Newton’s method which guarantees that we
can find a good α in O(n) operations. Gershgorin’s theorem states that using the maximum
row sums over all rows is an upper bound for ‖T‖2. Since every entry Tij is bounded by ‖T‖2,
the sum of the three non-zero entries in each row can be at most 3‖T‖2. We consider this
computation an important part of a stable implementation but not necessary for the description
of our algorithm.

2.1. Unitary core transformations. Steps 1–3 in Algorithm 1 are implemented using
unitary core transformations. A core transformation is any n× n matrix that is equal to the
identity everywhere except for a 2× 2 diagonal block, and a unitary core transformation is
any core transformation that is also unitary. In particular, we use unitary core transformations
that are also complex Givens rotations but have a real sine. The following matrix Q2 illustrates
such a core transformation for n = 5

Q2 =


1

c2 −s2
s2 c2

1
1

 , c2 ∈ C, s2 ∈ R.

The subscript 2 means that the nontrivial 2×2 diagonal block is located at the intersection
of the rows and columns 2 and 3 ofQ2. SinceQ2 is also a rotation, the entries c2 and s2 satisfy
|c2|2 + s22 = 1. Such a matrix can be represented by 3 real numbers, the real and imaginary
parts of c2 and the real number s2, and by an integer locating the nontrivial diagonal block, in
this case the number 2.

To simplify the presentation we denote a core transformation graphically using an arrowed
bracket. For example, given the 5× 5 matrix A, the product Q2A is denoted graphically as

��
×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

.

The arrows point to the rows of A that are affected by Q2. Using this notation it is easy to see
that two core transformations Qi and Qj commute if |i− j| > 1. When two core transforma-
tions act on the same two rows or columns, their product is also a core transformation. The
multiplication of two such core transformations is known as a fusion

�� �� = �� .

Another important operation is called a turnover. A turnover takes the product of three core
transformations AiBi+1Ci and refactors them as Ãi+1B̃iC̃i+1. This can always be done
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stably when the core transformations are unitary. Furthermore, the product of three rotations
with real sine can be refactored as a product of three rotations with real sine. Graphically, a
turnover looks as follows

��
��
��

= ��
��
�� .

Unitary core transformations, along with these basic operations, are the building blocks of all
the algorithms in this section.

2.2. Computing ϕ(T ). In Step 1 of Algorithm 1 we compute the factorization −QQT
of ϕ(T ) by first computing the QR decomposition of iI−T . The matrix (iI−T ) is tridiagonal,
so its QR decomposition can be written as a descending sequence of core transformations and
a banded upper triangular R. For n = 8, which will be our running example, we have

×
×
×
×
×
×
×
×

×
× ×
× ×
× ×
× ×
× ×
× ×
×

=

��
��
��
��
��
��
�� γ

×
×
×
×
×
×
×
×

×
×
×
×
×
×
×

×
×
×
×
×
×

.

Since T is real, the matrix (iI − T ) has a strictly real subdiagonal, and using rotations with a
real s to compute Q guarantees that all but the (n, n) diagonal entries of R are real. To make
the last entry of R real we can use the core transformation Γn = diag {1, . . . , 1, γ} with a
unimodular complex number γ. We denote this core transformation by γ in the figure above.

Each subdiagonal entry of (iI − T ) can be zeroed using one core transformation, which
can be computed and stored in O(1) costs. Since there are only n − 1 subdiagonals, the
−QQT factorization of ϕ(T ) can be computed in O(n) time and storage. Our implementation
gives the factorization

ϕ(T ) = Q1Q2 · · ·Qn−1DQ
T
n−1 · · ·QT2QT1 ,

where D = Γ2
n. Using the bracket notation, the matrix ϕ(T ) can be depicted as (for n = 8)

��
��
��
��
��
��
��

1
1

1
1

1
1

1
×

��
��

��
��

��
��

��

,

where × = γ2. Note that we keep ϕ(T ) in this factored form; we never compute it explicitly.

2.3. Reduction to upper Hessenberg form. Once the −QQT factorization of ϕ(T ) is
computed, it must be reduced to upper Hessenberg form before the unitary QR algorithm
can be applied. This can be done by a core chasing routine similar to the one used in the
unitary QR algorithm in [3]. We aim to represent the unitary Hessenberg matrix as a product
of rotations with real sine and a diagonal matrix with unimodular entries.

The leftmost core transformation of QT can be fused into the rightmost core transforma-
tion of Q,
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��
��
��
��
��
��
��

1
1

1
1

1
1
×
×

��
��

��
��

��
��

��

.

This changes the (n − 1)st and the nth entry of the diagonal matrix. However, all nonzero
entries of the diagonal matrix remain unimodular.

Before the remaining core transformations can be fused, they have to be chased to the
bottom of the matrix. Let us now assume that we have merged three rotations and that
i = 4. The ith core transformation has to be chased down (n− i− 1) rows. Chasing a core
transformation down one row is the same for all rows, hence we describe only one such step.

Ignoring the other core transformations (in gray) in the rightmost sequence, we have only
one “misfit” core transformation. This can be depicted as

��
��
��
��
��
��
��

1
1

1
1
×
×
×
×

��
��

��
��

.

We have the identical picture in the unitary QR misfit chasing algorithm, hence we can do the
same here. We first swap the misfit with the diagonal; see arrow (a) in the following figure.
This changes two diagonal entries in D. Then we perform a turnover (b) after which the misfit
is in the row below. The turnover changes two rotations inQ. Now a similarity transformations
(c) brings the misfit back to the right-hand side of the diagonal. The chasing can be depicted as

��
��
��
��
��
��
��

1
1

1
×
×
×
×
×

��
��

��
��(a)��(b)

��

(c)

�� ,

where we mark the misfit and its path in red. We repeat the chasing until the misfit is in the
last row and can be fused with Qn−1.

We repeat the process for the remaining core transformations in the rightmost sequence.
Each of them has to be chased down one more row than the previous one. In total (n−2)(n−1)

2
turnovers are necessary, which need O(n2) floating point operations. This corresponds to
roughly n

2 misfit chasings on a unitary Hessenberg matrix of dimension n× n. The product of
all the similarity transformations forms the matrix Y in (2.1).

REMARK 2.1. The core transformations in the rightmost sequence can also be chased to
the top of the matrix. At the top, the core transformation can be fused into the leftmost core
transformation. By chasing the lower half of the core transformation to the bottom and the
upper half to the top, the number of turnovers required for the reduction to Hessenberg form
can be reduced by roughly a factor of two.
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2.4. Solving the unitary eigenvalue problem. After removing all of the core transfor-
mations in the rightmost sequence, the resulting unitary upper Hessenberg matrix is the product
of core transformations and a diagonal matrix. The matrix U has the form

U = Q1Q2 · · ·Qn−1D,

where all Qi’s and all diagonal entries in D have been chased during the reduction to Hessen-
berg form. The matrix U can be depicted as

��
��
��
��
��
��
��

×
×
×
×
×
×
×
×

.

Our implementation of Gragg’s unitary QR algorithm works efficiently on this structure and
can solve the problem in O(n2) operations [3]. This implementation, as well as the one for
the ϕ(T ) = −QQT factorization, are available as part of eiscor [2].

3. Assessing stability. In this section we examine the stability of Algorithm 1. The main
result is that Algorithm 1 is normwise backward stable when the norm of T is close to 1. When
the norm of T is far from 1, the backward error grows at most quadratically with the norm of
T . To prove this stability result we first show that the errors in Steps 1-3 of Algorithm 1 are
small, then we show that in Step 4 we can push this error back onto T to get the final backward
stability result.

The first step of the algorithm involves computing the−QQT factorization of ϕ(T ) which
in turn requires the QR factorization of (iI − T ). In floating point arithmetic, the matrix Q
will have some error, which leads to an error in the factorization of ϕ(T ). Lemma 3.1 gives an
upper bound on the error in the computed −QQT factorization of ϕ(T ).

LEMMA 3.1. Let T ∈ Rn×n be a symmetric tridiagonal matrix. Then there exists a
positive constant C such that

‖ϕ(T )− ϕ̂(T )‖2 ≤

{
2Cu + O(u2), ‖T‖2 < 1,

C(1 + ‖T‖2)u + O(u2), ‖T‖2 ≥ 1,

where ϕ̂(T ) = −Q̂Q̂T is the result of Step 1 of Algorithm 1 in floating point arithmetic and
where u is the unit round-off.

Proof. In Section 2.2 we showed that computing the−QQT factorization of ϕ(T ) requires
only the matrix Q from the QR factorization of (iI − T ), so we will first give an upper bound
on the computed Q. For convenience let A = (iI − T ). From [9, Theorem 19.10] we know
that the QR factorization of A is backward stable, so there exists a positive constant C1 and a
matrix ∆A such that the computed Q̂ satisfies

A+ ∆A = Q̂R̂, ‖∆A‖2 ≤ C1‖A‖2 u.

Now let ∆Q = Q− Q̂. From [10, Theorem 1.1] we know there exists a positive constant C2

such that

‖∆Q‖2 ≤ C2κ2(A)
‖∆A‖2
‖A‖2

,
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where κ2(A) = ‖A‖2‖A−1‖2 is the condition number of A. Combining this with the
backward stability result gives the bound

‖∆Q‖2 ≤ C1C2κ2(A)u.

Now we can use the error bound for Q to bound the error of the computed ϕ̂(T ),

ϕ̂(T ) = −Q̂Q̂T = ϕ(T )−Q∆QT −∆QQT +O(∆2),

where O(∆2) summarizes higher-order terms of the perturbation. Subtracting ϕ(T ) from both
sides and taking norms we have

‖ϕ(T )− ϕ̂(T )‖2 ≤ 2‖∆Q‖2 +O(u2),

and substituting the appropriate bound gives

‖ϕ(T )− ϕ̂(T )‖2 ≤ 2C1C2κ2(A)u+O(u2).

Now we use the fact that κ2(A) is bounded

κ2(A) = κ2(iI − T ) ≤ 1 + ‖T‖2,

(the smallest singular value of iI − T is at least 1, recall that T is real and symmetric) and
take C = 2C1C2 to get the final result

‖ϕ(T )− ϕ̂(T )‖2 ≤

{
2Cu + O(u2), ‖T‖2 < 1,

C(1 + ‖T‖2)u + O(u2), ‖T‖2 ≥ 1.

Lemma 3.1 states that computing the −QQT factorization of ϕ(T ) using the QR factor-
ization of (iI − T ) gives a relative error that depends linearly on the norm of T . The next
lemma gives a bound on the relative backward error of our algorithm in terms of the error in
Steps 1–3 and the norm of T .

LEMMA 3.2. Let T ∈ Rn×n be a symmetric tridiagonal matrix, and let

ϕ(T ) = (iI − T )(iI + T )−1.

Let ϕ̃(T ) be a small perturbation of ϕ(T ), and define T̃ = ϕ−1(ϕ̃(T )). Then

‖T − T̃‖2
‖T‖2

≤

{ (
1 + ‖T‖−1

2

)
‖∆ϕ(T )‖2 + O

(
‖∆ϕ(T )‖22

)
, ‖T‖2 < 1,

(1 + ‖T‖2) ‖∆ϕ(T )‖2 + O
(
‖∆ϕ(T )‖22

)
, ‖T‖2 ≥ 1,

where ∆ϕ(T ) = ϕ̃(T )− ϕ(T ).
Proof. From the definition of ϕ−1 we have

T̃ = ϕ−1(ϕ(T ) + ∆ϕ(T )) = i(I − ϕ(T )−∆ϕ(T ))(I + ϕ(T ) + ∆ϕ(T ))−1.

Given an n× n invertible matrix A, the first-order perturbation of (A+ ∆A)−1 for a small
perturbation ∆A is

(A+ ∆A)−1 = A−1(I −∆AA−1) +O(∆2).

Using this fact we have

T̃ = [i(I − ϕ(T ))− i∆ϕ(T )](I + ϕ(T ))−1[I −∆ϕ(T )(I + ϕ(T ))−1] +O(∆2),
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and combining this with T = i(I − ϕ(T ))(I + ϕ(T ))−1 gives

T̃ = [T − i∆ϕ(T )(I + ϕ(T ))−1][I −∆ϕ(T )(I + ϕ(T ))−1] +O(∆2).

Expanding the product and combining terms simplifies to

T̃ = T − (iI + T )∆ϕ(T )(I + ϕ(T ))−1 +O(∆2).

Subtracting T from both sides, taking norms and dividing by ‖T‖2 gives

‖T − T̃‖2
‖T‖2

≤ ‖(I + ϕ(T ))−1‖2
‖iI + T‖2
‖T‖2

‖ϕ(T )− ϕ̃(T )‖2 +O(‖ϕ(T )− ϕ̃(T )‖22).

To complete the proof we must bound the product ‖(I + ϕ(T ))−1‖2 ‖iI + T‖2 ‖T‖−1
2 . First

we have

‖iI + T‖2
‖T‖2

≤

{
1 + ‖T‖−1

2 , ‖T‖2 < 1,

2, ‖T‖2 ≥ 1.

To bound ‖(I + ϕ(T ))−1‖2 we use the fact that the eigenvalue of ϕ(T ) closest to −1 corre-
sponds to the norm of T . This gives the following identity

‖(I + ϕ(T ))−1‖2 = |1 + ϕ(‖T‖2)|−1.

For ‖T‖2 < 1, ϕ(‖T‖2) is in the right half of the unit circle, i.e., |1+ϕ(‖T‖2)|−1 < 1. When
‖T‖2 ≥ 1 we can use ϕ to get the following bound

‖(I + ϕ(T ))−1‖2 = |1 + ϕ(‖T‖2)|−1 =
|i+ ‖T‖2|

|i+ ‖T‖2 + i− ‖T‖2|
≤ 1

2
(1 + ‖T‖2).

Combining these with the above results and taking ∆ϕ(T ) = ϕ̃(T ) − ϕ(T ) gives the final
result

‖T − T̃‖2
‖T‖2

≤

{ (
1 + ‖T‖−1

2

)
‖∆ϕ(T )‖2 + O

(
‖∆ϕ(T )‖22

)
, ‖T‖2 < 1,

(1 + ‖T‖2) ‖∆ϕ(T )‖2 + O
(
‖∆ϕ(T )‖22

)
, ‖T‖2 ≥ 1.

Lemma 3.2 states that pushing the error back onto T depends on the error in the computed
ϕ(T ) and the norm of T . Specifically, if ‖T‖2 ≥ 1, then the backward error scales linearly
with ‖T‖2, and if ‖T‖2 < 1, then the backward error scales inverse linearly with ‖T‖2. Using
Lemma 3.1 and Lemma 3.2 we can now prove the main result.

THEOREM 3.3. Let T ∈ Rn×n be a symmetric tridiagonal matrix. Then the eigenvalues
computed by Algorithm 1 applied to T are those of a matrix T̃ that is near T in the following
sense: there exists a linear polynomial p1 and a quadratic polynomial p2 such that

‖T − T̃‖2
‖T‖2

≤

{
p1
(
‖T‖−1

2

)
u + O(u2), ‖T‖2 < 1,

p2 (‖T‖2)u + O(u2), ‖T‖2 ≥ 1.

Proof. From Lemma 3.1 we know that Step 1 of Algorithm 1 produces a computed ϕ̂(T )
such that

‖ϕ(T )− ϕ̂(T )‖2 ≤

{
2C1u + O(u2), ‖T‖2 < 1,

C1(1 + ‖T‖2)u + O(u2), ‖T‖2 ≥ 1.
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In Steps 2 and 3 we compute an eigendecomposition of ϕ̂(T ) using the unitary core chasing
algorithm available in eiscor [2], which is based on [3]. This algorithm is backward stable, so
there exists a positive constant C2 and unitary matrices W̃ and Σ̃, with Σ̃ diagonal, such that

ϕ̃(T ) = W̃ Σ̃W̃H and ‖ϕ̂(T )− ϕ̃(T )‖2 ≤ C2u.

Combining the above results we have

‖ϕ(T )− ϕ̃(T )‖2 ≤

{
(2C1 + C2)u + O(u2), ‖T‖2 < 1,

(C1(1 + ‖T‖2) + C2)u + O(u2), ‖T‖2 ≥ 1.

Let

T̃ = ϕ−1(ϕ̃(T )) = W̃ϕ−1(Σ̃)W̃H .

The eigenvalues of T̃ are exactly those computed in Step 4. Setting ∆ϕ(T ) = ϕ̃(T )− ϕ(T )
and using Lemma 3.2 we have that

‖T − T̃‖2
‖T‖2

≤

{ (
1 + ‖T‖−1

2

)
‖∆ϕ(T )‖2 + O

(
‖∆ϕ(T )‖22

)
, ‖T‖2 < 1,

(1 + ‖T‖2) ‖∆ϕ(T )‖2 + O
(
‖∆ϕ(T )‖22

)
, ‖T‖2 ≥ 1.

Combining the above bounds and letting p1(z) = (2C1 + C2)(1 + z) and
p2(z) = (C1(1 + z) + C2)(1 + z) gives the main result

‖T − T̃‖2
‖T‖2

≤

{
p1
(
‖T‖−1

2

)
u + O(u2), ‖T‖2 < 1,

p2(‖T‖2)u + O(u2), ‖T‖2 ≥ 1.

Theorem 3.3 states that the relative backward error in Algorithm 1 depends on the norm
of T . Such a dependence is undesirable but it is not unexpected. The first step of the algorithm
requires a QR decomposition of (iI − T ), and if T is too large, then iI and T will be out
of scale and important information can be rounded away. Similarly, when T is small, so are
its eigenvalues. We recover these eigenvalues from the computed eigenvalues of ϕ(T ), thus
the recovered eigenvalues are accurate relative to 1 instead of the norm of T . Both of these
situations can be avoided if one first scales T to have norm close to 1, which is why we have
included such a step in our implementation.

4. Numerical experiments. In this section we report numerical experiments illustrating
the stability bounds from the last section. We further report timings showing that comput-
ing eigenvalues of tridiagonal matrices via the unitary QR algorithm is comparable with
LAPACK’s symmetric tridiagonal QR algorithm.

The numerical experiments were performed on an Intel Core i5-3570 CPU running at
3.40 GHz with 8GB of memory. GFortran 4.8.4 was used to compile the Fortran codes.
For comparison we use the symmetric QR algorithm (DSTEQR), the divide and conquer
method for symmetric tridiagonal matrices (DSTEVD), and the RRR method (DSTEGR) from
LAPACK 3.6.0 [1], which were built with the same compiler.

In our first example we consider the symmetric tridiagonal Toeplitz matrix with 0 on the
diagonal and − 1

2 on the sub- and super-diagonals. This matrix is a common test case since the
eigenvalues are known exactly. The eigenvalues are cos(jπ/(n+ 1)), j = 1, . . . , n, which lie
in [−1, 1]. This implies that ‖T‖2 ≤ 1 and that the eigenvalues are mapped to the right half of
the unit circle.

In this example we compute only the eigenvalues and measure the runtime. For smaller
examples we measure the average runtime over many runs. After recording the timings, we
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FIG. 4.1. Runtime and relative backward error for Toeplitz matrices.
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FIG. 4.2. Backward error for n = 512 scaled Toeplitz matrix, with α = 10−7, . . . , 107.

run the experiments again computing both eigenvalues and eigenvectors. We then use the
computed eigenvectors to measure the backward error. The results are shown in Figure 4.1. We
observe that our algorithm is about as fast and as accurate as DSTEQR. The divide and conquer
algorithm is six times faster and slightly more accurate, the RRR method is 5 times faster and
about as accurate. All four algorithms need O(n2) time for computing the eigenvalues only
and O(n3) if also the eigenvectors are computed, except that RRR can compute eigenvectors
in O(n2).

In Section 3 we have shown that the relative backward error depends on the norm of
T . Our second experiment illustrates this by scaling the n = 512 Toeplitz matrix from the
previous example by α, for α between 10−7 and 107. The result in Figure 4.2 shows that
when ‖T‖2 < 1, the backward error depends inverse linearly on ‖T‖2. When ‖T‖2 ≥ 1 the
dependence is quadratic. As expected, scaling the matrix based on the Gershgorin discs and
the Newton correction keeps the relative backward error small.

For our third example we test our algorithm using random matrices. In Figure 4.3 we
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FIG. 4.3. Runtime and backward error for random tridiagonal matrices.
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FIG. 4.4. Runtime and relative backward error for block Toeplitz matrices.

chose tridiagonal matrices with normally distributed entries. The results are very similar to the
Toeplitz matrix used above.

In our final example we test or algorithm on matrices with clustered eigenvalues. We
construct such matrices by first creating a block diagonal matrix whose diagonal blocks are
32 × 32 versions of the Toeplitz matrix from the first example. This matrix has 32 distinct
eigenvalues that have the same multiplicity as the number of blocks. We then perturb the
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off-diagonal entries at the interface of each block by 10−10. The result is a set of test matrices
with eigenvalues close together. The results shown in Figure 4.4 look similar to those in the
previous figures.

5. Conclusions. In this paper we presented a new algorithm for solving the symmetric
eigenvalue problem. This method works by converting a symmetric matrix into a unitary one
and then solving the resulting unitary eigenvalue problem. We proved that under reasonable
assumptions this method is backward stable and that it is comparable in terms of accuracy
with current well-known implementations. It is about as fast as the symmetric, tridiagonal QR
algorithm.
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