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APPROXIMATING EIGENVALUES OF BOUNDARY VALUE PROBLEMS BY
USING THE HERMITE-GAUSS SAMPLING METHOD∗

RASHAD M. ASHARABI†

Abstract. The Hermite-Gauss sampling operator was introduced by Asharabi and Prestin (2015) to approximate
a function from a wide class of entire functions, using few samples from the function and its first derivative. This
operator converges at the rate e−(2π−σh)N/

√
N , and has been applied to construct a new sampling method for

approximating the eigenvalues of boundary value problems whose eigenvalues are real and simple. In this paper,
we use the first derivative of this operator to approximate non-real and non-simple eigenvalues of boundary value
problems. For this task, we estimate two types of errors associated with the first derivative of the Hermite-Gauss
operator. These error estimates give us the possibility to establish the error analysis when the eigenvalues are not real
or not algebraically simple. Illustrative examples are discussed and show the effectiveness of the proposed method.
Our numerical results are compared with the results of sinc-Gaussian sampling method.

Key words. sinc methods, approximating eigenvalues, boundary value problems, error bounds, rate of conver-
gence
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1. Introduction. Consider the following Sturm-Liouville problem

(1.1) −y′′(x) + q(x)y(x) = λ2y(x), x ∈ [0, b], λ ∈ C,

with mixed-type boundary conditions

(1.2) U1(y) := α1y(0, λ) + β1y(b, λ) = 0, U2(y) := α2y
′(0, λ) + β2y

′(b, λ) = 0,

where q is a complex-valued function satisfying q ∈ L1[0, b] and αi, βi (i = 1, 2) are complex
numbers satisfying |αi|, |βi| > 0 for all i = 1, 2. When αi = −βi = 1 (i = 1, 2), conditions
(1.2) are called periodic and when αi = βi = 1 they are called antiperiodic. For the spectral
theory of periodic second-order differential equations, we refer the reader to [12, 17]. The
eigenvalues of the problem (1.1)–(1.2) are in general complex numbers and are not necessarily
simple, as in the case of separated boundary conditions, and this is a major difficulty.

Let y1(·, λ) and y2(·, λ) be the solutions of (1.1) satisfying the initial conditions

(1.3) y1(0, λ) = y′2(0, λ) = 1, y′1(0, λ) = y2(0, λ) = 0.

The characteristic function, which is also called Hill’s discriminant, of problem (1.1)–(1.2)
can be written as follows:

(1.4) D(λ) :=

∣∣∣∣ U1(y1) U1(y2)
U2(y1) U2(y2)

∣∣∣∣ = α1α2 + β1β2 + α2β1y1(b, λ) + α1β2y
′
2(b, λ);

cf., e.g., [15]. Its zeroes are the square roots of eigenvalues of the problem (1.1)–(1.2).
Observe that D(λ) is an entire function of λ because the solutions y1(·, λ) and y2(·, λ) are
entire functions in λ, [12, p. 19]. As it is well known, we cannot compute the eigenvalues of
boundary value problems exactly. We are thus forced to establish approximation methods to
compute these eigenvalues. Methods for approximating eigenvalues of second-order boundary
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value problems have received much attention, and they are classified into several categories. An
example of these categories is based on sampling theory and contains five methods: classical
sinc (1996), regularized sinc (2007), sinc-Gaussian (2008), Hermite (2012) and Hermite-Gauss
(2016), cf., e.g., [1–4, 10, 11, 13] and their references. All these sampling methods can be
used for approximating non-real and non-simple eigenvalues except the last one, i.e., Hermite-
Gauss, although it has the highest rate of convergence compared with the rest of the sampling
methods, cf. [6]. The author of [4] uses the Hermite-Gauss operator, which is established by
Asharabi and Prestin (2105), to construct a new sampling method. This method is established
to approximate eigenvalues of second-order boundary value problems which have only real and
simple eigenvalues. Likewise, Asharabi and Tharwat (2017) use this method to approximate
eigenvalues of Dirac systems with discontinuities at several points, cf. [8]. The eigenvalues of
the Dirac problem were also real and simple. It seems that the Hermite-Gauss method gives
more accurate results than the other sampling methods. However, we can confidently say that
the Hermite-Gauss method will be the best sampling method because it has the highest rate of
convergence, cf. [4].

In this paper, we employ the Hermite-Gauss sampling operator to approximate double and
complex eigenvalues of boundary value problems. More specifically, we apply this method to
approximate eigenvalues of the problem (1.1)–(1.2). For this task, we estimate truncation and
amplitude errors associated with the derivative of the Hermite-Gauss operator. The bounds
of these errors allow us to establish the error analysis when the eigenvalues are neither real
nor algebraically simple. Moreover, this method will be used for computing the complex
eigenvalues of boundary value problems as non-self-adjoint eigenvalue problems with separate
type conditions, cf. [10].

The rest of the paper is organized as follows: the next section is devoted to introducing
two newer results on the derivative of the Hermite-Gauss operator. Moreover, we state two
known results on the Hermite-Gauss operator. In Section 3, we describe in detail our method
and we provide the error analysis of the present method in Section 4. Section 5 deals with the
illustrative examples which show the efficiency and accuracy of the present method. Lastly,
Section 6 concludes the paper.

2. Hermite-Gauss operator. In this section, we state two known results on bounds of
approximating entire functions using a Hermite-Gauss operator. We also introduce two new
results on bounds of approximating the first derivative of entire functions using the derivative
of the Hermite-Gauss operator in complex domains. These results will be used when we
establish the error analysis of the present method. Let Eσ, σ > 0, be the class of all entire
functions that satisfy the condition

(2.1) |f(z)| ≤M eσ|=z|, z ∈ C,

where M is a positive real number. On the class Eσ , Asharabi and Prestin [6], introduced the
Hermite-Gauss localization operator, i.e.,Hh,N : Eσ −→ Eσ , as follows

Hh,N [f ](z) :=
∑

n∈ZN (z)

{(
1 +

2β(z − nh)2

h2N

)
f(nh) + (z − nh)f ′(nh)

}

× sinc2(h−1z − n) exp

(
− β
N

(
h−1z − n

)2)
,

(2.2)

where h ∈ (0, 2π/σ], β := (2π − hσ)/2 and the sinc function is defined via

sinc(t) :=

{
sin(πt)
πt , t 6= 0

1, t = 0
.
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The index of the summation (2.2) belongs to the set

ZN (z) :=
{
n ∈ Z : |bh−1<ζ + 1/2c − n| ≤ N

}
,

which depends only on the real part of z, where N ∈ Z+ and bxc denotes the integer part
of x. The Hermite-Gauss operator is extended in different ways, cf. [5, 7]. The error bound of
approximating Eσ-functions by the Hermite-Gauss operator is introduced in [6, Corollary 2.3].
If f ∈ Eσ , then we have for z ∈ C, |=z| < N ,

(2.3) |f(z)−Hh,N [f ](z)| ≤ 2
∣∣sin2(h−1πz)

∣∣ ‖f‖∞AN (h−1=z
) e−βN√

πβN
,

where

AN (t) :=
4eβt

2/N

√
πβN

(
1− (t/N)

2
) +

e−2βt

(1− e−2π(N+t))2
+

e2βt

(1− e−2π(N−t))2

= 2 cosh(2βt) +O(N−1/2), as N →∞.

(2.4)

The following theorem is devoted to estimate a bound for the error associated with the
derivative of the Hermite-Gauss operator, i.e.,

∣∣∣f ′(z)−H′h,N [f ](z)
∣∣∣, where f ∈ Eσ. From

the definition of the class Eσ , we can verify that if f ∈ Eσ , then f ′ ∈ Eσ .
THEOREM 2.1. Let f ∈ Eσ , σ > 0. Then we have for z ∈ C, |=ζ| < N ,

(2.5)
∣∣f ′(z)−H′h,N [f ](z)

∣∣ ≤ 2‖f‖∞ψN (z)AN
(
h−1=z

) e−βN

h
√
πβN

,

where h ∈ (0, 2π/σ], β := (2π − hσ)/2, AN is defined in (2.4), and ψN is defined by

(2.6) ψN (z) :=
(
2π
∣∣cos(πh−1z)

∣∣+
(
N−1 + 2β

) ∣∣sin(πh−1z)
∣∣) ∣∣sin(πh−1z)

∣∣ .
Proof. Since f ∈ Eσ , the authors of [6, p. 423] used the residue theorem to prove that

(2.7) f(z)−Hh,N [f ](z) =
sin2(πh−1z)

2πi

∫
R

f(ζh) e−
β
N (h−1z−ζ)

2

(ζ − h−1z) sin2(πζ)
dζ,

for all z ∈ C, whereR is the rectangle whose vertices are located at

± (N + 1/2) + bh−1<z + 1/2c+ i(h−1=z ±N).

Differentiating (2.7) gives

f ′(z)−H′h,N [f ](z) =
sin(πh−1z) cos(πh−1z)

hi

∫
R

f(ζh) e−
β
N (h−1z−ζ)

2

(ζ − h−1z) sin2(πζ)
dζ

+
sin2(πh−1z)

2πhi

∫
R

f(ζh) e−
β
N (h−1z−ζ)

2

(ζ − h−1z)2 sin2(πζ)
dζ

+
β sin2(πh−1z)

πhN i

∫
R

f(ζh) e−
β
N (h−1z−ζ)

2

sin2(πζ)
dζ.

(2.8)

The first integral of (2.8) is estimated in [6, pp. 423–425] as follows

(2.9)

∣∣∣∣∣
∫
R

f(ζh) e−
β
N (h−1z−ζ)

2

(ζ − h−1z) sin2(πζ)
dζ

∣∣∣∣∣ ≤ 4π‖f‖∞AN
(
h−1=z

) e−βN√
πβN

.
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Applying the same technique of [6], we obtain the following estimates

(2.10)

∣∣∣∣∣
∫
R

f(ζh) e−
β
N (h−1z−ζ)

2

(ζ − h−1z)2 sin2(πζ)
dζ

∣∣∣∣∣ ≤ 4π‖f‖∞AN
(
h−1=z

) e−βN

N
√
πβN

,

(2.11)

∣∣∣∣∣
∫
R

f(ζh) e−
β
N (h−1z−ζ)

2

sin2(πζ)
dζ

∣∣∣∣∣ ≤ 4π‖f‖∞AN
(
h−1=z

) √Ne−βN√
πβ

.

Applying the triangle inequality to (2.8) and combining the result with the inequalities (2.9)–
(2.11), we obtain (2.5).

As we mentioned above, the operatorsHh,N andH′h,N are approximating the function
f ∈ Eσ and its derivative by using only few samples from the function f and its first deriva-
tive. However, sometimes these samples cannot be computed explicitly. For this reason the
author of [4] established a bound for the amplitude error associated with the Hermite-Gauss
operatorHh,N . The amplitude error arises when the exact values f (i)(nh), i = 0, 1, of (2.2)
are replaced by closer approximate ones. Let ε > 0 be sufficiently small such that

(2.12) sup
n∈ZN (z)

|f̃ (i)(nh)− f (i)(nh)| < ε, i = 0, 1,

where f̃ (i)(nh) is an approximation for the sample f (i)(nh). Then the amplitude error
associated with (2.2) is defined by Hh,N [f ](z) − Hh,N [f̃ ](z), z ∈ C. Assume that (2.12)
holds. Then for z ∈ C, |=z| < N we have [4, Theorem 2.1]

|Hh,N [f ](z) − Hh,N [f̃ ](z)
∣∣∣

≤ 2ε

(
1 +

2β

π2N
+
h

π

)(
1 +

√
N/βπ

)
e(2π+βh−1)h−1|=z|e−β/4N ,

(2.13)

where h ∈ (0, 2π/σ], β := (2π − hσ)/2. Likewise, we define an amplitude error associated
with the operator H′h,N by H′h,N [f ](z) − H′h,N [f̃ ](z), f ∈ Eσ and z ∈ C. The following
theorem provides a bound for this amplitude error, which will be required for studying the
error analysis of our method when an approximated eigenvalue is double.

THEOREM 2.2. Let σ > 0, h ∈ (0, 2π/σ] and β := (2π − hσ)/2. Assume that (2.12)
holds. Then we have for z ∈ C, |=z| < N ,∣∣H′h,N [f ](z) − H′h,N [f̃ ](z)

∣∣∣
≤ 2εCh,N

(
1 +

√
N/βπ

)
e(2π+βh−1)h−1|=z|e−β/4N ,

(2.14)

where Ch,N is defined by

(2.15) Ch,N := 1 +
2

h

(
Nπ +

β

π

)(
1

N
+

2β(h+ 1)

Nπh
+ 1 + h

)
.

Proof. According to the amplitude error associated withHh,N , we have

Hh,N [f ](z)−Hh,N [f̃ ](z) :=∑
n∈ZN (z)

{
f(nh)− f̃(nh)

}(
1 +

2β(z − nh)2

h2N

)
sinc2(h−1z − n) e−

β
N (h−1z−n)

2

+
∑

n∈ZN (z)

{
f ′(nh)− f̃ ′(nh)

}
(z − nh) sinc2(h−1z − n) e−

β
N (h−1z−n)

2

.

(2.16)
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Differentiating (2.16), we obtain

H′h,N [f ](z)−H′h,N [f̃ ](z) =

2
∑

n∈ZN (z)

{
f(nh)− f̃(nh)

}
ϕn,1(z) sinc(h−1z − n) e−

β
N (h−1z−n)

2

+
4β

Nhπ

∑
n∈ZN (z)

{
f(nh)− f̃(nh)

}
ϕn,2(z) sin(πh−1z − nπ) e−

β
N (h−1z−n)

2

+
∑

n∈ZN (z)

{
f ′(nh)− f̃ ′(nh)

}
ϕn,3(z)sinc(h−1z − n) e−

β
N (h−1z−n)

2

,

(2.17)

where the functions ϕn,j(z), j = 1, 2, 3, are defined by

ϕn,1(z) := sinc′(h−1z − n) + βN−1π−1h−1 sin(πh−1z − nπ),

ϕn,2(z) := (z − nh)
(
sinc′(h−1z − n)− βN−1π−1h−1 sin(πh−1z − nπ)

)
,

ϕn,3(z) := sinc(h−1z−n) + 2(z−nh)
(
sinc′(h−1z−n)− βN−1π−1 sin(πh−1z−nπ)

)
.

Since

(2.18) sinc(h−1z − n) =
h

2π

∫ π/h

−π/h
ei ζ(z−nh)dζ, z ∈ C, n ∈ Z,

we have

(2.19)
∣∣sinc(h−1z − n)

∣∣ ≤ eπh
−1|=z|, z ∈ C, n ∈ Z.

Differentiating (2.18), we obtain

sinc′(h−1z − n) =
ih

2π

∫ π/h

−π/h
ζeiζ(z−nh)dζ, z ∈ C, n ∈ Z.

Therefore

(2.20)
∣∣ sinc′(h−1z − n)

∣∣ ≤ πh−1eπh
−1|=z|, z ∈ C, n ∈ Z.

From the definition of the set ZN (z), we can see that for all z ∈ C, |=z| < N ,

(2.21) sup
n∈ZN (z)

|z − nh| ≤ (1 + h)N.

By using inequalities (2.19), (2.20), (2.21), and | sin(z)| ≤ e|=z|, we get the following
estimates

sup
n∈ZN (z)

∣∣ϕn,1(z) sinc(h−1z − n)
∣∣ ≤ 1

hN

(
πN +

β

π

)
e2πh−1|=z|,

sup
n∈ZN (z)

∣∣ϕn,2(z) sin(πh−1z − nπ)
∣∣ ≤ (h+ 1

h

)(
Nπ +

β

π

)
e2πh−1|=z|,

sup
n∈ZN (z)

∣∣ϕn,3(z) sinc(h−1z − n)
∣∣ ≤ (1 +

2(h+ 1)

h

(
πN +

β

π

))
e2πh−1|=z|,

(2.22)
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where z ∈ C and |=z| < N . Applying the triangle inequality to (2.17) and in view of (2.12)
and (2.22), we obtain

(2.23)
∣∣∣H′h,N [f ](z)−H′h,N [f̃ ](z)

∣∣∣ ≤ εCh,Ne2πh−1|=z|
∑

n∈ZN (z)

∣∣∣e− β
N (h−1z−n)

2
∣∣∣ ,

where Ch,N is defined in (2.15). The summation in (2.23) is estimated in [1, pp. 297–298] as
follows

(2.24)
∑

n∈ZN (z)

∣∣∣e− β
N (h−1z−n)

2
∣∣∣ ≤ 2

(
1 +

√
N/βπ

)
eβh

−2|=z| e−β/4N .

From (2.24) and (2.23), we get (2.14).

3. The method. This section is devoted to the construction of our method. The main
idea is to establish an entire function using the Hermite-Gauss sampling operator which will
be very close to the characteristic function of the problem (1.1)–(1.3), i.e., D(λ). The zeros of
this function will be accurate approximations to the zeros of D(λ). Using the method of the
variation of constants, we can write the solutions of the problem (1.1)–(1.3) as the fundamental
solutions of the following Volterra integral equations

y1(t, λ) := cos(tλ) +

∫ t

0

sin ((t− x)λ)

λ
q(x)y1(x, λ)dx,(3.1)

y2(t, λ) :=
sin(tλ)

λ
+

∫ t

0

sin ((t− x)λ)

λ
q(x)y2(x, λ)dx.(3.2)

Differentiating (3.2) with respect to t, we obtain

(3.3) y′2(t, λ) := cos(tλ) +

∫ t

0

cos((t− x)λ) q(x)y2(x, λ)dx.

For convenience, we denote the two Volterra operator in (3.1) and (3.3), respectively, as
follows

T [y(x, λ)] (t) :=

∫ t

0

sin ((t− x)λ)

λ
q(x)y(x, λ)dx,

T̃ [y(x, λ)] (t) :=

∫ t

0

cos((t− x)λ) q(x)y(x, λ)dx.

The operators T and T̃ are defined from C[0, b] to C[0, b]. The method of successive approxi-
mations yields

(3.4) y1(t, µ) =

∞∑
n=0

T n [cos(xλ)] (t),

and

(3.5) y′2(t, λ) = cos(tλ) +

∞∑
n=0

T̃ T n
[

sin(xλ)

λ

]
(t),
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where T 0 is the identity operator. The convergence in (3.4) and (3.5) is uniform on [0, b] for
any λ ∈ C. Combining (3.4) and (3.5) in (1.4), D(λ) can be written as

D(λ) = α1α2 + β1β2 + α1β2 cos(bλ) + α2β1

∞∑
n=0

T n [cos(xλ)] (b)

+ α1β2

∞∑
n=0

T̃ T n
[

sin(xλ)

λ

]
(b).

Let us split D(λ) into two parts via

(3.6) D(λ) := Kk(λ) + Uk(λ), k ∈ N0,

where Kk(λ) is the known part

Kk(λ) := α1α2 + β1β2 + α1β2 cos(bλ) + α2β1

k∑
n=0

T n [cos(xλ)] (b)

+α1β2

k∑
n=0

T̃ T n
[

sin(xλ)

λ

]
(b),(3.7)

and Uk(λ) involves the infinite sum of integral operators

(3.8) Uk(λ) := α2β1

∞∑
n=k+1

T n [cos(xλ)] (b) + α1β2

∞∑
n=k+1

T̃ T n
[

sin(xλ)

λ

]
(b).

In the following result, we prove that Uk(·) belongs to the class Eb and then we will approximate
Uk(·) using the Hermite-Gauss formula (2.2).

LEMMA 3.1. Let q(·) ∈ L1[0, b]. Then we have Uk(·) ∈ Eb for all k ∈ N0.
Proof. Since D(λ) is an entire function, Uk(λ) is an entire function in λ for all k ∈ N0.

To complete the proof it remains to prove that Uk(λ) satisfies the condition (2.1) of the class
Eb. Since q(·) ∈ L1[0, b], we have, cf., e.g., [9], for all k ∈ N0 and λ ∈ C,∣∣∣∣∣

∞∑
n=k+1

Tn [cos(xλ)] (b)

∣∣∣∣∣ ≤ ρk+1eb|=λ|,(3.9) ∣∣∣∣∣
∞∑

n=k+1

T̃ Tn
[

sin(xλ)

λ

]
(b)

∣∣∣∣∣ ≤ c b τ ρk+1eb|=λ|,(3.10)

where ρk :=

∞∑
n=k

(c b τ)
n

n!
, τ :=

∫ b
0
|q(t)|dt, and c := 1.709. Applying the triangle inequality

to (3.8) and using estimates (3.9) and (3.10), we obtain |Uk(λ)| ≤Mkeb|=λ|, where

(3.11) Mk := (|α2β1|+ cbτ |α1β2|) ρk+1, k ∈ N0.

Therefore Uk(·) ∈ Eb for all k ∈ N0.
Constructing our method requires the computation of the samples Uk(nh) and U ′k(nh),

where n ∈ ZN (λ) and h ∈ (0, π/b]. From now on, we restrict the parameter h to be in the
interval (0, π/b] because we will use sinc-Gaussian sampling, which is defined only in this
interval. As predicted by the error estimates of the operatorsHh,N andH′h,N , the accuracy of
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the approximations increases when h decreases and N is fixed. According to (3.6) and (1.4),
we have

Uk(nh) = D(nh)−Kk(nh)

= α1α2 + β1β2 + α2β1y1(b, nh) + α1β2y
′
2(b, nh)−Kk(nh).

(3.12)

It is clear that the samples Uk(nh) and U ′k(nh) cannot be determined explicitly in the general
case. That is why the amplitude error usually appears. Let Ũk(nh) be the approximation of
the samples Uk(nh) when y1(b, nh) and y′2(b, nh) are computed numerically at the nodes
{nh}n∈ZN (λ). Also, let Ũ ′k(nh) be the approximations of the samples U ′k(nh) which are

computed using the values Ũk(nh) through the sinc-Gaussian sampling, cf., e.g., [1, 16],

(3.13) Ũ ′k(nh) :=
∑

n∈ZN (λ)

Ũk(nh)
[
sinc(h−1λ− n) e−

α
N (h−1λ−n)

2]′
λ=nh

.

Here the use of the sinc-Gaussian sampling operator (3.13) is guaranteed because Uk(·) ∈ Eb.
The error analysis associated with formula (3.13) is given in [1, Theorems 2.1, 2.2]. Now we
are ready to define the following interesting function using the Hermite-Gauss operatorHh,N ,

(3.14) D̃N,k(λ) := Kk(λ) +Hh,N [Ũk](λ), h ∈ (0, π/b], k ∈ N0,

where Kk(λ) is defined in (3.7) andHh,N is the Hermite-Gauss operator with the parameter
β := (2π − hb)/2. The function D̃N,k(λ) is determined explicitly and will be very close
to the characteristic function D(λ), as we will see in Theorem 3.2. Therefore, the zeros of
D̃N,k(λ) will be very close to the desired zeros of D(λ). Finally, we assume that there exists
a very small ε > 0 such that

(3.15) sup
n∈ZN (λ)

∣∣∣U (i)
k (nh)− Ũ (i)

k (nh)
∣∣∣ < ε, i = 1, 2, k ∈ N0.

THEOREM 3.2. Let N ∈ N and k ∈ N0. Then for |=λ| < N , we have the following
estimate

(3.16)
∣∣∣D(λ)− D̃N,k(λ)

∣∣∣ ≤ TN,k,h(λ) +Aε,h,N (=λ) ,

where D is the characteristic function of the problem (1.1)–(1.2) and D̃N,k is defined in (3.14).
The functions TN,k,h and Aε,h,N are defined by

TN,k,h(λ) := 2
∣∣sin2(h−1πλ)

∣∣MkAN
(
h−1=λ

) e−βN√
πβN

,(3.17)

Aε,h,N (t) := 2ε

(
1 +

2β

π2N
+
h

π

)(
1 +

√
N/βπ

)
e(2π+βh−1)h−1|t|e−β/4N ,(3.18)

where h ∈ (0, π/b], β := (2π − hb)/2, and AN and Mk are defined in (2.4) and (3.11),
respectively. Moreover, D̃N,k → D uniformly on any compact subset of C when N →∞ and
ε→ 0.

Proof. According to (3.6) and (3.14), we have∣∣∣D(λ)− D̃N,k(λ)
∣∣∣ =

∣∣∣Uk(λ)−Hh,N [Ũk](λ)
∣∣∣

≤
∣∣Uk(λ)−Hh,N [Uk](λ)

∣∣+
∣∣∣Hh,N [Uk](λ)−Hh,N [Ũk](λ)

∣∣∣ .(3.19)
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Since the function Uk ∈ Eb, we can approximate Uk by the Hermite-Gauss operator and then
we have, cf. (2.3),

(3.20)
∣∣Uk(λ)−Hh,N [Uk](λ)

∣∣ ≤ TN,k,h(λ), |=λ| < N,

where TN,k,h is defined in (3.17). Since condition (3.15) holds, we have, cf. (2.13),

(3.21)
∣∣∣Hh,N [Uk](λ)−Hh,N [Ũk](λ)

∣∣∣ ≤ Aε,h,N (=λ) , |=λ| < N,

where Aε,h,N is defined in (3.18). Combining (3.21), (3.20), and (3.19) implies (3.16). In
view of (3.17) and (3.18), the right-hand side of (3.16) goes to zero uniformly when N →∞
and ε → 0. Therefore, D̃N,k → D uniformly on any compact subset of |=λ| < N for all
k ∈ N0.

In the following theorem, we will prove that the function D̃′N,k(λ) will be very close to
D′(λ). This result will be used in the next section to estimate the absolute error |λ− λN,k|
when λN,k is a double eigenvalue of the problem (1.1)–(1.2).

THEOREM 3.3. Let N ∈ N and k ∈ N0. Then for |=λ| < N , we have the following
estimate

(3.22)
∣∣∣D′(λ)− D̃′N,k(λ)

∣∣∣ ≤ TN,k,h(λ) + Aε,h,N (=λ) ,

where TN,k,h and Aε,h,N are defined by

TN,k,h(λ) := 2MkψN (λ)AN
(
h−1=λ

) e−βN

h
√
πβN

,(3.23)

Aε,h,N (t) := εCh,N e(2π+βh−1)h−1|t|e−β/4N ,(3.24)

where h ∈ (0, π/b], β := (2π − hb)/2, and AN , Mk, ψN , and Ch,N are defined in (2.4),
(3.11), (2.6), and (2.15), respectively. Moreover, D̃′N,k → D′ uniformly on any compact subset
of C when N →∞ and ε→ 0.

Proof. According to (3.6) and (3.14), we have

|D′(λ) − D̃′N,k(λ)
∣∣∣

≤
∣∣U ′k(λ)−H′h,N [Uk](λ)

∣∣+
∣∣∣H′h,N [Uk](λ)−H′h,N [Ũk](λ)

∣∣∣ .(3.25)

Since the function Uk ∈ Eb, we can approximate Uk by the derivative of the Hermite-Gauss
operatorH′h,N , and then we have, cf. Theorem 2.1,

(3.26)
∣∣U ′k(λ)−H′h,N [Uk](λ)

∣∣ ≤ TN,k,h(λ), |=λ| < N,

where TN,k,h is defined in (3.23). Since condition (3.15) holds, we have, cf. Theorem 2.2,

(3.27)
∣∣∣H′h,N [Uk](λ)−H′h,N [Ũk](λ)

∣∣∣ ≤ Aε,h,N (=λ) , |=λ| < N,

where Aε,h,N is defined in (3.24). Combining (3.27), (3.26), and (3.25) implies (3.22). In
view of (3.23) and (3.24), the right-hand side of (3.22) goes to zero uniformly when N →∞
and ε→ 0, and therefore D̃′N,k → D′ uniformly on any compact subset of |=λ| < N for all
k ∈ N0.
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4. The error analysis. In this section, we derive error bounds for |λ∗ − λN,k|, where
(λ∗)

2 is an eigenvalue of the problem (1.1)–(1.2), i.e., D(λ∗) = 0, and (λN,k)
2 is its desired

approximation, i.e., D̃′N,k(λN,k) = 0. The computation of the error bounds for |λ∗ −
λN,k| depends on whether λ∗ is simple or double. Now we state the complex mean value
theorem [14], which will be used in the proof of our results. Assume that f is holomorphic on
an open convex set Ω ∈ C. Let a and b be distinct points in Ω and Γa,b be the line joining a
and b in Ω. Then there exist z1, z2 ∈ Γa,b such that

<
(
f(b)− f(a)

b− a

)
= <(f ′(z1)), =

(
f(b)− f(a)

b− a

)
= =(f ′(z2)).

In the following result, we find a bound for the error |λ∗ − λN,k| when the zero λ∗ of D(λ) is
simple, i.e., D(λ∗) = 0, D′(λ∗) 6= 0.

THEOREM 4.1. Let (λ∗)
2 be a simple eigenvalue of (1.1)–(1.2) and (λN,k)

2 its approxi-
mation. Then, for |=λ| < N , we have the following estimate

(4.1) |λ∗ − λN,k| <
TN,k,h(λN,k) +Aε,h,N (=λN,k)

inf
z1,z2∈Γλ∗,λN,k

√
(<D′(z1))2 + (=D′(z2))2

,

where Γλ∗,λN,k is the line joining λ∗, λN,k in the strip |=λ| < N . Moreover, |λ∗−λN,k| −→ 0
when N →∞ and ε→ 0.

Proof. Replacing λ by λN,k in (3.16), we obtain

(4.2) |D(λN,k)−D(λ∗)| < TN,k,h(λN,k) +Aε,h,N (=λN,k) ,

where we have used D̃N,k(λN,k) = D(λ∗) = 0. Using the complex mean value theorem
above, there exist z1, z2 ∈ Γλ∗,λN such that∣∣∣∣D(λN,k)−D(λ∗)

λ∗ − λN,k

∣∣∣∣
=

√(
<
{
D(λN,k)−D(λ∗)

λN,k − λ∗

})2

+

(
=
{
D(λN,k)−D(λ∗)

λN,k − λ∗

})2

=
√

(<D′(z1))2 + (=D′(z2))2.

(4.3)

From (4.3) and (4.2), we get

|λ∗ − λN,k|
√

(<D′(z1))2 + (=D′(z2))2 < TN,k,h(λN,k) +Aε,h,N (=λN,k) .

Since D′(λ∗) 6= 0 and N is sufficiently large, we have

(4.4) inf
z1,z2∈Γλ∗,λN

√
(<D′(z1))2 + (=D′(z2))2 > 0,

and hence dividing on the left hand side of (4.4), we obtain (4.1). The remaining part of the
proof follows from the fact TN,k,h → 0 as N →∞ and Aε,h,N → 0 as ε→ 0.

Now we estimate the error |λ∗ − λN,k| when λ∗ is a double zero of D(λ), i.e.,
D(λ∗) = 0, D′(λ∗) = 0 and D′′(λ∗) 6= 0.

THEOREM 4.2. Let (λ∗)
2 be a double eigenvalue of (1.1)–(1.2) and (λN,k)

2 its approxi-
mation. Then, for |=λ| < N , we have the following estimate

(4.5) |λ∗ − λN,k| <
TN,k,h(λN,k) + Aε,h,N (=λN,k)

inf
z1,z2∈Γλ∗,λN,k

√
(<D′′(z1))2 + (=D′′(z2))2

, k ∈ N0,
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where Γλ∗,λN,k is the line joining λ∗, λN,k in the strip |=λ| < N . Moreover, |λ∗−λN,k| −→ 0
when N →∞ and ε→ 0.

Proof. Since λ∗ is a double zero of D(λ), D′(λ∗) = D̃′N,k(λN,k) = 0. Therefore after
replacing λ by λN,k, inequality (3.22) becomes

(4.6) |D′(λN,k)−D′(λ∗)| ≤ TN,k,h(λN,k) + Aε,h,N (=λN,k) .

Applying the complex mean value theorem and similarly treatments of (4.3), we get

(4.7) |D′(λN,k)−D′(λ∗)| = |λ∗ − λN,k|
√

(<D′′(z1))2 + (=D′′(z2))2.

Combining (4.6) and (4.7) implies

(4.8) |λ∗ − λN,k|
√

(<D′′(z1))2 + (=D′′(z2))2 < TN,k,h(λN,k) + Aε,h,N (=λN,k) ,

where z1, z2 ∈ Γλ∗,λN,k . Since D′′(λ∗) 6= 0 and N is sufficiently large,

inf
z1,z2∈Γλ∗,λN,k

√
(<D′′(z1))2 + (=D′′(z2))2 > 0,

and hence (4.8) becomes (4.5). The remaining part of the proof follows from the fact that
TN,k,h → 0 as N →∞ and Aε,h,N → 0 as ε→ 0.

In the following corollary, we give special cases of the above bounds for |λ∗ − λN,k|
when λ∗ is real

COROLLARY 4.3. If (λ∗)
2 is real and simple eigenvalue of problem (1.1)–(1.2), then

estimate (4.1) becomes

|λ∗ − λN,k| <
TN,k,h(λN,k) +Aε,h,N (0)

inf
t∈Iλ∗,λN,k

|D′(t)|
,

where Iλ∗,λN,k :=
[

min(λ∗, λN,k),max(λ∗, λN,k)
]
. Also, when (λ∗)

2 is real and a double
eigenvalue, the estimate (4.8) turns out to be

|λ∗ − λN,k| <
TN,k,h(λN,k) + Aε,h,N (0)

inf
t∈Iλ∗,λN,k

|D′′(t)|
.

5. Illustrative examples. In this section, we introduce four illustrative examples. In
Examples 5.1–5.3, it is a simple task to compute the characteristic function, D(λ), explicitly,
but we cannot compute the last example in a closed form. Therefore, the amplitude error
does not appear in Examples 5.1–5.3, and we will replace the notation D̃N,h by DN,h. We
can classify the sinc methods for approximating eigenvalues of boundary value problems
into two groups. The convergence rate of the first group (classical sinc, regularized sinc
and Hermite sampling methods) is of a polynomial order, see, e.g., [3, 11, 13], and for the
second group (sinc-Gaussian and Hermite-Gauss methods) of an exponential order, see,
e.g., [2, 6]. Therefore, our results in all examples are compared only with the results for the
sinc-Gaussian method. Moreover, we would like to note that the convergence rate of the
sinc-Gaussian method is O

(
e−(π−hσ)N/2/

√
N
)

, while the Hermite-Gauss method has the

order O
(
e−(2π−hσ)N/2/

√
N
)

, where h ∈ (0, π/σ] and σ is a positive number depending on
the class of functions, Eσ. Denote by EG and EH the absolute errors associated with results
of the sinc-Gaussian and Hermite-Gauss operators, respectively. In all examples, we compute
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the bounds of the sinc-Gaussian and Hermite-Gauss operators which are denoted by BG and
BH , respectively.

EXAMPLE 5.1. Consider the anti-periodic boundary value problem

− y′′(x)− y(x) = λ2y(x), 0 ≤ x ≤ 1,

y(0, λ) + y(1, λ) = 0, y′(0, λ) + y′(1, λ) = 0.

The eigenvalues of this problem are computed in [1, 2] using the classical sinc and sinc-
Gaussian sampling methods, respectively. The characteristic function is

D(λ) := 4 cos2

(√
1 + λ2

2

)
,

and thus the exact eigenvalues are λ2
k = ((2k − 1)π)2 − 1, k ∈ Z. Obviously, all eigenvalues

of this problem are algebraically double. Letting k = 1 in (3.14) and calculating K1(λ)
implies

DN,1(λ) = 2 + 2 cos(λ)− sin(λ)

λ
+

sin(λ)− λ cos(λ)

8λ3
+Hh,N [U1](λ),

where h ∈ (0, π]. Table 5.1 lists the first four approximate eigenvalues using the sinc-Gaussian
and Hermite-Gauss methods with absolute errors and bounds when N = 6 and h = 1. The
branch of the square roots is 0 ≤ arg λ < π.

TABLE 5.1
Comparison of the Hermite-Gauss and sinc-Gaussian methods, N = 6 and h = 1.

λ Sinc-Gaussian Hermite-Gauss EG EH

λ1 2.978187294507986 2.978188107055666 8.12561×10−7 1.36908×10−11

λ2 9.371576508390618 9.371576154030823 3.54413×10−7 5.30829×10−11

λ3 15.676099832673613 15.676099962242917 1.29601×10−7 3.19460×10−11

λ4 21.968400295432037 21.968400389046398 9.36126×10−8 1.71596×10−12

BG BH

1.91244×10−5 4.76006×10−10

1.66062×10−5 6.48980×10−9

1.73726×10−5 6.32729×10−9

1.72394×10−5 6.29020×10−10

In Figure 5.1, we compare the characteristic function D(λ) and its approximation D6,1(λ)
on the interval [0, 25].

EXAMPLE 5.2. The boundary value problem

− y′′(x) + q(x)y(x) = λ2y(x), 0 ≤ x ≤ 2,

2y(0, λ) + y(2, λ) = 0, y′(0, λ) + y′(2, λ) = 0,

is in the form of problem (1.1)–(1.2) when α1 = 2, α2 = β1 = β2 = 1 and

q(x) :=

 −1, 0 ≤ x < 1,

0, 1 ≤ x ≤ 2.
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FIG. 5.1. D(λ)−D6,1(λ).

It is easy to see that

D(λ) := 3 + 3 cos
(

2
√
λ2 + 1

)
.

Thus the exact eigenvalues are λ2
k = ((k − 1/2)π)

2 − 1, k ∈ Z and all eigenvalues are
algebraically double. Taking k = 2 in (3.14) and calculating the function K2 gives

DN,2(λ) = 3 + 3 cos(2λ)− 3 sin(2λ)

λ
+

3(sin(2λ)− 2λ cos(2λ))

4λ3

+
6λ cos(2λ) + (−3 + 4λ2) sin(2λ))

12λ5
+Hh,N [U2](λ),

where λ ∈ C and h ∈ (0, π]. Figure 5.2 shows the difference between the function D(λ) and
its approximation D5,1/2(λ) on the interval [0, 12].

0 2 4 6 8 10 12

-6·10
-11

-4·10
-11

-2·10
-11

0

2·10
-11

4·10
-11

6·10
-11

FIG. 5.2. D(λ)−D5,1/2(λ).

In Table 5.2, we summarize the results of this example with N = 5 and h = 0.5. The branch
of the square roots is 0 ≤ arg λ < π.
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TABLE 5.2
Comparison of the Hermite-Gauss and sinc-Gaussian methods, N = 5 and h = 1/2.

λ Sinc-Gaussian Hermite-Gauss EG EH

λ1 1.211359825514053 1.211363321461129 3.49747×10−6 1.52349×10−10

λ2 4.605063072753784 4.605063506819465 4.34132×10−7 6.63043×10−11

λ3 7.790059591346316 7.790059531803104 5.96862×10−8 1.42997×10−10

λ4 10.950007012056991 10.950007027984602 1.59474×10−8 1.97460×10−11

BG BH

5.44287×10−5 1.98233×10−7

4.05124×10−5 9.39391×10−8

3.32204×10−5 1.20897×10−7

3.92782×10−5 4.30276×10−8

EXAMPLE 5.3. Consider the non-self-adjoint boundary value problem

− y′′(x)− (1 + i)y(x) = λ2y(x), 0 ≤ x ≤ 1,

y(0, λ) = y(1, λ), y′(0, λ) = y′(1, λ).
(5.1)

The characteristic function is

D(λ) = 4 sin2

(√
1 + i + λ2

2

)
.

All eigenvalues of this problem are complex and double from the geometric and algebraic
points of view. Indeed, λ2

k = (2kπ)
2 − 1− i. Putting k = 1 in (3.14) yields, after calculating

the function K1,

DN,1(λ) = 2− 2 cos(λ) +
(1 + i) sin(λ)

λ
+

(1 + i)2 (λ cos(λ)− sin(λ))

8λ3
+Hh,N [U1](λ),

where λ ∈ C and h ∈ (0, π]. In Table 5.3, we exhibit the first four approximate eigenvalues
of the problem (5.1) using the sinc-Gaussian and Hermite-Gauss methods with N = 6 and
h = 1. The branch of the square roots is π ≤ arg λ < 2π.

TABLE 5.3
Comparison of the Hermite-Gauss and sinc-Gaussian methods, N = 6 and h = 1.

λ Sinc-Gaussian Hermite-Gauss EG EH

λ1 6.20362385-0.08060084i 6.20362101-0.08059808i 3.96×10−6 4.76×10−10

λ2 12.52658218-0.03991500i 12.52658228-0.03991511i 1.54×10−7 7.67×10−11

λ3 18.82303014-0.02656355i 18.82303015-0.02656320i 3.51×10−7 2.56×10−11

λ4 25.11284689-0.01991011i 25.11284687-0.01991012i 2.45×10−8 1.30×10−11

BG BH

5.06411×10−4 2.17761×10−8

3.78228×10−4 2.40723×10−8

4.80309×10−4 1.64475×10−8

4.72228×10−4 1.02584×10−8

EXAMPLE 5.4. Consider the periodic boundary value problem

− y′′(x) + xy(x) = λ2y(x), 0 ≤ x ≤ 1,

y(0, λ) = y(1, λ), y′(0, λ) = y′(1, λ).
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The characteristic function of this problem cannot be computed in a closed form and, thus,
the amplitude error appears. It is given as a combination of four varieties of Airy functions.
Moreover, all eigenvalues are real and double. Taking into account (3.14), a short calculation
gives

D̃N,2(λ) = 2− 2 cos(λ)− sin(λ)

2λ
− (42λ− 5λ3) cos(λ) + (−42 + 19λ2 + 3λ4) sin(λ)

96λ5

+
λ(−105 + 7λ2 + λ4)) cos(λ)− (−105 + 42λ2 + λ4) sin(λ)

384λ7
+Hh,N [Ũ2](λ),

where λ ∈ C and h ∈ (0, π]. Table 5.4 shows the results for this example with N = 6,
h = 1/2 and ε = 10−10. The branch of the square roots is 0 ≤ arg λ < π. To compute
the absolute error in this example, the exact eigenvalues are computed approximately with
Mathematica.

TABLE 5.4
Comparison of the Hermite-Gauss and sinc-Gaussian methods, N = 6, h = 0.5, and ε = 10−10.

λ Sinc-Gaussian Hermite-Gauss EG EH

λ1 6.322873989710145 6.322874725023604 7.35435×10−7 1.21880×10−10

λ2 12.586254376912265 12.58625400251194 3.74457×10−7 5.69713×10−11

λ3 18.862815572370014 18.86281565937659 8.69847×10−8 2.18385×10−11

λ4 25.142687084718617 25.142687085313025 5.68598×10−8 2.58105×10−11

BG BH

2.36565×10−5 4.83517×10−9

2.58510×10−5 3.66186×10−9

2.52021×10−5 4.53568×10−9

2.50414×10−5 4.60061×10−9

6. Conclusions. In this work we have employed the Hermite-Gauss sampling operator to
approximate eigenvalues of Sturm-Liouville problems with mixed-type boundary conditions.
Since the eigenvalues of this problem may be double, we studied bounds for truncation
and amplitude errors associated with the derivative of this operator. The bounds of these
errors allow us to establish the error analysis of this method when the eigenvalues are not
algebraically simple. The main idea was to construct an entire function D̃N,k(λ) using the
Hermite-Gauss operatorHh,N , which is very close to the characteristic function D(λ). The
zeros of D̃N,k(λ) will be very close to the zeros ofD(λ). The Hermite-Gauss method that was
applied above gives results which are more accurate than the sinc-Gaussian method because
the convergence rate of our method is higher than of the sinc-Gaussian method. Up to now,
we can confidently say that the presented method, i.e., Hermite-Gauss, is the best sampling
method for approximating the eigenvalues of the boundary value problems because it has the
highest rate of convergence
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