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TOPOLOGICAL SOLVABILITY AND DAE-INDEX CONDITIONS FOR
MASS FLOW CONTROLLED PUMPS IN LIQUID FLOW NETWORKS˚

ANN-KRISTIN BAUM:;, MICHAEL KOLMBAUER;, AND GÜNTER OFFNER§

Abstract. This work is devoted to the analysis of a model for the thermal management in liquid flow networks
consisting of pipes and pumps. The underlying model equation for the liquid flow is not only governed by the equation
of motion and the continuity equation, describing the mass transfer through the pipes, but also includes thermodynamic
effects in order to cover cooling and heating processes. The resulting model gives rise to a differential-algebraic
equation (DAE), for which a proof of unique solvability and an index analysis is presented. For the index analysis,
the concepts of the Strangeness Index is pursued. Exploring the network structure of the liquid flow network via
graph-theoretical approaches allow us to develop network topological criteria for the existence of solutions and the
DAE-index. The topological criteria are explained by various examples.
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1. Introduction. Increasingly demanding emissions legislation specifies the performance
requirements for the next generation of products from vehicle manufacturers. Conversely, the
stringent emissions legislation is coupled with the trend in increased power, drivability, and
safety expectations from the consumer market. Promising approaches to meet these require-
ments are downsizing the internal combustion engines (ICE), the application of turbochargers,
variable valve timing, advanced combustion systems, or comprehensive exhaust aftertreatment,
but also different variants of combinations of the ICE with an electrical engine in terms of
hybridization or even a purely electric propulsion. The challenges in the development of
future powertrains do not only lie in the design of individual components but in the assess-
ment of the powertrain as a whole. On a system engineering level it is required to optimize
individual components globally and to balance the interaction of different subsystems. A
typical system engineering model comprises several subsystems. For instance in case of a
hybrid propulsion these can be the vehicle chassis, the drive line, the air path of the ICE
including combustion and exhaust aftertreatment, the cooling system of the ICE, the electrical
propulsion system including the engine and a battery pack, and finally the corresponding
control systems. Similar to the ICE, the battery pack requires a cooling system as well. Both
cooling systems are typically represented by an corresponding hydraulic network in the overall
model. The simulation and optimization of hydraulic networks have been studied in various
works, including [4, 7, 12, 13, 23] and the references therein. The considered models are
motivated by drinking water supply systems, where the main target is to circulate an amount
of water at any time, assuring a certain pressure at extraction points. The aim of this work is to
consider and analyze hydraulic networks used for thermal management systems. Examples in
automotive applications are the above mentioned cooling systems.

In contrast to water transportation networks, the primary interest is not the pressure
distribution across the whole system, but the temperature distribution. Consequently, the
models have to be equipped with energy balance laws in order to model the thermodynamic
effects. The purpose of this work is to extend the results, which are already available for water
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transportation networks [12, 13], to cooling and heating systems used for thermal management
and to networks including mass flow-controlled pumps. Thermal flow networks consisting
solely of pipes have been analyzed in [2]. The extension to networks of pipes and pumps is not
straightforward since additionally to Kirchhoff’s first law, also Kirchhoff’s second law has to
be considered. In particular, Kirchhoff’s second law restricts the allowed pump constellations
for a valid liquid flow model.

The model under consideration is a quasi-stationary pipe network, cf. [13], equipped
with energy balance laws. This model is suited to describe circuits which are filled with
incompressible fluids (e.g., water). Here incompressible means that density changes with
respect to temperature changes or pressure changes are neglected.

While general networks consist of various types of elements (pipes, pumps, valves) [23],
the model here is restricted to pipes and pumps only. Despite this simplification, the demanding
issues are caused by the arbitrary network structure of the underlying model. Since valves can
change the topology of the underlying network due to their discrete nature, they have to be
treated separately.

State-of-the-art modeling and simulation packages such as Dymola1, Matlab/Simulink2,
Flowmaster3, Amesim4, SimulationX5, or Cruise M6 offer many excellent concepts for the
automatic generation of dynamic system models, including hydraulic networks. Modeling is
done in a modularized way, based on a network of subsystems which again consists of simple
standardized subcomponents. The network structure (topology) carries the core information
of the network properties and therefore is predestinated to be exploited for the analysis and
numerical simulation of those. In many applications, the equations describing the network are
differential-algebraic equations (DAEs). Hence, the analysis of existence and uniqueness of
solutions as well as rank considerations are a delicate issue.

Topology-based index analysis for networks connects the research fields of Analysis for
DAEs [22] and Graph Theory [8] in order to provide the appropriate basis to analyze DAEs
stemming from automatic generated system models. So far it has been established for various
types of networks, including electric circuits [24], gas supply networks [10], and water supply
networks [12, 13, 23]. Although all those networks share some similarities, an individual
investigation is required due to their different physical nature. Recently, a unified modeling
approach for different types of flow networks has been introduced in [14], aiming at a unified
topology-based index analysis for the different physical domains on an abstract level.

The structure of this work is the following: in Section 2, the main two concepts required
for the analysis are introduced. First, an introduction to graph theory is given, then the
application to equations imposed on networks is described, and the core tools for the following
analysis are proven. The network model and the arising DAEs are formulated in Section 3.
Furthermore, some basic properties are derived, which lead to the full DAE analysis in
Section 4. Beside existence and uniqueness results, DAE-index considerations are performed
to ensure an accurate and efficient numerical simulation. Throughout the analysis, the sufficient
algebraic conditions are linked to necessary conditions imposed on the network structure.
Those topological conditions are explained in terms of examples. A summary of the results
with comments on their practical relevance in commercial simulation software concludes the
paper in Section 5.

1http://www.dynasim.com
2http://www.mathworks.com
3http://www.mentor.com
4http://www.plm.automation.siemens.com
5http://www.iti.de
6http://www.avl.com
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2. Graphs and their application in network dynamics. In this section, we introduce
the notation and graph-theoretical concepts that we need in our analysis and prove some
additional results in Lemma 2.1 and Lemma 2.2.

For a detailed introduction to graph theory, we refer the reader to, e.g., [3, 8]. A graph
G is a pair G “ tV, Eu of subsets V, E Ă N such that E Ă V ˆ V , i.e., each element ej P E
corresponds to a pair pvi1 , vi2q P V ˆ V [8, p. 2]. If the pairs pvi, vkq P E are ordered, then G
is called an oriented graph [8, p. 25]. If G is oriented, then vi and vk are called the originating
and terminating vertex of the edge ej “ pvi, vkq, respectively, [8, p. 25]. If G contains no
self-loops or parallel edges, then G is called simple, cf. [8, p. 25].

Two vertices vi, vk P V are called adjacent if there exists an edge ej P E such that
ej “ pvi, vkq [8, p. 13]. The edge ej is called incident to vi and vk, respectively [8, p. 13].
Two edges ej , el P E are called adjacent if they are incident to a common vertex vi [8, p. 13].
For vi P V , the incident edges are summarized in the set

Eincpviq :“ tej P E | D vk P V : ej “ pvi, vkqu.

If Eincpviq “ H, then vi is isolated, and if |Eincpviq| “ 1, then vi is an end vertex [8, p. 2].
The connection structure of G is described by the incidence matrix A, which, if G is

oriented, is defined as

Aij “

$

’

&

’

%

1, if vi is the left vertex of ej ,
´1, if vi is the right vertex of ej ,
0, else.

A subset Gs “ tVs, Esu with Vs Ă V is a subgraph of G if Es Ă Vs ˆ Vs [8, p. 3].
If Vs “ V , then the subgraph Gs spans G [8, p. 3]. The incidence matrix of Gs is given by
As “ rAijspvi,ejqPVsˆEs [8, p. 3].

In our analysis, we consider a simple, oriented graph G whose vertices V and edges E
are composed from subsets V1, . . . ,Vv̂ and E1, . . . , Eê such that V “

Ťv̂
I“1 VI, E “

Ťê
J“1 EJ.

Accordingly, the incidence matrixA is composed of submatricesAIJ describing the connection
structure of the subsets GIJ :“ tVI, EJu. In general, a set GIJ is not a proper subgraph of G as
the edges EJ may be incident to vertices outside VI. Then, the connection matrix AIJ does not
have the usual pattern of two non-zero entries per column. To characterize the fundamental
subspaces of AIJ, we partition the edges into

EJ “ E inner
IJ Y E loose

IJ Y E isolated
IJ ,

where E inner
J contains the edges incident to vertices in VI, i.e.,

E inner
J :“ tej P EJ | ej “ pvj1 , vj2q with vj1 , vj2 P VIu,

E loose
IJ contains the loose edges incident to a vertex in VI and a vertex outside VI, i.e.,

E loose
IJ :“ tej P EJ | ej “ pvj1 , vj2q with vj1 P VI, vj2 P VzVIu,

and E isolated
IJ contains the isolated edges incident to vertices outside VI, i.e.,

E isolated
IJ :“ tej P EJ | ej “ pvj1 , vj2q with vj1 , vj2 P VzVIu.

For simplicity, we assume that there is at most one loose edge per vertex. Using an equivalence
relation, the following results can be extend to the case of multiple loose edges per vertex.
Furthermore, we set

Vouter
IJ :“ VI Y Vc

IJ,
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where Vc
IJ contains the vertices outside VI that are incident to edges in EJ, i.e.,

Vc
IJ :“ tvi P VzVI | Eadjpviq X EJ ‰ Hu.

With this notation, we set

Gouter
IJ :“ tVouter

IJ , EJu, G inner
IJ :“ tVI, E inner

IJ u,

where Gouter
IJ is the minimal subgraph containing GIJ and G inner

IJ is the maximal subgraph
contained in GIJ. Using Gouter

IJ , G inner
IJ we can straightforwardly extend the standard definitions

of graphs, cf., e.g., [6, 8], to the set GIJ.
A subset P :“ tVP , EPu Ă GIJ,k is called a path in GIJ if it is a path in Gouter

IJ , i.e., if the
vertices in VP are pairwise distinct and there exists a numbering such that vi, ej are adjacent
to vi`1, ej`1 for pi, jq P t1, . . . , |VP | ´ 1u ˆ t1, . . . , |EP | ´ 1u, respectively. If G is oriented,
with respect to this numbering, we assign a sign to every edge ej P P by

sgnPpejq “

#

1, ej “ pvi, vi`1q,

´1, ej “ pvi`1, viq,

and define the path matrix P “
ř

ejPEP sgnPpejqej , where e1, . . . , e|E| P R|E| denotes the
standard canonical basis.

If sgnPpejq “ sgnPpelq for ej , el P EP , then P is called directed. If v1, v|EP | P Vc
IJ, then

P is called a crossing path. If v1, v|EP | P VI with v1 “ v|EP |, then C :“ P is called a cycle in
GIJ.

The set GIJ is connected if E isolated
IJ “ H and G inner

IJ is connected, i.e., if every pair of
vertices vi, vk P VI can be connected by a path. If GIJ is not connected, then it is composed
of connected components GIJ,k “ tVIJ,k, EIJ,ku, k “ 1, . . . ,K, containing the connected
components G inner

IJ,k of G inner
IJ , respectively, plus loose edges E loose

IJ,k incident to vertices in G inner
IJ,k .

A subgraph T1 Ă G of a connected graph G that contains no cycles and spans G is called
a spanning tree [8, p. 13]. Every connected graph has at least one spanning tree [8, p. 14]. If
GIJ is connected, then a subset T1 Ă GIJ is called a spanning tree if T1 “ T inner

1 Ytej0u, where
T inner

1 is a spanning tree of G inner
IJ and ej0 P E loose

IJ is a reference loose edge. The complement
T2 is called the chord set. For the incidence matrix, the associated edges are selected by
the permutation Π “ rΠ1,Π2s with Πi “ rejsejPTi , i “ 1, 2, where e1, . . . , e|EJ| P R|EJ |
denotes the standard canonical basis. Every interior chord ek P ET2 X E inner

IJ defines a unique
fundamental cycle Ck “ tVk, Eku with Ekzteku Ă T1 X E inner

IJ . The fundamental cycle matrix
is defined as C “ rC1, . . . , Ccs, where Ck is the cycle matrix of Ck. Similarly, every loose
chord ek P E loose

IJ ztej0u defines a unique fundamental crossing path Pk starting and ending
(or vice versa) at ek and ej0 , respectively. The fundamental crossing path matrix is defined as
PIJ “ rP1, . . . , P|E loose

IJ |´1s, where Pk denotes the path matrix of Pk.
If GIJ is connected and E loose

IJ “ H, then after choosing a ground node vi0 P V we set
V2 :“ tvi0u and denote the associated reduced vertex set by V1 :“ VzV2. If E loose

IJ ‰ H, then
V2 “ H, and the reduced vertex set is given by V1 “ VI. For the incidence matrix, these
vertices are selected by the permutation Γ “ rΓ1,Γ2s with Γi “ reksvkPVi , i “ 1, 2, where
e1, . . . , e|V| P R|VI| denotes the standard canonical basis.

For a subset Vs Ă VI, the vertex identification of Vs merges the elements of Vs into a
new vertex v̄ :“

Ť

viPVs vi. Removing all edges connecting the vertices vi, vk P Vs, we
obtain the contraction of GIJ with respect to Vs, which is the graph ḠIJ :“ tV̄I, ĒJu with
V̄I :“ pVIzVsq

Ť

tv̄u and ĒJ :“ EJztej | ej “ pvi, vkq | vi, vk P Vsu. Note that Ḡ might have
multiple edges and self loops even if G is simple. The associated identification matrix is
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given by 1T Π, where 1 “ r1, . . . , 1s P R|Vs| and Π P R|Vs|ˆ|Vs| is a permutation such that
r1T Πsi “ 1 if and only if vi P Vs.

In the following, we assume that GIJ is numbered such that

EIJ “ EIJ,1 Y . . .Y EIJ,K Y E isolated
IJ , VIJ “ VIJ,1 Y . . .Y VIJ,K ,

where GIJ,k “ tEIJ,k,VIJ,ku, k “ 1, . . . ,K, are the connected components of GIJ. These are
ordered such that GIJ,k corresponds to proper subgraphs for k “ 1, . . . , k̂1, to subsets with
loose edges for k “ k̂1`1, . . . , k̂, and to isolated vertices for k “ k̂`1, . . . ,K. Accordingly,
we denote by Gouter

IJ,k , G inner
IJ,k the corresponding subgraphs of GIJ,k. Then, the connection matrix

is given as

AIJ “

»

—

—

—

–

AIJ,1
. . .

AIJ,k̂
0

fi

ffi

ffi

ffi

fl

with AIJ,k “
“

Ainner
IJ,k Aloose

IJ,k

‰

,(2.1)

where Ainner
IJ,k is the incidence matrix of G inner

IJ,k and Aloose
IJ,k denotes the connection matrix of

tVIJ,k, E loose
IJ,k u. The rows and columns of the zero block correspond to the isolated vertices

and edges, respectively. For each GIJ,k, we number Gouter
IJ,k such that Vouter

IJ,k “ VIJ,k Y Vc
IJ,k and

the incidence matrix Aouter
IJ,k is given by Aouter

IJ,k “ rA
T
IJ,k, pA

c
IJ,kq

T sT , where Ac
IJ,k describes the

connection structure of tVc
IJ,k, EIJ,ku.

Considering the substructures introduced above, we define the reduced vertex set
VIJ,1 :“

ŤK
k“1 VIJ,k,1 with the ground node VIJ,2 :“

ŤK
k“1 VIJ,k,2 and the selection matrices

ΓIJ “ rΓIJ,1,ΓIJ,2s ,(2.2a)

the spanning tree TIJ,1 :“
ŤK

k“1 TIJ,k,1 with the chord set TIJ,2 :“
ŤK

k“1 TIJ,k,2 and the
selection matrices

ΠIJ “ rΠIJ,1,ΠIJ,2s ,(2.2b)

the fundamental cycles CIJ :“
ŤK

k“1 CIJ,k and the crossing paths PIJ :“
ŤK

k“1 PIJ,k and the
selection matrices

V2 “ rCIJ, PIJ, LIJs ,(2.2c)

where we denote by VIJ,k,i, TIJ,k,i, for i “ 1, 2, CIJ,k “ tCIJ,k,1, . . . , CIJ,k,|CIJ,k|u and
PIJ,k “ tPIJ,k,1, . . . , PIJ,k,|PIJ,k|u the respective structure in each component GIJ,k with
the selection matrices given by ΓIJ,k,i, ΠIJ,k,i, CIJ,k, PIJ,k such that ΓIJ,i “ diag pΓIJ,k,iqk,
ΠIJ,i “ diag pΠIJ,k,iqk, PIJ “ diag pPIJ,kqk, CIJ “ diag pCIJ,kqk, for i “ 1, 2, k “ 1, . . . ,K,
and LIJ “ r0, I|E loose

IJ,k |
sT . For the connected components that are proper subgraphs, we fur-

ther consider the identification V̄IJ “
Ťk̂

k“1 v̄ik with v̄ik :“ vik,0
Y

´

Ť

viPVI,k
vi

¯

and the
identification matrix

1IJ “ diag p1|VIJ,k|qk“1,...,k̂
.(2.2d)

As for a proper graph and its incidence matrix, cf., e.g., [8, pp. 23], we can interpret the
fundamental subspaces of a submatrix AIJ as substructures of the set GIJ.
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LEMMA 2.1. Let G “ tV, Eu be a simple, oriented graph with V “
Ť

IPIV
VI,

E “
Ť

JPJE
EJ. Consider a subset GIJ :“ tVI, EJu with connection matrix AIJ. Then,

rankpAIJq “
řk̂

k“1 |VIJ,k| ´ k̂, where GIJ,k, k “ 1, . . . , k̂, denotes the connected com-
ponents of GIJ that itself are subgraphs. For the matrices defined in (2.2), it holds that
kerpAIJq “ spanpV2q, corangepAIJq “ spanpΠIJ,1q, and cokerpAIJq “ spanp1IJq,
rangepAIJq “ spanpΓIJ,1q.

The matrices U :“ rΓIJ,1,1IJs and V :“ rΠIJ,1, VIJ,2s are nonsingular with

U´1 “

„

U´2
ΓT

IJ,2



, V ´1 “

»

–

V ´2 0
ΠT

IJ,2 0
0 I|E loose

IJ,k |

fi

fl ,

where U´2 “ ΓT
IJ,1 ´ 1IJΓ

T
IJ,2 and V ´2 “ ΠT

IJ,1 ´ΠT
IJ,1rCIJ, PIJsΠ

T
IJ,2.

Proof. From (2.1), we get that rankpAIJq “
řk̂

k“1 rankpAIJ,kq. Noting that Gouter
IJ,k is

connected as GIJ,k is connected and using the fact that Vouter
IJ “ VI Y Vc

IJ, we have that
rankpAouter

IJ,k q “ |VIJ,k| ` |Vc
IJ,k| ´ 1, cf. [3, p. 23]. For k “ 1, . . . , k̂1, we have that Vc

IJ,k “ H

implying that rankpAouter
IJ,k q “ rankpAIJ,kq with rankpAIJ,kq “ |VIJ,k| ´ 1. For the indices

k “ k̂1 ` 1, . . . , k̂, we have that Vc
IJ,k ‰ H, implying that rankpAouter

IJ,k q ą |VIJ,k|. Thus,
we can choose |VIJ,k| linearly independent rows from Aouter

IJ,k , and by selecting the block row
associated with AIJ,k, we get rankpAIJ,kq “ |VIJ,k|. In conclusion, we have proven that

rankpAIJq “

k̂1
ÿ

k“1

p|VIJ,k| ´ 1q `
k̂
ÿ

k“k̂1`1

|VIJ,k|,

i.e., rankpAIJq “
řk̂

k“1 |VIJ,k| ´ k̂1.
Now, we consider a connected component GIJ,k. With the given numbering, the funda-

mental cycle and crossing path matrices are given by

CIJ,k “

»

–

C inner
IJ
0
0

fi

fl , PIJ,k “

»

–

˚

1|EIJ,k|´1

I|EIJ,k|´1

fi

fl ,(2.3)

where C inner
IJ,k denotes the fundamental cycle matrix of G inner

IJ,k . From (2.1) and (2.3) it follows
that

AIJ,kCIJ,k “ Ainner
IJ,k C

inner
IJ,k “ 0,

as the fundamental cycles of G inner
IJ lie in kerpAIJq. Similarly, we get from (2.1) and (2.3) that

Aouter
IJ,k PIJ,k “

„

0
Ac

IJ,kPIJ,k



“

»

–

0
1|EIJ,k|´1

I|EIJ,k|´1

fi

fl

as the incidence matrix applied to a path matrix returns exactly the starting and end vertices
of the path [6, p. 157]. Thus, AIJ,kPIJ,k “ 0, implying that spanprCIJ,k, PIJ,ksq Ă kerpAIJ,kq.
Considering (2.3), we find that rankprCIJ,k, PIJ,ksq “ rankpCIJ,kq ` rankpPIJ,kq with
rankpCIJ,kq “ |E inner

IJ,k | ´ |VIJ,k| ` 1 and rankpPIJ,kq “ |E loose
IJ,k | ´ 1. For k “ 1, . . . , k̂1,

we thus get that

rankprCIJ,k, PIJ,ksq “ |EIJ,k| ´ |VIJ,k| ` 1 “ dimpkerpAIJ,kqq,
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while for k “ k̂1 ` 1, . . . , k̂, we get that

rankprCIJ,k, PIJ,ksq “ |E inner
IJ,k |´|VIJ,k|`1`|E loose

IJ,k |´1 “ |EIJ,k|´|VIJ,k| “ dimpkerpAIJ,kqq.

Hence, spanprCIJ,k, PIJ,ksq “ kerpAIJ,kq, and it follows that spanpV2q “ kerpAIJq.
For the left nullspace, we note that GIJ,k is a proper subgraph for k “ 1, . . . , k̂, im-

plying that every column of AIJ,k contains exactly the two nonzero entries 1,´1. Hence,
1T
|VIJ,k|

AIJ,k “ 0. As rankpAIJ,kq “ |VIJ,k| ´ 1, it follows that spanp1|VIJ,k|q “ cokerpAIJ,kq,
and thus spanp1|VIJ|q “ cokerpAIJq.

For corangepAIJq, we note that rankpAIJ,kq “ |VIJ,k| ´ 1, for k “ 1, . . . , k̂1, such that
we can select |VIJ,k| ´ 1 linearly independent columns in AIJ,k, i.e., there exists a permutation
ΠIJ,1,ΠIJ,2 P R|EIJ,k|ˆ|EIJ,k| such that AIJ,kΠIJ,k,1 has full rank. For k “ k̂1 ` 1, . . . , k̂,
rankpAIJ,kq “ |VIJ,k|, and there exists a permutation ΠIJ,1,ΠIJ,2 P R|EIJ,k|ˆ|EIJ,k| such that
AIJ,kΠIJ,k,1 has full rank, where ΠIJ,k,1 selects |VIJ,k| ´ 1 linearly independent columns
associated with edges on a spanning tree of G inner

IJ,k as well as the reference loose edge ek0
P EIJ,k.

Similarly, for k “ 1, . . . , k̂1, we can select |VIJ,k| ´ 1 linearly independent rows in
AIJ,k, i.e., there exists a permutation ΓIJ,k,1,ΓIJ,k,2 such that ΓT

IJ,1AIJ has full rank. For
k “ k̂1 ` 1, . . . , k̂, rankpAIJ,kq “ |VIJ,k|, implying that ΓIJ,k,1 “ I|VIJ,k|.

If kerpAIJq “ spanpV2q, corangepAIJq “ spanpΠIJ,1q and cokerpAIJq “ spanp1IJq,
rangepAIJq “ spanpΓIJ,1q, then the matrices U :“ rΓIJ,1,1IJs and V :“ rΠIJ,1, V2s are
nonsingular. To verify the representation of U´1, V ´1, we verify the properties of the inverse.
For convenience, we drop the index IJ of the subset GIJ. First, we note that

“

Γ1 1
‰

„

ΓT
1 ´ 1ΓT

2

ΓT
2



“ Γ1ΓT
1 ` p1´ Γ11IJqΓ

T
2 “ Γ1ΓT

1 ` Γ21ΓT
2 .

Noting that rΓ11si “ 1, vi P VIJ,1 and rΓ11si “ 0, vi P VIJ,2, we have that 1 ´ Γ11 “ Γ2

such that
“

Γ1 1
‰

„

ΓT
1 ´ 1ΓT

2

ΓT
2



“ Γ1ΓT
1 ` Γ2ΓT

2 “ I|VIJ|.

On the other hand, we have that
„

ΓT
1 ´ 1ΓT

2

ΓT
2



“

Γ1 1
‰

“

„

I|Vred|´1 pΓT
1 ´ 1ΓT

2 q1
0 ΓT

2 1



.

In ΓT
1 ´ 1ΓT

2 , every row contains exactly the two non-zero entries 1,´1 such that it holds that
pΓT

1 ´ 1ΓT
2 q1 “ 0. With ΓT

2 1IJ “ I|VIJ,2|, we thus get rΓ1,1s
´1rΓ1,1s “ I|VIJ|.

As EpT q X E loose
IJ “ H, where EpT q denotes the edges of a spanning tree T , we have that

“

Π1 V2

‰

“

«

Π̃1 C P 0
0 0 0 I|E loose

IJ,k |

ff

.

Thus, it suffices to show that
“

Π̃1 rC,P s
‰´1

“

„

ΠT
1 ´ΠT

1 rC,P sΠ
T
2

ΠT
2



.

We show the assertion by verifying the properties of the inverse. First, using the identity
I|VIJ| ´Π1ΠT

1 “ Π2ΠT
2 , we get that

“

Π1 rC,P s
‰

„

ΠT
1 ´ΠT

1 rC,P sΠ
T
2

ΠT
2



“ Π1ΠT
1 ´Π1ΠT

1 rC,P sΠ
T
2 ` rC,P sΠ

T
2

“ Π1ΠT
1 `Π2ΠT

2 rC,P sΠ
T
2 .
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The matrix Π2ΠT
2 is a projection onto the edges of the chord set TIJ,2. As the fundamental

cycles and crossing paths Ckl
,Pkm

contain exactly one edge ekl
, ekm

P TIJ,2, respectively, we
have that Π2ΠT

2 rC,P s “ Π2. Hence,

“

Π1 C P
‰

„

ΠT
1 ´ΠT

1 rC,P sΠ
T
2

ΠT
2



“ Π1ΠT
1 `Π2ΠT

2 “ I|EIJ|.

On the other hand, we have that
„

ΠT
1 ´ΠT

1 rC,P sΠ
T
2

ΠT
2



“

Π1 rC,P s
‰

“

„

I|EpTIJq| ΠT
1 rC,P spInJ´nI`1 ´ΠT

2 rC,P sq
0 ΠT

2 rC,P s



.

Again, as every fundamental cycle and crossing path contains exactly one chord, we have that
ΠT

2 rC,P s “ InJ´nI`1. Then, it follows that rΠ1, rC,P ss
´1rΠ1, rC,P ss “ I|EIJ|.

Hence, the fundamental cycles, crossing paths, and loose edges span the right nullspace
kerpAIJq, while the edges in the spanning tree build a basis of corangepAIJq. The identification
of connected components with a ground node spans the left nullspace cokerpAIJq, while the
vertices of the reduced vertex set correspond to a basis of corangepAIJq.

Now, we equip the vertices and edges of G with potentials and flows, respectively. To
each vertex vi P V , we assign a potential pi, and all potentials are collected into a vector
p “ rpisi“1,...,|V|. Similarly, to each edge ej P G, we assign a flow qj and set q “ rqjsj“1,...,|E|.
The flow is directed: a flow qj is called positive, i.e., qj ą 0, if qj agrees with the direction
of its associated edge ej . If qj ‰ 0 is opposed to the direction of edge ej , then qJ is called
negative, i.e., qj ă 0. If G “ tV, Eu with V “

Ť

IPIV
VI, E “

Ť

JPIE
EJ, we partition the

flows and potential accordingly and write qJ,j P EJ and pI,i P VI.
The flow and potential satisfy the following fundamental relations that generalize Kirch-

hoff’s circuit laws, i.e.,

ΓT
1 Aq “ 0,(2.4a)

V T
2 A

T p “ 0.(2.4b)

The equations (2.4) allow us to give a physical interpretation of Lemma 2.1. The fundamental
cycles, crossing paths, and loose edges correspond to structures on which the potential
difference vanishes, while the spanning tree selects a structure on which the potential difference
is well defined. The reduced vertex set consists of those vertices on which the potential is
fixed in relation to the reference value given by the ground node. Thus, the identification of
the reduced vertex set with its ground node subsumes all vertices on which the potential is not
fixed, like in an isolated vertex or a subgraph without connection to a ground node.

We transform the flow and potential with respect to these substructures by setting

q̃ :“ rΠIJ,1, VIJ,2s
´1
q, p̃ :“ rΓIJ,1,1IJs

´1
p(2.5)

such that

q̃1 “ pΠ
T
IJ,1 ´ΠT

IJ,1rCIJ, PIJsΠ
T
IJ,2qq, p̃1 “ pΓ

T
IJ,1 ´ 1IJΓ

T
IJ,2qp,

q̃2 “ ΠT
IJ,2q, p̃1 “ ΓT

IJ,2p.

The flows q2 belong to edges on the chord set TIJ,2 while q1 denote the difference between
a branch flow q1,j P TIJ,1 and the chord flows q2,l P TIJ,2 of those fundamental cycles and
crossing paths containing q1,j . Similarly, the potentials p2 belong to the ground nodes VIJ,2,
while p1 denote the difference between a potential p1,j P VIJ,1 and its associated ground node
p2,j P VIJ,2.
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Now, we think of the flow as information running through the network. To describe the
structure of the subset GIJ on this informational level, for vi P VI, we partition the set of
incident edges Eincpviq into those along which vi receives and sends information, respectively,
i.e., we set

Einc,spviq :“ tej P Eincpviq |Aij sgnpqjptqq ą 0, i.e., qj starts in viu,
Einc,epviq :“ tej P Eincpviq |Aij sgnpqjptqq ă 0, i.e., qj ends in viu.

Defining the flow matrix

BIJ,i` “

$

’

&

’

%

ř

ejPEinc,spviqXEJ
|qj |, i “ `,

´|qj |, ej P Einc,epviq X Eincpv`q X EJ, i ‰ `,

0, else,

the information flow in GIJ is graphically represented by the flow graph Gflow
IJ :“ GpBT

IJ q. The
graph GpAq of a matrix A P Rnˆn is defined as GpAq “ ttv1, . . . , vnu, tpvi, vjq| aij ‰ 0uu,
i.e., whenever the ij-th entry is nonzero, there is an edge from the vertex vi to vj [20, p. 528].
Hence,

Gflow
IJ “ tVI, Eflow

IJ u with

Eflow
IJ :“ tej :“ pv`, viq | Einc,epviq X Eincpv`q ‰ H, v` ‰ vi _ Einc,spviq ‰ H, v` “ viu .

Basically, the graph Gflow
IJ has the same connection structure as the set GIJ except that at vertices

vi P VI sending a non-zero mass flow into GIJ, the flow graph Gflow
IJ has self loops and that

edges ej P EJ equipped with a zero mass flow qj “ 0 are absent in Eflow
IJ . The orientation of

Gflow
IJ is determined by the direction of the mass flows, i.e., ej P Eflow

IJ is directed from v` to vi
if vi receives a mass flow from v`, cf. Figure 2.1.

vI,1

vI,2vI,3

vK,2

vK,1vI,6

vK,3

q1 ą 0

q2 ą 0

q3 ą 0
q6 “ 0

q4 ą 0
q5 ă 0

q7 ą 0

vI,1

vI,2vI,3

vK,2

vK,1vI,6

vK,3

q1

q2

q3

q4

q5

q7

FIG. 2.1. A graph (left) and its flow graph (right).

The connectivity of Gflow
IJ on this informational level is described by the concept of

strong connectivity. We assume that Gflow
IJ is composed of strongly connected components

Gflow,IJ,k :“ tEflow,IJ,k,Vflow,IJ,ku, i.e., every pair of vertices vi, vk P Vflow,IJ,k is con-
nected by a directed path from vi to vk and a directed path from vk to vi, cf. [20, p. 528].
For each Gflow,IJ,k, with k “ 1, . . . ,K, we denote the interior subgraph by
G inner
flow,IJ,k “ tE inner

flow,IJ,k,V inner
flow,IJ,ku.

The flow matrix BIJ is nonsingular, if in every strongly connected component GIJ,k of GIJ
there exists at least one vertex vî sending a nonzero flow into GIJzGIJ,k.
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LEMMA 2.2. Let G “ tV, Eu be a simple, oriented graph with V “
Ť

IPIV
VI and

E “
Ť

JPJE
EJ. Consider a subset GIJ :“ tVI, EJu with connection matrix AIJ, and let

Gflow,IJ,k :“ tEflow,IJ,k,Vflow,IJ,ku, k “ 1, . . . ,K, denote the strongly connected compo-
nents of Gflow

IJ with interior subgraphs G inner
flow,IJ,k “ tE inner

flow,IJ,k,V inner
flow,IJ,ku. Then,

BIJ “
1

2
AIJ diag pqJ,jqj

`

diag psgnpqJ,jqqjA
T
IJ ` |A

T
IJ |
˘

.

If
ř

ejPEinc,spviqXEJ
|qj | ą 0 for vi P VI and

ÿ

ejPEinc,spviqXpEJzE inner
IJ,flow,kq

|qj | ě 0,(2.6)

for k “ 1, . . . ,K, and there exists vî P Vflow,IJ,k such that (2.6) is strictly satisfied, then BIJ

is nonsingular.
Proof. To prove the representation of BIJ, we set

ÃIJ :“ AIJ diag pqJ,jqj
`

diag psgnpqJ,jqqjA
T
IJ ` |A

T
IJ |
˘

and note that

BIJ,i` “
ÿ

ejPEJ

|qj |AIJ,ij
`

AIJ,`j ` |AIJ,`j | sgnpqjq
˘

.

For vi, v` P IV and j P JE , the entries of the incidence matrix A satisfy

AijA`j “

$

’

&

’

%

1, ej P Eincpviq, i “ `,

´1, ej P Eincpviq X Eincpv`q, i ‰ `,

0, else,

Aij |A`j | “

#

Aij , ej P Eincpviq X Eincpv`q,
0, else,

and together with the definition of Einc,spviq, Einc,epviq, we verify that 2BIJ “ ÃIJ.
If Gflow,IJ is composed of K strongly connected components

Gflow,IJ,k :“ tVflow,IJ,k, Eflow,IJ,ku, then it follows that BIJ is congruent to a block up-
per triangular matrix with irreducible diagonal blocks BIJ,kk, k “ 1, . . . ,K, i.e., there exists a
permutation Π such that ΠTBIJΠ “ rBIJ,klskl with BIJ,kl “ 0, k ą l, and BIJ,kk irreducible,
cf. [20]. We show that under the given conditions, each BIJ,kk is irreducibly diagonally
dominant and hence nonsingular for k “ 1, . . . ,K, cf., e.g., [5, p. 67], [11, p. 403]. Thus, BIJ
is nonsingular.

The i-th column of BIJ,kk is given by

rBIJ,kkeis` “

$

’

&

’

%

2
ř

ejPEinc,spviqXEJ
|qj |, i “ l,

´2|qj |, ej P Einc,spviq X Eincpv`q X EJ, i ‰ `,

0, else,

for ` “ 1, . . . , |Vflow,IJ,k|, and noting that

ď

v`PVIJ,flow,kztviu

´

Einc,spviq X Eincpv`q X EJ

¯

“ Einc,spviq X E inner
IJ,flow,k,
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for vi P VIJ,flow,k, the i-th column sum of BIJ,kk is given by
ÿ

v`PVIJ,flow,k

|BIJ,kk,i`| “
ÿ

ejPEinc,spviqXpEJzE inner
IJ,flow,kq

|qj |.

Hence, if condition (2.6) is satisfied for vi P Vflow,IJ,k and k “ 1, . . . ,K, then BIJ,kk is
diagonally dominant for k “ 1, . . . ,K. For k “ 1, . . . ,K, if there exists vî P Vflow,IJ,k such
that (2.6) is strictly satisfied, then, together with the irreducibility, it follows that BIJ,kk is
irreducible diagonally dominant for k “ 1, . . . ,K. Then, BIJ is nonsingular.

EXAMPLE 2.3. For the graph in Figure 2.1, the flow matrix is given by

BIJ “

»

—

—

–

|q1| ` |q4| 0 ´|q3| 0
´|q1| |q2| 0 0

0 ´|q2| |q3| 0
0 0 0 |q7|

fi

ffi

ffi

fl

.

The strongly connected components of Gflow
IJ are given by E inner

flow,IJ,1 “
 

tvI,1, vI,2, vI,3
(

,

te1, e2, e3uu and E inner
flow,IJ,2 “ ttvI,4uu. The matrix BIJ is irreducible as there exists no

permutation that would transform this matrix into an upper triangular matrix, and we observe
that BIJ is nonsingular only if |q4|, |q7| ą 0, i.e., only if the flows |q4|, |q7| start at vI,1, vI,6.
This agrees with the conditions of Lemma 2.2, claiming that

ÿ

ejPEinc,spvI,1qXpEJzE inner
IJ,flow,kq

|qj | “ |q4|,
ÿ

ejPEinc,spvI,6qXpEJzE inner
IJ,flow,kq

|qj | “ |q7| ą 0,

whereas
ř

ejPEinc,spvI,iqXpEJzE inner
IJ,flow,kq

|qj | “ 0 for i “ 1, 2, 3.
Besides these graph-theoretical results, we frequently use the following identity for the

rank of a block matrix A “ rAijsi,j“1,2, cf., e.g., [11, p. 25]. If A11, A22 are nonsingular,
then

(2.7) rankpAq “ rankpA11q ` SA11pAq “ rankpA22q ` SA22pAq,

where SA11
pAq :“ A22´A21A

´1
11 A12 and SA22

pAq “ A11´A12A
´1
22 A21 denotes the Schur

complements.

3. A network model for incompressible flow networks. We consider a network

(3.1) N “ tPi,Pu,De, Jc,Reu

that is composed of pipes, pumps, demands, junctions, and reservoirs and that is filled by
an incompressible fluid, for instance, water. The pipes Pi :“ tPi1, . . . ,PinPiu and pumps
Pu :“ tPu1, . . . ,PunPuu are connected by junctions Jc :“ tJc1, . . . , JcnJcu in which the mass
flow of the fluid is split or merged. We distinguish between virtual connection points
Jc0 :“ tJc0,1, . . . , Jc0,nJc0

u and connection points JcV :“ tJcV,1, . . . , JcV,nJcV
u possessing

a volume Vi ą 0. Those virtual connections point have a certain importance in the design
of system simulation software since they allow us to connect standardized subcomponents
without introducing additional volumes (and as a consequence additional thermal inertia).
The connection to the environment is modeled by reservoirs Re :“ tRe1, . . . ,RenReu and
demand branches De :“ tDe1, . . . ,DenDeu that impose predefined pressures enthalpies as
well as mass and enthalpy flows onto the network. The number of each element in N is
denoted by nPi, nPu, nJc, nDe, nRe, respectively, where nJc “ nJc0 ` nJcV , and we define
n :“ nPi ` nPu ` nJc ` nRe ` nDe.
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Given boundary conditions p̄Re“rp̄Reisi, h̄Re“rh̄Reisi, i“1, . . . , nRe, and q̄De“rq̄Dej sj ,
H̄De “ rH̄Dej sj , j “ 1, . . . , nDe, the task is to compute the mass and enthalpy flows
qPi “ rqPiisi“1,...,nPi , qPu “ rqPuisi“1,...,nPu , qDe “ rqDeisi“1,...,nDe and HPi “ rHPiisi“1,...,nPi ,
HPu “ rHPuisi“1,...,nPu , HDe “ rHDeisi“1,...,nDe in the pipes, pumps, and demand branches as
well as the pressures and specific enthalpies pJc “ rpJcisi“1,...,nJc , pRe “ rpReisi“1,...,nRe and
hJc “ rhJcisi“1,...,nJc , hRe “ rhReisi“1,...,nRe in the junctions and reservoirs.

To set up the governing equations for the network, we consider the characteristic relation
that every element imposes on the enthalpy flow and the specific enthalpy as well as on the
mass flow and pressure.

In a pipe Pij directed from vj1 to vj2 , the mass flow qj is specified by the transient
momentum equation

9qPi,j “ c1,j∆pj ` c2,jphj1qsgnpqPi,jqq
2
Pi,j ` c3,j “: fPi,jpqPi,j ,∆pjq(3.2a)

depending on the pressure difference ∆pj “ pj1 ´ pj2 between the adjacent nodes vj1 , vj2
and constants ci,j depending, e.g., on the pipe diameter, length, inclination angle, and physical
properties. Including thermal effects, the density of the mass flow qj typically depend on
the specific enthalpy hj1 in the originating vertex vj1 leading to c2,j “ c2,jphj1q. Then,
fPi,j P CpΩPij ˆ p´8,8q,Rq, where ΩPij Ă p´8,8q denotes the domain of admissible
mass flows in Pij . The enthalpy flow Hj in Pij agrees with the product of the mass flow qj
and the specific enthalpy hi1 , i.e.,

Hj “
qPi,j

2
ppsgnpqjq ` 1qhj1 ´ psgnpqjq ´ 1qhj2q “: fPi˚pqPi,j , hj1 , hj2q.(3.2b)

Then, fPi˚,j P CpΩPij ˆ p´8,8q
2,Rq with

D1fPi˚,jpqPi,j , hj1 , hj2q “

$

’

&

’

%

hj1 , qPi,j ą 0,

0, qPi,j “ 0,

hj2 , qPi,j ă 0.

In a pump Puj directed from vj1 to vj2 , the mass flow qPu,j is specified algebraically by the
pressure drop ∆pj “ pj1 ´ pj2 , i.e.,

pj1 ´ pj2 “ fPuj pqPu,jq.(3.2c)

The function fPuj is given by specialized pump models, cf., e.g., [9]. Without loss of gener-
ality, we assume that fPu,j P C

1pΩPuj ,Rq, where ΩPuj Ă p´8,8q denotes the domains of
admissible mass flows in Puj . The enthalpy flow HPu˚,j in Puj is given by

HPu,j “
qPu,j

2
ppsgnpqPu,jq ` 1qhj1 ´ psgnpqPu,jq ´ 1qhj2q ` δhj

“: fPu˚pqPu,j , hj1 , hj2q,
(3.2d)

with fPu˚,j P CpΩPuj ˆp´8,8q
2,Rq. Here, δhj is heat induced by the pump. For simplicity,

in the following we assume that δhj “ 0.
Due to mass conservation, in a junction Jci, the amount of mass entering and leaving Jci

is equal. Summarizing the indices of pipes and demand branches that are incident to Jci in the
set Ĵi, we thus get that

ÿ

jPĴi

qj “ 0.(3.2e)
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Similarly, due to energy conservation, in a junction JcV,i, the sum of all enthalpy fluxes Hj

entering or leaving Jci equals the product of the volume Vi and the change of the specific
enthalpy hJcV ,i, i.e.,

ÿ

HjPEincpJcV,iq

Hj “ Vi 9hJcV ,i.(3.2f)

In a virtual connection point Jc0,i, we have

ÿ

HjPEincpJc0,iq

Hj “ 0.(3.2g)

In a demand branch Dej , the mass and enthalpy flow qDe,j , HDe,j are specified by functions
q̄De,j , H̄De,j P C

1pIDe,Rq, i.e.,

qDe,j “ q̄De,j ,(3.2h)
HDe,j “ H̄De,j .(3.2i)

Similarly, in a reservoir Rei, the pressure pRe,i and the specific enthalpy hRe,i are specified by
functions p̄Re,i, h̄Re,i P C

1pIRe,Rq, i.e.,

pRe,i “ p̄Re,i,(3.2j)
hRe,i “ h̄Re,i.(3.2k)

To include the connection structure of the network N and summarize the equations (3.2) for
N , we represent N as a graph G. The pipes, pumps, and demand branches correspond to the
edges of G while the junctions and reservoirs serve as vertices, i.e., we set

G “ tV, Eu with E “ tPi,Pu,Deu and V “ tJc0, JcV ,Reu.(3.3)

We impose the following assumptions on the connection structure of N .
ASSUMPTIONS 3.1. Consider a network N as in (3.1).
(i) Two junctions are connected by at most one pipe or one pump. Each pipe, pump, and

demand has an assigned direction.
(ii) The network is connected, i.e., every pair of junctions and/or reservoirs can be

reached by a sequence of pipes and pumps.
(iii) Every junction is adjacent to at most one demand branch. Every reservoir is con-

nected at most to one pipe or pump.
Under Assumptions 3.1, the graph G given in (3.3) is simple and connected, and the

reservoirs are end vertices. Assigning a direction to each pipe, pump, and demand, G is
oriented, allowing us to speak of a positive or negative mass flow. Note that the orientation of
the pipes and pumps is arbitrary and only serves as a reference condition; it is not necessarily
related to the true or expected direction of the fluid flow.

Representing the network as a simple, oriented graph, the structure of N is fully described
by the incidence matrix A associated with G. According to G, we partition the incidence
matrix as

A “

»

–

AJcV ,Pi AJcV ,Pu AJcV ,De
AJc0,Pi AJc0,Pu AJc0,De
ARe,Pi ARe,Pu ARe,De

fi

fl “

„

AJc
ARe


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and summarize the flows, pressures, and pressure differences as

q “

»

–

qPi
qPu
qDe

fi

fl , p “

„

pJc
pRe



, ∆p “

»

–

∆pPi
∆pPu
∆pDe

fi

fl ,

and the enthalpy fluxes, specific enthalpies, and their differences as

H “

»

–

HPi
HPu
HDe

fi

fl , h “

»

–

hJcV
hJc0
hRe

fi

fl , ∆h “

»

–

∆hJcV
∆hJc0
∆hRe

fi

fl ,

where hJcV , hJc0 refer to the enthalpies associated with junctions of positive and zero volume,
respectively. Furthermore, we consider the matrix

|A| “
“

|Aij |
‰

pi,jqPVˆE

containing the elementwise absolute values of the incidence matrix A and set

B‹pq˚q “
1

2
diag pq˚ptqq

`

diag psgnpq˚ptqqqA
T
‹,˚ ` |A

T
‹,˚|

˘

,

for ‹ “ Jc0, JcV ,Re, ˚ “ Pi,Pu.
By the definition ofA, the pressure and enthalpy drops ∆pj “ pj1´pj2 , ∆hj “ hj1´hj2

along a given edge ej “ pvj1 , vj2q are given by eTj A
T p “ ∆pj and eTj A

Th “ ∆hj . Setting
C1 “ diag pc1,jqj , C2 “ diag pc2,jqj , C3 “ rc3,jsj , for j “ 1, . . . , nPi, we define the pipe
function

fPipqPi, pJc, pRe, hJc0 , hJcV , hReq :“ C1pA
T
Jc,PipJc `A

T
Re,PipReq

` C2phJcV , hJc0 , hReqdiag p|qPi,j |qjqPi ` C3,

with fPi P C
1pΩPi ˆ ΩJc ˆ ΩRe,RnPiq, where ΩPi “

ŚnPi
j“1 ΩPij , ΩJc “

ŚnJc
i“1 ΩJci , and

ΩRe “
ŚnRe

j“1 ΩRei denote the domains of admissible mass flows and pressures in Pi and
Jc,Re, respectively. Similarly, we summarize the pipe equation (3.2b) for the enthalpy flow
HPi as

HPi “ BJc0pqPiqhJc0 `BJcV pqPiqhJcV `BRepqPiqhRe “: fPi˚pqPi, hJcV , hJc0 , hReq,(3.4a)

with fPi˚ P C
1pΩPi ˆ ΩJc˚ ˆ ΩRe˚ ,RnPiq, where ΩJc˚ “

ŚnJc˚

i“1 ΩJc˚i
, ΩRe˚ “

ŚnRe˚

j“1 ΩRe˚i
denote the domains of admissible enthalpies in Jc˚,Re˚, respectively.

For the pumps, the relation between mass flow and pressure drop is described by the pump
function

fPu :“ rfPu,jsj“1,...,nPu ,

where we assume that fPu P C
1pΩPu,RnPuq, cf., e.g., [9]. Then, we get the pump equation

AT
Jc,PupJc `A

T
Re,PupRe “ fPupqPuq.(3.4b)

Similarly, the pump equation (3.2d) for the enthalpy flows reads

HPu “ BJc0pqPuqhJc0 `BJcV pqPuqhJcV `BRepqPuqhRe ` δh

“: fPu˚pqPu, hJcV , hJc0 , hReq,
(3.4c)
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with fPu˚ P C
1pΩPu ˆ ΩJc˚ ˆ ΩRe˚ ,RnPiq, where ΩPu “

ŚnPu
j“1 ΩPuj denotes the domain of

admissible mass flow in Pu and δh :“ rδhjsj“1,...,nPu .
The sum of all mass flows entering or leaving a junction Jci is given by

eTi Aq “
ÿ

ejPEincpJciq

qj

such that the junction equations (3.2e) can be summarized as

AJc,PiqPi `AJc,PuqPu `AJc,DeqDe “ 0.(3.4d)

In the same manner, we summarize the junction equations (3.2f), (3.2g) as

AJc,PiHPi `AJc,DeHDe “ VJc 9hJc,(3.4e)
AJc,PiHPi `AJc,DeHDe “ 0.(3.4f)

For the demand branches and reservoirs, we obtain the simple relations

qDe “ q̄De,(3.4g)
pRe “ p̄Re,(3.4h)
HDe “ H̄De,(3.4i)
hRe “ h̄Re,(3.4j)

where we assume that H̄De P C1pIDe,Rq, h̄Re P C1pIRe,Rq for IDe “
ŞnDe

j“1 IDej and
IRe “

ŞnRe
j“1 IRei .

In conclusion, the dynamics of the network N is modeled by the differential-algebraic
system (3.4). Each equation of (3.4) and each entry of the state has a direct physical counterpart
in the network. We use this relation to find conditions when (3.4) is uniquely solvable and to
reinterpret these conditions as conditions on the structure and the elements of the network N .

As prerequisites for our analysis, we discuss the following substructures of the network N .
We consider the subset of junctions and pumps GJc,Pu :“ tJc,Puu with the connection matrix
AJc,Pu. We assume that GJc,Pu is composed of K connected components GJc,Pu,k “ tJck,Puku

that are numbered such that GJc,Pu,k corresponds to proper subgraphs for k “ 1, . . . , k̂ and
to subsets with loose edges for k “ k̂ ` 1, . . . ,K. The connection matrix is partitioned
accordingly into AJc,Pu “ diag pAJc,Pu,kqk.

According to Section 2, we partition GJc,Pu into a reduced vertex set Jc1 with ground
nodes Jc2 and into a pump spanning tree Pu1 with chord set Pu2. The associated selection
matrices are given by, cf. (2.2a),

Γ “ rΓ1,Γ2s , ΠPu “ rΠPu,1,ΠPu,2s .

We consider the fundamental cycles CJc,Pu “
ŤK

k“1 CJc,Pu,k, the crossing paths
PJc,Pu “

ŤK
k“1 PJc,Pu,k, and the set of loose pumps Puloose with the selection matrix, cf. (2.2c),

V2 :“ rCJc,Pu, PJc,Pu, LJc,Pus .

For k “ 1, . . . , k̂, we consider the componentwise vertex identification of Jck and set
J̄c :“ tJ̄cku, where J̄ck :“

Ť

JciPJck Jci. The associated identification matrix is given by,
cf. (2.2d),

U2 :“ 1Jc,Pu.
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According to Lemma 2.1, rankpAJc,Puq “ nJc ´ k̂, where k̂ denotes the number of con-
nected components in GJc,Pu that itself are subgraphs. Furthermore, kerpAJc,Puq “ spanpV2q,
corangepAJc,Puq “ spanpΠPu1q and cokerpAJc,Puq “ spanp1Jc,Puq, rangepAJc,Puq “ spanpΓ1q.
From these matrices, we define the transformations

U :“ rΓ1, U2s, V :“ rΠPu1 , V2s,(3.5a)

of which the inverses are given by

U´1 “
“

pU´2 q
T , Γ2

‰T
, V ´1 “

“

pV ´2 q
T , ΠPu2

‰T
,(3.5b)

where

U´2 “ diagpU´2,kqk“1,...,k̂, U´2,k “ ΓT
1,k ´ 1nVGJc,Pu,k

´1ΓT
2,k,

V ´2 “ rdiagpV ´2,kqk“1,...,k̂, 0s, V ´2,k “ ΠT
Pu,k,1 ´ΠT

Pu,k,1V2ΠT
Pu,k,2.

For the vertex identification J̄c, we define the set GJ̄c,Pi :“ tJ̄c,Piu composed of L con-
nected components GJc,Pi,k “ tJ̄ck,Piku. We partition GJ̄c,Pi into a pipe spanning tree
Pi1 “

ŤL
k“1 Pik,1 with pipe chord set Pi2 “

ŤL
k“1 Pik,2 and denote the associated selection

matrix by

ΠPi “ rΠPi,2,ΠPi,1s .(3.5c)

Then, rankpAJ̄c,Piq “ k̂ ´ l̂, where l̂ denotes the number of connected components in GJ̄c,Pi
that itself are subgraphs, and corangepAJ̄c,Piq “ spanpΠPi1q.

We partition and transform the variables according to these substructures and set

(3.6)
pJc1 :“ U´2 pJc, qPu1 :“ V ´2 qPu, qPi1 :“ ΠT

Pi1qPi,

pJc2 :“ ΓT
2 pJc, qPu2 :“ ΠT

Pu2qPu, qPi2 :“ ΠT
Pi2qPi.

The mass flows qPu2 , qPi2 belong to pumps and pipes in the chord sets Pu2,Pi2 while the
pressures pJc2 belong to the ground nodes Jc2. The mass flows qPi1 , qPu1 denote the difference
between the branch flows in Pu1,Pi1 and the flows in the fundamental cycles and crossing
paths containing the considered branch. The pressure pJc1,i denotes the pressure difference
between a junction Jci in the reduced vertex set Jc1 and the associated ground node.

We denote the associated connection matrices accordingly and set, for instance,
AJc1,Pu1 :“ ΓT

1 AJc,PuΠPu1 . Furthermore, we consider the matrices

C :“ AJ̄c,PiC2A
T
J̄c,Pi, DpqPuq :“ V T

2 DfPupqPuqV2,

BpqPi, qPuq :“ AJc0,PiBJc0pqPiq `AJc0,PuBJc0pqPuq,

i.e., C is the Jacobian of the pipe function fPi with respect to the pressure pJc2 restricted to the
contraction J̄c, B is the Jacobian of the pipe and the enthalpy function fPi˚ , fPu˚ with respect
to hJc0 , and D is the Jacobian of the pump function fPu˚ with respect to the pump flows qPu2
restricted to the virtual connection points Jc0. In order to give topological conditions when
B,C are nonsingular, we consider the flow graph Gflow

Jc0,pPi,Puq of the subset GJc0,pPi,Puq. As the
directions of the mass flows may change with t P I, the flow graph is state-dependent in
general, and we write Gflow

Jc0,pPi,PuqpqPi, qPuq. Accordingly, the sets Einc,spJc0,iq, Einc,epJc0,iq are
state-dependent, and we write Einc,spJc0,i; qPi, qPuq, Einc,epJc0,i; qPi, qPuq.
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LEMMA 3.2. Consider the network (3.1) with graph G and incidence matrix A. Consider
the subsets GJc,Pu,GJ̄c,Pi with submatrices AJc,Pu, AJ̄c,Pi.

(i) If nRe ą 0, then rankpAJ̄c,Piq “ k̂ and C is nonsingular.
(ii) For qPi P ΩPi, qPu P ΩPu, let Gflow

Jc0,pPi,Puq;kpqPi, qPuq, k “ 1, . . . ,K, denote the strongly

connected components in the flow graph Gflow
Jc0,pPi,PuqpqPi, qPuq. For Jc0,i PJc0,k,

k “ 1, . . . ,K, if
ÿ

ejPEinc,spJc0,i;qPi,qPuqXtPiYPuu

|qj | ą 0,

ÿ

ejPEinc,spJc0,i;qPi,qPuqXptPiYPuuzEinner
Jc0,pPi,Puq,flow,k

pqPi,qPuqq

|qj | ě 0, k “ 1, . . . ,K ě 0,

(3.7)

and for every k “ 1, . . . ,K, there exists Ĵc0,k P Jc0,k such that (3.7) is strictly
satisfied, then BpqPi, qPuq is nonsingular.

Proof. (i) Neglecting the demand branches De1, . . . ,DenDe in GN , we obtain the subgraph
GN zDe :“ ttJc,Reu, tPi,Puuu whose incidence matrix is given by

AGN zDe “

„

AJc,Pi AJc,Pu
ARe,Pi ARe,Pu



.

As GN zDe is a connected subgraph, it follows that rankpAGN zDeq “ nV ´ 1, cf. Lemma 2.1.
For rAJc,Pi, AJc,Pus, this implies that rankprAJc,Pi, AJc,Pusq “ nJc if nRe ą 0. Considering the
transformations U, V defined in (3.5), we thus have that

nJc “ rank
`

UT rAJc,Pi, AJc,PusV
˘

“ rank

ˆ„

AJc1,Pi AJc1,Pu1 0
AJ̄c,Pi 0 0

˙

“ rankpAJc1,Pu1q ` rankpAJ̄c,Piq.

Since rankpAJc,Puq “ nJc´ k̂, where k̂ denotes the number of connected components in GJc,Pu

that itself are subgraphs, cf. Lemma 2.1, it follows that rankpAJ̄c,Piq “ k̂.
Noting that C1 “ diag pc1,jqj“1,...,nPij

is positive definite since c1,j ą 0, j “ 1, . . . , nPij ,

we can factor the matrix C according to C “ pAJ̄c,Pi
?
C1qpAJ̄c,Pi

?
C1q

T . As the matrix
?
C1 “ diag p

?
c1,jqj“1,...,nPij

is nonsingular, it follows that

rankpCq “ rankpAJ̄c,Pi

a

C1q “ rankpAJ̄c,Piq “ k̂,

implying that C P Rk̂ˆk̂ is nonsingular.
(ii) Noting that

BpqPi, qPuq “
1

2
rAJc0,Pi, AJc0,Pus

„

diag pqPiq 0
0 diag pqPuq



ˆ„

diag psgnpqPiqq 0
0 diag psgnpqPuqq



rAJc0,Pi, AJc0,Pus
T
` r|AJc0,Pi|, |AJc0,Pu|s

T

˙

,

we find that BpqPi, qPuq corresponds to the sum of the flow matrix BJc0,tPi,Puu of the subgraph
tJc0, tPi,Puuu, i.e., B “ BJc0,tPi,Puu. Under the given assertions, we can apply Lemma 2.2
and find that BpqPi, qPuq is nonsingular.

We call the set of virtual connection points Jc0 enthalpy reachable in t P I, if the
assertions of Lemma 3.2 (ii) are satisfied on ΩPi ˆ ΩPu.
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4. Topological solvability conditions for the pressure and temperature model. To
analyze the solvability of (3.4), we define the network function F “ rFT

pres, F
T
enth, F

T
bounds

T P

C1pD,R2nq with

F1 :“

„

FPi
FJc˚V



, Fpres :“

„

FPu
FJc



, Fenth :“

»

–

FJc˚0
FPi˚

FPu˚

fi

fl , Fbound :“

»

—

—

–

FDe
FRe
FDe˚

FRe˚

fi

ffi

ffi

fl

,(4.1)

for x “ rqT , HT , pT , hT sT , the domain of definition D :“ I ˆΩx ˆ 9Ωx with I “ IDe X IRe,
Ωx :“ pΩPi ˆ ΩPu ˆ ΩDeq

2 ˆ pΩJc ˆ ΩReq
2, Ω 9x Ă R2n, and

FPipt, x, 9xq “ 9qPi ´ fPipqPi, pJc, pRe, hJc, hReq,(4.2a)

FPupt, xq “ AT
Jc,PupJc `A

T
Re,PupRe ´ fPupqPuq,(4.2b)

FJcpt, xq “ AJc,PiqPi `AJc,PuqPu `AJc,DeqDe,(4.2c)

FJc˚V
pt, x, 9xq “ V̂ 9hJcV ´AJcV ,PiHPi ´AJcV ,PuHPu ´AJcV ,DeHDe,(4.2d)

FJc˚0
pt, xq “ ´AJc,PiHPi ´AJc,PuHPu ´AJc,DeHDe,(4.2e)

FPi˚pt, xq “ HPi ´ fPi˚pqPi, hJcV , hJc0 , hReq,(4.2f)
FPu˚pt, xq “ HPu ´ fPu˚pqPu, hJcV , hJc0 , hReq,(4.2g)
FDept, xq “ qDe ´ q̄De, FRept, xq “ pRe ´ p̄Re,(4.2h)
FDe˚pt, xq “ HDe ´ H̄De, FRe˚pt, xq “ hRe ´ h̄Re.(4.2i)

To keep the smoothness assumptions on F as relaxed as possible, we partition the state into
differential and algebraic variables xd, xa and set x “ rxdT , xaT sT with

xd “ rq
T
Pi, h

T
JcV s

T , xa “ rq
T
Pu, p

T
Jc, H

T
Pi˚ , H

T
Pu˚ , h

T
Jc0 , q

T
De, p

T
Re, q

T
De˚ , p

T
Re˚s

T .

In addition to the network function, we define the following surrogate network function
F̂ “ rF̂T

1 , F̂
T
2 , F

T
bounds

T P C1pD,R2nq with

F̂1 :“

„

FPi2
FJcV



, F̂2,pres :“

»

–

F 9̄Jc
FPu
FJc

fi

fl , F̂2,enth :“

»

–

FPi˚

FPu˚

FJc˚0

fi

fl ,

where FJcV , FPu, FJc, FPi˚ , FPu˚ , FJc˚0
are given as in (4.2) and (omitting arguments)

FPi2pt, x, 9xq :“ ΠT
Pi2 9qPi ´ΠT

Pi2fPi,

F 9̄Jcpt, xq :“ AJ̄c,PifPi ´AJ̄c,De 9̄qDe.

From the surrogate function, we define the set of consistent initial values by

CIV :“ F̂´1
2 p0q.

Using the concept of derivative arrays and the strangeness index as developed in [15, 16, 17,
18], we characterize the unique solvability of the DAE model (3.4).
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THEOREM 4.1. Let N be a network given by (3.1) that satisfies Assumptions 3.1, and
let F P C1pD,Rnq be the associated network function. If nRe ą 0 and, on CIV , the set Jc0

is enthalpy reachable and the matrix DpqPuq is pointwise nonsingular, then the following
assertions hold.

1. For every pt0, x0q P CIV , there exists an interval pt´0 , t
`
0 q Ă I such that the initial

value problem

F pt, x, 9xq “ 0,(4.3a)
xpt0q “ x0,(4.3b)

is uniquely solvable with x P C1ppt´0 , t
`
0 q,R2nq.

2. For every pt0, x0q P CIV , there exists an interval pt´0 , t
`
0 q Ă I such that a function

x P C1ppt´0 , t
`
0 q,R2nq solves (4.3) if and only if x solves the surrogate model

F̂ pt, x, 9xq “ 0,(4.4a)
xpt0q “ x0.(4.4b)

Proof. We structure our proof in the following way. First, we show that every solution
of (4.4) solves (4.3). Using the transformations (3.5), we show that (4.4) can be decoupled
into an explicit system, whose unique solvability is covered by classical ODE theory and the
Implicit Function Theorem. Using the concept of derivative arrays and the strangeness index,
we finally derive the surrogate model (4.4) and show that every solution of (4.3) solves (4.4).

To prove that every solution of (4.4) solves (4.3), let x P C1pĴ ,R2nq solve (4.4) with
pt0, x0q P CIV . Using a nonsingular matrix S P R2nˆ2n, we transform the states according to
(2.5) and set

x̃ :“ S´1x “
“

qTPi2 , p
T
JcV , q

T
Pi1 , q

T
Pu1 , q

T
Pu2 , p

T
Jc1 , p

T
Jc2 , q

T
De, p

T
Re, H

T
De, h

T
Re

‰T
.

We transform the domain of definition accordingly and set D̃ :“ I ˆ Ωx̃ ˆ Ω 9̃x with
Ωx̃ :“ S´1Ωx, Ω 9̃x :“ S´1Ω 9x and partition the state into x̃ “ rx̃Td , x̃

T
a s

T with x̃d “ qPi2 ,
x̃a “ rp

T
Jc2 , p

T
Jc1 , q

T
Pu2 , q

T
Pu1 , q

T
Pi1 , q

T
De, p

T
Res

T .
For the initial value problem, we choose a nonsingular matrix S̃ P R2nˆ2n and set

F̃ pt, x̃, 9̃xq :“ S̃TF pt, Sx̃, S 9̃xq such that F̃ :“ rF̃T
1 , F̃

T
2,pres, F̃

T
2,enth, F

T
bounds

T P C1pD̃,Rnq

is given by

F̃1 :“

„

F̃Pi2
F̃JcV



, F̃2,pres :“

»

—

—

—

—

–

F̃Pu1
F̃P̄u

F̃Jc1
F̃J̄c

F̃ 9̄Jc

fi

ffi

ffi

ffi

ffi

fl

, F̃2,enth :“

»

—

—

–

F̃Pi˚

F̃Pu˚

F̃Jc˚0
F̃ ˜Jc˚

fi

ffi

ffi

fl

,

with

F̃1 “ F̂1 ˝ pS
´1 ˆ S´1q,

F̃ 9̄Jc “ F 9̄Jc ˝ S
´1, F̃Pu1 “ ΠT

Pu1FPu ˝ S
´1,

F̃Pi˚ “ FPi˚ ˝ S
´1, F̃Pu˚ “ FPu˚ ˝ S

´1,

F̃ ˜Jc˚ “ pAJc,PiFPi˚ `AJc,PuFPu˚ ` FJc˚q ˝ S
´1, F̃P̄u “ V T

2 FPu ˝ S
´1,

F̃Jc1 “ ΓT
1 FJc ˝ S

´1, F̃J̄c “ UT
2 FJc ˝ S

´1.
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Note that 9qPi2 “ ΠT
Pi2qPi as ΠPi2 is constant. Then, the transformation x̃ “ S´1x of the

solution x solves

F̃ pt, x̃, 9̃xdq “ 0, x̃pt0q “ x̃0.(4.5)

Differentiating the mass balance F̃Jcpt, x̃q “ 0 in (4.5) and noting that AJ̄c,Pi1 is nonsingular,
we find that x̃ also solves

9qPi1 “ ´A
´1
J̄c,Pi1

AJ̄c,Pi2 9qPi2 ´A
´1
J̄c,Pi1

AJ̄c,De 9qDe.(4.6)

From the pipe and the demand equations F̃Pi2pt, x̃q “ 0, F̃Dept, x̃q “ 0 in (4.5), we further
find that

9qPi2 “ ΠT
Pi2fPi

`

ΠPi1qPi1 `ΠPi2qPi2 , A
T
Jc1,PipJc1 `A

T
J̄c,PipJc2 `A

T
Re,Pip̄Re

˘

,(4.7)

AJ̄c,De 9qDe “ AJ̄c,PifPi
`

ΠPi1qPi1 `ΠPi2qPi2 , A
T
Jc1,PipJc1 `A

T
J̄c,PipJc2 `A

T
Re,Pip̄Re

˘

9qDe.(4.8)

Inserting (4.7), (4.8) into (4.6), it follows that x̃ solves the differential equation

0 “ FPi1pt, x̃, 9̃xq

:“ 9qPi1 ´A
´1
J̄c,Pi1

AJ̄c,Pi1ΠT
Pi1fPi

ˆ

ΠPi1qPi1 `ΠPi2qPi2 ,

AT
Jc1,PipJc1 `A

T
J̄c,PipJc2 `A

T
Re,Pip̄Re

˙

.

(4.9)

Replacing the equation F̃ 9̄Jcpt, x̃q “ 0 in (4.5) by (4.9), we find that the solution of (4.4) solves

F̄ pt, x̃, 9̃xq “ 0, x̃pt0q “ x̃0,

where F̄ “ rF̄T
1 , F̄

T
2,pres, F̄

T
2,enth, F

T
bounds

T is given by

F̄1 :“

»

–

F̃Pi1
F̃Pi2
F̃JcV

fi

fl , F̄2,pres :“

»

—

—

–

F̃Pu1
F̃P̄u

F̃Jc1
F̃J̄c

fi

ffi

ffi

fl

, F̄2,enth :“

»

–

F̃Pi˚

F̃Pu˚

F̃Jc˚0

fi

fl .

Reversing the variable transformation and combining the pump and junction equations by
V,U using a nonsingular transformation S̄, we verify that x solves

S̄´1F̄ pt, S´1x, S´1 9xq “ F pt, x, 9xq.

Hence, if x P C1pĴ ,R2nq solves (4.4) with pt0, x0q P CIV , then x solves (4.3).
To prove that (4.4) possesses a unique solution for every pt0, x0q P CIV , we decouple (4.4)

using the transformations (3.5) into an explicit system to which we can apply classical ODE
theory and the Implicit Function Theorem. Considering again the transformed system (4.5),
we observe that the Jacobian Bx̃a

F̃2 of (4.5) with respect to x̃a is given by

Bx̃a F̃2 “

»

–

Bx̃a
F̃2,11 ˚ ˚

0 Bx̃a F̃2,12 ˚

0 0 I2nDe`2nRe

fi

fl ,
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where

Bx̃a
F̃2,11 “

»

–

AJ̄c,Pi D2fPiA
T
J̄c,Pi AJ̄c,Pi D2fPiA

T
Jc1,Pi 0 00 AT

Jc1,Pu1 0 0

0 0 InPi 0
0 0 0 InPu

fi

fl ,

Bx̃a F̃2,12 “

»

—

—

–

B AJc,Pu D1fPu˚V2 AJc,Pu D1fPu˚ΠPu1 AJc,Pi D1fPi˚ΠPi1
0 ´D ´V T

2 DfPuΠPu1 0
0 0 AJc1,Pu1 AJc1,Pi1
0 0 0 AJ̄c,Pi1

fi

ffi

ffi

fl

.

On CIV , the diagonal entries of Bx̃a
F̃2,11, Bx̃a

F̃2,12 are pointwise nonsingular such that
Bx̃a

F̃2 is pointwise nonsingular on CIV . For pt0, x̃0q with pt0, Sx̃0q P CIV , we can thus
solve the algebraic equation in (4.5) locally for x̃a as a function of x̃d, cf. [21]. With
F̃ P C1pD̃,Rnq, there exist neighborhoods I0 ˆ Upq2,0q ˆ Upx̃a,0q Ă I ˆ Ωx̃ and a func-
tion g P C1pI0 ˆ Upq2,0q,Upx̃a,0qq such that pt, x̃q solves F̃2pt, x̃q “ 0 if and only if
x̃a “ gpt, x̃dq. Setting

fpt, xdq :“ F̃1pt, rx̃
T
d , g

T pt, x̃dqs
T , 9xdq ` 9xd,

it follows that a function x̃ P C1pĴ ,R2nq solves (4.5) and if and only if x̃ solves the explicit
system

9̃xd “ fpt, x̃dq, x̃dpt0q “ x̃d,0(4.10a)
x̃a “ gpt, xdq.(4.10b)

As g P C1pI0 ˆ Upq2,0q,Upx̃a,0qq and F̃1 P C
1pI ˆ Ω̃x ˆRd,Rdq, the composition satisfies

f P C1pI0 ˆ Upxd,0q,RnPiq. Hence, for every initial value pt0, xd,0q P I0 ˆ Upxd,0q, (4.10a)
has a unique, maximally extended solution xd P C2ppt´0,xd

, t`0,xd
q,Rdq, cf. [1]. Then, (4.10b)

has a unique solution x̃a P C1pIxa
,Rdq, where Ixa

:“ I0 X pt
´
0,xd

, t`0,xd
q. In t0, in particular,

we have x̃apt0q “ gpt0, qPi,2,0q. Setting

Csexp :“ tpt0, x̃d, x̃aq P I0 ˆ Upq2,0q ˆ Upx̃a,0q | qPi,2,0 P Upq2,0q, x̃apt0q “ gpt0, qPi,2,0qu,

and pt´0 , t
`
0 q :“ pt´0,xd

, t`0,xd
q X Ixa , it follows that (4.10) is uniquely solvable for every

pt0, x̃0q P Csexp with x “ rxdT , xaT sT such that xd P C2pJ ,RnPiq, xa P C1pJ ,Rn´nPiq.
As a function x P C1pJ ,Rnq solves the surrogate model (4.4) if and only if its transformation
x̃ “ S´1x solves the explicit system (4.10) and noting that

CIV “ tpt0, x0q P I0 ˆ Dx | pt0, S
´1x0q P Csexpu

by the construction of (4.10), it follows that the surrogate model is uniquely solvable on CIV
with x P C1ppt´0 , t

`
0 q,R2nq.

Now, we show that every solution xd P C2pJ ,Rdq, xa P C1pJ ,Raq, J Ă I, of (4.3)
with pt0, x0q P CIV also solves the surrogate model (4.4) on J . We consider the derivative
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array F :“ rFT , 9FT sT of size µ “ 1 with F given by (4.1) and

9Fpres :“
d

dt
Fpres “

»

–

:qPi ´D1fPi 9qPi ´D2fPipA
T
Jc,Pi 9pJc `A

T
Re,Pi 9pReq

AT
Jc,Pu 9pJc `A

T
Re,Pu 9pRe ´D1fPu 9qPu

AJc,Pi 9qPi `AJc,Pu 9qPu `AJc,De 9qDe

fi

fl ,

9Fenth :“
d

dt
Fenth “

»

—

—

–

VJc:hJc ´AJc,Pi 9HPi ´AJc,Pu 9HPu ´AJc,De 9HDe

´AJc,Pi 9HPi ´AJc,Pu 9HPu ´AJc,De 9HDe
9HPi ´D1fPi˚ 9qPi ´D2fPi˚

9h
9HPu ´DfPu 9qPu ´D1fPu 9h

fi

ffi

ffi

fl

,

9Fenth :“
d

dt
Fenth “

»

—

—

—

–

9qDe ´ 9̄qDe
9pRe ´ 9̄pRe
9HDe ´

9̄HDe
9hRe ´

9̄hRe

fi

ffi

ffi

ffi

fl

.

We consider the algebraic solution set F´1p0q “ tz P R6n`1 |Fpzq “ 0u, i.e., the set of
all vectors z “ pt, x, v, wq that satisfy Fpzq “ 0 in the algebraic sense without a differential
relation between the components and denote the set of initial values pt0, x0q that are part of a
vector pt0, x0, v0, w0q P F´1p0q by

C1 :“ tpt0, x0q P Ωx | Dpv0, w0q P Ωx ˆ Rn : pt0, x0, v0, w0q P F´1p0qu.

As every solution xd P C2pJ ,Rdq, xa P C1pJ ,Raq, J Ă I, of (4.4) with pt0, x0q P CIV
solves (4.3) and hence the derivative array satisfies Fpt, x, 9x, :xq “ 0, it follows that CIV Ă C1.
In particular, this implies that F´1p0q ‰ H.

Considering the Jacobians Mpzq :“ Bv,wFpzq, Npzq :“ BxFpzq, with the argument
z “ pt, x, v, wq P F´1p0q, we first show that Bv,wMpzq “ 0, Bv,wNpzq “ 0, implying that
Mpzq “ Mpxq and Npzq “ Npxq. Then, we prove that Mpxq, Npxq satisfy the following
rank assumptions for pt, xq P CIV :

(i) a :“ corankpMpxqq “ nPi ` 2nPu ` 2nJcV ` 3nJc0 ` 2nDe ` 2nRe ´ k̂,
(ii) rankpZT

2 Npzqq “ a, where Z2 P Rnˆa is a basis of cokerpMpxqq,
(iii) rankpBvF pzqT2q “ d, where T2 P Raˆd is a basis of kerpNq and d :“ 2n´ a.

By [18, Theorem 4.11], it follows that every solution x P C1pĴ ,R2nq, Ĵ Ă I, of (4.3) with
pt0, x0q P C1 solves the surrogate model (4.4) on Ĵ .

To verify the assumptions in items (i)–(iii), we transform the Jacobians M,N by non-
singular transformations constructed from the matrices U, V,ΠPi defined in (3.5). For (i), we
transform the Jacobian M by nonsingular transformations Π̄M ,ΠM P R4nˆ4n such that

Π̄T
MMΠM “

»

—

—

–

InPi`nJcV `2nDe`2nRe 0 0 0

˚ M̃22 M̃24 0

˚ M̃32 0 0

M̃41 0 0 0

fi

ffi

ffi

fl

,
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where

M̃22 “

»

—

—

—

—

—

—

—

—

–

AJc1,Pu1 0 0 0 0 0 0
´V T

2 DfPuV1 ´D 0 0 0 0 0
´V T

1 DfPuV1 ´V T
1 DfPuV2 AT

Jc1,Pu1 0 0 0 0
0 0 ´D2fPiA

T
Jc1,Pi IPi 0 0 0

´DfPu˚V1 ´DfPu˚V2 0 0 IPu 0 0
0 0 0 0 0 IPi 0
0 0 0 0 ´AJcV ,Pu ´AJcV ,Pi VJc

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

M̃24 “

»

—

—

—

—

—

—

—

—

–

0 0 0 0
0 0 0 0

V T
1

9DFPu 0 0 0 0
´D3fPi 0 D2fPiA

T
Jc2,Pi 0

´BJc0pqPuq 0 0 0
´BJc0pqPiq 0 0 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

M̃32 “
“

0 0 0 0 ´AJc0,Pu ´AJc0,Pi 0
‰

,

M̃41 “

»

—

—

—

—

–

AJ̄c,De 0 0 0 AJ̄c,Pi 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

.

By the choice of U1, V1 and the assumption on D, the diagonal block M̃22pxq is nonsin-
gular on CIV , implying that

rankpMpxqq “ nPi ` nJcV ` 2nDe ` 2nRe ` rankpM̃22q ` rankpS11pΠ̄
T
MMΠM qpzqq

on CIV , cf. (2.7), where the Schur complement is given by

S11pΠ̄
T
MMΠM qpzq “ ´pM̃32M̃

´1
22 M̃24qpzq “

“

B 0 0 0
‰

.

As Jc0 is enthalpy reachable on CIV , the matrix B is pointwise nonsingular on CIV with
rankpBpzqq “ nJc0 , cf. Lemma 3.2, and it follows that

rankpMpxqq “ 3pnPi ` nJcV q ` pnPu ` nJc0 ` nDe ` nReq ´ k̂

and a “ corankpMpxqq on CIV .
For (ii), we exploit the structure of Π̄T

MMΠM to construct a basis Z2 P R4nˆa of
corangepMpxqq. Setting

ZT
2 “

“

´M̃41 0 0 Ia
‰

Π̄T
M ,(4.11)

we find that spanpZ2q “ corangepMpxqq for every x P CIV . Applying Z2 and a suitable
transformation ΠN P R2nˆ2n to the Jacobian N , we get that

Π̄T
NZ

T
2 NΠN pzq “

»

–

I2nDe`2nRe 0 0

˚ Ñ22 Ñ23

˚ Ñ32 0

fi

fl ,
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where

Ñ22 “

»

—

—

—

—

—

—

—

—

–

AJ̄c,Pi1 0 0 0 0 0 0
AJc1,Pi1 AJc1,Pu1 0 0 0 0 0

0 V T
2 DfPuV1 D 0 0 0 0

0 V T
1 DfPuV1 V T

1 DfPuV2 AT
Jc1,Pu1 0 0 0

AJ̄c,Pi D1fPiΠ1 0 0 D̃2fPi C 0 0
0 ´DfPu˚V1 ´DfPu˚V2 0 0 IPu 0

´DfPi˚Π1 0 0 0 0 0 IPi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Ñ23 “

»

—

—

—

—

—

—

—

—

–

AJ̄c,Pi2 0 0
AJc1,Pi2 0 0

0 0 0
0 0 0

AJ̄c,Pi D1fPiΠ2 AJ̄c,PiB 9hJc,V
fPi AJ̄c,Pi D3fPi

0 ´BJcV pqPuq ´BJc0pqPuq

´DfPi˚Π2 ´BJcV pqPiq ´BJc0pqPiq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Ñ32 “
“

0 0 0 0 0 ´AJc0,Pu ´AJc0,Pi
‰

.

As nRe ą 0, the matrix C is nonsingular, cf. Lemma 3.2. By the choice of Γ1,PiPu1 , and
the assumptions on D, the diagonal block Ñ22pzq is pointwise nonsingular on CIV with
rankpÑ22pzqq “ nJc ` 2nPu ` nPi ` k̂. Hence,

rankpZT
2 Nq “ 2pnDe ` nReq ` rankpÑ22q ` rankpÑ32Ñ

´1
22 Ñ23q.

Noting that Ñ32Ñ
´1
22 Ñ23 “ r˚, ˚, B

T sT , we have verified that rankpZT
2 Npxqq “ a on CIV .

For (iii), we exploit the structure of ZT
2 NpxqΠN and construct a basis T2 P CpD,Rnˆdq

of kerpZT
2 Npxqq, where d “ 2n´ a “ nPi ´ nJc ` k̂2. Choosing X3 P C

1pI ˆΩx,RnPiˆdq

with spanpX3q “ kerpÑ32Ñ
´1
22 Ñ23q and setting

T2 “ ΠT
N

“

0 ´Ñ´1
22 Ñ23 InPi

‰T
X3,

we have spanpT2pxqq “ kerpZT
2 Npxqq for every x P CIV . Then, we find that

F 9q, 9pT2 “

„

pΠPi2 ´ΠPi1A
´1
J̄c,Pi1

AJ̄c,Pi2q
T 0 0 0

0 0 InJcV
0

T

.

Noting that

ΠPi2 ´ΠPi1A
´1
J̄c,Pi1

AJ̄c,Pi2 “ ΠPi

„

´A´1
J̄c,Pi1

AJ̄c,Pi2
Id



,

it follows that rankppF 9xT2qpzqq “ d for z “ pt, x, vq P F´1p0q with pt, xq P CIV . Setting

Z1 :“

„

ΠT
Pi2 0 0 0
0 InJcV

0 0

T

,(4.12)

we have verified that rankppZT
1 F 9xT2qpzqq “ d for z “ pt, x, vq P F´1p0q with pt, xq P CIV .

Hence, the network model (4.3) satisfies the assumptions (i)–(iii), implying that every suffi-
ciently smooth solution of (4.3) with pt0, x0q P C1 solves the surrogate model

ZT
1 F pt, x, 9xq “ 0, xpt0q “ x0,

ZT
2 Fpt, x, 9x, :xq “ 0,
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cf. [19, Theorem 4.11]. With Z1, Z2 given by (4.12), (4.11), we get F̂1 :“ ZT
1 F , F̂2 :“ ZT

2 F .
As fPi P C

1pΩPi ˆ p´8,8q
nJc`nRe ,RnPiq, every solution x P C1ppt´0 , t

`
0 q, R2nq of

(4.4) satisfies xd P C2pJ ,RnPiq, xa P C1pJ ,Rn´nPiq, and, for pt0, x0q P CIV , a function
x P C1pJ ,R2nq solves (4.3) if and only if x solves (4.4).

Note that the smoothness of the algebraic components xa depends on the smoothness of
the pump function.

Translated as conditions on the network structure and its elements, the solvability con-
ditions of Theorem 4.1 mean that a reservoir is required as reference value for the pressure
pJc and the enthalpy hJc0 in the virtual connection points Jc0. Furthermore, on fundamental
cycles and crossing paths as well as in isolated pumps of GJc,Pu, the pumps must be able to
adjust the mass flow to a given pressure difference. That is, because the transfer elements
(the pipes and pumps) only specify the pressure difference, a reservoir is needed as reference
value for the pressure pJc, thus, in every connected component there needs to be a reservoir.
Similarly, in the virtual connection points Jc0, the enthalpy hJc0 is computed by inserting the
pipe and pump equations into the energy balance. Here as well, only the enthalpy difference is
specified, so in order to obtain a unique solution, we need a reference value. As the enthalpy
flow depends on the direction of the mass flow, these virtual connection points need to be
strongly connected to a reservoir.

Usually, pumps return a pressure difference for a given mass flow. On structures of GJc,Pu
where the pressure difference vanishes, however, the pumps have to work the other way round,
which, mathematically, is reflected by the nonsingularity condition on the matrix D. We
illustrate this by an example.

EXAMPLE 4.2. We consider pumps Pu1,Pu2,Pu3 connected to a cycle that is connected
to a demand De. The network model (4.3a) reads

(4.13)

pJc,2 ´ pJc,1 “ fPu,1pqPu,1q, qPu,1 “ qPu,2,

pJc,3 ´ pJc,2 “ fPu,2pqPu,2q, qPu,2 “ qPu,3,

pJc,1 ´ pJc,3 “ fPu,3pqPu,3q, qPu,3 “ qPu,1 ` qDe, qDe “ q̄De.

From the mass balances, we get that q̄De ” 0 and qPu,1 “ qPu,2 “ qPu,3. In combination with
the pump equations, it follows that

fPu,1pqPu,1q ` fPu,2pqPu,1q ` fPu,3pqPu,1q “ 0.

Hence, the input q̄De is not freely choosable, and (4.13) is locally solvable for qPu,1,0 P R if
and only if

ř3
j“1 DfPu,jpqPu,1,0q is nonsingular. However, as the pump equations only specify

the pressure difference, the DAE (4.13) will not be uniquely solvable unless the model is
connected to a reservoir.

Similarly, coupling two pumps Pu1,Pu2 between two reservoirs Re1,Re2, we obtain the
system

(4.14)
pJc,1 ´ pRe,1 “ fPu,1pqPu,1q, qPu,1 “ qPu,2,

pRe,2 ´ pJc,1 “ fPu,2pqPu,2q,

and observe that (4.14) is locally solvable if and only if
ř2

j“1 DfPu,jpqPu,1,0q is nonsingular
for qPu,1,0 P R.

In order to avoid the verification whether the pump function satisfies this solvability
condition, i.e., to avoid the test if D is nonsingular, the considered network can be restricted to
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those in which pumps are coupled to a cycle or to those where paths between two reservoirs
do not occur.

LEMMA 4.3. Let N be a network given by (3.1) that satisfies Assumptions 3.1. Let
F P C1pD,Rnq be the associated network function. If nRe ą 0, Jc0 is enthalpy reachable,
and kerpAJc,Puq “ t0u, then the assertions of Theorem 4.1 are satisfied.

Proof. If kerpAJc,Puq “ t0u, then V2 is the empty matrix, and the solvability condition of
Theorem 4.1 is automatically satisfied.

On the structural level, the condition kerpAJc,Puq “ t0u means that in every cycle of
pumps and every path of pumps between two reservoirs, there is at least one pipe.

EXAMPLE 4.4. In Example 4.2, replacing, e.g., the pump Pu3 by a pipe Pi3, we obtain
the network DAE

(4.15)

pJc,2 ´ pJc,1 “ fPu,1pqPu,1q, qPu,1 “ qPu,2,

pJc,3 ´ pJc,2 “ fPu,2pqPu,2q, qPu,2 “ qPi,3,

9qPi,3 “ fPi,3pqPi,3, pJc,1 ´ pJc,3q, qPi,3 “ qPu,1 ` qDe, qDe “ q̄De.

The system (4.15) can be solved for qPu,1, qPu,2, qPi,3 and, e.g., pJc,1, pJc,2, in dependency of
the reference pressure pJc,3 by simply evaluating the pump equations; there is no need to invert
the pump functions. Similarly, in the second example, replacing, e.g., the pump Pu2 by a pipe
Pi2, we obtain a solvable system.

Jc1

Jc2Jc3

qPu,1

qPu,2

qPu,3

qDe
Jc1

Jc2Jc3

qPu,1

qPu,2

qDe

qPi,3

FIG. 4.1. Pump constellations of Example 4.2 and Example 4.4 that trigger the solvability condition "D is
nonsingular” (left) and constellations that avoid this condition (right).

In conclusion, if pumps are present in the network, the solvability condition can be either
imposed on the element level, claiming that D is pointwise nonsingular on CIV , or, in order
to ensure that the model works for every pump specification, they can be imposed on the
structural level. Depending on the desired modeling freedom, one can choose between these
two options.

If the solvability conditions are satisfied and the network is plausible, the next step is
to simulate the dynamics of N . The DAE (4.3a) assembled by gluing together the element
equations (3.2) using the incidence matrix, however, is not suitable for a numerical simulation
as it contains hidden equations and does not reflect the number of differential and algebraic
variables correctly.

While the pressure differences pJc1 associated with rangepAJc,Puq are uniquely specified
from the pump equations, the pressures pJc2 in the ground nodes Jc2 are associated with
cokerpAJc,Puq and thus do not receive a pressure value from a pump. Instead, the pressures
pJc2 are specified by the hidden constraint

AJ̄c,PifPipqPi, pJc, pRe, hJc0 , hJcV , hReq ´AJ̄c,De 9̄qDe “ 0

arising from inserting the pipe equation, i.e., a differential equation, into the mass balance in
the junctions. Claiming that AJ̄c,PifPiA

T
J̄c,Pi is nonsingular, this equation uniquely specifies the

pressure pJc2 . To compensate for the additional equations, the surrogate model (4.4a) specifies
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only the pipe flows on the chord set Pi2 by a differential equation, while the mass flows in
pipes on the spanning tree Pi1 are given by the mass balance FJcpt, xq “ 0, cf. (4.2c). We
illustrate this again by an example.

EXAMPLE 4.5. We consider two pipes Pi1,Pi2 that are coupled by a junction Jc1,
cf. Figure 4.2. For simplicity, we assume that the pipes are connected to reservoirs Re1,Re2.
Then, we obtain the network DAE

9qPi,1 “ fPi,1pqPi,1, pRe,1 ´ pJc,1q, qPi,1pt0q “ qPi,1,0,(4.16a)
9qPi,2 “ fPi,2pqPi,2, pJc,1 ´ pRe,2q, qPi,2pt0q “ qPi,2,0,(4.16b)
qPi,1 “ qPi,2.(4.16c)

The pipes specify the mass flows differentially while the junction relates the flows algebraically.
Consequently, only one mass flow evolves dynamically; the other one is fixed algebraically by
the mass balance. In particular, only one initial value can be chosen. The pressure only occurs
implicitly in the differential equations. Differentiating the algebraic equation and inserting
the pipe equations for the derivatives of the mass flows, however, we discover the algebraic
equation

fPi,1pqPi,1, p̄Re,1 ´ pJc,1q “ fPi,2pqPi,2, pJc,1 ´ p̄Re,2q.(4.17)

As D2pfPi,2 ´ fPi,1q “ c1,1 ` c1,2 is nonsingular, (4.17) can be solved for the pressure
pJc,1, and (4.16) is uniquely solvable. Hence, coupling two pipes by a junction, the network
model (4.3a) contains a hidden algebraic equation that is needed to specify the pressure in
the coupling junction. Also, (4.3a) does not correctly reflect the number of differential and
algebraic variables as only one mass flow evolves dynamically. Thus, we consider the surrogate
model

9qPi,1 “ fPi,1pqPi,1, pRe,1 ´ pJc,1q, qPi,1pt0q “ qPi,1,0,

fPi,1pqPi,1, pRe,1 ´ pJc,1q “ fPi,2pqPi,2, pJc,1 ´ pRe,2q,

qPi,1 “ qPi,2,

which corresponds to (4.4).

Re1 Jc1 Re2

qPi,1 qPi,2

FIG. 4.2. Network of Example 4.5.

From the proof of Theorem 4.1, we observe that the solution of (4.3) can be computed
from the explicit system (4.10). Exploiting the linearity and the triangular structure of J , we
explicitly compute the function g. Using a nonsingular matrix S P R2nˆ2n, we transform the
states according to (3.6) and set

x̃ :“ S´1x :“
“

qTPi2 , p
T
JcV , q

T
Pi1 , q

T
Pu1 , q

T
Pu2 , p

T
Jc1 , p

T
Jc2 , q

T
De, p

T
Re, H

T
De, h

T
Re

‰T
.

We transform the domain of definition accordingly by setting D̃ :“ I ˆ Ωx̃ ˆ Ω 9̃x with
Ωx̃ :“ S´1Ωx, Ω 9̃x :“ S´1Ω 9x and partition the state into x̃ “ rx̃Td , x̃

T
a s

T with the vectors
x̃a “ rp

T
Jc2 , p

T
Jc1 , q

T
Pu2 , q

T
Pu1 , q

T
Pi1 , q

T
De, p

T
Res

T and x̃d “ qPi2 .
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COROLLARY 4.6. Let N be a network given by (3.1) that satisfies Assumptions 3.1. Let
F P C1pD,Rnq be the associated network function. If nRe ą 0, D is pointwise nonsingular
on CIV , where spanpV2q “ kerpAJc,Puq, and Jc0 is enthalpy reachable, then a function
x P C1ppt´0 , t

`
0 q,R2nq solves (4.3a) if and only if its transformation x̃ “ S´1x solves the

explicit system

9̃xd “ fpt, x̃dq, x̃dpt0q “ xd,0,(4.18a)
x̃a “ gpt, x̃dq,(4.18b)

where

fPi2 “ fPi2

`

gPipqPi2q, A
T
Jc,PigJcpqPi2q `A

T
Re,Pip̄Re

˘

,

fJcV “ V ´1
`

AJcV ,PifPi˚pgPi, gJcV , gJc0 , gReq `AJcV ,PufPu˚pgPi, gJcV , gJc0 , gReq

`AJcV ,DegDe˚
˘

,

gPi˚ “ fPi˚pgPipqPi2q, hJcV , gJc0pqPi2 , hJcV q, h̄Req,

gPu˚ “ fPu˚pgPupqPi2q, hJcV , gJc0pqPi2 , hJcV q, h̄Req,

gJc2pqPi2q “ ´C
´1AJ̄c,Pi

´

C2phJcV , gJc0pqPi2 , hJcV q, h̄Reqdiag pgPi,jpqPi2qqgPipqPi2q

` C1A
T
Jc1,PigJc1pqPi2q ` C1A

T
Re,Pip̄Re ` C3

¯

´ C´1AJ̄c,De 9̄qDe,

gJc0pqPi2 , hJcV q “ ´B
´1

`

AJc,PiBJcV

`

gPipqPi2q
˘

`AJc,PuBJcV

`

gPupqPi2q
˘˘

hJcV

´B´1
`

AJc,PiBRepqPiq

`AJc,PuBRepgPupqPi2qq
˘

h̄Re ´B
´1AJc,DeH̄De,

gJc1pqPi2q “ ´A
´T
Jc1,P̄uA

T
J̄c,P̄upJc2 `A

´T
Jc1,P̄uΠT

Pu1fPu
`

gPupqPi2q
˘

´A´T
Jc1,P̄uA

T
Re,P̄up̄Re,

gPu2pqPi2q “ gPu2pgPu1pqPi2qq,

gPu1pqPi2q “ ´A
´1
Jc1,Pu1AJc1,Pi1gPi1pqPi2q ´A

´1
Jc1,Pu1AJc1,Pi2qPi2 ´A

´1
Jc1,Pu1AJc1,Deq̄De,

gPi1pqPi2q “ ´A
´1
J̄c,Pi1

AJ̄c,Pi2qPi2 ´A
´1
J̄c,Pi1

AJ̄c,Deq̄De,

with

gDe “ q̄De, gRe “ p̄Re, gDe˚ “ H̄De, gRe˚ “ h̄Re and

gPipqPi2q :“ ΠPi1gPi1pqPi2q `ΠPi2qPi2 , gPupqPi2q :“ ΠPu1gPu1pqPi2q ` V2gPu2pqPi2q,

gJcpqPi2q :“ Γ1gJc1pqPi2q ` U2gJc2pqPi2q.

The function gPu2 P C
1pUpqPi2,0q,RnPuq is defined as solution of FP̄upt, x̃q “ 0.

Note that the algebraic equations (4.18b) can be solved from bottom to top such that
the algebraic variables can be expressed as functions of the chord flows qPi2 and the input
functions q̄De, p̄Re, H̄De, H̄Re.

REMARK 4.7. The solvability conditions of Theorem 4.1 are formulated on the connection
structure and the elements of the network. This allows us to check the plausibility of the
network in a preprocessing step using information about the incidence matrix A and the pump
function fPu. If the solvability conditions are violated, the critical structures can be located in
N and advice can be given how to modify the model to obtain a physically reasonable system.

The surrogate model (4.4a) can be assembled based on network information only. There
is no need to compute (4.4a) from (4.3a) by symbolic or numerical manipulation as it is
necessary for example in a general modeling language like Modelica. In a simulation, this
saves computational time as the system-to-solve (4.4a) can be assembled directly from the
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network. Furthermore, the physical meaning of the equations and the states is preserved, i.e.,
in the DAE (4.4a), each equation and each variable still has a physical counterpart. Thus,
errors in the simulation can be located in the network, allowing constructive error detection
and handling.

REMARK 4.8. The assertions of Theorem 4.1 can be verified by showing that (4.3) has
regular strangeness index µ “ 1. Therefore, we show that the rank assumptions (i)–(iii)
are not only satisfied by the Jacobians M,N but also by the Jacobians M̃pzq :“ Bv,wF̃pzq,
Ñpzq :“ BxF̃pzq, where F̃ “ rFT , 9FT , :FT sT denotes the derivative array of size µ “ 2,
cf. [19]. This, however, requires to restrict the interval I such that sgnpqq “ const in order
to provide the required smoothness of fPi as well as stricter smoothness assumptions on
fPu, q̄De, p̄Re.

5. Conclusion and outlook. This work provides a full analysis of a thermal fluid net-
work, which is an extension of the well-studied water networks consisting of pipes solely. The
analysis is based on a topological network approach, which allows us to impose conditions on
the underlying network structure, represented by a graph. The provided topological solvability
and index criteria in combination with efficient graph algorithm provide a powerful tool for
the development of system simulation software. Anyhow, for the practical application it is
important to extend those results to networks including valves and tanks, cf. the classification
in [14], in order to be able to capture the whole cooling circuit. We mention, that further
models for system simulation in automotive application (e.g., waste heat recovery, mobile air
conditioning, lubrication systems), show up a similar network structure (with slightly modified
equations). Therefore the presented analysis is representative for the latter mentioned ones.
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