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SPARSITY-INDUCING VARIATIONAL SHAPE PARTITIONING∗

SERENA MORIGI† AND MARTIN HUSKA‡

Abstract. We propose a sparsity-inducing multi-channel multiple region model for the efficient partitioning
of a mesh into salient parts. Our approach is based on rewriting the Mumford-Shah models in terms of piece-wise
smooth/constant functionals that incorporate a non-convex regularizer for minimizing the boundary lengths. The
solution of this optimization problem, obtained by an efficient proximal forward backward algorithm, is used by a
simple thresholding/clusterization procedure to segment the shape into the required number of parts. Therefore, it is
not necessary to further solve the optimization problem for a different number of partitioning regions. Experimental
results show the effectiveness and efficiency of our proposals when applied to both single- and multi-channel (shape
characterizing) functions.
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1. Introduction. The recent development of 3D scanning technology for reverse engi-
neering and of sophisticated scan devices for medical imaging, have incredibly increased the
availability of digital models of 3D physical objects simply represented by a set of 3D points
on the surface of the object. These raw 3D data points, connected into spatial triangulations
called 3D meshes, provide only local information of the structure of the surface. A high level
insight of the raw 3D data is required to make the digital model useful for further processing,
required in a variety of applications including computer graphics, CAD, CAM, and CAE.
One of the fundamental processes which provide the necessary global insight on the model
structure is the segmentation of a mesh, which represents the decomposition of the raw data
into K-disjoint connected regions or parts that cover the entire object. Specific criteria dictate
which elements belong to the same partition and these criteria are built upon the segmentation
objective which in turn depends on the application. Convexity/concavity and thickness are
popular shape criteria used in mesh decomposition. The convexity-driven segmentation of a
shape finds a very intuitive match with the decomposition of an object made by the human
vision system [12, 40]. This is due to the fact that an approximate convex decomposition
can represent more accurately the important structural features of the model by ignoring
insignificant features, such as wrinkles and other surface texture. Conversely, the thickness
of parts of a shape is a less intuitive detection strategy for a human eye. Nevertheless, this
geometry feature represents a strategic quantity in shape analysis, in the context of industrial
design and production.

Much work has been done on approximate decomposition of a shape into convex compo-
nents. Concavity-aware partitioning is proposed in [6] and [24]. In Asafi et al. [3], weakly
convex components are obtained by a point-visibility test. The same idea is followed in [15]
to approximate convex components of shape represented by possibly incomplete point clouds.

Segmentation methods based on spectral analysis mostly emphasize the concavity attribute,
being able to partition even shallow concavities. The spectral analysis method uses the
eigenvalues of properly defined matrices based on the connectivity of the graph in order to
partition a mesh. Liu and Zhang [20] use spectral analysis on the dual graph of the mesh. They
define an affinity matrix using both geodesic distances and angular distances, as proposed
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by the fuzzy clustering method in [16]. This type of matrix has been used successfully for
clustering since it groups elements having high affinity; see for example [40].

Focusing on thickness as a segmentation property, the Shape Diameter Function (SDF),
proposed in [32], is a measure of thickness that recovers volumetric information from the
surface boundaries, thus providing a natural link between the object’s volume and its boundary.
The SDF is a scalar function which maps, for every point on the surface, its distance to the
opposite inner part of the object. As successfully proved in [32], this definition of the SDF is
invariant to rigid body transformations of the whole object, and very robust to any deformation
that does not alter the volumetric shape locally. In [14], the authors introduce an efficient
dynamic approach to the computation of the SDF for a cloud of points.

In addition to the criteria that dictate the rules of the division into parts, the segmentation
methods can be grouped into a few categories according to their computational methodology:
(i) region growing, (ii) watershed-based, (iii) Reeb graphs, (iv) model-based, (v) skeleton-
based, (vi) clustering, (vii) spectral analysis, (viii) explicit boundary extraction, (ix) critical
points-based, (x) multiscale shape descriptors, (xi) Markov random fields, and (xii) variational
segmentation. A detailed analysis of the aforementioned categories is given in [1] and
exhaustive surveys are provided in [4, 31].

The concept of iteratively seeking a partition that minimizes a given error metric, named
variational partitioning, has been introduced in [13] where the authors presented an optimiza-
tion cost function based on clustering face normal of the mesh. Since then, several variational
mesh partitioning have been proposed mostly for surface-based segmentation. In [39] a varia-
tional mesh segmentation framework based on fitting general quadrics (including planes as a
special case) is proposed. Wu and Kobbelt [38] extend the results in [13] by introducing the
sphere, the circular cylinder and the rolling ball patch as basic primitives. An important result
on part-based segmentation has been presented in [40], where a convexified version of the
variational Mumford-Shah model is presented and extended to 3D meshes. The cost function
contains a data term measuring the variation within a segment and a regularization term based
on the total variation of the gradient, measuring the length of the boundary between segments.
This strategy produces piece-wise constant segmentation that may not be appropriate when
applied to intensity inhomogeneous functions.

(a) (b) (c) (d) (e)

FIG. 1.1. From left to right, input function providing the cue for the segmentation of the shape: segmentation
using the proposed SMCMR approach into K = 2, K = 3, and K = 4 parts; segmentation obtained by applying
the simulation of [40].

This paper focuses on a new strategy, named sparsity-inducing multi-channel multiple
region (SMCMR), in the category of variational segmentations which share the common
feature that they define the optimal segmentation as a the minimizer of an objective function,
that generally depends on the given surface and on the scalar or vector functions used to
identify the different salient regions. In particular we present a variational formulation based
on a new variant of the Mumford-Shah models [26], where we adopt a sparsity inducing
`p-norm approximation to the total length of the boundaries between parts, which promotes
gradient-sparser solutions to our model. This newly introduced sparsity-inducing penalty
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term better preserves the segmentation of small structured features in the shape, as it will be
discussed in Section 3 and illustrated in Figure 3.1.

The proposed variational model will be named single channel when a scalar function is
used to measure a given property of the surface, and multi-channel if a vector function is used
in order to allow any logical combination of information in each channel to obtain the desired
segmentation. In [40], the vector function is defined by the eigendecomposition strategy, while
other examples of efficient objective functions that capture useful shape adjectives (compact,
flat, narrow, perpendicular, etc.) are discussed in [33]. The proposed partitioning algorithm
consists of two steps. The first computes the smooth/non-smooth minimizer and the second
step automatically decomposes the object into a given number K of different regions, for
example using a clustering K-means method. We can obtain any segmentation in K parts
without recomputing the first minimization step, unlike the other proposed methods which
require K to be fixed in advance. Such an independence on the number of partitions has
already been considered in [5], where the number K of convex polyhedra is selected after the
creation of a segmentation hierarchy of a tetrahedral mesh.

The simple example in Figure 1.1 illustrates two features of the proposed method: in-
homogeneity and independence from the number of parts K. From the single channel input
function shown in Figure 1.1(a), the SMCMR method decomposes the shape into K partitions,
where K = 2 (Figure 1.1(b)), K = 3 (Figure 1.1(c)), and K = 4 (Figure 1.1(d)), which
represents the most natural segmentation, i.e., three bumps and the base. In the presence
of inhomogeneous functions, like the one in Figure 1.1(a), the segmentation can become
particularly challenging. The sparsity in the magnitude of the solutions gradient allows for
accurate segmentations. The variational segmentation method proposed in [40] produces, for
K = 4, the result shown in Figure 1.1(e); this method fails in the decomposition of this bumpy
shape, moreover it requires to recompute the minimization problem if the number of parts K
changes.

Another important issue we address is how to improve the computational efficiency of
the proposed variational segmentation models. The typical approach of gradient flow (i.e.,
marching the Euler-Lagrange PDE to steady state) usually presents very slow convergence.
One standard way to overcome the computational issues is to treat the models as discrete
optimization problems. Following this direction, we propose a proximal forward backward
strategy, and an efficient split of the global formulation into simpler vertex-wise problems.

Summarizing, this work provides two main contributions:
• We define a multi-channel object partitioning framework, where the first step is

based on a variational formulation with a sparsity-forcing penalty, to better fit the
boundaries of the segmented regions, and a smooth regularizer, to deal with function
inhomogeneity. This formulation makes the algorithm efficient since it does not
depend on the number of partitions required.

• We derive a fast iterative algorithm to approximate faithfully the minimizer of the par-
titioning functional, which can be smooth in case of piece-wise constant segmentation,
or nonsmooth for piece-wise smooth segmentation.

The outline of the paper is as follows. The affinity matrix and other basic notations are
introduced in Section 2. In Section 3, we describe the proposed SMCMR segmentation model,
and in Section 4 we present an efficient numerical solution to the derived optimization problem
and an overview of our algorithm is given in Section 5. Numerical examples in Section 6
demonstrate the ability of the proposed segmentation methodology in partitioning meshes,
considering both single and multi-channels functions. Conclusions and possible directions for
future research are discussed in Section 7.
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2. Construction of the affinity matrix. In this section, we describe the graph matrix
which plays the role of the affinity matrix that will be used for human perception segmenta-
tion [21].

Let us consider a triangle mesh Ω := (V, T ), which discretizes a manifoldM embedded
in R3, where V = {X1, . . . , Xn} is the set of n vertices, T is the connectivity graph, and
we denote by E ⊆ V × V the set of edges. Each vertex Xi ∈ V has immediate neighbors
Xj , j ∈ N(Xi), to which it is connected by a single edge ei,j . We denote by N4(Xi) the set
of triangles with vertex Xi, and by |N4(Xi)| :=

∑
j∈N4(Xi)

A(τj), where A(τj) is the area
of the triangle τj .

The associated affinity matrix should encode mesh structural information which reflects
how vertices are grouped in accordance with human perception.

Taking into account the curvature as shape information, we want to determine a perceptual
partition of Ω such that the edges between different parts have very low weights (vertices in
different clusters are dissimilar from each other), and the edges belonging to the same part
have high weights (vertices within the same cluster are similar to each other). To this aim we
define the affinity matrix L ∈ Rn×n,

(2.1) Li,j =


−wij , i 6= j and eij ∈ E ,∑
j∈N(Xi)

wij , i = j,

0 otherwise,

with the following similarity non-negative weights

(2.2) wij :=
|N4(Xj)|
#N(Xi)

e−‖H(Xi)−H(Xj)‖22/(2σ
2),

where the parameter σ ∈ (0, 1] in (2.2) controls the width of the local neighborhoods. The
mean curvature field H in (2.2) is obtained by exploiting the well-known relation

(2.3) ∆LBX = −2HN,

between the vector field HN and the Laplace-Beltrami differential operator ∆LB , applied
to the coordinate functions X of a surface. According to [23, 29], the discretization of the
Laplace-Beltrami operator (2.3) reads

L(Xi) =
1

2|N4(Xi)|
∑

j∈N(Xi)

ωij (Xj −Xi) ,

ωij =
1

2
(cot γj + cot δj),

where γj , δj are the angles opposite to the edge ei,j in the triangles tuple connected by the
edge.

The spectral decomposition of L, defined in the following, provides a set of (n − 1)
non-trivial, smooth, shape intrinsic isometric-invariant maps. We refer the reader to [36] for
details.

PROPOSITION 2.1. The matrix L ∈ Rn×n defined in (2.1), associated to a connected
mesh Ω of n vertices, satisfies the following properties:

1) L is symmetric and positive semidefinite;
2) L = UΛUT , Λ = diag(λi), 0 = λ0 < λ1 < · · · < λn;
3) λi,∀i are real eigenvalues, UTU = In with In the identity matrix of order n, U =

{v0, v1, . . . , vn} form an orthogonal basis of Rn;
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4) If f =
∑n
i=1 〈f, vi〉 vi, the k-term approximation of f is given by

fk =

k∑
i=1

〈f, vi〉 vi.

The first k eigenvectors associated to the smallest nonzero eigenvalues correspond to
smooth and slowly varying functions, while the last one show more rapid oscillations. Property
4) defines the truncated spectral approximation of the L matrix, that considers the contribution
of the first k eigenpairs related to the smallest eigenvalues, which hold for identifying the main
shape features at different scale forming a signature for shape characterization.

In case of eigendecomposition-based segmentation, a vector function f is simply the
truncated spectral coordinates of a vertex Xi, denoted by

(2.4) f(Xi) = (v1(Xi), v2(Xi), . . . , vd(Xi)), d ≤ k,

where each vj is normalized in the range [−1, 1].
The number k, which represents the number of computed eigenpairs, is independent of

the number K of partition required, and it should be chosen according to the shape resolution.
In Figure 2.1 the first k = 6 eigenvectors of the affinity matrix (2.1) corresponding to the first

FIG. 2.1. The smallest k = 6 eigenfunctions of the horse mesh.

six nonzero eigenvalues are illustrated for the horse mesh, visualized in false colors in the
range [blue, red].

The multi-channel function f for the proposed mesh segmentation algorithm can take the
form (2.4), which is a vector function defined for each vertex Xi of the mesh. However, we
are not limited to spectral information, and many other shape properties can be analogously
exploited as multi-channel input function f .

Properties of the Laplacian spectrum have been widely investigated in shape analysis
and employed in several applications in surface processing, such as shape segmentation,
matching, and retrieval; see [19, 30]. The choice of the Laplacian matrix influences the
spectral segmentation results as documented, for example, in [40], where instead of the more
common cotangent based Laplacian proposed in [23, 29], the Laplacian matrix of the dual
graph (triangle-based) is considered, weighted by the dihedral angles.

3. The sparsity-inducing multi-channel multiple region segmentation model. In this
section we introduce the partitioning framework which exploits global or local shape infor-
mation represented by a generic vector function f : Ω→ Rd, d ≥ 1 at the points V , to infer
a decomposition of the surfaceM in salient parts. In Section 6, we present segmentation
results for a well-known single-channel (scalar) function f , the shape diameter function, which
measures the thickness property of an object, as well as results for a vector function defined
in (2.4) (multi-channel) derived from spectral decomposition, which better reflects the human
perception of shape decomposition. In the latter case, d is thus the number of considered
eigenvectors of the affinity matrix L in (2.1).
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Our proposal is based on the well-known Mumford-Shah variational model introduced
in [26] for image segmentation, briefly reported here for better understanding the main idea
behind our model.

Let Ω ⊂ R3 be a given bounded open set and f : Ω → Rd a measurable function on
it. For gray-scale images, i.e., d = 1, the Mumford-Shah functional provides a partition
Ω = ∪Ki=1Ωi, with respect to f , by combining a smoothing of homogeneous regions to the
enhancement of boundaries among them, represented by the set of curves Γ ⊂ Ω. The problem
is formulated as the minimization of the following functional

(3.1) JMSs(u,Γ) =

∫
Ω

|f − u|2dΩ + αLength(Γ) + β

∫
Ω\Γ
|∇u|2dΩ,

which is known as the piece-wise smooth Mumford-Shah model. This model approximates f
by a piece-wise smooth function u : Ω→ R which is differentiable everywhere in Ω except
for a possible (d− 1)-dimensional jump set Γ, at which u is discontinuous. The weight α > 0
controls the length of the jump set Γ and β > 0 enforces the smoothness of u away from Γ.
The second term in (3.1) imposes that the boundaries Γ be as short as possible. The restriction
of (3.1) for the limiting case β →∞ imposes zero gradient outside Γ, that is, u is required to
assume the constant value f̄i on each connected component Ωi. The resulting minimization
problem, known as the piece-wise constant Mumford-Shah model, often referred to as a special
case of the Chan-Vese model [11], considers the following functional

(3.2) JMSc(Γ) =

K∑
i=1

∫
Ωi

|f − f̄i|2dΩ +

K∑
i=1

αLength(Γi),

where Length(Γi) = |∂Ωi| and f̄i := meanΩi
f . Minimizing the models (3.1) or (3.2)

represents a non-convex optimization problem, so the obtained solutions are in general local
minimizers. Nevertheless, non-smooth, non-convex functionals have recently shown remark-
able advantages over convex ones, for example in the image restoration context; theoretical
explanation and numerical examples can be found in numerous papers [17, 18, 28].

The variational mesh decomposition introduced in [40] is based on a convex relaxation
of (3.2) proposed by Nikolova et al. in [9]. However, the model (3.2) works well only if the
intensity function f is homogeneous in each region. When this is not the case, that is, in
the presence of inhomogeneities inside the regions to be segmented, the model (3.1) behaves
better. For image segmentation, the authors introduced in [8] a convex relaxation where the
boundary information is extracted from the total variation term.

Our goal is to develop an object partitioning framework that has the following properties:
• work on multi-channel (vector-valued) functions characterizing arbitrary object fea-

tures;
• exploit an ad hoc sparsity-inducing regularizer for minimizing the total length of the

boundaries while preserving their geometric features (corner, flat, etc.);
• make the procedure in the first step of the method independent of the number K of

segments required, so there is no need to solve the whole problem again for different
K values;

• work both for homogeneous and piece-wise smooth function f over each channel;
• detect portion of objects whose boundaries are characterized by significant changes

both in f and in the local curvature.
We present a strategy for partitioning meshes, based on a new variant of the Mumford-

Shah models (3.1) and (3.2), where we adopt an `p-norm approximation of the total length of
the boundaries.
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Let f = (f1, . . . , fd) be a given vector-valued function with channels fi : Ω → R,
i = 1, . . . , d, and let u = (u1, . . . , ud) be a vector function on Ω, eventually nonsmooth,
named the partition function. Unlike the color image segmentation process where all image
channels participate jointly in driving the segmentation process [34], here we apply the
variants of the Mumford-Shah models (3.1) and (3.2) to each channel ui of u, for i = 1, . . . , d.
In particular, in the first step, each channel ui is separately computed by minimizing the
piece-wise smooth partitioning functional

(3.3) min
ui

Js(ui)

with

Js(ui):=
1

2

∫
Ω

|fi − ui|2dΩ+
α

p

∫
Ω

φ (‖∇ui‖) dΩ +
β

2

∫
Ω

|∇ui|2dΩ,(3.4)

or the piece-wise constant partitioning functional:

(3.5) min
ui

Jc(ui)

with

Jc(ui):=
1

2

∫
Ω

|fi − ui|2 dΩ+
α

p

∫
Ω

φ (‖∇ui‖) dΩ,(3.6)

where φ(t) := |t|p is a penalty function with p ∈ (0, 2], sparsity-inducing for p < 1, and
β := β(x), β : Ω→ [0, 1], is an adaptive function which approaches zero at the high curvature
points of Ω.

In the second step, we apply a multi-channel clustering procedure to the vector function
u to finalize the object partitioning. The number of parts K (phases) is only required in this
second step, so users can choose or change it without the need of solving the previous stage
again.

(a) SDF partitioning (b) p = 0.2 (c) p = 0.8 (d) p = 1.0
ground truth

FIG. 3.1. Effect of the `p regularizer w.r.to the `1 regularizer for the SDF partitioning of the blocks mesh.

The `p penalty term is introduced in (3.4) and (3.6) to better control the length of the
boundaries and substantially improves upon the `1 norm results. In particular, for p = 1 the
penalty term in (3.4) and (3.6) corresponds to the total variation (TV) term which have been
used in [40] to measure the length of the boundaries.
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The benefit of using p < 1 is illustrated in Figure 3.1 for the segmentation of a mesh
composed of variable sized boxes (Figure 3.1(a) top). Since the thickness property is used as
criteria for partitioning, from the top view, the expected results are four boxes which are shown
in Figure 3.1(a) bottom. The true thicknesses (heights) were used as thresholds. The top row
of Figure 3.1(b), (c), and (d), shows the results obtained from the proposed variational model
for different p values, which are used in step 2 to produce the simple partitions according to
the given thresholds which represent the true heights. In the bottom row, we plot the partition
boundaries, obtained as iso-contours of u∗ in the top row, according to the thresholds. For
the choice p < 1 in (3.6) our model preserves the sharp boundary shape, as illustrated in
Figure 3.1(b) and (c), while for p = 1 the boundaries shrink and the small features disappear as
illustrated in Figure 3.1(d). In particular for p approaching zero the boundary shape improves
and the original intensities are preserved.

This behavior is justified from the fact that the well-known TV regularizer is defined
as the continuous `1 norm, p = 1, which inevitably curtails originally salient boundaries to
penalize their magnitudes. In particular, as discussed in [35], the TV of a feature is directly
proportional to its boundary size, so that one way of minimizing the TV of that feature would
be to reduce its boundary size, in particular by smoothing corners. Moreover, the change in
intensity due to TV regularization is inversely proportional to the scale of the feature, so that
very small-scaled features are removed.

In order to make the model independent of the scale of the feature to segment, we could
use the `0 measure of the discrete gradient explicitly defined as ‖∇u‖0 := #{x | ‖∇u‖2 6= 0},
where # is the counting operator which measures how many times u changes its value. We
propose to approximate the `0 measure of the gradient with the non-smooth non-convex
and non-Lipschitz regularization term, `p quasi-norm, φ(t) = |t|p, with 0 < p < 1, which
has recently been proposed in image processing and compressed sensing since it promotes
gradient-sparser solutions or sparser solutions, substantially improving upon the `1 norm
results [17].

This choice may lead to a challenging computation problem, since it requires non-convex
(when p < 1), non-smooth minimization which, since it involves many minima, can get stuck
in shallow local minima. However, in Section 4, we show how to solve efficiently these
optimization problems.

4. Discretization of the SMCMR model. In the discrete setting, the 2-manifold M
embedded in R3 represents the boundary of the volumetric object to be partitioned, and it
is discretized into a triangular mesh, denoted by Ω, which consists of the finite set V of n
vertices, together with a subset E ⊆ V ×V of edges. We assume that functions on the manifold
are sampled at the vertices V .

Approximate solutions to the shape partitioning problems (3.3) and (3.5) read respectively
as the minimizations of the following functions

Js(ui) :=
1

2
‖ui − fi‖22 +

α

p

n∑
j=1

φ (‖(∇wui)j‖2) +
β

2

n∑
j=1

‖(∇wui)j‖22,(4.1)

Jc(ui) :=
1

2
‖ui − fi‖22 +

α

p

n∑
j=1

φ (‖(∇wui)j‖2) ,(4.2)

where fi ∈ Rn is a vector of values associated to the set of vertices V , and ui ∈ Rn represents
the discretization of the ith component of the partition function u to be estimated. The discrete
operator∇wu(v) denotes the discretization of the weighted local variation of the function u at
vertex v. Towards its computation we define the discrete analog of the directional derivative
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on a 2-manifoldM as the edge derivative of u at a vertex X` ∈ V along an edge e`,j ∈ E by
the following difference operator du(X`, Xj)

(4.3)
∂u

∂e`,j
≈ du(X`, Xj) :=

√
w(X`, Xj)(u(Xj)− u(X`)),

where w : V × V → R+ is a symmetric measure defined between the points X` and Xj ,
and w(X`, Xj) = 0 if (X`, Xj) /∈ E . Hence, the weighted gradient operator ∇wu(X`) of a
function u at a vertexX` can be defined as the vector of all partial derivatives du(X`, Xj),∀j ∈
N(X`). Then its magnitude is given by

(4.4) ‖∇wu(X`)‖22=
∑

j∈N(X`)

w(X`, Xj)(u(Xj)− u(X`))
2.

The regularization terms in (4.1) and (4.2) encode a prior knowledge on the local variation of
the partition function, expressed as (4.4).

In the following proposition we report the relation between the continuous p-Laplacian
operator and its discretization which will be used in the sequel.

PROPOSITION 4.1. Given a set of points V = {X`}n`=1 on a 2-manifoldM, the nonlinear
operator Lwp of a twice differentiable function u defined as

(4.5) Lwp u(X`) =
1

2

∑
j∈N(X`)

γwp (X`, Xj)(u(Xj)− u(X`)),

with

(4.6) γwp (X`, Xj) = w(X`, Xj)(|∇u(Xj)|p−2 + |∇u(X`)|p−2),

represents the discrete approximation of the weighted p-Laplacian operator

(4.7) ∆w
p u := ∇w · (|∇wu|p−2∇wu),

where∇w is the weighted gradient of u onM.
Proof. Let b(u) := |∇u|p−2 and b` be the evaluation of b(u) atX` ∈ V . By applying (4.3),

the discretization of the weighted p-Laplacian operator (4.7) is given by

Lwp u(X`) =
∑
j

√
w`j(bj du(Xj , X`)− b` du(X`, Xj))

=
∑
j

w`j(bj(u(X`)− u(Xj))− b`(u(Xj)− u(X`)))

=
∑
j

w`j(b` + bj)(u(X`)− u(Xj)).(4.8)

Replacing (4.6) in (4.8) we get (4.5).
The p-Laplacian is a nonlinear operator with the exception of the special case when p = 2,

where it reduces to the regular Laplacian operator ∆2f = div(∇f), while for p = 1 we get
∆1f = ∇ · ( ∇f|∇f | ), which is the mean curvature operator.

The classical gradient descent method for the numerical integration of the optimization
problems (3.3) and (3.5) would involve the p-Laplacian flow, which is used, for example,
in [25] for polygonal mesh simplification. However, while its numerical implementation could
be straightforward, because of stability constraints the gradient descent has rather undesirable
asymptotic convergence properties which can make it very inefficient.
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In the rest of this section we propose a fast iterative method to approximate faithfully the
minimizer of (4.1) and (4.2), which represent the discretized versions of (3.3) and (3.5) for
p ∈ (0, 2]. The method presents a global minimum for 1 ≤ p ≤ 2, while (4.1) and (4.2) are
non-convex when p < 1 and a global optimal solution is not insured. The proposed iterative
method has been implemented and evaluated as described in Section 5.

We focus on the minimization of Js in (4.1), since the functional Jc in (4.2) can be seen
as a special case of Js when β = 0. However, since Jc is nonsmooth, in our unified treatment
of the two optimal problems, we will adapt a proximal forward backward (PFB) strategy for
nonsmooth optimization.

We first split the objective function into two terms, h : Ω → R and g : Ω → R, where
h(u) is differentiable but g(u) may not be differentiable (in case Jc in (4.2) is applied).
Then, (4.1) reads as

Js(ui) =
1

2
‖ui − fi‖22︸ ︷︷ ︸
h(u)

+
α

p

n∑
j=1

φ (‖(∇wui)j‖2) +
β

2

n∑
j=1

‖(∇wui)j‖22︸ ︷︷ ︸
g(u)

.

In the following for simplicity of notations we drop the subscripts i.
The optimization problem min(h(u) + g(u)) is then solved by applying an iterative

PFB-based scheme [7], where each iteration step is given by

v(k) := u(k−1) − λk∇h(u(k−1)),(4.9)

u(k) := arg min
u

{
g(u) +

1

2λk
‖u− v(k)‖22

}
:= (I + λk∂ [g] (u(k)))−1v(k)

:= proxgλk
(v(k)),(4.10)

where ∂x[φ](x∗) denotes the subdifferential with respect to x of the function φ calculated at x∗,
and when φ is differentiable we have ∂x[φ](x∗) = {∇φ(x∗)} for all x∗. The explicit updat-
ing (4.9) represents the forward step, whereas the evaluation of the proximity operator (4.10)
represents the implicit backward step, which leads to the following system of equations

(4.11) (I + λk(βLw2 + αLwp ))u(k) = (1− λk)u(k−1) + λkf,

where I denotes the identity matrix of order n and Lwp denotes the discretization of the
weighted p-Laplacian operator given in (4.4). The presence in Lwp of the (diffusivity) co-
efficient γwp (Xi, Xj) defined in (4.6) makes it highly nonlinear, and for arbitrary p even
non-differentiable. A solver like Newton’s method, which converges rapidly near a minimizer,
provided the objective functional depends smoothly on the solution, does not work satisfacto-
rily on it or eventually fails. Therefore, we introduce a gradient linearization technique for the
nonlinear equations (4.11), resulting in the lagged diffusivity fixed point algorithm [37], based
on the following idea.

In order to solve the equation ∇J(x̂) = 0, we write

∇J(x) = L(x)x− z,

where z is independent of x. Then, at each iteration k, one finds x(k+1) by solving the linear
problem

(4.12) L(x(k))x(k+1) = z.
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A connection between the gradient linearization approach, the lagged diffusivity fixed
point iterations, and the half-quadratic minimization has been investigated in [27], where it is
shown that the methods construct exactly the same sequence of iterates x(k+1).

Setting u0 = f and following (4.12), the backward iteration (4.11) is then replaced by the
linear system

(4.13) (I + λk(βLw2 + αLwp (u(k−1))))u(k) = (1− λk)u(k−1) + λkf,

where the nonlinear (diffusion) operator Lwp has been linearized by applying it to the function
u(k−1).

The coefficient matrix of the linear system is symmetric positive definite and the linear
system (4.13) is solvable. The unique solution is the approximate solution of (4.10). The
linear convergence of the lagged diffusivity fixed point method for p = 1 is discussed in [10].

The backward iteration (4.13) can be further simplified using (4.5) thus obtaining n
independent linear equations for each vertex X` ∈ V :

(4.14) u(k)(X`) =
(1− λk)u(k−1) + λk(f +

∑
j(αγ

(k−1)
`j + βw`j)u

(k−1)(Xj))

1 + λk
∑
j(αγ

(k−1)
`j + βw`j)

,

where we omitted the γ dependence on w and p to improve readability. Since for each vertex
X`, at each iteration k, the solution of the linear system (4.13) is reduced to the explicit
solution of a linear diffusion equation, whose diffusivity depends on the previous iterate
u(k−1), the overall computational cost for the solution of this problem is linear in the number
of vertices.

For all p ∈ [1,∞), if the algorithm converges, then it converges to the solution of the
minimized function u in (4.1). However, when p < 1 (non-convex case), if the algorithm
converges to some function u the latter is not guaranteed to be the global minimum of the
minimized function (4.1).

To finalize the partitioning algorithm, we need a suitable proposal for the weights in (4.4).
To this aim, we remark that a genuine partitioning algorithm should make the boundaries cor-
respond to strong affinity changes in the function values between adjacent regions. Therefore
the weights are chosen to be boundary detecting functions

(4.15) w(X`, Xj) = e−‖f(X`)−f(Xj)‖22/σ.

The parameter σ ∈ (0, 1] in (4.15) controls how much the similarities of two local neighbors
are penalized. Smaller values of σ preserve smaller differences in the function f .

By using (4.15) we get a good measurement of similarity, which penalizes in (4.5)-(4.6)
the spatial clusterization flow of the vertices with different features.

5. The Algorithm SMCMR. To summarize the previous results, we report in Algo-
rithm 1 the main steps of the proposed Algorithm SMCMR for mesh decomposition, based on
the variational formulations (4.1) and (4.2).

The partitioning algorithm consists of two steps; the first one computes the minimizer ui
for the ith channel, i = 1, . . . , d, by the PFB-based iterative scheme described in Section 4.
In particular, the partition function ui is obtained by iterating (4.14) with the weights given
in (4.15) for each vertex Xj ∈ V , until the relative change of ui is below a fixed small
tolerance ε. The step sizes λk can be found by a line search, that is, their values are chosen at
each iteration. However, we followed the strategy to set λ0 = 10 at the beginning, and update
λk at each iteration by a factor 0.9.
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ALGORITHM 1: SMCMR segmentation.

inputs: mesh data Ω, f ∈ Rd, number of parts K
output: classification vector Label ∈ Rn

parameters: · penalty p, tolerance ε
· length regularizer α > 0
· smooth regularizer β > 0
· similarity coefficient σ > 0 for w in (4.15)

STEP 1: PFB Initialization: u(0) = f,

for i = 1, . . . , d do:
· k := 1, λ0 := 10,
repeat

· FS: v
(k)
i := (1− λk−1)u

(k−1)
i + λk−1fi

· BS: compute u
(k)
i by (4.14)

· Update: λk := 0.9λk−1, k = k + 1

until ‖u(k)
i − u

(k−1)
i ‖2 < ε

end for
u∗ = u(k)

STEP 2: Segmentation of the mesh into K parts, using u∗.
Label(Xi) = J , J ∈ {1, . . . ,K}, ∀Xi ∈ V by (5.1).

STEP 2 is an automatic thresholding/clusterization procedure, and we could follow the
classical K-means algorithm, with the K-means++ algorithm for cluster center initialization [22,
2]. However, the K-means method is strongly sensitive to the initialization of cluster centers
due to its non-convexity. In particular, it favors the centroids as far away as possible from each
other, while for the proposed segmentation model, two salient parts of the object can have
centroids not too far away. Therefore, instead of using K-means++ initialization, we can set
the cluster centroids ci, i = 1, . . . ,K, by simply assigning to each of them the value of u∗ at a
point in each salient part. Then the clusterization is achieved in only one iteration by labeling
each vertex as

(5.1) Label(Xi) = arg min
j=1,...,K

||u∗(Xi)− cj ||2,

without updating the cluster centroids, as it is required instead in the K-means algorithm.
The simple procedure mentioned above, in case of a single-channel function, coincides

with thresholding.

6. Experimental results. In this section we describe the experimental results which
demonstrate the performance of our segmentation approach, both in case of a single channel
input function, f ∈ R, in regime of piece-wise constant segmentation (see Section 6.1), and in
case of multi-channel piece-wise smooth segmentation; see Section 6.2.

Experimental tests were performed on an Intel R© CoreTMi7-4720HQ Quad-Core 2.6
GHz machine, with 12 GB/RAM and a Nvidia GeForce GTX 860M graphics card, running
a Windows OS. The code is written in C++ using the EIGEN mathematical library, and it
was executed without any additional hardware support, e.g., parallelization, GPU support,
register usage. To compute the solutions of the large sparse eigenproblems required for
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(a) (b) (c)

FIG. 6.1. Effect of the parameter p on STEP 1 of Algorithm SMCMR: (a) p = 2, (b) p = 1, (c) p = 0.8.

multi-channel segmentation, we used the wrapper EIGEN/Spectra (http://yixuan.cos.
name/spectra/) which provides an efficient implementation of the Arnoldi method.

We tested the proposed algorithms on a set of meshes downloaded from the data repos-
itory website http://segeval.cs.princeton.edu, [12]. The dataset represents
geometric models with different characteristics in terms of details, “sharpness”, and level of
refinement, and present a medium dense vertex distribution.

The figures reported in this section were visualized by the software ParaView, and its
VTK reader. In the examples illustrated in this section, we did not apply any post-process
(smoothing, etc.) to the boundaries between the segmented parts in order to not alter the results
computed by the application of the variational partitioning model.

6.1. Single-channel partitioning based on SDF. In this example we aim to decompose
the surface boundary of an object into meaningful parts using the shape diameter values
as a shape attribute to distinguish the salient parts. Therefore we expect the solution to be
composed of homogeneous regions surrounded by closed contours which separates parts with
significantly different thicknesses. We applied Algorithm SMCMR, with β = 0 and the input
data f ∈ R, which was the SDF map computed by the dynamic algorithm proposed in [14].
The result is a piece-wise constant approximation of the given SDF initial data enforcing
sparsity in the gradient magnitude of the solution. The model data of the mesh samples from
the data repository reported for this single-channel partitioning example are illustrated in
Table 6.1.

The decomposition results strongly depend on the parameter p which forces the sparsity
in the gradient of the solution u∗. The effects of the parameter p can be observed, for the
ant and mech_1 data sets, in Figure 6.1 where the colors (from red (large) to blue (small))
indicate the value of the solution u∗ from STEP 1 of Algorithm SMCMR. In this experiment,
we fixed α = 1 to highlight the effect of parameter p, however, similar results can be obtained
for different α values. When p > 1, the solution of the optimization process behaves like a
smoothing flow, as illustrated in Figure 6.1(a), thus destroying the boundaries between parts.
This effect is easily justified in terms of the p-Laplacian operator which, for p = 2, turns
into the classical Laplace-Beltrami operator ∆2. For the choice of p > 1, the tuning of the
parameter α does not help to improve the result. When p ≤ 1, as shown in Figure 6.1(b)
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TABLE 6.1
Timing results in seconds for single-channel (SDF) partitioning: computing time of one iteration (Iter), and

total computing time using the tolerances ε = 10−2 and ε = 10−4.

Data set Size(|V |) Iter ε = 10−2 ε = 10−4

ant 7038 0.008 0.025 1.832
armadillo 25193 0.048 0.209 12.718
blocks 6146 0.008 0.015 0.328
bird 8946 0.014 0.090 4.258
camel 9757 0.013 0.049 2.793
dolphin 7573 0.011 0.040 4.174
mech_1 10400 0.012 0.022 0.389
mech_2 1512 0.002 0.004 0.086
octopus_1 7251 0.009 0.029 1.740
octopus_2 243 0.001 0.002 0.029
pliers_1 3906 0.004 0.014 1.025
wolf 4712 0.006 0.017 1.645

and (c), the regularization term induces the sparsity of the u∗ function leading to cleaner,
straightforward partitioning clues for the underlying object.

FIG. 6.2. Examples of single-channel partitioning based on SDF into patches with similar thickness.

In Figure 6.2 a sample set of objects partitioned into patches of different thickness is
shown. The results were obtained by applying Algorithm SMCMR with d = 1, p = 0.8,
tolerance ε = 10−4 and α = 1. At the bottom right corner of each object we report the value
of K, which in this type of partitioning is associated to the number of clusters having similar
thickness. The corresponding computing times are reported in Table 6.1: for one iteration k
(third column), the total time required by STEP 1 with ε = 10−4 and ε = 10−2 are reported in
the fourth and fifth columns, respectively. Although we used the more stringent ε tolerance
in the examples shown in Figure 6.2, we noticed that for many input shapes the results for
ε ≤ 10−2 are very favorable too. It is also worth noting that it is not necessary to require large
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scale models to generate good results. In fact our algorithm generates acceptable segmentation
results independently of the resolution of the meshes, as illustrated for the two octopus
meshes in Figure 6.2 (last row – left) which present different resolutions.

(a) (b) (c)

FIG. 6.3. Multi-channel partitioning of the pliers mesh into K parts: (a) K = 3, (b) K = 4, (c) K = 5.

6.2. Multi-channel partitioning based on spectral analysis. For the spectral partition-
ing, which aims to simulate the decomposition performed by a human being, the eigende-
composition of the affinity matrix described in Section 2 is preliminarily applied, obtaining
15 non-constant eigenvectors for each object in the repository data set. The affinity matrix
weights (2.2) were computed using σ = 0.5 for every object. The dimension d of the multi-
channel function f used as input of Algorithm SMCMR can be smaller than or equal to the
number of eigenvectors, that is, d ≤ 15. The usual choice is to take the first d significant (well
shape-describing) ones. Our choice is shown in the third column of Table 6.2. Finally, our
algorithm allows us to consider a number of partitions K independents of d. An example of
this benefit is illustrated in Figure 6.3. First, STEP 1 of Algorithm SMCMR is applied using
d = 3 channels, by considering the first three eigenfunctions among the 15 computed ones.
Then STEP 2 is recomputed for K = 3 (Figure 6.3(a)), K = 4 (Figure 6.3(b)), and K = 5
(Figure 6.3(c)).

FIG. 6.4. Examples of multi-channel partitioning into patches simulating human-based segmentation.

The effectiveness of the proposed Algorithm SMCMR in partitioning the surface patches
is shown in Figure 6.4 for a selected set of objects from the repository. At the bottom right
corner of each object, we report theK value, that is, the number of partitions produced. Details
on the model sizes (Size(|V |)), the number of channels considered (d), and the computing
times for these objects are reported in Table 6.2. In particular, we denote as Spectra the timing
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TABLE 6.2
Timing results in seconds for multi-channel partitioning: computing time for the eigendecomposition (Spectra)

and overall computing time (Time) for the (d)-channel Algorithm SMCMR.

Data set Size(|V |) d Spectra (s) Time (s)
ant 7038 8 0.406 5.015
bust 25467 2 3.639 5.156
chair 14372 5 1.247 6.787
cup 15127 2 9.999 2.256
glasses 7407 2 0.455 0.593
horse 8078 6 0.451 5.084
octopus_3 5944 8 0.310 4.856
pliers_2 5110 3 0.293 1.654
vase 10637 3 0.591 3.235

for the eigendecomposition to compute the first 15 non-constant eigenvectors, while we report
as Time the overall computing time in seconds for running the d-channel Algorithm SMCMR.

H Our FP NC RC RW KM SD
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RAND INDEX - STANDARD DEVIATION

FIG. 6.5. Averaged dissimilarity (1−RI) for the comparison of Algorithm SMCMR (Our) with other methods.
Left: comparison w.r.to the human-generated segmentation. Right: standard deviation from the average. The lower
the better.

We compared the results of Algorithm SMCMR with other popular segmentation methods
and with human-generated segmentation, both provided by the benchmark in [12]. Namely,
the methods considered are: fitting primitives (FP), normalized cuts (NC), randomized cuts
(RC), random walks (RW), K-means (KM), shape diameter function (SD).

For the choice of a unifying comparison measure, we considered the Rand Index metric,
denoted by RI, which measures the likelihood that a pair of faces are either in the same segment
in two segmentations, or in different segments in both segmentations. If we denote S1 and
S2 as two segmentations, s1

i and s2
i as the segment IDs of face i in S1 and S2, and M as the

number of faces in the polygonal mesh, Cij = 1 if and only if s1
i = s1

j and Pij = 1 if and
only if s2

i = s2
j , then we can define Rand Index as:

RI(S1, S2) =

(
M

2

)−1 ∑
i,j,i<j

[CijPij + (1− Cij) (1− Pij)] .

This measure reflects the similarity between two segmentations, i.e., CijPij = 1 indicates that
faces i and j have the same ID in both segmentations, and (1− Cij) (1− Pij) indicates that
faces i and j have different IDs in the segmentations being compared.
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As well as in [12], we report in Figure 6.5 the estimates 1−RI to show dissimilarities
from the human-based segmentation averaging the results for each object in the repository
data set. Therefore, the lower bars represent better results. The chart presented was computed
as the average over RI for each segmentation method mentioned w.r.to human-based segmen-
tation. In Figure 6.5, the bar labeled as “H” represents the average of the human-generated
segmentations, in order to track the dissimilarities over human-produced results. We also
report in Figure 6.5 (right) the standard deviation from the average. We can conclude that Al-
gorithm SMCMR is quite consistent, compared to the other methods and the human-generated
segmentations.

7. Conclusions and future work. In this paper we presented our proposal for the parti-
tioning of an object, represented by a triangular mesh, into K separated regions. Our work is
based on recent advances in sparsity-inducing penalties that have been successfully applied in
image processing [17]. The multi-channel object partitioning framework is based on a varia-
tional formulation, where we introduced a novel shape metric, allowing the capture of more
subtle details of the segmented boundaries than the traditional `1 metric. The sparsity imposed
in the variational formulation represents the key aspect for a successful shape partitioning. In
order to deal with function inhomogeneity, the functional has been enriched with a smooth
regularizer. Thus, the resulting variational models hold the potential both for piece-wise con-
stant and piece-wise smooth segmentations. We propose a fast iterative algorithm to accurately
approximate the minimizer of the partitioning functional. From the computational point of
view, the efficiency can be further improved by CPU/GPU parallelization of the vertex-wise
computation in the backward step of the SMCMR Algorithm. This aspect deserves a deeper
investigation.

The mathematical framework is robust and efficient; however the `p seminorm term in
the functional leads to a non-convex optimization problem, whose solution can be stalled at
local minima. A future improvement that we would like to explore is to replace the `p penalty
term with a another sparsity inducing, non-convex, but parametric penalty function, in order to
control the convexity of the overall functional and benefit of the convex optimization tools.

An advantage of this proposal with respect to other methods is that the solution is
independent of the number of partitions K required, which is only exploited in the post-
processing second step. However, the decomposition step is currently implemented as a naive
K-means-alike clusterization algorithm which coincides with thresholding in the case of
single channel variant of Algorithm SMCMR; therefore we also plan to replace it with a more
convenient, convex, thresholding formulation.

The ability of the proposed algorithm to object partition has been illustrated for the shape
diameter attribute and for spectral decomposition. However, our formulation is quite general,
and other surface attributes can be used instead by suitably initializing the variational problem,
thus obtaining a generalized partitioning framework.
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