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VARIANTS OF IDR WITH PARTIAL ORTHONORMALIZATION∗

JENS-PETER M. ZEMKE†

Abstract. We present four variants of IDR(s) that generate vectors such that consecutive blocks of s+1 vectors
are orthonormal. IDR methods are based on tuning parameters: an initially chosen, so-called shadow space, and the
so-called seed values. We collect possible choices for the seed values. We prove that under certain conditions all four
variants are mathematically equivalent and discuss possible breakdowns. We give an error analysis of all four variants
and a numerical comparison in the context of the solution of linear systems and eigenvalue problems.
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1. Introduction. We present four computationally different IDR(s) variants that are
based on an orthonormalization of every s+ 1 vectors computed in the recurrence. IDR(s)
[16] is a recent Krylov subspace method for the solution of linear systems [16, 18, 19] or
eigenvalue problems [5, 9]. IDR is an acronym for induced dimension reduction, a quite recent1

technique in the setting of Krylov subspace methods. There exist several implementations
of IDR(s), but the implementation in [18] is the only published one that computes vectors
such that every s + 1 consecutive in the same space are orthonormalized. We call IDR
methods with this property “IDR with partial orthonormalization” and present three other IDR
variants with partial orthonormalization. We prove that in the generic case, the four variants
are mathematically equivalent with the exception of possible additional breakdowns of the
variant in [18]. We classify breakdowns of all four variants and give a simple a posteriori
error analysis, i.e., the recurrence error is bounded in terms of the computed quantities. IDR
is related to the two-sided Lanczos process and suffers from the same possible breakdowns,
making an a priori error analysis more or less impossible.

1.1. Motivation. In the IDR variant in [16], several vectors in the same space are com-
puted that are differences of residual vectors corresponding to a linear system of equations
to be solved. This minimizes the amount of vectors that have to be stored at the price of
additional instabilities. In [19] linear combinations of these vectors are used that simplify
the algorithm and speed up the solution process of small linear systems that arise in IDR(s).
Numerical evidence shows that this local basis transformation makes the method more stable,
but a stability analysis is missing. As another remedy we used in [18] orthonormalization of the
computed vectors in the same space. Numerical experiments suggest that the latter variant is
the most stable of these three variants. At the same time we experimented in [9] with different
ways of generating the new vectors in the spaces combined with the orthonormalization used
in [18]. In this note we introduce the four most interesting variants we tested, prove the
mathematical equivalence in the generic case, give a common rough error analysis of all four
variants, and showcase with two toy examples the typical behavior of the four variants in the
context of linear systems and eigenvalue problems.

1.2. Notation. We use standard notation. Matrices are denoted by upper case bold letters
A ∈ Cn×n, its columns by lower case bold letters aj , 1 6 j 6 n, and its elements by lower
case letters ai,j , 1 6 i, j 6 n. The identity matrix is denoted by In ∈ Cn×n, its columns by
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ej , 1 6 j 6 n, its elements by the Kronecker delta δi,j , 1 6 i, j 6 n. O denotes a zero matrix,
o a zero vector. A is the (elementwise) complex conjugate of A. A lower bar appended to a
matrix or vector such as Hm ∈ C(m+1)×m or e1 ∈ Cm+1 indicates one extra row appended
at the bottom of Hm ∈ Cm×m, e1 ∈ Cm, with the exception of zm ∈ Cm, xm ∈ Cn, and
rm ∈ Cn, which are quantities related to Hm ∈ C(m+1)×m and e1 ∈ Cm+1. The inverse,
Moore-Penrose pseudo-inverse, transpose, and complex conjugate transpose are denoted by
the superscripts −1, †, T, and H, respectively. Spaces are denoted by upper case calligraphic
letters (e.g., G), vectors from this spaces are usually denoted by the same lower case bold letter
(e.g., g). For x ∈ R, bxc ∈ Z is the largest integer with bxc 6 x. Similarly, dxe ∈ Z is the
smallest integer with x 6 dxe. Inclusion of sets is denoted by ⊆, strict inclusion is denoted
by ⊂.

1.3. Outline. In Section 2 we gather basic definitions and present the IDR theorem, the
core of all IDR methods. Section 3 contains a generic IDR algorithm and the four IDR algo-
rithms with partial orthonormalization. We introduce the concept of the so-called generalized
Hessenberg decomposition that describes the computed quantities in theory and give a brief
sketch how to apply IDR in the context of linear systems and eigenvalue problems. Section 4 is
devoted to the choice of the so-called seed values. In Section 5 the mathematical equivalence
of the four algorithms is analyzed and different types of breakdowns are classified. Section 6
is devoted to an error analysis of all four IDR algorithms with partial orthonormalization.
In Section 7 we present two numerical examples, one for a linear system and one for an
eigenvalue problem. We conclude in Section 8 with a discussion how to select the appropriate
variant.

2. Basics. IDR methods comprise a class of Sonneveld methods; Sonneveld methods
comprise a class of Krylov subspace methods. Our definition of Krylov subspaces is tailored
to define a class of Sonneveld methods that includes the prototype IDR(s) of [16]:

DEFINITION 2.1 (Krylov subspaces). Let A ∈ Cn×n and q ∈ Cn. We define the right
Krylov subspaces

Kj := Kj(A,q) := span{q,Aq, . . . ,Aj−1q} = {p(A)q | deg(p) < j}, j > 1,

K0 := K0(A,q) := {o}, K := K(A,q) := Kn(A,q).

Let additionally Q̂ =
[
q̂1, . . . , q̂s

]
∈ Cn×s with full rank s, typically s� n. We define the

left block Krylov subspaces

K̂0 := K0(A
H, Q̂) := {o},

K̂j := Kj(AH, Q̂) :=
{j−1∑
i=0

(AH)iQ̂ci | ci ∈ Cs
}
=

s∑
i=1

Kj(AH, q̂i), j > 1.

Just like Krylov subspace methods are based on Krylov subspaces, Sonneveld methods
are based on Sonneveld spaces [14, Definition 2.2, p. 2690]:

DEFINITION 2.2 (Sonneveld/IDR spaces; seed polynomials/values). Let p ∈ C[z],
A ∈ Cn×n, q ∈ Cn, and Q̂ ∈ Cn×s with full rank s. We define the Sonneveld space

P(p,A,q, Q̂) := p(A)
(
K(A,q) ∩ Kdeg(p)(A

H, Q̂)⊥
)
.

In this paper we focus on the IDR spaces

Gj := P(Mj ,A,q, Q̂), j > 0,
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where the seed polynomials Mj , j > 0, are defined recursively by

M0(z) := 1, Mj(z) := (z − µj)Mj−1(z), j > 1.

The roots µj , j > 1, are called seed values.
The following theorem states some well-known properties of IDR spaces. In particular,

they are nested and can be represented recursively without referring to AH:
THEOREM 2.3 (IDR Theorem). Let S := {v ∈ Cn | Q̂Hv = o} = K1(A

H, Q̂)⊥. Then

G0 = K = K(A,q),
Gj = (A− µjI)Vj−1, where Vj−1 := Gj−1 ∩ S, j > 1.

(2.1)

In particular, it holds that Gj ⊆ Gj−1, j > 1.
Suppose that G0 and S do not share a nontrivial invariant subspace of A and that

µj /∈ spec(A), j > 1.
Then there exists a uniquely defined j∞ ∈ N0, j∞ 6 n, such that the first j∞ inclusions

are strict,

(2.2) Gj ⊂ Gj−1, 1 6 j 6 j∞, and Gj∞ = {o}.

Proof. See [16], [11, Theorem 11, p. 1104, Note 2, p. 1105].
By (2.2) and (2.1) of Theorem 2.3 it follows that

0 < dim(Gj−1)− dim(Gj) 6 codim(S) = s, 1 6 j 6 j∞.

In [16, p. 1043] it is stated without proof that if S is a random space, then, with probability
one, dim(Gj−1)− dim(Gj) = s, 1 6 j 6 bn/sc = j∞ − 1. This is referred to as the generic
case in [16]. The proof can be found in the appendix of the report [15].

Sonneveld methods and IDR methods are methods that compute approximations (e.g., to
eigenvectors or to the solution of a linear system) that are linear combinations of vectors in a
Sonneveld space and in an IDR space, respectively. IDR methods are Sonneveld methods but
not vice versa.

The approximations computed by a Sonneveld method take the form Gmcm for cm ∈ Cm
and Gm =

[
g1, . . . ,gm

]
with columns g1,g2, . . . ,gm ∈ Km, m > 1. In contrast to Krylov

subspace methods such as the Arnoldi method [1] and the Lanczos method [7, 8], we do
not enforce rank(Gm) = m in a Sonneveld method. In an IDR method, we typically have
m− bm/(s+ 1)c 6 rank(Gm) 6 m, compare with the structure of Gm+1 in (2.3).

In the generic case, it holds that dim(Gj−1/Gj) = s, 1 6 j < j∞. The known IDR
algorithms compute s+ 1 linearly independent vectors g(j−1)(s+1)+1, . . . ,gj(s+1) that lie in
the set Gj−1 \ Gj , 1 6 j < j∞; the first s vectors comprise the representatives of a basis of the
quotient space Gj−1/Gj , the last vector is an auxiliary vector to guarantee that the intersection
span{g(j−1)(s+1)+1, . . . ,gj(s+1)} ∩ S contains a non-trivial vector. To ease the presentation
of the algorithms in the next section, we define the local IDR matrices

G(j−1)
s :=

[
g(j−1)(s+1)+1, . . . ,gj(s+1)−1

]
,

G
(j−1)
s+1 :=

[
G(j−1)
s ,gj(s+1)

]
,

j > 1,

and the local IDR vectors

g
(j−1)
k := g(j−1)(s+1)+k, 1 6 k 6 s+ 1, j > 1.
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The matrix G
(j−1)
s+1 contains all s + 1 vectors in Gj−1 \ Gj , and the matrix G

(j−1)
s only the

representatives of the basis of Gj−1/Gj . The global matrix Gm+1 is given in terms of local
matrices and vectors by

Gm+1 =
[
G

(0)
s+1,G

(1)
s+1, . . . ,G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k

]
,

j :=

⌊
m+ 1

s+ 1

⌋
, k := (m+ 1)− j(s+ 1), m > 0.

(2.3)

3. Algorithms. In this section we describe algorithms that compute unique vectors

(3.1) gk ∈ Kk \ Kk−1, gk ∈ Gj , j =

⌊
k − 1

s+ 1

⌋
, 1 6 k 6 m+ 1,

based on the assumption that the vectors constructed in two consecutive Gj spaces are linearly
independent except possibly the last one and that no linear combinations of the first s vectors
constructed in each Gj are in the kernel of Q̂H,

rank[G
(j−1)
s+1 ,g

(j)
1 , . . . ,g(j)

s ] = 2s+ 1, 1 6 j <

⌊
m+ 1

s+ 1

⌋
,(3.2a)

rank[G
(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
m−j(s+1)] = s+ 1 + (m− j(s+ 1)), j =

⌊
m+ 1

s+ 1

⌋
,(3.2b)

rank(Q̂HG(j)
s ) = s, 0 6 j <

⌊
m+ 1

s+ 1

⌋
,(3.2c)

this we term the generic case. First we present a generic IDR algorithm to compute the vectors
g1, . . . ,gm+1 under this assumption. We derive four computationally different variants of it,
which are named srIDR, fmIDR, mnIDR, and ovIDR. Afterwards we specialize the generic IDR
algorithm to an IDR algorithm that has the property that all G(j)

s+1 are orthonormal,

(3.3)
(
G

(j)
s+1

)H
G

(j)
s+1 = Is+1, j > 0.

We term this algorithm IDR with partial orthonormalization.

3.1. Generic IDR. In this section we derive our generic IDR algorithm that includes all
known IDR algorithms as special cases.

Let the function [h1,0,Hm,Gm+1] ← Krylov(A,q,m) denote a generic Krylov sub-
space method that computes a matrix Gm+1, im(Gm+1) = Km+1(A,q), a scalar h1,0 such
that Gm+1e1h1,0 = q, and an extended Hessenberg matrix Hm, such that the Hessenberg
decomposition

AGm = Gm+1Hm

is satisfied. Algorithm 3.1 with a rule for the computation of the scalars hi,j ∈ C results in any
Krylov subspace method; these scalars might be given (e.g., the power method is obtained for
hi,k = δi−1,k), or they might be computed in Algorithm 3.1; an example is Arnoldi’s process
given here in pseudocode as Algorithm 3.3.

To highlight the dependency on the basis used to define the shadow space we write
ker(Q̂H) in place of S in the IDR algorithms. The generic IDR algorithm is Algorithm 3.2.
In Algorithm 3.2, there is a lot of freedom: the choice of the starting Krylov subspace
method (line 1), the computation of the seed values (line 5), the solution of the s consecutive
underdetermined systems (line 9), and the choice of the scalars h(j)i,k (line 7, line 12).
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Algorithm 3.1 Krylov (generic variant)
INPUT: A ∈ Cn×n; q ∈ Cn; m ∈ N.
OUTPUT: h1,0 ∈ C; Hm ∈ C(m+1)×m; Gm+1 ∈ Cn×(m+1).

1: g1 ← q/h1,0;
2: for k = 1 : m do
3: gk+1 ←

(
Agk −

∑k
i=1 gihi,k

)
/hk+1,k;

4: end for

Algorithm 3.2 IDR (generic variant)

INPUT: A ∈ Cn×n; q ∈ Cn; Q̂ ∈ Cn×s; m ∈ N.
OUTPUT: Gm+1 ∈ Cn×(m+1); . . . % see (2.3)

1: [h
(0)
1,0,H

(0)
s ,G

(0)
s+1]← Krylov(A,q, s); % im(G

(0)
s+1) = Ks+1 ⊂ G0

2: for j = 1 . . . do
3: c

(j)
0 ← (Q̂HG

(j−1)
s )−1(Q̂Hg

(j−1)
s+1 ); % see (3.2)

4: v
(j)
0 ← g

(j−1)
s+1 −G

(j−1)
s c

(j)
0 ; % v

(j)
0 ∈ im(G

(j−1)
s+1 ) ∩ ker(Q̂H) ⊂ Vj−1

5: choose µj % discussed in Section 4

6: r
(j)
1 ← Av

(j)
0 − v

(j)
0 µj ; % r

(j)
1 ∈ (A− µjI)Vj−1 = Gj

7: g
(j)
1 ← r

(j)
1 /h

(j)
1,0; % g

(j)
1 ∈ Gj

8: for k = 1 : s do
9: solve Q̂H(G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1)c

(j)
k = Q̂Hg

(j)
k ; % see (3.6)

10: v
(j)
k ← g

(j)
k − (G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1)c

(j)
k ; % v

(j)
k ∈ Vj−1

11: r
(j)
k+1 ← Av

(j)
k − v

(j)
k µj ; % r

(j)
k+1 ∈ Gj

12: g
(j)
k+1 ←

(
r
(j)
k+1 −

∑k
i=1 g

(j)
i h

(j)
i,k

)
/h

(j)
k+1,k; % g

(j)
k+1 ∈ Gj

13: end for
14: end for

The choice of the scalars in the starting Krylov method and in line 7, line 12 will be used to
derive our IDR algorithm with partial orthonormalization; the solution of the underdetermined
systems in line 9 defines our four variants srIDR, fmIDR, mnIDR, and ovIDR. Mathematically
speaking, the selection of the seed values is not very important, however, from a numerical
point of view it is; the selection of appropriate seed values will be discussed in Section 4.

We assume that (3.2) is satisfied and show that for any fixed choice of the free parameters,
provided that the algorithm does not break down, it generates vectors gk that satisfy (3.1):
In line 1 a matrix G

(0)
s+1 is computed with im(G

(0)
s+1) = Ks+1 ⊆ G0. We recall that G(j−1)

s+1

satisfies assumption (3.2) and that im(G
(j−1)
s+1 ) ⊆ Gj−1. By assumption (3.2c), the Sonneveld

coefficients c
(j)
0 can be computed in line 3 and determine a vector v(j)

0 in the intersection
Vj−1 = Gj−1 ∩ S in line 4. By a dimensional argument this vector is unique up to scaling if
dim(im(G

(j)
s+1) + S) = n since

(3.4) dim(im(G
(j−1)
s+1 ) ∩ S) = rank(G

(j−1)
s+1 )︸ ︷︷ ︸

s+1

+ dim(S)︸ ︷︷ ︸
n−s

− dim(im(G
(j−1)
s+1 ) + S)︸ ︷︷ ︸
6n

> 1.

It is easy to prove that (3.2c) implies dim(im(G
(j−1)
s+1 ) + S) = n. To ensure a nonzero

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

250 J.-P. M. ZEMKE

component in the direction of the latest g(j)
s+1, we scale v

(j)
0 such that this component is one,

v
(j)
0 = G

(j−1)
s+1

[
−c(j)0

1

]
⇒ Q̂HG(j−1)

s c
(j)
0 = Q̂Hg

(j−1)
s+1 ,

which results in the linear system solved in line 3. We are free to choose a new seed value
in line 5, which uniquely determines the next IDR space Gj . Possible selection schemes
are discussed in Section 4. In line 6 a first vector r

(j)
1 ∈ Gj is computed. As no more

information about Gj is available at this step, the only possible transformation is a scaling; e.g.,
normalization. This is done in line 7 and results in the first g(j)

1 ∈ Gj . To repeat the whole
procedure on the next level, we need s additional vectors g(j)

k+1 ∈ Gj , 1 6 k 6 s. Here we

make use of the fact that Gj ⊆ Gj−1, which implies that im[G
(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k ] ⊆ Gj−1.

By assumption (3.2a) and (3.2b),

rank[G
(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k ] = s+ k + 1,

so we can use a dimensional argument such as in (3.4):

(3.5) dim(im([G
(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k ]) ∩ S)

= rank[G
(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k ]︸ ︷︷ ︸

s+k+1

+ dim(S)︸ ︷︷ ︸
n−s

− dim(im([G
(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k ]) + S)︸ ︷︷ ︸

6n

> k + 1.

Again, assumption (3.2c) implies dim(im([G
(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k ]) + S) = n. The vectors

v
(j)
1 , . . . ,v

(j)
k in the intersection im[G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k ] ∩ S ⊆ Gj−1 ∩ S = Vj−1 are not

uniquely defined. We are looking for a linear combination of the vectors in Gj−1 that are
known at this step and which lies in S. To ensure that the right Krylov subspace is expanded,
Kk  Kk+1, we scale the component of the current vector g(j)

k to one, which results in the
underdetermined linear systems in line 9. By assumption (3.2c), the s × (s + k) matrix in
line 9 has full rank s for 1 6 k 6 s,

(3.6) s > rank(Q̂H[G
(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1]) > rank(Q̂HG(j−1)

s ) = s,

thus the underdetermined systems are all solvable. We present four variants that result
in uniquely defined vectors v

(j)
1 , . . . ,v

(j)
k . Typically the four variants compute different

v
(j)
1 , . . . ,v

(j)
k :

• srIDR: We set the k first components of c
(j)
k to zero; this results in the shortest

recurrence possible as we no longer need the vectors g(j−1)
1 , . . . ,g

(j−1)
k . This might

not always be possible as the rank of the matrix

(3.7) M
(j,k)
sr := Q̂H

[
g
(j−1)
k+1 , . . . ,g

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1
]
∈ Cs×s

might be less than s. The Sonneveld coefficients of srIDR are given by

(3.8) c
(j),sr
k :=

[
ok(

M
(j,k)
sr

)−1
Q̂Hg

(j)
k

]
.

This variant is used in [16, 17, 18, 19].
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• fmIDR: We set the k last components of c(j)k to zero; by assumption (3.2c) this results
in a non-singular matrix

M
(j)
fm := M

(j,k)
fm := Q̂HG(j−1)

s ∈ Cs×s

that is used for s+ 1 consecutive steps; we use the factored matrix more than once.
The Sonneveld coefficients of fmIDR are given by

c
(j),fm
k :=

[(
M

(j)
fm

)−1
Q̂Hg

(j)
k

ok

]
.

This variant is sketched in [16, Section 4.3] and used in [14].
• mnIDR: We compute the minimum-norm solution of the underdetermined system and

use the full-rank matrix

M
(j,k)
mn := Q̂H[G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1] ∈ Cs×(s+k).

The Sonneveld coefficients of mnIDR are given by

c
(j),mn
k :=

(
M

(j,k)
mn

)†
Q̂Hg

(j)
k .

This variant has been described first in [9], and it is used in numerical examples
in [23].

• ovIDR: We use the k degrees of freedom to orthogonalize against the computed
vectors v(j)

0 , . . . ,v
(j)
k−1, which have to be stored, thereby increasing the storage. We

define

(3.9) V
(j)
k :=

[
v
(j)
0 , . . . ,v

(j)
k−1
]
∈ Cn×k

and

M
(j,k)
ov := [Q̂,V

(j)
k ]H[G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1] ∈ C(s+k)×(s+k).

The Sonneveld coefficients of ovIDR are given by

c
(j),ov
k :=

(
M

(j,k)
ov

)−1
[Q̂,V

(j)
k ]Hg

(j)
k .

This variant has not been published before. It is included for two reasons, both related
to the orthonormalization: already the orthonormalization of the g-vectors resulted
in a more stable algorithm, and it is easy to detect linearly dependent v-vectors and
thus a possible breakdown in (3.2).

Regardless of the variant used, in line 10 unique vectors v(j)
k ∈ Vj−1 in the intersection are

computed. These are mapped to vectors r(j)k+1 ∈ Gj in line 11. As in step k of the inner loop

already k previously computed vectors g(j)
k exist, we can compute linear combinations with

these without leaving Gj , and we can scale the result. This is done in line 12, where g(j)
k+1 ∈ Gj

is computed. In this manner the algorithm computes s+ 1 vectors g(j)
1 , . . . ,g

(j)
s+1 ∈ Gj and

we can move to the next level.
The srIDR variant in [16] is implicitly based on scalars hi,k that sum column-wise to

zero,
∑k+1
i=1 hi,k = 0, the srIDR variant in [19] uses these scalars to enforce the orthogonality

eTi Q̂
Hg

(j)
k+1 = 0, 1 6 i 6 k 6 s, the fmIDR variant in [14] uses them to orthonormalize the

vectors v
(j)
0 , . . . ,v

(j)
s . A natural idea, first mentioned in [9] and first published for srIDR

in [18], is to orthonormalize the resulting vectors g(j)
1 , . . . ,g

(j)
s+1; the more general algorithm

is described in the next subsection.
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3.2. IDR with partial orthonormalization. Here we specialize Algorithm 3.2 to an
IDR algorithm with partial orthonormalization. We replace the generic Krylov method
given in Algorithm 3.1 by Arnoldi’s process [1], [h1,0,Hm,Gm+1]← Arnoldi(A,q,m); see
Algorithm 3.3. This ensures that G(0)

s+1 is orthonormal; see (3.3).

Algorithm 3.3 Arnoldi

INPUT: A ∈ Cn×n; q ∈ Cn; m ∈ N.
OUTPUT: h1,0 ∈ C; Hm ∈ C(m+1)×m; Gm+1 ∈ Cn×(m+1).

1: h1,0 ← ‖q‖;
2: g1 ← q/h1,0;
3: for k = 1 : m do
4: rk+1 ← Agk;
5: for i = 1 : k do
6: hi,k ← gH

i rk+1;
7: end for
8: pk+1 ← rk+1 −

∑k
i=1 gihi,k;

9: hk+1,k ← ‖pk+1‖;
10: gk+1 ← pk+1/hk+1,k;
11: end for

We add the orthonormalization scheme to Algorithm 3.2 to ensure (3.3) and replace the
solution of the underdetermined systems in line 9 of Algorithm 3.2 by one of the variants
srIDR, fmIDR, mnIDR, or ovIDR to obtain Algorithm 3.4, IDR with partial orthonormalization.

3.3. The generalized Hessenberg decomposition. In this subsection we collect the
relations between the vectors constructed and the scalars used into matrix equations that will
be useful later on. We define the local matrices

R
(j)
s+1 :=

[
r
(j)
1 , . . . , r

(j)
s+1

]
∈ Cn×(s+1)

collecting vectors computed in line 6 and line 11 of Algorithm 3.2 and use V
(j)
s+1 as defined

by (3.9). In the call to Krylov in Algorithm 3.2 in line 1 and in line 12 of Algorithm 3.2, GR
decompositions2 of

[
q,AG

(0)
s

]
and R

(j)
s+1, 1 6 j, are computed, respectively:

(3.10)
[
q,AG(0)

s

]
= G

(0)
s+1

[
e1h

(0)
1,0 H(0)

s

]
, R

(j)
s+1 = G

(j)
s+1

[
e1h

(j)
1,0 H(j)

s

]
.

In Algorithm 3.3 and Algorithm 3.4 these are QR decompositions.
We define the global matrix Vm in terms of local vectors and matrices by

Vm :=
[
g
(0)
1 , . . . ,g(0)

s ,V
(1)
s+1, . . . ,V

(j−1)
s+1 ,v

(j)
0 , . . . ,v

(j)
k−1
]
.

In line 4 and in line 10 of Algorithm 3.2 the vectors v(j)
0 , . . . ,v

(j)
s ∈ Vj−1 are computed as

linear combinations

(3.11) V
(j)
s+1 =

[
G

(j−1)
s+1 G

(j)
s+1

]
−c(j)0

. . . −c(j)s

1
. . . 1

os+1
. . . o1

 =:
[
G

(j−1)
s+1 G

(j)
s+1

]
U

(j)
s+1.

2A GR decomposition is a decomposition of the form “general matrix” times “upper triangular matrix”; see [20].
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Algorithm 3.4 IDR (partial orthonormalization)

INPUT: A ∈ Cn×n; q ∈ Cn; Q̂ ∈ Cn×s; m ∈ N.
OUTPUT: Gm+1 ∈ Cn×(m+1); . . . % see (2.3)

1: [h
(0)
1,0,H

(0)
s ,G

(0)
s+1]← Arnoldi(A,q, s); % im(G

(0)
s+1) = Ks+1 ⊂ G0

2: for j = 1 . . . do
3: c

(j)
0 ← (Q̂HG

(j−1)
s )−1(Q̂Hg

(j−1)
s+1 ); % see (3.2)

4: v
(j)
0 ← g

(j−1)
s+1 −G

(j−1)
s c

(j)
0 ; % v

(j)
0 ∈ im(G

(j−1)
s+1 ) ∩ ker(Q̂H) ⊂ Vj−1

5: choose µj % discussed in Section 4

6: r
(j)
1 ← Av

(j)
0 − v

(j)
0 µj ; % r

(j)
1 ∈ (A− µjI)Vj−1 = Gj

7: h
(j)
1,0 ← ‖r

(j)
1 ‖;

8: g
(j)
1 ← r

(j)
1 /h

(j)
1,0; % g

(j)
1 ∈ Gj

9: for k = 1 : s do
10: if srIDR then
11: c

(j)
k ←

[
ok;
(
Q̂H
[
g
(j−1)
k+1 , . . . ,g

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1
])−1

Q̂Hg
(j)
k

]
;

12: else if fmIDR then
13: c

(j)
k ←

[(
Q̂HG

(j−1)
s

)−1
Q̂Hg

(j)
k ;ok

]
;

14: else if mnIDR then
15: c

(j)
k ←

(
Q̂H[G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1]

)†
Q̂Hg

(j)
k ;

16: else if ovIDR then
17: c

(j)
k ←

(
[Q̂,V

(j)
k ]H[G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1]

)−1(
[Q̂,V

(j)
k ]Hg

(j)
k

)
;

18: else
19: solve Q̂H[G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1]c

(j)
k = Q̂Hg

(j)
k ; % see (3.6)

20: end if
21: v

(j)
k ← g

(j)
k − (G

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k−1)c

(j)
k ; % v

(j)
k ∈ Vj−1

22: r
(j)
k+1 ← Av

(j)
k − v

(j)
k µj ; % r

(j)
k+1 ∈ Gj

23: for i = 1 : k do
24: h

(j)
i,k ← (g

(j)
i )Hr

(j)
k+1;

25: end for
26: p

(j)
k+1 ← r

(j)
k+1 −

∑k
i=1 g

(j)
i h

(j)
i,k ;

27: h
(j)
k+1,k ← ‖p

(j)
k+1‖;

28: g
(j)
k+1 ← p

(j)
k+1/h

(j)
k+1,k; % g

(j)
k+1 ∈ Gj

29: end for
30: end for

The local matrices R(j)
s+1 are given by

(3.12) R
(j)
s+1 = AV

(j)
s+1 −V

(j)
s+1 diag(µj , . . . , µj).

Combining equations (3.10)–(3.12), we obtain the coupling between two local blocks G(j−1)
s+1

and G
(j)
s+1, j > 1,

A
[
G

(j−1)
s+1 G

(j)
s+1

]
U

(j)
s+1

=
[
G

(j−1)
s+1 G

(j)
s+1

]([ os+1 Os+1,s

e1h
(j)
1,0 H(j)

s

]
+U

(j)
s+1 diag(µj , . . . , µj)

)
.

(3.13)
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Gluing these relations together and topping them with the first equation in (3.10), we obtain
the generalized Hessenberg decomposition

(3.14) AGmUm = Gm+1H
total
m , Htotal

m := Hm +UmDm

of IDR that captures the recurrences of the vectors gk, 1 6 m+ 1, in both Algorithm 3.2 and
Algorithm 3.4. The structure of the resulting matrices is described below.

The matrix Um ∈ C(m+1)×m has Is as leading s× s block, followed by all U(j)
s+1, j > 1,

aligned such that all ones are on the diagonal; the last block column may have less than
s + 1 columns. The matrix Um results from Um by stripping of the last (zero) row. Um

is unit upper triangular, banded with upper bandwith 2s, and has a staircase-like structure;
see the example (3.15) taken from [23], where Um and Hm are depicted for s = 2 and
m = 9 = 3(s+ 1),

(3.15) U9 =


◦ •••◦•••◦••◦••••◦•••◦••◦••◦•◦

 , H9 =


••◦•◦◦••◦•◦◦••◦•◦◦

 .
Circles in U9 depict the unit diagonal elements and bullets in U9 depict the Sonneveld
coefficients −c(j)k defined by the IDR variant; e.g., srIDR (line 3 & line 11 of Algorithm 3.4),
fmIDR (line 3 & line 13 of Algorithm 3.4), mnIDR (line 3 & line 15 of Algorithm 3.4), or
ovIDR (line 3 & line 17 of Algorithm 3.4). The matrices Usr

m and Ufm
m have additional known

zero elements (e.g., the upper bandwidth of Usr
m drops from 2s to s); the structure is depicted

here for s = 2 and m = 9 = 3(s+ 1),

Usr
9 =


◦ •◦••◦••◦••◦••◦••◦••◦•◦

 , Ufm
9 =


◦ •••◦•••◦◦ •••◦•••◦◦ •◦•◦

 .
The matrix Hm ∈ C(m+1)×m has H(0)

s as leading (s + 1) × s block, followed by all
upper triangular basis transformation matrices[

e1h
(j)
1,0 H(j)

s

]
∈ C(s+1)×(s+1), j > 1,

aligned such that the nonzero scaling elements h(j)k+1,k are on the first subdiagonal and the
last block column may have less than s+ 1 columns. The band matrix Hm is an unreduced
extended upper Hessenberg matrix with upper bandwidth s− 1. The example (3.15) reveals
the structure of H9 for s = 2. Circles in H9 depict the nonzero scaling elements h(j)k+1,k,

0 6 k 6 s, j > 0, omitting h(0)1,0. Bullets depict the other elements h(j)i,k , 1 6 i 6 k 6 s,
j > 0, that are used in Algorithm 3.2 and Algorithm 3.4.

The diagonal matrix Dm ∈ Cm×m is obtained by taking an s × s zero matrix and
diagonally gluing together all diagonal matrices µjIs+1 from (3.13); i.e.,

Dm = diag(0, . . . , 0︸ ︷︷ ︸
s times

, µ1, . . . , µ1︸ ︷︷ ︸
s+ 1 times

, µ2, . . . , µ2︸ ︷︷ ︸
s+ 1 times

, . . . , µj , . . . , µj︸ ︷︷ ︸
k times

), j =

⌊
m

s+ 1

⌋
,

where k = m+ 1− j(s+ 1).
The generalized Hessenberg decomposition (3.14) is the basis for different algorithms to

approximate solutions of linear systems and eigenvectors. These are introduced rather briefly
in the next sections.
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3.3.1. Linear systems. In this section we use boldface r to denote residual vectors. We
want to approximate the solution x of a given linear system Ax = b. Let x0 be an initial
approximation and define the residual r0 := b−Ax0. Suppose that Algorithm 3.4 is invoked
with q = r0. Then by (3.14)

AGmUm = Gm+1H
total
m = GmHtotal

m + gm+1hm+1,meTm,

Gm+1e1h
(0)
1,0 = Gme1h

(0)
1,0 = r0.

(3.16)

In the OR approach [9, p. 1048], we define the mth OR solution zm ∈ Cm and the mth
OR iterate xm ∈ Cn by

(3.17) zm :=
(
Htotal
m

)−1
e1h

(0)
1,0, xm := x0 +Vmzm.

The mth OR solution need not exist. By (3.16), the mth OR residual rm ∈ Cn is given by

rm := b−Axm = −gm+1hm+1,meTmzm, ‖rm‖ = |hm+1,meTmzm|,

thus, the mth residual is parallel to the next vector gm+1. The computation of xm is possible
without the need to store all vectors g1, . . . ,gm.

In the MR approach [9, p. 1048], we define the mth MR solution zm ∈ Cm and the mth
MR iterate xm ∈ Cn by

(3.18) zm :=
(
Htotal
m

)†
e1h

(0)
1,0, xm := x0 +Vmzm.

The mth MR solution always exists. The mth MR residual rm ∈ Cn is defined by and can be
bounded using (3.16) by

rm := b−Axm, ‖rm‖ 6 ‖Gm+1‖‖Htotal
m zm − emh

(0)
1,0‖.

By [9, Lemma 4, p. 1058], ‖Gm+1‖ 6
√
d(m+ 1)/(s+ 1)e in case of Algorithm 3.4. An im-

plementation of the MR approach for the srIDR variant of IDR with partial orthonormalization
is given in [18].

3.3.2. Eigenvalue problems. The seed values are eigenvalues of the Sonneveld pencil
(Htotal

m ,Um); see [23]. The other eigenvalues θj can be used as approximations to eigenvalues
of A. The corresponding approximate eigenvectors yj are given by

Htotal
m sj = θjUmsj , yj := Vmsj .

It is possible to define other pencils based on the seed values, Sonneveld coefficients and
orthonormalization coefficients to compute eigenvalues (see [23]) or to extend this Ritz
approach to the so-called harmonic Ritz approach [9, p. 1047].

4. Seed values. From a mathematical point of view the selection of the seed values is
not that important; the induced dimension reduction occurs independently of their selection
as long as no seed value is an eigenvalue of A. A natural idea is to use a fixed seed value,
µj = µ, j > 1, e.g., µ = 0. The latter choice results in a singular Htotal

m = Hm for all m > s,
and the OR approach (3.17) fails for all m > s while the MR approach (3.18) stagnates for all
m > s [9, Lemma 3, p. 1057].

A constant µ results in a Jordan block at µ in the Sonneveld pencil because the matrix
Htotal
m − µUm = Hm + Um(Dm − µIm) has the same nonzero structure as Hm, i.e.,

Htotal
m − µUm has the eigenvalue 0 with algebraic multiplicity at least bm/(s + 1)c and

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

256 J.-P. M. ZEMKE

geometric multiplicity 1; compare with the example (3.15). This might cause problems with
numerical eigenvalue computations if A has eigenvalues close to µ.

Numerically, IDR and other Sonneveld methods deviate from their exact counterparts,
and ghost eigenvalues close to the seed values are computed. Numerical experiments indicate
that the best constant seed value is the mean µ = trace(A)/n of the eigenvalues of A.

More interesting are seed value selection schemes that take into account local information
when computing µj , mostly the vectors v(j)

0 and Av
(j)
0 . We present a few general schemes,

divided into those designed for linear systems and those designed for eigenvalue problems. A
new scheme is presented that combines the ideas underlying both approaches.

4.1. Seed values for linear systems. OR methods construct residuals parallel to the
vectors gk+1. The residuals in a Krylov subspace method can always be written in the form
rk = rk(A)r0, where the residual polynomial rk satisfies rk(0) = 1. To minimize the
residual, we think in terms of residual polynomials and replace z−µj by the differently scaled
1− zωj , where ωj = µ−1j , and minimize the scaled r

(j)
1 with respect to ωj ,

(4.1) min
ωj∈C

‖v(j)
0 −Av

(j)
0 ωj‖ ⇒ ωj =

(
Av

(j)
0

)H
v
(j)
0(

Av
(j)
0

)H
Av

(j)
0

,

i.e., we define µj by

(4.2) µj := ω−1j =

(
Av

(j)
0

)H
Av

(j)
0(

Av
(j)
0

)H
v
(j)
0

.

This results in a harmonic Rayleigh quotient, i.e., the resulting µj are inverses of elements of
the field of values of the inverse of A [10] since

µj =
ṽHṽ

ṽHA−1ṽ
, where ṽ := Av

(j)
0 .

In [12] the resulting linear polynomials 1−zωj are termed MR(1)-polynomials. This approach
is used in [16, 19, 21] and results in seed values that are not too close to zero. It turns out that
it is unstable for A such that the field of values includes zero since then the seed values may
become very large.

A modification known as “vanilla” technique has been developed and motivated for
BICGSTAB and related methods in [12, Theorem 3.1, p. 210; Eqn. (28), p. 213]: compute the
minimizer (4.1) and the cosine c of the Hermitean angle between Av

(j)
0 and v

(j)
0 ,

c :=
|
(
v
(j)
0

)H
AHv

(j)
0 |

‖Av
(j)
0 ‖‖v

(j)
0 ‖

.

If c < κ (i.e., if this angle is too large3) then ωj is scaled, and the new value

ω̃j :=
κ

c
ωj , µj := ω̃−1j = κ−1 ·

(
Av

(j)
0

)H
Av

(j)
0(

Av
(j)
0

)H
v
(j)
0

·
|
(
Av

(j)
0

)H
v
(j)
0 |

‖Av
(j)
0 ‖‖v

(j)
0 ‖

= κ−1 · ‖Av
(j)
0 ‖

‖v(j)
0 ‖

· sign

((
v
(j)
0

)H
Av

(j)
0(

v
(j)
0

)H
v
(j)
0

)(4.3)

is used. This modification ensures that all computed seed values are only moderately outside
the field of values of A and not too close to zero.

3In [12] the value κ = 0.7 is used as upper bound, which corresponds to a rounded value of the obvious choice√
2/2 = cos(π/4).
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4.2. Seed values for eigenvalue problems. A natural idea in eigenvalue computations
is to minimize r

(j)
1 with respect to µj . This gives the Rayleigh quotient with v

(j)
0 , and as a

consequence, r(j)1 is perpendicular to v
(j)
0 ,

(4.4) min
µj∈C

‖Av
(j)
0 − v

(j)
0 µj‖ ⇒ µj :=

(
v
(j)
0

)H
Av

(j)
0(

v
(j)
0

)H
v
(j)
0

, r
(j)
1 ⊥ v

(j)
0 .

This technique ensures that all computed seed values are in the field of values of A. If the
field of values encloses zero, a zero or small seed value may occur. This leads to problems in
the OR and MR approaches.

We could use other Rayleigh quotients. We can ensure that the last diagonal element in
Htotal
s+1 is the same as in Arnoldi’s process if we set

(4.5) µ1 =
gH
s+1Ags+1

gH
s+1gs+1

, i.e., we set µj :=

(
g
(j−1)
s+1

)H
Ag

(j−1)
s+1(

g
(j−1)
s+1

)H
g
(j−1)
s+1

.

In every cycle, IDR computes s+ 1 vectors that are a basis of a Krylov subspace of a deflated
matrix A, where the eigenvalues of interest are those of the undeflated A. This choice ensures
for s + 1 consecutive diagonal elements that they are equal to those of Arnoldi’s method,
which mimics a restarted Arnoldi’s method.

In [10] bm/(s+1)c extra multiplications by A are invested to compute Ritz values using
Arnoldi’s method that are used as seed values.

4.3. A balanced approach to seed values. The approaches (4.2) and (4.4) minimize the
norm of a multiple of r(j)1 subject to a scaling of the vector Av

(j)
0 (see (4.2) and (4.1)) or

subject to a scaling of the vector v(j)
0 ; see (4.4).

To treat both ingredients equally, we normalize both Av
(j)
0 and v

(j)
0 to get rid of scaling

issues with large or small A, solve

(4.6) min
α,β∈C

∥∥∥∥∥ Av
(j)
0

‖Av
(j)
0 ‖

α− v
(j)
0

‖v(j)
0 ‖

β

∥∥∥∥∥ s.t.
∥∥∥∥[ α
−β

]∥∥∥∥ = 1,

and set µj = β/α · ‖Av
(j)
0 ‖/‖v

(j)
0 ‖. This is a mixture of an eigenvalue-based and a linear

system solver-based approach. We expect the seed values to be away from zero for non-singular
A and not too large.

The solution of (4.6) is given by the left singular vector of the smallest singular value of
the matrix

B :=

[
Av

(j)
0

‖Av
(j)
0 ‖

v
(j)
0

‖v(j)
0 ‖

]
.

We compute this singular vector as the eigenvector to the smallest eigenvalue of

BHB =

[
1 b
b 1

]
, b :=

(
v
(j)
0

)H
Av

(j)
0

‖Av
(j)
0 ‖‖v

(j)
0 ‖

.

The eigenvector to the smallest eigenvalue 1− |b| is given by[
1 b
b 1

] [
|b|
−b

]
=

[
|b|
−b

]
(1− |b|),
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which leads to a “simplified vanilla scheme” that we call “cinnamon” technique,

(4.7) µj :=
‖Av

(j)
0 ‖

‖v(j)
0 ‖

· b
|b|

=
‖Av

(j)
0 ‖

‖v(j)
0 ‖

· sign

((
v
(j)
0

)H
Av

(j)
0(

v
(j)
0

)H
v
(j)
0

)
.

This scheme is a mixture between an eigenvalue based and an SVD based approach: we take
the direction given by the Rayleigh quotient but the length given by the amplification of v(j)

0

by A. These values will be on the annulus defined by {z ∈ C | σn(A) 6 |z| 6 σ1(A)} and
in direction of the field of values of A. This approach might cause problems: if Av

(j)
0 ⊥ v

(j)
0 ,

then both singular values coincide and the sign in (4.7) is not defined.

4.4. Additional orthogonality. Additional orthogonality between the last g(j−1)
s+1 and

the new g
(j)
1 can be enforced by setting

(4.8) µj :=

(
g
(j)
s+1

)H
Av

(j)
0(

g
(j)
s+1

)H
v
(j)
0

because then g
(j)
1 ‖ r(j)1 = Av

(j)
0 − v

(j)
0 µj ⊥ g

(j−1)
s+1 .

Unfortunately, numerical experiments4 indicate that this approach is very unstable; many of
the resulting values of µj lie far outside the field of values of A.

5. Mathematical equivalence and classification of breakdowns. The following theo-
rem states that the four variants of IDR with partial orthonormalization are all equivalent as
long as assumption (3.2) holds true, except that the srIDR variant may break down.

THEOREM 5.1. Suppose that Q̂ is chosen such that assumption (3.2) holds true and that
one of the following seed value selection schemes

• preselected seed values, e.g., constant or a list of given seed values,
• a local seed value selection scheme; i.e., (4.2), (4.3), (4.4), (4.5), (4.7), (4.8)

is used.
Then the variants fmIDR, mnIDR, and ovIDR of IDR with partial orthonormalization are

mathematically equivalent, in particular, given the same input data, they compute the same
vectors gk, k > 1.

There exist cases where assumption (3.2) holds true and the srIDR variant of IDR with
partial orthonormalization breaks down, which we term a pivot breakdown. When no pivot
breakdown in the srIDR variant occurs, it constructs the same vectors gk, k > 1, as the other
three variants.

Proof. All four variants of IDR with partial orthonormalization are completely determinis-
tic. We first suppose that no variant breaks down and prove that the spaces Gj and the vectors
g
(j)
1 , . . . ,g

(j)
s+1 ∈ Gj , j > 0, are the same in all four variants, regardless of the choice of the

seed value selection scheme listed in the theorem.
The IDR spaces Gj , j > 1, are uniquely defined by the seed values µj , j > 1, which in

turn are either fixed or computed based on the vector v(j)
0 and, possibly, the vector g(j−1)

s+1 .
The vector v

(j)
0 is the same vector in all four variants if the s + 1 orthonormal vectors

g
(j−1)
1 , . . . ,g

(j−1)
s+1 ∈ Gj−1 are the same in all four variants, which implies that when ad-

ditionally all G`, ` < j, are the same, then in this case the next Gj is the same in all four
variants.

The initial vectors g
(0)
1 , . . . ,g

(0)
s+1 ∈ G0 are uniquely determined by Arnoldi’s process

and the positive signs of the nonzero scaling elements. We prove that if the previous vectors

4This observation was also made by Martin van Gijzen, who first came up with this idea and experimented with
this kind of additional orthogonality.
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g
(j−1)
1 , . . . ,g

(j−1)
s+1 ∈ Gj−1 are uniquely determined, then the next s+ 1 orthonormal vectors

g
(j)
1 , . . . ,g

(j)
s+1 ∈ Gj are uniquely determined. The next vectors are the columns of the Q-

factors of the QR decompositions (3.10) of (A−µjI)V(j),xxIDR
s+1 , where xxIDR denotes the vari-

ant used. The vectors v(j),xxIDR
k mostly differ, yet the spaces span{v(j),xxIDR

0 , . . . ,v
(j),xxIDR
k }

are uniquely defined and coincide for all four variants since we assume (3.2); see (3.5). The
restriction gk ∈ Kk \Kk−1 fixes the new vectors up to a sign. The positive sign of the diagonal
elements of the R-factors of the QR decompositions (3.10) and the scaling of the component
of g(j)

k to one fixes the sign to be the same in all four variants.
It remains to give an example of a pivot breakdown of srIDR. Let n = 10, q = e1, s = 2,

µj = 1, j > 1,

A =



0 0 0 0 −1 1 −1 −3 −2 0
1 0 −1 1 1 −2 1 5 4 0
0 1 2 −1 0 1 0 −2 −2 1
0 0 1 0 −1 2 −1 −5 −4 0
0 0 0 1 2 −2 1 5 4 1
0 0 0 0 1 0 1 3 2 1
0 0 0 0 0 1 0 −2 −1 −1
0 0 0 0 0 0 1 2 0 1
0 0 0 0 0 0 0 1 2 0
0 0 0 0 0 0 0 0 1 0


,

Q̂H =

[
0 −1 −1 1 0 −1 0 2 2 0
1 1 1 −1 1 0 1 1 0 1

]
.

A computation shows that the partial orthonormal gk, 1 6 k 6 14 = 5(s + 1) = m,
5 = bn/sc of the three variants other than srIDR are given by gk = ek, 1 6 k 6 n = 10,

g11 =
1

2

[
1 −1 1 1 0 0 0 0 0 0

]T
,

g12 =
1√
22

[
−1 1 −1 3 −2 −2 1 0 −1 0

]T
,

g13 =
1√
238

[
5 −5 5 −3 4 4 −7 6 −1 −6

]T
,

g14 =
1√
2723

[
−11 11 −11 −41 15 15 0 −9 12 2

]T
,

and g15 = o. Assumptions (3.2a) and (3.2b) are satisfied, and all matrices Q̂HG
(j)
s , 0 6 j 6 4,

i.e., [
0 −1
1 1

]
,

[
1 0
−1 1

]
,

[
0 2
1 1

]
,

[
0 1

2
1 0

]
,

[
3√
238

−50√
2723

5√
238

38√
2723

]
,

are regular, thus also assumption (3.2c) is satisfied. Naïvely implemented, the srIDR variant
breaks down at step 4 since by definition (3.7), the matrix

M
(1,1)
sr = Q̂H

[
g(0)
s ,g

(0)
s+1

]
=

[
−1 −1
1 1

]
is singular. Yet the system

M
(1,1)
sr ĉ1 =

[
−1 −1
1 1

]
ĉ1 =

[
1
−1

]
= Q̂Hg

(1)
1
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contained in (3.8) has a consistent right-hand side; e.g., ĉ1 =
[
−.5,−.5

]T
is a solution. Any

such solution gives, by lucky choice of µ1 = 1, the vectors g(1)
2 = g5 = e5. The next system

to be solved in srIDR is

M
(1,2)
sr ĉ2 =

[
−1 1
1 −1

]
ĉ =

[
0
1

]
= Q̂Hg

(1)
2 ,

with a singular M(1,2)
sr and an inconsistent right-hand side. At this point srIDR breaks down.

REMARK 5.2. The variant srIDR of IDR with partial orthonormalization always breaks
down at step s + 2 if q = Q̂e1, as Arnoldi’s process computes an orthonormal Gs+1 with
gk ⊥ q, 2 6 k 6 s+ 1, and thus the first row of the matrix

M
(1,1)
sr = Q̂HG2:s+1

will be zero. This choice of Q̂ is often used in applications for almost symmetric matrices A.
In contrast to srIDR, the other three variants do not necessarily break down with this choice.

We have seen that the four variants are mathematically equivalent in case they do not break
down. To understand why srIDR breaks down more easily than the others, and to understand
what other types of breakdown are possible, we consider the conversions between them, or,
more generally, the conversion of data from any IDR with partial orthonormalization to the
four variants.

COROLLARY 5.3. Assume that assumption (3.2) holds true. Let

AGmUm = Gm+1(Hm +UmDm)

be any generalized Hessenberg decomposition such that the vectors gk, 1 6 k 6 m+ 1, are
partially orthonormalized and that the unit upper triangular Um = IHmUm, Hm, and Dm

conform with the outcome of an IDR algorithm for some s ∈ N.
The conversion between and to the four variants are given by left-multiplication by

unit upper triangular block-diagonal matrices. The first block is Is, all other blocks are
(s+ 1)× (s+ 1) except possibly the last block.

We describe how to obtain the non-trivial blocks except the last:
fmIDR: the jth block of the transformation matrix is (Uj(s+1)+(0:s),j(s+1)+(0:s))

−1. The
conversion to fmIDR is always possible.

mnIDR: the jth block of the transformation matrix is given by the inverse of the R-factor of
the short QR factorization of Uj(s+1)+(−s:s),j(s+1)+(0:s), left-scaled such that the
diagonal is one. The conversion to mnIDR is always possible.

ovIDR: the jth block of the transformation matrix is given by the inverse of the R-factor of
the short QR factorization of V(j)

s+1, left-scaled such that the diagonal is one. The
conversion to ovIDR is always possible.

srIDR: the jth block of the transformation matrix is given by the inverse of the transpose
of the L-factor of the LU factorization of (Uj(s+1)+(−s:0),j(s+1)+(0:s))

T without
permutations. The conversion to srIDR is not always possible.

The last block is obtained by truncating the above constructions.
REMARK 5.4. The variant srIDR breaks down when the LU decomposition without

permutations does not exist. For this reason we termed such type of breakdown a pivot
breakdown.

Proof. The left-multiplication by a unit upper triangular block-diagonal matrix with blocks
as described does not change the vectors gk, 1 6 k 6 m+ 1, nor the structure of Um, Um,
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Hm, and Dm. We only consider the case of the full unit upper triangular (s+ 1)× (s+ 1)
blocks, the proof for the truncated last block is completely analogous.

The sketched transformation to fmIDR is well-defined as the unit upper triangular matrix
Uj(s+1)+(0:s),j(s+1)+(0:s) has a unit upper triangular inverse. It results in a new Ufm

m that has
the correct structure.

The coefficients in mnIDR are defined by minimality of coefficients; e.g., by orthogonal
columns in Uj(s+1)+(−s:s),j(s+1)+(0:s). The columns are linearly independent because of the
upper trapezoidal structure, thus the sketched transformation is well-defined and results in the
wanted orthogonal columns with the correct scaling of the last elements.

The variant ovIDR is defined by orthogonal vectors v(j)
k , which is ensured by the transfor-

mation sketched. The matrix V
(j)
s+1 can be written as

V
(j)
s+1 =

[
G

(j−1)
s+1 ,G(j)

s

]
Uj(s+1)+(−s:s),j(s+1)+(0:s);

see (3.11). Assumption (3.2a) ensures that the vectors g
(j−1)
1 , . . . ,g

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
s

are linearly independent. Uj(s+1)+(−s:s),j(s+1)+(0:s) has full rank, thus also the vectors
v
(j)
0 , . . . ,v

(j)
s are linearly independent, which proves that the QR decomposition with regular

R-factor is always possible.
The variant srIDR is defined by the banded structure of the matrix Um, which is obtained

by carrying out the transformation sketched. If for some k, 1 6 k 6 s, a leading subma-
trix Uj(s+1)+(−s:k−s),j(s+1)+(0:k) is singular, then the LU factorization does not exist. An
example is given in the proof of Theorem 5.1.

We have shown that fmIDR, mnIDR, and ovIDR do not break down when we assume the
generic case (3.2) but that srIDR may suffer from a pivot breakdown. In the following we look
at what happens when (3.2) is violated and remark briefly on how the variants of IDR with
partial orthonormalization behave.

We identify two types of breakdown:
• A lucky breakdown occurs if assumption (3.2a) or (3.2b) is violated, i.e., the vectors

g
(j−1)
1 , . . . ,g

(j−1)
s+1 ,g

(j)
1 , . . . ,g

(j)
k become linearly dependent. In this case we have

found an invariant subspace. Linear dependence among the vectors g(j)
1 , . . . ,g

(j)
k

can be determined when the vectors v(j)
0 , . . . ,v

(j)
k−1 become linearly dependent, as

im(G
(j)
k ) = im((A− µjI)V(j)

k ) in case µj is not an eigenvalue of A.
• A Lanczos breakdown occurs if assumption (3.2c) is violated, i.e., if Q̂HG

(j−1)
s is

rank deficient. This corresponds to the case of having found a new vector v ∈ Vj−1
“too early”.

All variants compute the first vector as a solution of a system with the matrix Q̂HG
(j−1)
s ,

thus in case of a Lanczos breakdown all four variants break down. Here we need some form
of look-ahead and/or deflation, which is not part of the paper. Nevertheless, the condition of
this matrix should be monitored in any case.

6. Error analysis. In finite precision or subject to more general perturbations, the
generalized Hessenberg decomposition (3.14) will no longer be satisfied, instead we need
to introduce an error term Fm ∈ Cn×m that balances the equation and obtain the perturbed
generalized Hessenberg decomposition

(6.1) AGmUm + Fm = Gm+1(Hm +UmDm),
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where all other quantities now denote the computed quantities. Suppose Arnoldi’s process and
the other QR decompositions (3.10) are perturbed,[

q,AG(0)
s

]
+ Forthonormalize,0

s+1 = G
(0)
s+1

[
e1h

(0)
1,0 H(0)

s

]
,

R
(j)
s+1 + Forthonormalize,j

s+1 = G
(j)
s+1

[
e1h

(j)
1,0 H(j)

s

]
.

(6.2)

The computation of the Sonneveld coefficients using the four variants based on oblique
projections takes place in a perturbed variant of (3.11),

(6.3) V
(j)
s+1 =

[
G

(j−1)
s+1 G

(j)
s+1

]
U

(j)
s+1 + Fintersect,j

s+1 .

The choice of the seed values influences the size of the perturbation term that has to be added
to (3.12),

(6.4) R
(j)
s+1 = AV

(j)
s+1 −V

(j)
s+1 diag(µj , . . . , µj) + Fmap,j

s+1 .

LEMMA 6.1. Define the global perturbations Forthonormalize
m , Fintersect

m , and Fmap
m by

Forthonormalize
m :=

[
Forthonormalize,0

2:s+1 ,Forthonormalize,1
s+1 ,Forthonormalize,2

s+1 , . . .
]
,

Fintersect
m :=

[
On,s,F

intersect,1
s+1 ,Fintersect,2

s+1 ,Fintersect,3
s+1 , . . .

]
,

Fmap
m :=

[
On,s,F

map,1
s+1 ,Fmap,2

s+1 ,Fmap,3
s+1 , . . .

]
.

(6.5)

Then the perturbation Fm in (6.1) is given by

(6.6) Fm = Forthonormalize
m +AFintersect

m − Fintersect
m Dm + Fmap

m .

Proof. Combining equations (6.2)–(6.4), the coupling between two local blocks G(j−1)
s+1

and G
(j)
s+1 in the perturbed IDR algorithm, j > 1, looks as follows:

A
[
G

(j−1)
s+1 G

(j)
s+1

]
U

(j)
s+1 + Forthonormalize,j

m +AFintersect,j
m − Fintersect,j

m µj + Fmap,j
m

=
[
G

(j−1)
s+1 G

(j)
s+1

]([ os+1 Os+1,s

e1h
(j)
1,0 H(j)

s

]
+U

(j)
s+1 diag(µj , . . . , µj)

)
.

(6.7)

Gluing these relations together and topping them with the first equation in (6.2), omitting the
first column, we obtain (6.1) with the perturbation term (6.6).

In a reasonable implementation this perturbation term can be bounded independently of
the computed quantities only if we assume that no breakdown or near-breakdown occurs. We
give a bound based on the computed Sonneveld coefficients and seed values, which both can
be monitored.

THEOREM 6.2. Suppose that we execute IDR with partial orthonormalization in IEEE 754
arithmetic with orthonormalization based on Householder reflections, Givens rotations, or the
iterated Gram-Schmidt process [4, CGS2, p. 89]. Suppose further that the condition of A is
not too large, no near-breakdown occurs. and the computed Sonneveld coefficients and seed
values are not too large.

Then all computed G
(j)
s+1, 0 6 j, are orthonormal up to machine precision εM ,

(6.8) ‖
(
G

(j)
s+1

)H
G

(j)
s+1 − Is+1‖F 6 C1 εM ,
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and the perturbation term in (6.1) is bounded by

(6.9) ‖Fm‖ 6 ‖Fm‖F 6 C2 εM max
j>0

(
‖A‖+ |µj |

)
‖U(j)

s+1‖F ,

where µ0 = 0, U(0)
s+1 = Is+1. Here, C1 = C1(n, s) and C2 = C2(n, s) are constants

depending on the method used and on the matrix A.
REMARK 6.3. If maxj>0 ‖U(j)

s+1‖F is bounded and maxj>0 |µj | ≈ ‖A‖, then the error
bound (6.9) simplifies to the very satisfactory ‖Fm‖ 6 C̃2 εM‖A‖ for some error constant
C̃2 = C̃2(n, s).

Proof. It is well-known that on a computer conforming with IEEE 754

‖Forthonormalize,0
s+1 ‖F 6 C3 εM

√
s+ 1‖A‖,

‖Forthonormalize,j
s+1 ‖F 6 C4 εM‖R(j)

s+1‖F , 1 6 j,
(6.10)

for small constants C3 = C3(n, s + 1) and C4 = C4(n, s + 1). This follows from bounds
on the QR decomposition [6, § 3.6, p. 73 (complex arithmetic); Theorem 19.4 & p. 361
(Householder); Theorem 19.10 (Givens)] and a standard error analysis for CGS2, using the
technique for Arnoldi’s process described in [3, p. 314]; see also [2, Theorem 2.3, p. 311;
Theorem 2.2, p. 310].

The result (6.8) on partial orthonormality can be found in [2, Theorem 2.1, p. 309–310,
Page 312 (note in middle of page)] (Householder, Givens) and [4, Theorem 2] (CGS2).

Utilizing standard error analysis [6, 22], we can bound the perturbation due to finite
precision in (6.4),

(6.11) R
(j)
s+1 = fl

(
fl
(
AV

(j)
s+1

)
− fl

(
V

(j)
s+1 diag(µj , . . . , µj)

))
= AV

(j)
s+1 −V

(j)
s+1 diag(µj , . . . , µj) + Fmap,j

s+1 ,

|Fmap,j
s+1 | 6 γr+1(|A|+ |µjI|)|V(j)

s+1|,

where r denotes the maximum number of nonzeros in a row of A, and in (6.3),

(6.12) V
(j)
s+1 = fl

([
G

(j−1)
s+1 G

(j)
s+1

]
U

(j)
s+1

)
=
[
G

(j−1)
s+1 G

(j)
s+1

]
U

(j)
s+1 + Fintersect,j

s+1 ,

|Fintersect,j
s+1 | 6 γ2s+1

∣∣∣[G(j−1)
s+1 G

(j)
s+1

]∣∣∣ ∣∣∣U(j)
s+1

∣∣∣ ,
where the factor γ2s+1 follows since the last row of U(j)

s+1 is zero. In mnIDR and ovIDR we
have at most 2s+ 1 nonzero elements in the columns of Um and in srIDR and fmIDR at most
s+ 1. In the latter case the term γ2s+1 can be replaced by γs+1. By (6.6), (6.5), and (6.7) we
can bound ‖Fm‖F by

(6.13)

√⌈
m+ 1

s+ 1

⌉
max
06j
‖Forthonormalize,j

m +AFintersect,j
m − Fintersect,j

m µj + Fmap,j
m ‖F ,

where the undefined terms Fintersect,0
m and Fmap,0

m are zero. We use the triangle inequality
on (6.13) and look at individual terms. We express the term R

(j)
s+1 in the normwise bound (6.10)

using (6.11), (6.12), ‖AF‖F 6 ‖A‖ · ‖F‖F , and the submultiplicativity of the Frobenius
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norm,

(6.14) ‖Forthonormalize,j
s+1 ‖F 6 C4 εM‖AV(j)

s+1 −V
(j)
s+1 diag(µj , . . . , µj) + Fmap,j

s+1 ‖F

6 C4 εM

(
(‖A‖+ |µj |)‖V(j)

s+1‖F + ‖Fmap,j
s+1 ‖F

)
6 C4 εM

(
(‖A‖+ |µj |)

∥∥∥[G(j−1)
s+1 G

(j)
s+1

]
U

(j)
s+1 + Fintersect,j

s+1

∥∥∥
F
+ ‖Fmap,j

s+1 ‖F
)

6 C4 εM

(√
2(1 + δ1)(‖A‖+ |µj |)‖U(j)

s+1‖F + ‖Fintersect,j
s+1 ‖F + ‖Fmap,j

s+1 ‖F
)
,

where δ1 is of order of the machine precision and defined by

δ1 :=

√
‖G(j−1)

s+1 ‖2 + ‖G
(j)
s ‖2

2
− 1.

Krylov subspace methods are mostly used for sparse matrices A. We rewrite the compo-
nentwise bound (6.11) using ‖|A|‖ 6

√
r‖A‖ [13, Lemma A.1] and (6.12), assuming that

r > 1,

(6.15) ‖Fmap,j
s+1 ‖F 6 γr+1(

√
r‖A‖+ |µjI|)‖V(j)

s+1‖F

6 γr+1

√
r(‖A‖+ |µjI|)

∥∥∥[G(j−1)
s+1 G

(j)
s+1

]
U

(j)
s+1 + Fintersect,j

s+1

∥∥∥
F

6 γr+1

√
r
√
2(1 + δ1)(‖A‖+ |µjI|)(‖U(j)

s+1‖F + ‖Fintersect,j
s+1 ‖F ).

Using (6.12), we obtain similarly

(6.16) ‖AFintersect,j
m − Fintersect,j

m µj‖F 6 (‖A‖+ |µj |)‖Fintersect,j
m ‖F

6 γ2s+1(‖A‖+ |µj |)
∥∥∥∣∣∣[G(j−1)

s+1 G
(j)
s

]∣∣∣∥∥∥
F

∥∥∥∣∣∣U(j)
s+1

∣∣∣∥∥∥
F

6 γ2s+1(1 + δ2)
√
2s+ 1(‖A‖+ |µj |)

∥∥∥U(j)
s+1

∥∥∥
F
,

where δ2 is of order of the machine precision and defined by

δ2 :=

√√√√‖g(j−1)
s+1 ‖22 +

∑s
i=1

(
‖g(j−1)

i ‖22 + ‖g
(j)
i ‖22

)
2s+ 1

− 1.

We assume that all perturbations are small enough that second order terms can be incorporated
into the constant. Combining the local bounds (6.14), (6.15), and (6.16) with the global
bound (6.13) proves (6.9).

Numerical experiments indicate that the size of the perturbation term Fm in (6.1) has
a strong influence on the attainable accuracy of the OR and MR iterates as well as of the
Ritz pairs. The seed value selection schemes in Section 4 offer control on the first part of the
bound (6.9). The second part of the bound (6.9) is minimized locally by the variant mnIDR.
In the next section we present two academic toy examples where we compare the accuracy
that is obtained in the four variants and show that on average indeed mnIDR gives the smallest
residuals of the four variants discussed.

7. Numerical examples. We present two numerical examples to analyse the four dif-
ferent IDR variants, one for linear systems using the MR approach and one for eigenvalue
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computations using the Ritz approach. To analyse the dependence of IDR on the selection
of the seed values we include a comparison for the best variant mnIDR and the worst variant
ovDIR. In the applications, q is often chosen as initial residual q = r0 = b−Ax0 (solution
of a linear system) or as initial eigenvector approximation or as a random vector (eigenvalue
problem). We used in both cases a non-physical q chosen to depict the expected average
behavior.

All algorithms have been implemented in MATLAB. We reorthogonalize the g-vectors
once (based on CGS2) and rebiorthogonalize the v-vectors once against Q̂ (based on an
oblique analogue of CGS2). For the solution of the small (rectangular) systems we use known
backward stable solvers; in the experiments below we used MATLAB’s backslash for srIDR
and ovIDR, MATLAB’s built-in LU decomposition and backslash (i.e., LAPACK) for fmIDR
and MATLAB’s built-in pseudoinverse (i.e., LAPACK) for mnIDR. The perturbation of the
generalized Hessenberg decomposition (6.1) induced by finite precision behaves as predicted
by the bound (6.9).

7.1. Linear systems via the MR approach. The MR approach (3.18) is based on solv-
ing small extended Hessenberg least-squares problems

min
zm∈Cm

∥∥Hmzm − e1‖r0‖2
∥∥
2
,

which is done by QR decomposition with a sequence of Givens rotations,∥∥Hmzm − e1‖r0‖2
∥∥
2
=
∥∥Gm+1,m · · ·G3,2G2,1(Hmzm − e1‖r0‖2)

∥∥
2
.

The Givens rotation Gj+1,j rotates the plane spanned by eTj , e
T
j+1 to annihilate the element in

position j + 1, j. The R-factor Rm of the short QR decomposition,

Rm := ITmGm+1,m · · ·G3,2G2,1Hm ∈ Cm×m,

is banded and has the structure of Hm moved up by one, thus it can be stored in the same
place. The update of the right-hand side only changes the last two components in every step,

φ
m

:= Gm+1,m · · ·G3,2G2,1e1‖r0‖2 ∈ Cm+1, φm := ITmφ
m
.

The residual of the small least-squares problem is given by |φ
m
(m+ 1)|, the MR solution by

zm = R−1m φm. There are two main styles (compare with [13, equations (7), (8)]) that can be
used to compute the MR iterate xm = Vmzm, like GMRES or MINRES, i.e.,

(7.1) xm = Vm(R−1m φm) = (VmR−1m )φm.

The GMRES style is based on the first grouping in (7.1). After zm = R−1m φm has been
computed, we need to compute xm = Vmzm. As we do not store the vectors in Vm, we
rerun the algorithm with known zm and compute the linear combination xm = Vmzm along
with the vectors vj , 1 6 j 6 m, roughly doubling the computing time and increasing the
storage by one n-vector.

The MINRES style is based on the second grouping in (7.1). We define direction vectors
Wm := VmR−1m , which can be computed by a short recurrence using WmRm = Vm, and
update xm by xm = xm−1 + wmφm(m); see [18] for details. This roughly doubles the
storage requirements and, apart from multiplications by A, also the computing time compared
to only computing the vectors g. This is like in most OR approaches where we additionally
have to update the iterates along with the residuals. If the multiplication of a vector with A is
not O(n), then this clearly is the preferred variant.
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FIG. 7.1. The ultimately attainable accuracy of the four IDR(8) variants with the MR approach on the toy
example A = randn(100)+4*eye(100), b = A*ones(100,1), random x0, for the vanilla seed selection
scheme and 100 random shadow spaces, both the GMRES and MINRES styles, resulting in a total of 800 lines (top).
Average residual convergence for the 100 cases (bottom).

A matrix was generated as A = randn(100)+4*eye(100). The matrix as well as
all eigenvalues are well-conditioned. By Girko’s circular law all eigenvalues are approximately
uniformly distributed in the circle with center 4 and radius 10. This matrix serves as an example
of a “hard case” for Krylov subspace methods. The matrix is non-normal and zero is in the field
of values, thus it is indefinite. Because of this, the initial speed of convergence will be small. As
right-hand side we used b = A*ones(100,1), as starting guess x0 = randn(100,1).

In the IDR algorithm we used the MR approach for the typical value of s = 8 and the
typical choice of the vanilla technique for the seed values. We tested both styles for all four
variants. We tested the eight possible mixtures of style and variant for 100 different randomly
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chosen shadow spaces and computed the average behavior of the variants and styles. To give a
sketch of the ultimately attainable accuracy in each variant/style-pair, we did chose the region
180–200 steps, where all pairs did converge to the ultimately attainable accuracy. The resulting
800 lines are given in the upper plot of Figure 7.1.

The lower plot in Figure 7.1 depicts the average behavior of all eight variant/style-pairs
for the geometric mean. In the first 100 steps, all eight pairs behave very similar as predicted
by their mathematical equivalence. The best variant is mnIDR as predicted by the bound (6.9),
followed by fmIDR, closely followed by the standard variant srIDR. The worst variant by far is
ovIDR. On average, the GMRES style always beats the MINRES style in terms of accuracy,
which is in accordance with the observations in [13].

7.2. Eigenvalue approximation. For the eigenvalue computations we used a Grcar ma-
trix of size 100× 100. A Grcar matrix is an upper Hessenberg banded Toeplitz matrix with
upper bandwith 3, the lower diagonal contains −1, and the other four nonzero diagonals
contain 1. The eigenvalues come in complex conjugate pairs, and some of them have a condi-
tion number of order 1018, which makes them good candidates for analyzing an eigenvalue
solver. We used the starting vector A*ones(100,1), all four variants of IDR(8) with

TABLE 7.1
Average backward error of the computed eigenvalues for 1000 randomly chosen shadow spaces.

Sonneveld pencil purified pencil
srIDR 2.9945 · 10−13 2.0659 · 10−13

fmIDR 8.2185 · 10−14 7.4958 · 10−14

mnIDR 3.0661 · 10−14 4.3102 · 10−14

ovIDR 3.3671 · 10−12 1.1462 · 10−12

the vanilla technique, 1000 randomly chosen shadow spaces, and stopped the algorithm at
m = 150. We computed the Sonneveld Ritz values (i.e., the eigenvalues of the Sonneveld
pencil (Htotal

m ,Um)) that lie close to the badly conditioned eigenvalues of the Grcar matrix.
For each Sonneveld Ritz value θ we computed its backward error σmin(A − θI) and the
geometric mean of all backward errors for all Sonneveld Ritz values for all shadow spaces
for each IDR variant. These numbers can be found in the column entitled “Sonneveld pencil”
in Table 7.1. They are depicted along with a contour plot of a section of the pseudospectra
of the Grcar matrix in the upper plot in Figure 7.2. The contours are plotted for the values
10−7, 10−8, . . . , 10−16.

The Sonneveld pencil has the seed values as eigenvalues. In [23] we described how to
construct another pencil that no longer has the seed values as eigenvalues. We used the shifted
purified pencil with shift κ = 7 from [23] for each variant of IDR and all 1000 shadow spaces.
We computed again the geometric mean of all backward errors. These numbers can be found
in the column entitled “purified pencil” in Table 7.1. They are depicted along with a contour
plot of a section of the pseudospectra of the Grcar matrix in the lower plot in Figure 7.2. The
contours are again plotted for the values 10−7, 10−8, . . . , 10−16.

The four different IDR variants return eigenvalue approximations that lie around the
pseudospectral contour lines in Figure 7.2. To understand to what extent these overlap, we
depict in Figure 7.2 the geometric mean together with the sample standard deviation for the
1000 instances for each variant/pencil-pair.

Again, mnIDR gives the best results with respect to minimal average backward error,
followed by fmIDR, srIDR, and ovIDR. The best choice in this example is to use the mnIDR
variant and the Sonneveld pencil.
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FIG. 7.2. Pseudospectral contour plot for the eigenvalues of the 100 × 100 Grcar matrix
A = gallery(’grcar’,100) that are badly conditioned. Red plusses depict the eigenvalues of the Gr-
car matrix. The 10 gray contour lines depict the pseudospectrum for 10−7, 10−8, . . . , 10−16. The colored contour
lines correspond to the average geometric mean of the four IDR(8) variants for 1000 instances using the vanilla
technique for the seed values; srIDR in green, fmIDR in cyan, mnIDR in magenta, and ovIDR in blue.

7.3. The influence of the seed values. To analyse the influence of the seed value selec-
tion scheme on the different IDR variants, we tested 11 different schemes on a Grcar matrix of
size 100 for the standard value s = 8. We used the same shadow space and pencils for both
the MR approach and the Ritz approach and computed the average behaviour over 100 runs
for all four IDR variants with partial orthonormalization.

In Figure 7.4 we depict the results for the best variant mnIDR and in Figure 7.5 the results
for the worst variant ovIDR. The pictures of the srIDR and fmIDR variants are omitted as they
look similar to the plot for the mnIDR variant. The only difference is that they are not as
accurate as mnIDR.
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FIG. 7.3. The average and sample standard deviation of the backward error of all four IDR variants and the
Sonneveld and purified pencil.
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FIG. 7.4. The average of 100 runs of mnIDR with MR approach (top) and Ritz approach (bottom) for 11 different
seed value selection schemes (legend) for a Grcar matrix of size 100 and complex valued random right-hand side. Red
curves correspond to constant seed value selection schemes, green curves to schemes related to Rayleigh quotients,
cyan curves to local minimization, and magenta curves to mixed approaches.

The seed value selection schemes we tested can be grouped into:

constant: we used µ = 0 (thus MR stagnates, clearly visible in both lower plots) and
µ = trace(A)/n = 1, which performs best in the Ritz approach.

Rayleigh: we used Rayleigh quotients with v-vectors (4.4) and g-vectors (4.5), precomputed
OR values (Ritz values from j steps of Arnoldi applied to A and q) [10], and exact
eigenvalues of A.
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minimizing: we used the harmonic Rayleigh quotients (4.2) and precomputed MR values
(harmonic Ritz from j steps of Arnoldi applied to A and q).

mixed: we used the vanilla technique (4.3), the cinnamon technique (4.7), and so-called
ρ-values (Rayleigh quotients of the harmonic Ritz vectors from j steps of Arnoldi
applied to A and q).

There is no clear winner but a clear loser: for the given setting the original scheme (4.2)
performs worst for both the Ritz and the MR approach.
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FIG. 7.5. The average of 100 runs of ovIDR with MR approach (top) and Ritz approach (bottom) for 11 different
seed value selection schemes (legend) for a Grcar matrix of size 100 and complex valued random right-hand side. Red
curves correspond to constant seed value selection schemes, green curves to schemes related to Rayleigh quotients,
cyan curves to local minimization, and magenta curves to mixed approaches.

In the Ritz approach we analyzed the convergence of Ritz values to the simple eigenvalue
λ ≈ 1.6786 + 1.1348i in the upper right corner of the spectrum of the Grcar matrix; see Fig-
ure 7.6. The black line in the upper plots of Figure 7.4 and Figure 7.5 depicts ten times the
machine precision times the condition number of λ, which is the level of attainable accuracy
of mnIDR of the Ritz approach. We plotted the approximations using the Sonneveld pencil
(lines) and those of the purified pencil (dash-dotted). Ignoring the approaches based on extra
multiplications with A, the constant choice µ = trace(A)/n is the winner, closely followed
by (4.5) and (4.4). Next comes the other constant scheme µ = 0, followed by the mixed
approaches and those based on local residual minimization. Careful selection of seed values
can result in faster convergence. There is no advantage in using more information, e.g., in the
OR-, MR- and ρ-values or the exact eigenvalues of A.

In the MR approach we computed the iterates using the MINRES (dash-dotted) and the
GMRES style (lines). The black line depicts 100 times the condition number of A times
machine precision, which is the level of attainable accuracy of mnIDR of the MR approach
using (4.7) and (4.3). The differences between all seed value selection schemes, apart from the
stagnating µ = 0 and the scheme (4.2), are much less pronounced than in the Ritz approach.
In this particular case the cinnamon technique (4.7) slightly outperforms the standard vanilla
technique (4.3). In other cases the vanilla technique was better than the cinnamon technique,
e.g., when zero is outside the field of values of A.
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FIG. 7.6. The location of the eigenvalue λ of the Grcar matrix of order 100.

In the comparison of the results of using different seed value selection schemes, we
observe that the accuracy of a less stable variant such as ovIDR is influenced by the choice of
seeds, whereas for the more stable variant mnIDR, the attainable accuracy does not vary much
with respect to the choice of the seeds.

8. Conclusion and outlook. We presented a generic IDR that we specialized to what
we call IDR with partial orthonormalization. The freedom left in the generic algorithm was
used to distinguish four different types of IDR. A common rough error analysis and two
numerical experiments suggest that the variant mnIDR is the one that computes the quantities
with smallest backward error. From a computational point of view, the variant srIDR used
in [18] is more interesting, as we do not need to store as many long vectors as in mnIDR for
the same value of s. The experiments indicate that on average, even though srIDR could break
down when mnIDR does not, the behaviour of srIDR is not too far from that of mnIDR. If
accuracy is more important, then we suggest to use mnIDR. If computational time or storage
requirements are more important, then we suggest to use srIDR.

The variants fmIDR and ovIDR may play a more vital role in case of Lanczos breakdowns.
Breakdowns of IDR when using random shadow spaces are very rare, thus, we do not expect
that IDR variants with a look-ahead strategy are needed if we use random shadow spaces and
finite precision computations.

It is easy to refine the rough error analysis in this paper for a particular variant. Bounds
on the gap between the true residuals and the cheap estimates that can be computed in the
algorithms are based on bounds on the perturbation such as (6.9). It remains a hard task to
analyze the influence of the perturbation on the recurrence.
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