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TOPOLOGICAL SOLVABILITY AND DAE-INDEX CONDITIONS FOR
MASS FLOW CONTROLLED PUMPS IN LIQUID FLOW NETWORKS*

ANN-KRISTIN BAUM#, MICHAEL KOLMBAUER?, AND GUNTER OFENER$

Abstract. This work is devoted to the analysis of a model for the thermal management in liquid flow networks
consisting of pipes and pumps. The underlying model equation for the liquid flow is not only governed by the equation
of motion and the continuity equation, describing the mass transfer through the pipes, but also includes thermodynamic
effects in order to cover cooling and heating processes. The resulting model gives rise to a differential-algebraic
equation (DAE), for which a proof of unique solvability and an index analysis is presented. For the index analysis,
the concepts of the Strangeness Index is pursued. Exploring the network structure of the liquid flow network via
graph-theoretical approaches allow us to develop network topological criteria for the existence of solutions and the
DAE-index. The topological criteria are explained by various examples.
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1. Introduction. Increasingly demanding emissions legislation specifies the performance
requirements for the next generation of products from vehicle manufacturers. Conversely, the
stringent emissions legislation is coupled with the trend in increased power, drivability, and
safety expectations from the consumer market. Promising approaches to meet these require-
ments are downsizing the internal combustion engines (ICE), the application of turbochargers,
variable valve timing, advanced combustion systems, or comprehensive exhaust aftertreatment,
but also different variants of combinations of the ICE with an electrical engine in terms of
hybridization or even a purely electric propulsion. The challenges in the development of
future powertrains do not only lie in the design of individual components but in the assess-
ment of the powertrain as a whole. On a system engineering level it is required to optimize
individual components globally and to balance the interaction of different subsystems. A
typical system engineering model comprises several subsystems. For instance in case of a
hybrid propulsion these can be the vehicle chassis, the drive line, the air path of the ICE
including combustion and exhaust aftertreatment, the cooling system of the ICE, the electrical
propulsion system including the engine and a battery pack, and finally the corresponding
control systems. Similar to the ICE, the battery pack requires a cooling system as well. Both
cooling systems are typically represented by an corresponding hydraulic network in the overall
model. The simulation and optimization of hydraulic networks have been studied in various
works, including [4, 7, 12, 13, 23] and the references therein. The considered models are
motivated by drinking water supply systems, where the main target is to circulate an amount
of water at any time, assuring a certain pressure at extraction points. The aim of this work is to
consider and analyze hydraulic networks used for thermal management systems. Examples in
automotive applications are the above mentioned cooling systems.

In contrast to water transportation networks, the primary interest is not the pressure
distribution across the whole system, but the temperature distribution. Consequently, the
models have to be equipped with energy balance laws in order to model the thermodynamic
effects. The purpose of this work is to extend the results, which are already available for water
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transportation networks [12, 13], to cooling and heating systems used for thermal management
and to networks including mass flow-controlled pumps. Thermal flow networks consisting
solely of pipes have been analyzed in [2]. The extension to networks of pipes and pumps is not
straightforward since additionally to Kirchhoff’s first law, also Kirchhoff’s second law has to
be considered. In particular, Kirchhoff’s second law restricts the allowed pump constellations
for a valid liquid flow model.

The model under consideration is a quasi-stationary pipe network, cf. [13], equipped
with energy balance laws. This model is suited to describe circuits which are filled with
incompressible fluids (e.g., water). Here incompressible means that density changes with
respect to temperature changes or pressure changes are neglected.

While general networks consist of various types of elements (pipes, pumps, valves) [23],
the model here is restricted to pipes and pumps only. Despite this simplification, the demanding
issues are caused by the arbitrary network structure of the underlying model. Since valves can
change the topology of the underlying network due to their discrete nature, they have to be
treated separately.

State-of-the-art modeling and simulation packages such as Dymola', Matlab/Simulink?,
Flowmaster’, Amesim®, SimulationX?, or Cruise M° offer many excellent concepts for the
automatic generation of dynamic system models, including hydraulic networks. Modeling is
done in a modularized way, based on a network of subsystems which again consists of simple
standardized subcomponents. The network structure (topology) carries the core information
of the network properties and therefore is predestinated to be exploited for the analysis and
numerical simulation of those. In many applications, the equations describing the network are
differential-algebraic equations (DAEs). Hence, the analysis of existence and uniqueness of
solutions as well as rank considerations are a delicate issue.

Topology-based index analysis for networks connects the research fields of Analysis for
DAE:s [22] and Graph Theory [8] in order to provide the appropriate basis to analyze DAEs
stemming from automatic generated system models. So far it has been established for various
types of networks, including electric circuits [24], gas supply networks [10], and water supply
networks [12, 13, 23]. Although all those networks share some similarities, an individual
investigation is required due to their different physical nature. Recently, a unified modeling
approach for different types of flow networks has been introduced in [14], aiming at a unified
topology-based index analysis for the different physical domains on an abstract level.

The structure of this work is the following: in Section 2, the main two concepts required
for the analysis are introduced. First, an introduction to graph theory is given, then the
application to equations imposed on networks is described, and the core tools for the following
analysis are proven. The network model and the arising DAEs are formulated in Section 3.
Furthermore, some basic properties are derived, which lead to the full DAE analysis in
Section 4. Beside existence and uniqueness results, DAE-index considerations are performed
to ensure an accurate and efficient numerical simulation. Throughout the analysis, the sufficient
algebraic conditions are linked to necessary conditions imposed on the network structure.
Those topological conditions are explained in terms of examples. A summary of the results
with comments on their practical relevance in commercial simulation software concludes the
paper in Section 5.

Thttp://www.dynasim.com
Zhttp://www.mathworks.com
3http://www.mentor.com
“http://www.plm.automation.siemens.com
Shttp://www.iti.de

Shttp://www.avl.com
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2. Graphs and their application in network dynamics. In this section, we introduce
the notation and graph-theoretical concepts that we need in our analysis and prove some
additional results in Lemma 2.1 and Lemma 2.2.

For a detailed introduction to graph theory, we refer the reader to, e.g., [3, 8]. A graph
Gisapair G = {V,E} of subsets V,€ < Nsuchthat E ¢ V x V, i.e., each element e € £
corresponds to a pair (v;,,v;,) € V x V [8, p.2]. If the pairs (v;, vi) € £ are ordered, then G
is called an oriented graph [8, p.25]. If G is oriented, then v; and vy, are called the originating
and terminating vertex of the edge e; = (v;, i), respectively, [8, p.25]. If G contains no
self-loops or parallel edges, then G is called simple, cf. [8, p. 25].

Two vertices v;, v, € V are called adjacent if there exists an edge e; € £ such that
ej = (v, vr) [8, p. 13]. The edge e; is called incident to v; and vy, respectively [8, p. 13].
Two edges e;, e; € £ are called adjacent if they are incident to a common vertex v; [8, p. 13].
For v; € V, the incident edges are summarized in the set

Emc(vi) = {ej eé | Hvk eV: €; = (’UZ‘,U;C)}.

If Eine(v;) = O, then v; is isolated, and if |E;,,.(v;)| = 1, then v; is an end vertex [8, p.2].
The connection structure of G is described by the incidence matrix A, which, if G is
oriented, is defined as

1, if v; is the left vertex of e;,
Aij = < —1, ifv; is the right vertex of €j,
0, else.

A subset G5 = {Vs, &} with Vg < V is a subgraph of G if & < Vs x Vs, [8, p.3].
If Vs =V, then the subgraph G, spans G [8, p.3]. The incidence matrix of G; is given by
As = [Aij](vs,e,)ev. xe, [8,D.3].

In our analysis, we consider a simple, oriented graph G whose vertices )V and edges £
are composed from subsets V1, ..., Vs and &1, ..., & such that V = U?:l WV, € = Ui:l &.
Accordingly, the incidence matrix A is composed of submatrices Ayy describing the connection
structure of the subsets Gy := {W, &}. In general, a set Gyy is not a proper subgraph of G as
the edges £ may be incident to vertices outside V. Then, the connection matrix Ay does not
have the usual pattern of two non-zero entries per column. To characterize the fundamental
subspaces of Ayy, we partition the edges into

__ ginner loose isolated
=& vEyTru gy )
where 8}““"" contains the edges incident to vertices in V, i.e.,
inner ,__ _ .
&M = {ej € & | ej = (v5,,v;,) with v, v5, € Vi,
511}"’56 contains the loose edges incident to a vertex in My and a vertex outside V1, i.e.,
loose .__ _ :
Ey>° = {ej € & |ej = (v5,,v5,) withv;, € Vi, v, € V\Vi},
and Eilaed contains the isolated edges incident to vertices outside V1, i.e.,
isolated , __ . L — . . 1 . .
&S ={e; € &le; = (vj,,v),) With vy, , v, € V\Wi}.

For simplicity, we assume that there is at most one loose edge per vertex. Using an equivalence
relation, the following results can be extend to the case of multiple loose edges per vertex.
Furthermore, we set

outer ,__ c
VIJ = VI ) VIJ?
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where Vjj contains the vertices outside V) that are incident to edges in &y, i.e.,
VICJ = {Ui € V\V[ | Eadj(vi) NE # @}
With this notation, we set

gﬁuter = {Vﬁuter7 g]}7 in}mer .= {V17 5Iijmer}’
where GO"°' is the minimal subgraph containing Gy and GI™ is the maximal subgraph
contained in Gyy. Using G, Qli}“‘“ we can straightforwardly extend the standard definitions
of graphs, cf., e.g., [6, 8], to the set Gy;.

Asubset P := {Vp,Ep} < Gy is called a path in Gyj if it is a path in G, i.e., if the
vertices in Vp are pairwise distinct and there exists a numbering such that v;, e; are adjacent
to viq1, €541 for (4,5) € {1,...,|Vp| — 1} x {1,...,|Ep| — 1}, respectively. If G is oriented,
with respect to this numbering, we assign a sign to every edge e; € P by

1, e = (vi,vit1),
o (e.) —
gnp(e;) {_17 ej = (vit1,vi),

and define the path matrix P = Zejegp sgnp(ej)e;, where ey, ... ejg € RI€l denotes the
standard canonical basis.

If sgnp(e;) = sgnp(e;) for e, €; € Ep, then P is called directed. If v1,v|g,,| € Vi, then
P is called a crossing path. If vi,v|e,| € V] with vy = v|g,|, then C := P is called a cycle in
Gu.

The set Gy is connected if £ = ¢f and G is connected, i.e., if every pair of
vertices v;, v, € V| can be connected by a path. If Gjy is not connected, then it is composed
of connected components Gy, = {Viuk,Eur}, £ = 1,..., K, containing the connected
components Gyi's" of Gi", respectively, plus loose edges £;7%° incident to vertices in GiJ"e".

A subgraph 77 < G of a connected graph G that contains no cycles and spans G is called
a spanning tree [8, p. 13]. Every connected graph has at least one spanning tree [8, p. 14]. If
Gyy is connected, then a subset 7; < Gy is called a spanning tree if T; = T{"" U {ej,}, where
Ti™er is a spanning tree of Gif™" and e;, € £[9°° is a reference loose edge. The complement
Ts is called the chord set. For the incidence matrix, the associated edges are selected by
the permutation IT = [II;, IIo] with IT; = [ej]e,e7;, @ = 1,2, where €1,...,€lg| € RI7I
denotes the standard canonical basis. Every interior chord ey, € £, n EJ™" defines a unique
fundamental cycle C, = {Vy,, &} with E\{ex} = T1 n EM. The fundamental cycle matrix
is defined as C' = [C4, ..., C.], where C}, is the cycle matrix of Cy. Similarly, every loose
chord ey, € £[9>\{e;, } defines a unique fundamental crossing path Py, starting and ending
(or vice versa) at ey, and e;,, respectively. The fundamental crossing path matrix is defined as
Py=[P,..., P ghmsc‘_l], where Pj, denotes the path matrix of Py.

If Gy is connected and 5}}’05"' = (7, then after choosing a ground node v;, € V we set
Vs 1= {v;,} and denote the associated reduced vertex set by Vy 1= V\Va. If E9°¢ o ¢, then
Vo = &, and the reduced vertex set is given by V; = V. For the incidence matrix, these
vertices are selected by the permutation I' = [['y, T'a] with T'; = [eg]v,ev;» ¢ = 1,2, where

€1, €| € RM! denotes the standard canonical basis.
For a subset V, c V), the vertex identification of Vs merges the elements of Vs into a
new vertex v := Uvievs v;. Removing all edges connecting the vertices v;, v € Vs, we

obtain the contraction of Gy with respect to Vs, which is the graph Gy := {V}, &} with
V= W\Vs) U{o} and & := E\{e; | ej = (vi,vk) | vi, v € Vs}. Note that G might have
multiple edges and self loops even if G is simple. The associated identification matrix is
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given by 17TI, where 1 = [1,...,1] € RVl and IT € RIVs/x!V:l is a permutation such that
[1TTI); = 1if and only if v; € V.
In the following, we assume that Gyy is numbered such that

SU = 51J)1 U...VU gIJ’K ) Si%eolated7 VIJ = VI]}]_ U...VU VIJ)K,
where Gy i, = {Euyk, Vuk}. k = 1,..., K, are the connected components of Gyy. These are
ordered such that Gy, corresponds to proper subgraphs for £ = 1,..., k;, to subsets with

loose edges for k = k1 +1,. .., k, and to isolated vertices for k = k+ 1,..., K. Accordingly,
we denote by G'¥", Gi|'}" the corresponding subgraphs of Gy 1. Then, the connection matrix
is given as

Apa

2.1 Ay = - with Ay = [Aff%T A%,

ner inner

where A" is the incidence matrix of G and Al$%° denotes the connection matrix of
Mok, Ellj"}je} The rows and columns of the zero block correspond to the isolated vertices
and edges, respectively. For each Gy; 5, we number Qﬁ‘j}j’r such that I‘}“}fr =Vyr U VICJ’ i and
the incidence matrix Af'f" is given by A" = [Afy ., (Af; ,)"]", where Af; ; describes the
1 C

connection structure of {Vfj ;., &k }-

Considering the substructures introduced above, we define the reduced vertex set

K . K . .

Vi1 = Up—1 Viu,k,1 with the ground node Vyy 2 := | J,,_; Vi k2 and the selection matrices

(2.22) 'y = [Ty, T2l

the spanning tree Ty = UkK:1 Tir.k,1 with the chord set T2 = Ule Ti,i,2 and the
selection matrices

(2.2b) Oy = [My,1, My 2],

the fundamental cycles Cyy := Uszl Cy . and the crossing paths Pyy := U£<=1 Py, and the
selection matrices

(2.2¢) Va = [Cuy, Py, Lu] ,
where we denote by Vi ki, Tuki> for i = 1,2, Cux = {Cuki,---sCup,cy,|t and
Pur = {Puki---» Puk|py, ) the respective structure in each component Gy with

the selection matrices given by I'y ki, iy ks> Cuy k> Pk such that I'y; = diag (I'y x,e),
HIJ,i = diag (HUJfa’i)k’ ID[J = diag (Bj,k)k, C]] = dlag (OUJC)k’ fori = 1, 2, k= 1, . ,K,
and Ly = [0, [, | gll?olie‘]T. For the connected components that are proper subgraphs, we fur-
ther consider the identification Vi = UZ:l vy, with v, 1= v;, U (U
identification matrix

vi) and the

Vi€V K

2.2d) Ly = diag (Lvy )y g

As for a proper graph and its incidence matrix, cf., e.g., [8, pp.23], we can interpret the
fundamental subspaces of a submatrix Ayy as substructures of the set Gyj.
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LEMMA 2.1. Let G = {V,&} be a simple, oriented graph with V = J;c;, Vi,
E = UJng Ej. Consider a subset Gy := {V;,E;} with connection matrix Ay. Then,

rank(Ay) = Zﬁ:l Visr| — k, where Guw k =1,.. .,/%, denotes the connected com-
ponents of Gy that itself are subgraphs. For the matrices defined in (2.2), it holds that
ker(Ay;) = span(Vs), corange(Ay) = span(Ily;), and coker(Ay) = span(1ly),
range(A;;) = span(T'y ;).

The matrices U := [I'jy1,1y] and V := [Il;; 1, Viy 2| are nonsingular with

Vy 0
S s |nr, o
U = FT ) V = 1,2 9
2 0 I ptme
€77

where UQ_ = FITJ,I — 111].—‘1TJ’2 and ‘/é_ = HIT;I — HITJ’][Cju, P[J]ng.

Proof. From (2.1), we get that rank(Ay) = 22:1 rank(Ay ). Noting that Gi'i" is
connected as Gy, is connected and using the fact that Vi" = V u Vfj, we have that
rank(A) = Vel + [V x| — 1, ¢f. [3,p.23]. Fork = 1,.. ., k1, we have that iy =9
implying that rank(Ap'y") = rank(Ap,x) with rank(Ay ) = |VU7;€| — 1. For the indices
k = ki +1,...,k we have that Vi, # O, implying that rank(AR'") > [y |- Thus,
we can choose \VU k| linearly 1ndependent rows from A%‘“;ﬁr, and by selectlng the block row
associated with Ay i, we get rank(Ay ;) = [V k|- In conclusion, we have proven that

k1 k
rank(Ap) = Z Vil —1) Z Vi k!,
k=1 k=ki+1

. k
i.e., rank(Ay) = > Vol —

Now, we consider a connected component Gyj ;. With the given numbering, the funda-
mental cycle and crossing path matrices are given by

Cli?ner %
(2.3) Cur = 0 |, Pur=|Liggu-1|>
0 I|€IJ,k|—1

where Cl‘}’“,f‘ denotes the fundamental cycle matrix of g;?",gf . From (2.1) and (2.3) it follows

that
inner vinner
AlJ,kClJ,k = Ak Yk T 0,

as the fundamental cycles of ggmer lie in ker(Ayy). Similarly, we get from (2.1) and (2.3) that

0 0
AOUter—PIJk; — — 15 1
U,k s A[ch-PIJ,k II U,k

[Eu,k|—1

as the incidence matrix applied to a path matrix returns exactly the starting and end vertices
of the path [6, p. 157]. Thus, Ay, Py, = 0, implying that span([Cly i, Py k]) < ker(Apy k).
Considering (2.3), we find that rank([Cy , Pyx]) = rank(Cy i) + rank(Py ) with
rank(Cy) = [E0%| — V| + 1 and rank(Pyx) = [E89°] — 1. For k = 1,..., ki,
we thus get that

rank([C’ILk, PIJJC]) = ‘glj7k;| — ‘VIJJ€| +1= dim(ker(AILk)),
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while for k = k1 + 1,.. .,lAc, we get that
rank([Chy k. Pukl) = €78 — k] + 1+ [E5%) =1 = €k — V| = dim(ker(Ay ).

Hence, span([Cly &, P x]) = ker(Ay 1), and it follows that span(V2) = ker(Ay).

For the left nullspace, we note that Gy; ;. is a proper subgraph for & = 1,..., k, im-
plying that every column of Ayy ) contains exactly the two nonzero entries 1, —1. Hence,
1%;”,”1411,1@ = 0. As rank(Ay ) = |V x| — 1, it follows that Span(1|vn’k|) = coker(Ayp ).
and thus span(1yy,|) = coker(Ay).

For corange(Ay), we note that rank(Ay ) = Vyi| — 1, fork =1,..., k1, such that
we can select |V ;| — 1 linearly independent columns in Ay j, i.e., there exists a permutation
HUJ,HILQ e Rléurlxléukl guch that AIJ’kHIJ’k’l has full rank. For k = ]271 +1,.. .,IA€,
rank(Ay ) = |Virk|, and there exists a permutation ITyy 1, Ty o € RI€wx*1€uxl such that
Ary iy ;1 has full rank, where IIyy 5 1 selects \VIJ,k| — 1 linearly independent columns

associated with edges on a spanning tree of GI™" as well as the reference loose edge ey, € &y -

Similarly, for £ = 1,..., lfcl, we can select |V x| — 1 linearly independent rows in
Ay i, i.e., there exists a permutation I'yy i, 1, 'y 1,2 such that Fa’lAU has full rank. For
k=ki+1,....k, rank(AU}k) = |VIJ,]<;|, implying that FIJ’]{;’I = I\Vu,k\'

If ker(Ay) = span(Vz), corange(Ay) = span(Ily,) and coker(Ay) = span(ly),
range(Ay) = span(I'y,), then the matrices U := [y, 1y] and V' := [IIy,, Vo] are
nonsingular. To verify the representation of U ~%, V=1, we verify the properties of the inverse.
For convenience, we drop the index 1J of the subset Gyj. First, we note that

rf —1irgy T T T T
[Fl 1] F%w = F1F1 + (1 — Fl]-IJ)FQ = Flfl + F21F2 .
Noting that [I'11]; = 1, v; € V1 and [I'11]; = 0, v; € Vi 2, we have that 1 —T'11 = Ty
such that
T —1r7
[y 1] [ L r7 2] = IiI] + Dol = Iy
On the other hand, we have that
IT - 1r] Iy,a (0T —100)1
[ T [ 1] = 0 71 '
InT?7 — 1TZ, every row contains exactly the two non-zero entries 1, —1 such that it holds that
(TT —1T'3)1 = 0. With I 1y = I}y, ,|, we thus get [y, 1] 7'y, 1] = I}y
As E(T) n e = &5, where £(T) denotes the edges of a spanning tree 7, we have that

m v -

m, ¢ P 0
Thus, it suffices to show that

[, [c,P)] " = [HlT — H%[QTC, P]Hg] |

We show the assertion by verifying the properties of the inverse. First, using the identity
Ijyy) — WY = TI117, we get that

7 — u?[c, PIIY
[, [c. P [ L 2] - ,01f — L [C, Py + [C, P

=1L, 1] + T, [C, PIY.
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The matrix 115 Hg is a projection onto the edges of the chord set 7i52. As the fundamental
cycles and crossing paths Cy, , Py, contain exactly one edge e, , ex,, € T2, respectively, we
have that TI,I1Z [C, P] = II. Hence,

i -7 [C, PIIZ

I, ¢ P] [ 7 ] = ILII] + ILIS = Ijg,.

On the other hand, we have that

[Hl - Hll‘[%o’ P]H2] [Hl [07 P]] _ [15(07ﬁ)| Hl [07 P]U{E{J%jfg;lpg H2 [07 P]):| )

Again, as every fundamental cycle and crossing path contains exactly one chord, we have that
I3 [C, P] = In,—p,+1- Then, it follows that [IIy, [C, P]] 7' [y, [C, P]] = I|g,). O

Hence, the fundamental cycles, crossing paths, and loose edges span the right nullspace
ker(Ay), while the edges in the spanning tree build a basis of corange(Ayy). The identification
of connected components with a ground node spans the left nullspace coker(Ayy), while the
vertices of the reduced vertex set correspond to a basis of corange(Ayy).

Now, we equip the vertices and edges of G with potentials and flows, respectively. To
each vertex v; € V, we assign a potential p;, and all potentials are collected into a vector
p = [pi]i=1,...,|v|- Similarly, to each edge e; € G, we assign a flow q; and set ¢ = [q;],-1,...|¢|-
The flow is directed: a flow g, is called positive, i.e., g; > 0, if g; agrees with the direction
of its associated edge e;. If g; # 0 is opposed to the direction of edge e;, then ¢ is called
negative, i.e., ¢; < 0. If G = {V,€} with V = UIE[V Vs, € = UJelg &y, we partition the
flows and potential accordingly and write ¢; ; € & and py; € V1.

The flow and potential satisfy the following fundamental relations that generalize Kirch-
hoff’s circuit laws, i.e.,

(2.42) T Aq =0,
(2.4b) Vi ATp = 0.

The equations (2.4) allow us to give a physical interpretation of Lemma 2.1. The fundamental
cycles, crossing paths, and loose edges correspond to structures on which the potential
difference vanishes, while the spanning tree selects a structure on which the potential difference
is well defined. The reduced vertex set consists of those vertices on which the potential is
fixed in relation to the reference value given by the ground node. Thus, the identification of
the reduced vertex set with its ground node subsumes all vertices on which the potential is not
fixed, like in an isolated vertex or a subgraph without connection to a ground node.
We transform the flow and potential with respect to these substructures by setting

(2.5) G:=[Myn, VIJ,2]71 q, p:= [Ty, 111]7110

such that
Q= (HITJ,l - Ha,l[CIJaPIJ]HITJ,z)% p1 = (FIY;,I - 1IJF17;,2)P7
@ = 10 5q, p1 =T ,p.

The flows g2 belong to edges on the chord set Tyj » while ¢; denote the difference between
a branch flow ¢; ; € 75,1 and the chord flows go; € 7y 2 of those fundamental cycles and
crossing paths containing g; ;. Similarly, the potentials p, belong to the ground nodes Vyj 2,
while p; denote the difference between a potential p; ; € Vyy 1 and its associated ground node
p2,5 € Vi 2.
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Now, we think of the flow as information running through the network. To describe the
structure of the subset Gy; on this informational level, for v; € V], we partition the set of
incident edges &;,.(v;) into those along which v; receives and sends information, respectively,
i.e., we set

Eine,s(Vi) 1= {e; € Einc(vs) | Aijsgn(g;(t)) > 0, ie., g; starts in v; },
ginc,e(vi) = {Ej € Emc(vi) |A1J SgH(Qj (t)) < 0, i.e., q; ends in Ui}.

Defining the flow matrix
Ze]'ESincys(vi)mS] |Qj|7 i = gv

BIJKM = 7|Qj|7 €; € 5inc,e(vi) N Einc(vﬁ) n&,i# L,
0, else,

G(BL). The
graph G(A) of a matrix A € R"*” is defined as G(A) = {{v1,...,vn}, {(vi,v;)| a;; # 0}},
i.e., whenever the j-th entry is nonzero, there is an edge from the vertex v; to v; [20, p. 528].
Hence,

the information flow in Gyy is graphically represented by the flow graph Gl

flow — (g, Elw1 with
gﬂow = {ej = (UZ7U1',) |£z’nc,e(vi) N ginc(vi) # B, 00 #v; V ginc,s(vi) # v = Ui} .
Basically, the graph GfI°¥ has the same connection structure as the set Giy except that at vertices
v; € W sending a non-zero mass flow into Gy, the flow graph Gi°% has self loops and that
edges e; € & equipped with a zero mass flow ¢; = 0 are absent in £°Y. The orientation of

gﬂ°w is determined by the direction of the mass flows, i.e., e; € &} flow i directed from vy to v;
if v; receives a mass flow from vy, cf. Figure 2.1.

q7 qa
fI5 < 0
v| 1
= qs
q3 0 q3 Q1
q2 >0 i : @ q2 i :

FI1G. 2.1. A graph (left) and its flow graph (right).

q7 >0

The connectivity of GI°¥ on this informational level is described by the concept of
strong connectivity. We assume that G is composed of strongly connected components

Grlow,uk = {Sﬂow’u}k,vﬂow@k}, i.e., every pair of vertices v;, U € Vfiow 1,k 1S cON-
nected by a directed path from v; to vy and a directed path from vy, to v;, cf. [20, p. 528].
For each G Flow, 1,k with & = 1,...,K, we denote the interior subgraph by

gmner _ {gmner ll'lIlEI‘ }
flow, U,k — flow, U,k flow .k

The flow matrix By is nonsmgular, if in every strongly connected component Gyy i, of Gy
there exists at least one vertex v; sending a nonzero flow into gIJ\gIL k-
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LEMMA 2.2. Let G = {V,&} be a simple, oriented graph with V = J;c;, Vi and
E = Uye 7o €1 Consider a subset Gy = {V, &} with connection matrix Ay, and let
Griowir = {Ef1ow.10ks Viiow ik} k = 1,..., K, denote the strongly connected compo-

nents ofglﬂfw with interior subgraphs g;mﬂ’k = {5}’3’;%7”’,6, V?l%%,u,k}- Then,
1 . .
By = 5A,J diag (qJJ)j(dlag (sgn(qJJ))jA,TJ +147]).
[fZe]»GSinE,S(vi)mSJ ‘qj| > OfOV v; € Vyand

(2.6) > 41 = 0,

ej€€ine,s (Vi) (SJ\SZ‘:’}’IO%,C)

fork =1,..., K, and there exists v; € Vyiow,iy,k such that (2.6) is strictly satisfied, then By,

is nonsingular.
Proof. To prove the representation of Byy, we set

Ay = Ay diag (41,5), (diag (sgn(as,)); Ay + [Af])
and note that

By, = Z |65 An,ij (Anej + |An,ej| sgn(g;)).

€j efy

For v;, vy € Iy, and j € J¢, the entries of the incidence matrix A satisfy

1, €j € ginc(vi)a 7= f,
AijAZj = _17 €; € 5inc(vi) N ginc(vﬁ)v 1 # gv
0, else,

Ai i, €€ ginc(vi) N ginc(vl)7
AuglAeg| = {O ] eise

and together with the definition of ;¢ s (v;), Eine,e (vi), we verify that 2By = Ay.

If Griowy i8 composed of K  strongly connected components
Griow .k = {Vfiowk, Eflow k). then it follows that Byy is congruent to a block up-
per triangular matrix with irreducible diagonal blocks By xx, kK = 1,.. ., K, i.e., there exists a
permutation II such that HTBIJH = [BIJ,kl]kl with BU’k;l =0,k >1,and BIJ,kk irreducible,
cf. [20]. We show that under the given conditions, each Byj g is irreducibly diagonally
dominant and hence nonsingular for k = 1,..., K, cf,, e.g., [5, p. 67], [11, p.403]. Thus, By
is nonsingular.

The i-th column of By i, is given by

226165mu,5(vi)ﬁ51 |qj|’ i = l’
['BU,kkei]Z = _2|QJ|7 e; € ginc,s(fvi) N ginc('vl) N 5]7 1 # ‘€7
0, else,

for¢ =1,...,|Vfiow,u,k|, and noting that

(ginc,s(vi) N 5inc(7]€) N 5]) = gings(”i) N gf??;;ow)ka

veeVA, flow, k \{vi}
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for v; € Viy, fiow,k» the i-th column sum of Byy . is given by

Z | By, kk,ie] = Z |51

Vo€V, flow, k ejeé'im,s(v,i)m(gj\é‘[‘j‘j‘;rlowyk)
Hence, if condition (2.6) is satisfied for v; € Vyiowykx and & = 1,..., K, then By is

diagonally dominant for k = 1,..., K. Fork = 1,..., K, if there exists v; € V}jou,1,x Such

that (2.6) is strictly satisfied, then, together with the irreducibility, it follows that Byy ., is

irreducible diagonally dominant for £ = 1,..., K. Then, By is nonsingular. a
EXAMPLE 2.3. For the graph in Figure 2.1, the flow matrix is given by

lg1il +laal 0 —[g3] O
*|Q1| |QQ| 0 0

By —
Y 0 —lg2| lgs] O
0 0 0 g

The strongly connected components of Gi°¥ are given by }'}‘L";L,H,l = {{vr1, 12,13},
{e1,e2,e3}} and }“ﬂi{um = {{vr4}}. The matrix By is irreducible as there exists no
permutation that would transform this matrix into an upper triangular matrix, and we observe
that By is nonsingular only if |g4], |g7| > 0, i.e., only if the flows |q4|, |q7| start at vy 1, v 6.

This agrees with the conditions of Lemma 2.2, claiming that

> 451 = |qal, > lg;| = laz| > 0,

€5€€ime,s (v1,) M (ENERS,, 1) €5€€ime,s (v1,6) M (ENERS ., 1)

whereas Zeje&:nc‘s(vu)0(51\8[‘?,“}301“,16) lg;| = 0fori=1,2,3.
Besides these graph-theoretical results, we frequently use the following identity for the
rank of a block matrix A = [A;;]i j=1,2, cf., e.g., [11, p.25]. If Ay1, Ay, are nonsingular,

then
2.7 rank(A) = rank(A411) + Sa,, (A) = rank(Agz) + Sa,,(A),

where SAu (A) = AQQ — A21AI11A12 and SAZZ (A) = A11 — A12A§21A21 denotes the Schur
complements.

3. A network model for incompressible flow networks. We consider a network
3.1) N = {Pi, Pu,De, Jc, Re}

that is composed of pipes, pumps, demands, junctions, and reservoirs and that is filled by
an incompressible fluid, for instance, water. The pipes Pi := {Piy,...,Pi,,} and pumps
Pu := {Puy,...,Pu,, } are connected by junctions Jc¢ := {Jcq,...,Jc,, } in which the mass
flow of the fluid is split or merged. We distinguish between virtual connection points
Jeo = {Jco 1, .- 7Jcomko} and connection points Jey := {Jey 1, ... ’JCV»”va} possessing
a volume V; > 0. Those virtual connections point have a certain importance in the design
of system simulation software since they allow us to connect standardized subcomponents
without introducing additional volumes (and as a consequence additional thermal inertia).
The connection to the environment is modeled by reservoirs Re := {Rey,...,Re,,. } and
demand branches De := {Dey,...,De,, } that impose predefined pressures enthalpies as
well as mass and enthalpy flows onto the network. The number of each element in N is
denoted by npi, npy, e, Npe, MRe, respectively, where nye = nye, + nye, . and we define
n = np; + Npy + Njc + NRe + Npe-
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_ Given boundary conditions pre = [Pre, Ji» Are = [fiRe, Ji» i=1, . . . , iRe, and Gpe = [qpe, |-
Hp. = [HDej] j» J = 1,...,mp., the task is to compute the mass and enthalpy flows

qri = [qpi, Ji=1,....np> @Pu = [@Pu; Ji=1,... npu> @De = [aDe, Ji=1,....np, and Hpi = [Hpi, Ji=1,... np;»
Hp, = [Hpy, )iz1,..., np, 10 the pipes, pumps, and demand branches as
well as the pressures and specific enthalpies pjc = [pic; |i=1,....ne» PRe = [PRe; Ji=1,...,ng, a0d
hye = [hic; Ji=1,... nse> PRe = [PRe; Ji=1,....nge i the junctions and reservoirs.

To set up the governing equations for the network, we consider the characteristic relation
that every element imposes on the enthalpy flow and the specific enthalpy as well as on the
mass flow and pressure.

In a pipe Pi; directed from v;, to vj,, the mass flow ¢; is specified by the transient
momentum equation

Npy s HDe = [HDei]i=1

.....

(3.2a) Gpij = c1,;Ap; + c2,5(hy, ) sgn(aeij)am ; + s, =1 foij(apij. Ap;)

depending on the pressure difference Ap; = p;, — p;, between the adjacent nodes v;, , vj,
and constants ¢; ; depending, e.g., on the pipe diameter, length, inclination angle, and physical
properties. Including thermal effects, the density of the mass flow ¢; typically depend on
the specific enthalpy h;, in the originating vertex v;, leading to ca ; = ¢2,;(hj, ). Then,
fri,j € C(Qpi; x (—0,00),R), where Qp;; < (—00,00) denotes the domain of admissible
mass flows in Pi;. The enthalpy flow F; in Pi; agrees with the product of the mass flow g;
and the specific enthalpy h;,, i.e.,

(3.2b) Hj = %((Sgn(qj) + Dhj, — (sgnlqs) — Dhj,) =: feix (qpig, by 1)

Then, fpix ; € C(Qpi;, % (—00,00)2, R) with

>

g qrig > 0,
lePi*,j(qPi,j7 h’jl’ th) = 07 qri,j; = 07
hj27 qpi,j < 0.

In a pump Pu; directed from v;, to vj,, the mass flow gpy ; is specified algebraically by the
pressure drop Ap; = pj, — pj,, i.e.,

(3.2¢) Pji — Pj, = fPuj (qpu,j)-

The function fpy, is given by specialized pump models, cf., e.g., [9]. Without loss of gener-
ality, we assume that fp, ; € C 1(quj ,R), where Qp,; = (—o0,0) denotes the domains of
admissible mass flows in Pu;. The enthalpy flow Hp,x ; in Pu; is given by
un,j

Hp, j = —= wj) + 1h, — wi) — 1)h; Oh;
(3.2d) Pu,j D) ((sgnlapu,;) + )y, — (sgn(gpa,;) — 1hy,) + 0h;

=t fpux (qpu,js Pjr s jn )

with fpys j € C(Qpy, X (—00,0)%, R). Here, 6h; is heat induced by the pump. For simplicity,
in the following we assume that §h; = 0.

Due to mass conservation, in a junction Jc;, the amount of mass entering and leaving Jc;
is equal. Summarizing the indices of pipes and demand branches that are incident to Jc; in the
set ji, we thus get that

(3.2e) Z q; = 0.

jed;
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Similarly, due to energy conservation, in a junction Jcy;, the sum of all enthalpy fluxes H;
entering or leaving Jc; equals the product of the volume V; and the change of the specific
enthalpy hyc, 4, i.€.,

(3.2f) > Hj=Viluey .
Hj€€inc(Jev,i)

In a virtual connection point Jcg ;, we have

(3.2¢) 2, Hi-o
Hjei,mc(lco,i)

In a demand branch De;, the mass and enthalpy flow gpe,j, Hpe,j are specified by functions
CjDe,jv HDe,j € Cl (IDe7 R)’ i'e-,

(3.2h) GDe,j = QDe,j
(3.21) Hpe,j = Hpe,j-

Similarly, in a rgservoir Re;, the pressure pre,; and the specific enthalpy hge,; are specified by
functions Pre.;, hre,i € C* (Ze, R), i€,

(3.2)) DRe,i = PRe,is
(3.2k) hRe,i = PRe,i-

To include the connection structure of the network A and summarize the equations (3.2) for
N, we represent N as a graph G. The pipes, pumps, and demand branches correspond to the
edges of G while the junctions and reservoirs serve as vertices, i.e., we set

(3.3) G={V,&} with & ={Pi,Pu,De} and V = {Jcg,Jcy,Re}.

We impose the following assumptions on the connection structure of V.

ASSUMPTIONS 3.1. Consider a network N as in (3.1).

(i) Two junctions are connected by at most one pipe or one pump. Each pipe, pump, and
demand has an assigned direction.

(ii) The network is connected, i.e., every pair of junctions and/or reservoirs can be

reached by a sequence of pipes and pumps.

(iii) Every junction is adjacent to at most one demand branch. Every reservoir is con-

nected at most to one pipe or pump.

Under Assumptions 3.1, the graph G given in (3.3) is simple and connected, and the
reservoirs are end vertices. Assigning a direction to each pipe, pump, and demand, G is
oriented, allowing us to speak of a positive or negative mass flow. Note that the orientation of
the pipes and pumps is arbitrary and only serves as a reference condition; it is not necessarily
related to the true or expected direction of the fluid flow.

Representing the network as a simple, oriented graph, the structure of A is fully described
by the incidence matrix A associated with G. According to G, we partition the incidence
matrix as

Ajev pi Asey by Asey De A
C
A= Akypi  Aiopu Arcope | = [AR]
(<}
ARe Pi ARe,Pu ARe,De
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and summarize the flows, pressures, and pressure differences as
qpi Dy App;
q=|qp |, p—[pR°]7 Ap = | Appy |,
4dDe ¢ ApDe

and the enthalpy fluxes, specific enthalpies, and their differences as

Hp; hiey, Ahyey,
H = HPu 5 h = hJco P Ah = AhJco P
HDe hRe AhRe

where Ry, , hyc, refer to the enthalpies associated with junctions of positive and zero volume,
respectively. Furthermore, we consider the matrix

|Al = [‘Aiju(i,j)el)xé‘

containing the elementwise absolute values of the incidence matrix A and set

B(ga) = 5 diag (g (1)) (ing (s (g2 () AT, +]47.]).

for » = Jcg,Jey, Re, * = Pi, Pu.

By the definition of A, the pressure and enthalpy drops Ap; = p;, —pj,, Ah; = hj, —hj,
along a given edge e; = (vj,,v;,) are given by efATp = Ap; and e]TATh = Ah;. Setting
C; = diag (01,j)j, Cs = diag (Cz,j)j, Cs = [cs3,]5, for j = 1,...,npi, we define the pipe
function

foi(@pi, Drc: Pres Paco s Pucy > hire) == C1(AJ, pipsc + Ape piPre)
+ Co(yey , hucy s hre) diag (|gpi;]) japi + Cs,

with fPi e C! (Qpi x Qe X QRe,Rn“), where Qp; = X;Lil QPijs Qg = X?jl Q_]Ci, and

Qre = x?iel Qge, denote the domains of admissible mass flows and pressures in Pi and

Jc, Re, respectively. Similarly, we summarize the pipe equation (3.2b) for the enthalpy flow
Hp; as

(3.4a)  Hpi = Biyc, (qpi)hic, + Bicy (api)hicy, + Bre(api)hre =: feix (@i, hacy > Pico > PRe),

with fpix € C(Qpi X Qexe X Qe , R™), where Qpex = X 25 Qs Qpese = X2 Qs
denote the domains of admissible enthalpies in Jc*,Re™, respectively.

For the pumps, the relation between mass flow and pressure drop is described by the pump
function

feu := [foujli=1.....np0>

where we assume that fp, € C! (Qpy, R™0), cf., e.g., [9]. Then, we get the pump equation
(3.4b) A?;,Puch + Age,PupRe = fPu(QPu)-
Similarly, the pump equation (3.2d) for the enthalpy flows reads

Hpy = By, (qpu)hic, + Bicy (@pu) hicy, + Bre(gqpu)hre + 6h

(3.4¢)
=: fPu* (QPm hJcV; hJcoa hRe)a
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With fper € C1(Qpy x Qyex x Qgex, R™), where Qp, = X?‘;“l dpy; denotes the domain of
admissible mass flow in Pu and 6k := [0h;];=1,... np,-
The sum of all mass flows entering or leaving a junction Jc; is given by

efAg= > g

e;j€€inc(Jci)
such that the junction equations (3.2e) can be summarized as
(3.4d) Aye pigpi + Ajse,pugpu + Ajsepegpe = 0.
In the same manner, we summarize the junction equations (3.2f), (3.2g) as

(3.4e) Aje piHpi + Aje peHpe = Viehie,
(3.41) Aje piHpi + Aje peHpe = 0.

For the demand branches and reservoirs, we obtain the simple relations

(3.4g) gpe = qDe;
(3.4h) PRe = PRes
(3.41) Hpe = HDe,
(3.4)) hre = hge,

where we assume that Hp, € C'(Ipe,R), hge € C'(Zge, R) for Ip. = ﬂ;@l Tp., and

IRe = ﬂ?ia IRe,p

In conclusion, the dynamics of the network A/ is modeled by the differential-algebraic
system (3.4). Each equation of (3.4) and each entry of the state has a direct physical counterpart
in the network. We use this relation to find conditions when (3.4) is uniquely solvable and to
reinterpret these conditions as conditions on the structure and the elements of the network N

As prerequisites for our analysis, we discuss the following substructures of the network N.
We consider the subset of junctions and pumps Gy py := {Jc, Pu} with the connection matrix
Ay pu. We assume that Gy py is composed of K connected components Gyc py x, = {Jck, Pug}
that are numbered such that Gy py 1 corresponds to proper subgraphs for k = 1,..., k and

to subsets with loose edges for k = k + 1,..., K. The connection matrix is partitioned
accordingly into Ajyc py = diag (Ajcpu,k)-

According to Section 2, we partition Gy p, into a reduced vertex set Jc1 with ground
nodes Jco and into a pump spanning tree Puy with chord set Puy. The associated selection
matrices are given by, cf. (2.2a),

I'= [Fla FQ] ) HPu = [HPu,hHPu,Z] .

We consider the fundamental cycles Cy.p, = U£{=1C]C’pu’k, the crossing paths

loose

Pic.pu = Ule Pic,pu, k> and the set of loose pumps Pu with the selection matrix, cf. (2.2¢),

Vo= [CJCA,Puv -PJC,Pm LJC,Pu]~

For k = 1,..., k, we consider the componentwise vertex identification of Jcj, and set
Je := {Jei}, where Je := |y, s, Jei- The associated identification matrix is given by,
cf. (2.2d),

Us := 1y pu.
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According to Lemma 2.1, rank(Ajcpy) = nye — k, where k denotes the number of con-
nected components in Gy p, that itself are subgraphs. Furthermore, ker(Ajc py) = span(Va),
corange(Ajc,pu) = span(Ilpy, ) and coker( Ay py) = span(lycpy), range(Ajc pu) = span(l'y).
From these matrices, we define the transformations

(3.5&) U := [Fl, UQ], V.= [Hpul, VQ],

of which the inverses are given by

(3.5b) U = [(U)T, T]", V= [(Vs)T, ey,
where
Uy = diag(Ug ) ey, i Uy =TTx — 1nvgm‘k,1r§,w
Vy = [diag(Vy ) p_y,.iiv 0, Vo = Moy et — My 1 Vollpy g -
For the vertex identification Je, we define the set Grepi = {Jc, Pi} composed of L con-
nected components Gy pix = {Jcy, Pip}. We partition Gj. p; into a pipe spanning tree

Pi, = U£:1 Piy, 1 with pipe chord set Piy = U£=1 Pij, o and denote the associated selection
matrix by

(3.5¢) Hp; = [IIpi 2, Hpi 1] -

Then, rank(Ay p;) = ki — I, where [ denotes the number of connected components in G p;
that itself are subgraphs, and corange(Ay, p;) = span(Ilp;, ).
We partition and transform the variables according to these substructures and set

. — . - . T
(3.6) Dic, = Ug pic,  qpuy = Vo Gpo,  qpiy := g, Gpi,

17T 11T T
Dicy := o pic,  qpuy = Upy,qrus  qpiy 1= Ip;, gpi-

The mass flows gpy,, gpi, belong to pumps and pipes in the chord sets Pus, Pis while the
pressures pjc, belong to the ground nodes Jco. The mass flows gpi, , gpy, denote the difference
between the branch flows in Pu;, Pi; and the flows in the fundamental cycles and crossing
paths containing the considered branch. The pressure py, ; denotes the pressure difference
between a junction Jc; in the reduced vertex set Jc; and the associated ground node.

We denote the associated connection matrices accordingly and set, for instance,
Ajse, puy 1= F?A]C7PUHPU1. Furthermore, we consider the matrices

C:= AJE,PiC2AJZ;7P17 D(qPU) = VQT DfPu(QPu)Vz,
B(gpi, gpu) 1= Aico,piBico (qpi) + Aicy,puBic, (gpu),

i.e., C is the Jacobian of the pipe function fp; with respect to the pressure py, restricted to the
contraction Jc, B is the Jacobian of the pipe and the enthalpy function fp;x, fp,+ With respect
to hye,. and D is the Jacobian of the pump function fp,s with respect to the pump flows gpy,
restricted to the virtual connection points Jcy. In order to give topological conditions when
B ,C are nonsingular, we consider the flow graph g;gvy(mpu) of the subset Gico,(Pi,pu)- AS t}.le
directions of the mass flows may change with ¢t € Z, the flow graph is state-dependent in
general, and we write g{';w(],i Pu) (gpi, gpu ). Accordingly, the sets E;pe.s(JC0.5), Eine,e(JCo,;:) are
state-dependent, and we write E;re,s(JC0.4; Gpi, @pu ), Einc,e (JC0.:; Gpi, Gpu)-
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LEMMA 3.2. Consider the network (3.1) with graph G and incidence matrix A. Consider
the subsets Gy pu, Gje pi With submatrices Ajc py, A pi.

(i) If nge > 0, then rank(Ay, p;) = k and C is nonsingular.

(ii) For qp; € Qpi, qpy € Qpy, letgﬂ (PiLPu)ik (qpi, gpu), k = .., K, denote the strongly
connected components in the ﬂow graph Q’qu Pi,Pu) qP,,qpu) For Jcg ;€lJco ik,
k=1,....K,if

Z lg;| > 0,
e;€Einc,s(Jco,i3qpi,qpa) N {PiUPu}
(3.7

Z lg;| =0, k=1,...,K >0,

ejegmc,s(JCO,i;qpi,qpu)ﬂ({PiuPU}\S}("O"(‘;!, Puy. Flow, k (APir0Pu))

and for every k = 1,..., K, there exists fco7k € Jco, i such that (3.7) is strictly
satisfied, then B(qp;, qpy) is nonsingular.
Proof. (i) Neglecting the demand branches Dey, . .., De,,, in Gar, we obtain the subgraph
Ganpe = {{Jc, Re}, {Pi, Pu}} whose incidence matrix is given by

AJc,Pi AJc,Pu:|

A =
Iarvoe |:ARe,Pi ARe.pu

As Ganpe s a connected subgraph, it follows that rank(Ag,,,,,) = ny — 1, cf. Lemma 2.1.
For [Ajc pi, Ajc,pu], this implies that rank([Ajc pi, Aje.pu]) = nyc if nre > 0. Considering the
transformations U, V' defined in (3.5), we thus have that

nr. = rank [7T A i7A — rank Jcq,Pi Jc1,Puy :|)
Je ( [ Jc,P; Jc,Pu]L ) = ([ ]fc o 0 0
= rank(Ayc, py,) + rank(Az p;).

Since rank(Ajc py) = nye — l%, where k denotes the number of connected components in Gy py
that itself are subgraphs, cf. Lemma 2.1, it follows that rank (A, p;) = k.

Noting that C; = diag (Cl’j)j=1;~~~’nPij is positive definite since ¢; ; > 0,7 = 1,...,np;,,
we can factor the matrix C' according to C' = (A piv/C1)(Ar piv/C1)?. As the matrix
V(1 = diag (, /cl’j)jzl,...7np;j is nonsingular, it follows that

rank(C') = rank(Ay pin/C1) = rank(Ay, p;) = k,

implying that C € RFxk i nonsingular.

(ii) Noting that
1 dia, i 0
B(gpi, qpu) = 5 [Ajeo,pis Aico,pul [ go(qp) diag (QPu)]
diag (sgn(qri)) 0 , T . T
<|: 0 dlag (Sgn(un)) [AJCO,PU AJCO,Pu] + [‘AJC0,P1|7 |AJCO,Pu|] 5

we find that B(gpi, gpu) corresponds to the sum of the flow matrix By, (p;, puy Of the subgraph
{Jeo, {Pi, Pu}},i.e., B = By, (pi,pu}- Under the given assertions, we can apply Lemma 2.2
and find that B(gp;, gp,) is nonsingular. a

We call the set of virtual connection points Jeg enthalpy reachable in t € Z, if the
assertions of Lemma 3.2 (ii) are satisfied on {2p; x {p,.
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4. Topological solvability conditions for the pressure and temperature model. To
analyze the solvability of (3.4), we define the network function F = [FL . FL ., FL 1T e
CY(D, R?™) with

. FJ N FDe
B b o Fpy . o L FRe
(4]) F1 = |:FJC*:| s Fpres = |:FJC:| 5 Fenth = FPi* 3 Fbound = FDe* )
v Fpys F
Re*

forz = [¢7, HT,p”, hT]T, the domain of definition D := Z x €, x Q, with Z = Zpe N Tge,
Qx = (Qpi X qu X QDe)2 X (Q]C X QR5)2, Qa: C RQH, and

(4.2a) Fyi(t, z, %) = gpi — fri(qpis Pic, PRes P, Pre),

(4.2b) Feu(t,2) = Afe puPrc + AgepuPRe — fru(gp),

(4.2¢0) Fie(t,x) = Ay pigpi + Ajc,pugpu + Aic,DelDe;

(4.2d) Fyex (t,x,2) = Vhye, — Aje, pillpi — Ajey, puHpy — Ajey peHpe,
(4.2e) Fiex (t,x) = —AyepiHpi — Aje puHpy — Aje,pe Hpe,

(4.2) Fpix (t,2) = Hpi — fpix (qpi, Py Pacy, Iike),

(4.2g) Fpyx (t, @) = Hpu — fpux (qpu; hicy s hicg s IRe)

(4.2h) Fpe(t, ) = qpe — e, Fre(t, ) = pre — DrRe;

(4.2i) Fopes (t,2) = Hpe — Hpe,  Fres (t,2) = hie — hge.

To keep the smoothness assumptions on F' as relaxed as possible, we partition the state into
differential and algebraic variables 4, z, and set z = [z47, 2,7 ]7 with
T 3T 1T T T T T .7 T T T T 1T
Ld = [QPivhJcV] )y La = [unvac’HPi*vHPu*’h]co7qDe7pReﬂqDe*7pRe*]
In addition to the network function, we define the following surrogate network function
F=[FI FL FE T € CHD,R?™) with

~ FP' ~ FJc FPi*
Fl = |:F ]2:|; F2,pres = FPu ) F2 enth - = FPu* ;
JCV F] FJ %
c c

where Fic,, , Fpu, Fic, Fpis, Fpys, Fch< are given as in (4.2) and (omitting arguments)

FPi2 (t7 Zz, I) = Hgbdl’i - HI?iQfPia
ch(t’ z) 1= Ap pifei — Ak peDe-

From the surrogate function, we define the set of consistent initial values by
Cry := F;I(O)

Using the concept of derivative arrays and the strangeness index as developed in [15, 16, 17,
18], we characterize the unique solvability of the DAE model (3.4).
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THEOREM 4.1. Let N be a network given by (3.1) that satisfies Assumptions 3.1, and
let F € C’l(ID)7 R™) be the associated network function. If ng, > 0 and, on Cyy, the set Jcg
is enthalpy reachable and the matrix D(qp,) is pointwise nonsingular, then the following
assertions hold.

1. For every (to, o) € Crv, there exists an interval (ty ,t3) < T such that the initial

value problem
(4.3a) F(t,z,z) =0,
(43b) IIZ(to) = Zo,

is uniquely solvable with x € C*((ty ,t3), R?™).
2. Forevery (to, o) € Cry, there exists an interval (t, tar) < 7 such that a function
z e CY((ty,ty),R?") solves (4.3) if and only if x solves the surrogate model

F(t7 m? l“) = O’

x(tg) = xo.

(4.4a)
(4.4b)

Proof. We structure our proof in the following way. First, we show that every solution
of (4.4) solves (4.3). Using the transformations (3.5), we show that (4.4) can be decoupled
into an explicit system, whose unique solvability is covered by classical ODE theory and the
Implicit Function Theorem. Using the concept of derivative arrays and the strangeness index,
we finally derive the surrogate model (4.4) and show that every solution of (4.3) solves (4.4).

To prove that every solution of (4.4) solves (4.3), let z € C* (j ,R2") solve (4.4) with
(to, z0) € Cry. Using a nonsingular matrix S € R?"*2" we transform the states according to
(2.5) and set

-~ _ g1, (7T ,T ,T7 ,T T T . T T . T T T17
=8z = [qPigvacv’qPilvunlvungvacl’chz’qupRe’HDevhRe] .

We transform the domain of definition accordingly and set D := Z x Q; X : with
Q; = S71Q,, Q: := S71Q; and partition the state into & = [z2,Z1]7 with 4 = gpi,.
:za = [p};Q ,p};l y QIZ:12a Qg;l ) qszl ’ QEea p]j;e]T-

For the initial value problem, we choose a nonsingular matrix S € R2**2" and set
F(t, &, &) := STF(t,S&,Si) such that F := [F{ , Ff  FT . FL T e CHD,R)
is given by

Epu, Fj
F Ff;u ﬁv "
n i I r- r- P
Fl = [FP2:| ) F2,pres = FJ01 ) F2,enth = Fu )
Jey FJ, Tl
¢ F -
Ey, e
with
Fl = Fl o (571 X Sil),
ch =TI o St Fpy, = Hg;uleu oS H
Fppe = Fpix 0 71, Fpyx = Fpy 0577,
FJ{* = (AJC,PiFPi* + AAJC,PuFF'u’X< + F}c*) o Sila FP] = VQTFPu o Sila

FJcl

= F{F}c © 5717

Fr.=UIF 087t
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Note that gpi, = Hgb gpi as Ilp;, is constant. Then, the transformation £ = § ~1z of the
solution x solves

4.5) F(t,#,34) =0,  &(to) = Zo.

Differentiating the mass balance ch(t, T) = 0in (4.5) and noting that Ay, p;, is nonsingular,
we find that Z also solves

. 1 - . 1 B .
(4.6) api, = _A]E7Pil AJC,PizqPQ - Aﬁ7pilAJc,Dque'

From the pipe and the demand equations Fp;, (t,%) = 0, Fpe(t,Z) = 0 in (4.5), we further
find that

4.7 api, = TI5, foi (Tpiy qpiy + Tpiyapia, Afe, pibie, + A};pichz + Afe piPRe)
(4.8)  Af petpe = Agepifpi (pi, gpi, + pi, o, A?;l,Pichl + Ajl;pichz + Age7piﬁRe)QDe~

Inserting (4.7), (4.8) into (4.6), it follows that 2 solves the differential equation

(4.9 = dpiy — AJ__c,lPilAfC,Pil I3, fei (HPil api, + Ipi, Gpiy s

A.%:],Pichl + A£7PipJC2 + Age,PipRe>~
Replacing the equation FJLC (t,Z) = 01in (4.5) by (4.9), we find that the solution of (4.4) solves
F(t,#,2) =0,  &(ty) = &o,

n T T T T T : :
where F' = [Fl ) FQ,preS’ FQ,enth’ Fbound] is given by

» FPu n
F‘pi1 F,l FPi*
oo n n . P I . I
F = FPig s FQ,prcs = 1:—1 N ; F2,enth = F:Pu*
FJCV F:l‘c,l FJC:)k
Je

Reversing the variable transformation and combining the pump and junction equations by
V, U using a nonsingular transformation S, we verify that x solves

SR, S x, S q) = F(t,x,2).

Hence, if x € Cl(j, R?7) solves (4.4) with (to, 2¢) € Crv, then x solves (4.3).

To prove that (4.4) possesses a unique solution for every (¢o, o) € Cry-, we decouple (4.4)
using the transformations (3.5) into an explicit system to which we can apply classical ODE
theory and the Implicit Function Theorem. Considering again the transformed system (4.5),
we observe that the Jacobian 0;,, F, of (4.5) with respect to Z, is given by

5 3iaF2,11 * *
Oz, Fo = 0 Oz, Fo 12 * ;

a

0 0 I2nDc +2nRe
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where
) [ArpiDafeiAf p ArpiDafeidf, i 0 00 AL p, 0 0
Oz, Fo11 = 0 0 Iy 0 )
i 0 0 0 I,
[ B AkpuDifpux Vo Ajepu D1 fouspy, Ajepi D1 fpix Ipi,
P 0 -D —V5E D fpullpy, 0
%a"2,12 0 0 Ajey oy Aje, piy
B O 0 0 AfCA,Pil

On Cry, the diagonal entries of 0z, FQ,ll, 0Oz, 1:“2712 are pointwise nonsingular such that
(%aﬁg is pointwise nonsingular on Cry. For (tg,Z¢) with (¢9, SZg) € Cry, we can thus
solve the algebraic equation in (4.5) locally for Z, as a function of Z4, cf. [21]. With
F e C'(D,R"), there exist neighborhoods Zy x U(ga0) X U(Za0) < T x Q; and a func-

tion g€ CY(Zy x U(qz.0),U(Zap)) such that (t,Z) solves Fp(t,z) = 0 if and only if
Zo = g(t, &q). Setting

f(tvxd) = Fl(tv [‘ig?gT(t7:z'd)]T,i'd) + i'da

it follows that a function 7 € C'* (j ,R?™) solves (4.5) and if and only if Z solves the explicit
system

(4.102) Zq=f(t,Za),  Falto) = Zao
(4.10b) To = g(t,zq).

As ge CY(Ty x U(qa0),U(Fay)) and Fy € CH(T x Q, x RY, R?), the composition satisfies
feCYZy x U(zqp), R™). Hence, for every initial value (to, z40) € Zo x U(za0), (4.10a)
has a unique, maximally extended solution x4 € C*((tg. .t ) R?), cf. [1]. Then, (4.10b)
has a unique solution Z, € C*(Z,,,R?), where Z,,, := Iy N (tg,, ). In to, in particular,
we have Z, (to) = g(to, QPi,2,0>- Setting

Cseap 1= {(t0, Td, Za) € To X U(q2,0) X U(Za,0) | gpi,2,0 € U(q2,0), Za(to) = g(to, qpi2,0)},

and (tg,t5) = (tg.p,>ta.e,) O La,» it follows that (4.10) is uniquely solvable for every
(to,Z0) € Csexp With z = [247,2,T]7 such that x4 € C*(J,R™), 2, € C1(J,R"~").
As a function z € C'(J,R"™) solves the surrogate model (4.4) if and only if its transformation
% = S~z solves the explicit system (4.10) and noting that

Crv = {(to.w0) € o x Dy | (to, S '20) € Coeap}

by the construction of (4.10), it follows that the surrogate model is uniquely solvable on C;y
withz € C1((t5,t5), R*™).

Now, we show that every solution z4 € C%(J,R%), 7, € C*(J,R%), J < T, of (4.3)
with (tg, zg) € Crv also solves the surrogate model (4.4) on J. We consider the derivative
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array F := [FT FT]|T of size u = 1 with F' given by (4.1) and

, d [ Gpi — D1 frigei — Do fei(AfL piDie + Age pibre)
Fpres = %Fpres = A}C,Pup..lc + Age7pupRe - Dl fPu.un 5
| Ay pigpi + Aje,pugpu + Aje,pedDe
[Vichse — Ase piHpi — Ase puHpy — Aje pe Hpe
B e iF = —Aje,piHpi — Aje,puHpu — Ase,pe Hpe
enth - dt ent HPi _ lepi* qpi _ DZfPi*.h )
L HPu - DfPuQPu - lePuh
[ (jDe - C?De
. PRe — pRe
Fenth = %Fenth = HD _ FID
(& c
| hRe - BRe

We consider the algebraic solution set F~1(0) = {z € R"*! | F(2) = 0}, i.e., the set of
all vectors z = (¢, x, v, w) that satisfy F(z) = 0 in the algebraic sense without a differential
relation between the components and denote the set of initial values (o, zo) that are part of a
vector (tg, Tg, v, wo) € F1(0) by

C1 = {(to, o) € QU | I(vo, wp) € Uy x R™: (tg, 20, v0, wp) € F~1(0)}.

As every solution 74 € C%(J,R9), 2, € CH(J,R?), J < I, of (4.4) with (to, 7o) € Crv
solves (4.3) and hence the derivative array satisfies F (¢, z, &, &) = 0, it follows that C;y < Cy.
In particular, this implies that F~1(0) # .

Considering the Jacobians M (z) := 0y F(2), N(2) := 05 F(2), with the argument
z = (t,z,v,w) € F~1(0), we first show that 9, , M (z) = 0, 3, ,wN(2) = 0, implying that
M(z) = M(x) and N(z) = N(x). Then, we prove that M (z), N (z) satisfy the following
rank assumptions for (¢,z) € Cyy:

(i) a := corank(M (z)) = npi + 2npy + 2Ny, + 3Nie, + 210 + 2nge — K,
(ii) rank(ZZ N(z)) = a, where Z; € R"*% is a basis of coker(M (z)),
(iii) rank(0,F(2)Ty) = d, where Ty € R**4 is a basis of ker(N) and d := 2n — a.

By [18, Theorem 4.11], it follows that every solution z € Cl(j, R21), J cZ,of (4.3) with
(to, o) € Cy solves the surrogate model (4.4) on 7.

To verify the assumptions in items (i)—(iii), we transform the Jacobians M, N by non-
singular transformations constructed from the matrices U, V, IlIp; defined in (3.5). For (i), we
transform the Jacobian M by nonsingular transformations 11y, I, € R4*47 guch that

Inpi+mcv +2npe+2nRe ~0 ~0 0

17 o * Mgg M24 0
I, M1y = . o 0 ol

My 0 0 0
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where
[ Ay, oy 0 0 0 0 0 0]
—V2T D feuV1 —-D 0 0 0 0 0
. ~VIDfuVi —VIDfpVa A}Chpul 0 0 0 0
Moy = 0 0 — DgfpiAJTchpi Ipi 0 0 0
—Dfpux Vi —Dfpux V2 0 0 Ipy 0 0
0 0 0 0 0 Ip; 0
L 0 0 0 0 _AJCV,PU _AJCV,Pi ‘/JC_
i 0 0 0 0
0 0 0 0
i VI DFp, 0 0 00
Mas=| —Dafei 0 D2fPiAJT;2,pi 0 ,
_BJco (un) 0 0 0
—Bye,(qpi) 0 0 0
L 0 0 0 0 |
M3y = [0 0 0 0 —Aiype —Aicypi 0] ,
_AJE,De 0 00 Afc,Pi 0
0 0 0 O 0 0
My = 0 000 0 0
0 0 0 O 0 0
| 0 0 0 O 0 0

By the choice of Uy, V; and the assumption on D, the diagonal block Mgg(x) is nonsin-
gular on Cyy, implying that

rank(M (z)) = npi + Nyey + 2npe + 2nge + rank(Mag) + rank(Sy; (I3, MTI/)(2))
on Cyy, cf. (2.7), where the Schur complement is given by
Si (T M) (2) = —(Msa Myy' Mag)(2) = [B- 0 0 0],

As Jcg is enthalpy reachable on Cjy, the matrix B is pointwise nonsingular on Cyy with
rank(B(z)) = ny,, cf. Lemma 3.2, and it follows that

rank(M (x)) = 3(npi + Ny ) + (Mpy + Nicy + Npe + NRe) — K

and a = corank(M (x)) on Cry.
For (ii), we exploit the structure of I11, M1, to construct a basis Zo € R4"*@ of
corange(M (x)). Setting

4.11) Z3 =[-My 0 0 1,017,

we find that span(Z2) = corange(M (x)) for every x € Cry. Applying Zs and a suitable
transformation ITy € R27"*2™ to the Jacobian N, we get that

IQnDe +2nRe ~0 0

ﬁ%Z,QTNHN(Z) = * N22 N23

* N32 0

)
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where
i A.rC,Pi] 0 0 O 0 0 0 ]
Aje, piy Aje, pu, 0 0 0 0 0
i 0 Vol D feuV4 D 0 0 0 0
NQQ = 0 ‘/1T DfPu‘/l VlT Dfpu‘/g A};hpul 0 0 0 s
Ajepi D1 fpilly 0 0 Dofsi C 0 O
0 —Dfpur Vi —Dfpux V2 0 0 Ip, O
— DIl 0 0 0 0 0 Iy
[ AJ?:,Plz 0 0 |
AJcl,Plz 0 0
0 0 0
Noz = 0 0 0 ,
Agpi Difeilly A pidy, | fei Agpi Dafei
0 —Bie, (gpu)  —Bie, (qpu)
| — D/fpixll2 —Bye,, (gpri)  —DBie, (gpi) |

N32=[0 00 0 0 —Aigpn —Asopi]-

As nge > 0, the matrix C' is nonsingular, cf. Lemma 3.2. By the choice of I'1, Pipy, , and
the assumptions on D, the diagonal block Njs(2) is pointwise nonsingular on Cry with
rank(Nag(2)) = nye + 2np, + np; + k. Hence,

rank(Z¥ N) = 2(npe + nge) + rank(Nag) + rank(Nsp Nyt Nag).

Noting that Naa Nap! Nog = [, #, BT]T, we have verified that rank(Z7 N(z)) = a on Cry-.

For (iii), we exploit the structure of ZJ N (z)IIy and construct a basis T5 € C(D, R"*%)
of ker(ZI N (x)), where d = 2n — a = np; — ny. + ko. Choosing X3 € C(Z x €2, R d)
with span(X3) = ker(NggNQ_legg) and setting

SRR T
T, =TI [0 —Nyp'Noz In,] Xs,
we have span (T (z)) = ker(Z2 N (z)) for every & € Cy. Then, we find that

_ (HP12—HPilAf;lpilAJ‘c,Pm)T 0O 0 0
0 0 I 0

Niey,

T

Noting that

—AZY A
. AL - = TIp: Je,Piy e Pia
HP12 - HPll A]_(;7pi1AJC,Pi2 = Ilp; [ ¢ II; ’

it follows that rank((F;T%)(2)) = d for z = (t,z,v) € F~1(0) with (t,2) € Cry . Setting

T
C[uk o 0 0
4.12) 7 ._[ s I, 0 0] ,

we have verified that rank((Z] F;T»)(z)) = d for z = (t,z,v) € F~(0) with (¢,z) € Cry.
Hence, the network model (4.3) satisfies the assumptions (i)—(iii), implying that every suffi-
ciently smooth solution of (4.3) with (g, z) € C; solves the surrogate model

ZIF(t,z,4) =0, z(to) = o,
Z;]:(t,a:?i,jj) =0,
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cf. [19, Theorem 4.11]. With Z;, Z, given by (4.12), (4.11), we get Fy := ZTF, F, := ZT F.

As fri € CH(Qp x (—o0, 00)™etnre R™) every solution z € C((ty,tg), R?") of
(4.4) satisfies x4 € C%(J,R™), x, € C1(J,R"~™), and, for (to, o) € Crv, a function
x e CH(J,R?") solves (4.3) if and only if = solves (4.4). O

Note that the smoothness of the algebraic components z, depends on the smoothness of
the pump function.

Translated as conditions on the network structure and its elements, the solvability con-
ditions of Theorem 4.1 mean that a reservoir is required as reference value for the pressure
p1c and the enthalpy Ay, in the virtual connection points Jcg. Furthermore, on fundamental
cycles and crossing paths as well as in isolated pumps of Gy py, the pumps must be able to
adjust the mass flow to a given pressure difference. That is, because the transfer elements
(the pipes and pumps) only specify the pressure difference, a reservoir is needed as reference
value for the pressure py, thus, in every connected component there needs to be a reservoir.
Similarly, in the virtual connection points Jco, the enthalpy hy, is computed by inserting the
pipe and pump equations into the energy balance. Here as well, only the enthalpy difference is
specified, so in order to obtain a unique solution, we need a reference value. As the enthalpy
flow depends on the direction of the mass flow, these virtual connection points need to be
strongly connected 1o a reservoir.

Usually, pumps return a pressure difference for a given mass flow. On structures of Gy py
where the pressure difference vanishes, however, the pumps have to work the other way round,
which, mathematically, is reflected by the nonsingularity condition on the matrix D. We
illustrate this by an example.

EXAMPLE 4.2. We consider pumps Puy, Puy, Pus connected to a cycle that is connected
to a demand De. The network model (4.3a) reads

Pic,2 — Pic,1 = fPu,l(un,l)v 4qPu,1 = 4Pu,2,
(4.13) Die,3 — Pic2 = fru2(qpu2)s  @Pu2 = Qpu,3s

Pic,1 — Pie,3 = fPu,S(QPu,?))v QpPu,3 = qQPu,1 T qDes qDe = QDe-

From the mass balances, we get that gp. = 0 and gpy,1 = @py,2 = gpy,3. In combination with
the pump equations, it follows that

Jru,1(gpu,1) + feu,2(qpu,1) + frus(gee,1) = 0.

Hence, the input gp. is not freely choosable, and (4.13) is locally solvable for gpy 1,0 € R if
and only if 22:1 D fpu,;(gpu,1,0) is nonsingular. However, as the pump equations only specify
the pressure difference, the DAE (4.13) will not be uniquely solvable unless the model is
connected to a reservoir.

Similarly, coupling two pumps Puy, Pus between two reservoirs Req, Res, we obtain the
system

(4.14) Pic,1 — PRe,1 = fPu,l(QPu,l)a qPu,1 = GPu,2,
PRe,2 — Pic,1 = fPu,Q(QPu,Q)a

and observe that (4.14) is locally solvable if and only if Z?=1 D fpu,; (gpu,1,0) is nonsingular
for qpu,1,0 € R.

In order to avoid the verification whether the pump function satisfies this solvability
condition, i.e., to avoid the test if D is nonsingular, the considered network can be restricted to
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those in which pumps are coupled to a cycle or to those where paths between two reservoirs
do not occur.

LEMMA 4.3. Let N be a network given by (3.1) that satisfies Assumptions 3.1. Let
F e C1(D,R") be the associated network function. If ng, > 0, Icg is enthalpy reachable,
and ker( Ay p,) = {0}, then the assertions of Theorem 4.1 are satisfied.

Proof. If ker(Ajc pu) = {0}, then V4 is the empty matrix, and the solvability condition of
Theorem 4.1 is automatically satisfied. 0

On the structural level, the condition ker(Ajcpy,) = {0} means that in every cycle of
pumps and every path of pumps between two reservoirs, there is at least one pipe.

EXAMPLE 4.4. In Example 4.2, replacing, e.g., the pump Pus by a pipe Piz, we obtain
the network DAE

Pic,2 — Ple,1 = fPu,l(QPu,l)a 4qPu,1 = GPu,2,
4.15) Pic,3 = Pic,2 = fPu,z(QPu,z), qpPu,2 = 4Pi,3,
dPi,3 = fPi,3(QPi,3ach,1 —ch,3)7 Qri,3 = qPu,1 + QDe; qDe = (De-

The system (4.15) can be solved for gpy 1, gpy,2, gpi,3 and, e.g., pic,1, Pic,2, in dependency of
the reference pressure pj. 3 by simply evaluating the pump equations; there is no need to invert
the pump functions. Similarly, in the second example, replacing, e.g., the pump Pus by a pipe
Pis, we obtain a solvable system.

4dDe gDe

qPu,3 qPu,1 qPi,3 qPu,1

qpPu,2 : : qPu,2 : :

FIG. 4.1. Pump constellations of Example 4.2 and Example 4.4 that trigger the solvability condition "D is
nonsingular” (left) and constellations that avoid this condition (right).

In conclusion, if pumps are present in the network, the solvability condition can be either
imposed on the element level, claiming that D is pointwise nonsingular on Cjy/, or, in order
to ensure that the model works for every pump specification, they can be imposed on the
structural level. Depending on the desired modeling freedom, one can choose between these
two options.

If the solvability conditions are satisfied and the network is plausible, the next step is
to simulate the dynamics of N'. The DAE (4.3a) assembled by gluing together the element
equations (3.2) using the incidence matrix, however, is not suitable for a numerical simulation
as it contains hidden equations and does not reflect the number of differential and algebraic
variables correctly.

While the pressure differences pyc, associated with range(Ajc py) are uniquely specified
from the pump equations, the pressures pj, in the ground nodes Jcy are associated with
coker( Ay py) and thus do not receive a pressure value from a pump. Instead, the pressures
Dy, are specified by the hidden constraint

AJE,PifPi(QPivacapRea hiey s hycy , hre) — AJ},DeéDe =0

arising from inserting the pipe equation, i.e., a differential equation, into the mass balance in

the junctions. Claiming that Ay, p; fp; AJTCPi is nonsingular, this equation uniquely specifies the

pressure py.,. To compensate for the additional equations, the surrogate model (4.4a) specifies
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only the pipe flows on the chord set Pi, by a differential equation, while the mass flows in
pipes on the spanning tree Pi; are given by the mass balance FJ.(¢,x) = 0, cf. (4.2c). We
illustrate this again by an example.

EXAMPLE 4.5. We consider two pipes Pij, Pio that are coupled by a junction Jcq,
cf. Figure 4.2. For simplicity, we assume that the pipes are connected to reservoirs Re;, Res.
Then, we obtain the network DAE

(4.16a) dri,1 = fri,1(qpi,1, PRe,1 — Dic,1)s qri,1(to) = qpi,1,0,
(4.16b) gri,2 = fri2(qpi,2, Dic,1 — PRe,2); agri2(to) = qpi2,0
(4.16¢) qpi,1 = qpi,2-

The pipes specify the mass flows differentially while the junction relates the flows algebraically.
Consequently, only one mass flow evolves dynamically; the other one is fixed algebraically by
the mass balance. In particular, only one initial value can be chosen. The pressure only occurs
implicitly in the differential equations. Differentiating the algebraic equation and inserting
the pipe equations for the derivatives of the mass flows, however, we discover the algebraic
equation

4.17) Iri,1(qpi,1, PRt — Dic,1) = fri2(qpi2, Pre,1 — PRe2)-

As Do(fri2 — fri1) = ¢11 + c1,2 is nonsingular, (4.17) can be solved for the pressure
Dic,1, and (4.16) is uniquely solvable. Hence, coupling two pipes by a junction, the network
model (4.3a) contains a hidden algebraic equation that is needed to specify the pressure in
the coupling junction. Also, (4.3a) does not correctly reflect the number of differential and
algebraic variables as only one mass flow evolves dynamically. Thus, we consider the surrogate
model

gri1 = fri,1(qpi1, PRe,1 — Pic,1), qri,1(to) = qpi,1,0
fri,1(api,1, PRe,t — Dic,1) = fri2(qpi 2, Pre,1l — PRe,2),
qpi,1 = 4pi,2;

which corresponds to (4.4).

qPi,1 qPi,2
— >

FIG. 4.2. Network of Example 4.5.

From the proof of Theorem 4.1, we observe that the solution of (4.3) can be computed
from the explicit system (4.10). Exploiting the linearity and the triangular structure of .J, we
explicitly compute the function g. Using a nonsingular matrix S € R?"*2" we transform the
states according to (3.6) and set

T

_g¢1,.._[o1 T T T T T T T , T pgT T
=8 "x:= [qP12>pJCV7QPil7un17unz7chl7pJC27 IDe> Pres Hpe: hRe:I

We transform the domain of definition accordingly by setting D := Z x Q5 x Q : with
Q; = S71Q,, Q; := S71Q; and partition the state into Z = [Z%,ZT]7 with the vectors
:za = [p};Q 7]9};1 y QIZ:12 ) QIZ:h ) %{1 ) QSea p%e]T and id = Qpiy-
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COROLLARY 4.6. Let N be a network given by (3.1) that satisfies Assumptions 3.1. Let
F € CY(D,R"™) be the associated network function. If ng, > 0, D is pointwise nonsingular
on Crv, where span(Va) = ker(Ay.py), and Jcg is enthalpy reachable, then a function
z e CH(ty,td), R?™) solves (4.3a) if and only if its transformation & = S~'z solves the
explicit system

(4.18a) Zq = f(t,2q), Falto) = zayo,
(4.18b) To = g(t,%a),
where

friz = Iriz (gri(aris), AJTC,Pich(qpig) + Age,PipRe)v

frev = vt (Ajcv,PifPi* (gpu Giey > Gicos gRe) + AJCV,PufPu* (gPh Gicy y Gico > GRe)
+ Ajey pedpe )

gpix = frix (9ri(qpiy)s Pucy > Gico (QPiys Picy ) BRe)a

grux = frux (9ru(qpiy)s Pucy s Greo (QPins Pucy ), BRe)a

ez (apiy) = —C ™ A pi (02 (hsey > Gueo (@pia Pucy ), hre) diag (i ;(api,) ) gpi(apiy)
+ CL AL, piGie, (apiy) + C1 AR, piDre + C3> — C Az pelipe,

Gico (QPiQ s hJCV ) =-B! (AJC,PiBJcV (gPi(QPi2 )) + AJc,PuBJcV (gPu(qPi2 )) ) h]cv
— B™(Aye,piBre(qpi)
+ Aje,puBre (gPu(qPig))) hge — B~ Aje.pe Hpe,

ier (apiy) = = AL 5 AL ppies + Ayl g, fru(9ru(aria)) — AL 5 A pures
9pus (Pis) = Puz (9Pus (qPi2)),

gpru, (qpiy) = —Aj, PulAJLl Pi 9pPi, (qPis) — A;i’PulAfcl,PquPig - A;i’pulAJcl,De(ij
gri, (qpi,) = — A7, pllAJ_c,PquPiz —-A ﬁ.7pi1Aﬁ,DEQDea

with
dDe = (jDe7 GRe = ﬁRea dpe* = HDe7 GJRe* = i_LRe and
gri(apiy) := Ipi, gpiy (qpiy) + Ipiyqpiy, 9pru(qpiy) 1= Tpy, Gpuy (qpiy) + Vagrus (qpis),
9ic(apiz) 2= T1gse, (apin) + Uagie, (qpis)-

The function gpy, € C*(U(qpi, 0), R™") is defined as solution of Fp,(t, &) = 0.

Note that the algebraic equations (4.18b) can be solved from bottom to top such that
the algebraic variables can be expressed as functions of the chord flows ¢p;, and the input
functions QDea ﬁRev E[Dev I;’Re-

REMARK 4.7. The solvability conditions of Theorem 4.1 are formulated on the connection
structure and the elements of the network. This allows us to check the plausibility of the
network in a preprocessing step using information about the incidence matrix A and the pump
function fp,. If the solvability conditions are violated, the critical structures can be located in
N and advice can be given how to modify the model to obtain a physically reasonable system.

The surrogate model (4.4a) can be assembled based on network information only. There
is no need to compute (4.4a) from (4.3a) by symbolic or numerical manipulation as it is
necessary for example in a general modeling language like Modelica. In a simulation, this
saves computational time as the system-to-solve (4.4a) can be assembled directly from the
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network. Furthermore, the physical meaning of the equations and the states is preserved, i.e.,
in the DAE (4.4a), each equation and each variable still has a physical counterpart. Thus,
errors in the simulation can be located in the network, allowing constructive error detection
and handling.

REMARK 4.8. The assertions of Theorem 4.1 can be verified by showing that (4.3) has
regular strangeness index p = 1. Therefore, we show that the rank assumptions (i)—(iii)
are not only satisfied by the Jacobians M, N but also by the Jacobians M (z) := 0, .,F (),
N(z) := 0,F(2), where F = [FT, T, FT]T denotes the derivative array of size . = 2,
cf. [19]. This, however, requires to restrict the interval Z such that sgn(q) = const in order
to provide the required smoothness of fp; as well as stricter smoothness assumptions on

fPuanevﬁRe-

5. Conclusion and outlook. This work provides a full analysis of a thermal fluid net-
work, which is an extension of the well-studied water networks consisting of pipes solely. The
analysis is based on a topological network approach, which allows us to impose conditions on
the underlying network structure, represented by a graph. The provided topological solvability
and index criteria in combination with efficient graph algorithm provide a powerful tool for
the development of system simulation software. Anyhow, for the practical application it is
important to extend those results to networks including valves and tanks, cf. the classification
in [14], in order to be able to capture the whole cooling circuit. We mention, that further
models for system simulation in automotive application (e.g., waste heat recovery, mobile air
conditioning, lubrication systems), show up a similar network structure (with slightly modified
equations). Therefore the presented analysis is representative for the latter mentioned ones.
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