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CONVERGENCE RATES FOR `1-REGULARIZATION
WITHOUT THE HELP OF A VARIATIONAL INEQUALITY∗

DANIEL GERTH†

Abstract. We show that convergence rates for `1-regularization can be obtained in an elementary way without
requiring a classical source condition and without the help of a variational inequality. For the specific case of a
diagonal operator we improve the convergence rate found in the literature and conduct numerical experiments that
illustrate the predicted rate. The idea of the proof is rather generic and might be used in other settings as well.
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1. Introduction and main theorem. We seek to solve the linear, ill-posed equation

(1.1) Ax = y

for x ∈ `1 where instead of the true data y in some Banach space Y only perturbed data
yδ satisfying ‖y − yδ‖Y ≤ δ, δ > 0, are available. Throughout this paper we assume the
following properties of the operator.

ASSUMPTION 1.1. Let the bounded linear operator A : `1 → Y which maps absolutely
summable real sequences into some real Banach space Y be injective and sequentially weak∗-
to-weak continuous.

The latter property makes sense as `1 is the dual of c0, the space of all sequences converg-
ing to zero. The weak∗-to-weak continuity thus means that for any sequence {xn}∞n=1 ∈ `1

〈η,Axn〉Y ∗×Y → 〈η,Ax〉Y ∗×Y ∀η ∈ Y ∗ whenever 〈xn, ζ〉`1×c0 → 〈x, ζ〉`1×c0∀ζ ∈ c0.

Here and further on the brackets 〈·, ·〉 denote the duality pairing between the indicated spaces
and Y ∗ is the dual space of Y . In order to find an approximation to the unique exact solution
x† to the (unknown) exact data y = Ax† ∈ Y we employ `1-regularization, i.e., we solve

(1.2) T δα(x) :=
1

p
‖Ax− yδ‖pY + α‖x‖`1 → min

x∈`1

with some 1 < p <∞. The regularization parameter α > 0 is used to balance between the
residual of the approximate solution and its value of the penalty term ‖ · ‖`1 . The minimizer of
(1.2) is denoted by xδα. To the best of the author’s knowledge, the weak∗-to-weak continuity
as in Assumption 1.1 corresponds to the weakest sufficient condition for the existence of
minimizers of (1.2) currently available in the literature; see [6, 7, 17]. In [6] it has been shown
that the weak∗-to-weak continuity of A is equivalent to the condition R(A∗) ⊆ c0 as well
as the condition Aei ⇀ 0. Here and in the remainder of the paper, A∗ : Y ∗ → `∞ = (`1)∗

denotes the adjoint of A, R the range of an operator, and ei, i ∈ N, is the canonical basis
in `1, i.e., the k-th component of ei equals 1 for i = k and 0 otherwise. Assumption 1.1 is
for example fulfilled if A is injective and has a bounded extension to some `q-space with
q > 1. This is often the case in practical applications. In particular, the case that A is factored
through the Hilbert space `2 occurs frequently. As a counterexample, the identity Id : `1 → `1
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is not weak∗-to-weak continuous as it is easy to show that R(Id∗) = `∞. Another direct
consequence of Assumption 1.1 is the following property as shown in [7]. To this end let

(1.3) Pn : `∞ → `∞, Pnx := (x1, . . . , xn, 0, . . .)

denote the cut-off operator after the n-th component.
PROPERTY 1.2. There exist a sequence of real numbers (γn)n∈N and a constant µ ∈ [0, 1)

such that for each n ∈ N and each ξ ∈ `∞ with

(1.4) ξk

{
∈ {−1, 0, 1}, if k ≤ n,
= 0, if k > n,

there is η = η(n, ξ, µ) in Y ∗ fulfilling
(i) PnA∗η = ξ,

(ii) ‖(I − Pn)A∗η‖`∞ ≤ µ,
(iii) ‖η‖Y ∗ ≤ γn for all ξ as in (1.4).
We cite [7, Prop. 12] to clarify the relation between Assumption 1.1 and Property 1.2.
PROPOSITION 1.3. Let A be sequentially weak∗-to-weak continuous. Then the following

statements are equivalent.
i) For every 0 < µ < 1 and every ξ as in Property 1.2, there is η ∈ Y ∗ such that

Property 1.2 holds,
ii) ei ∈ R(A∗) ∀i ∈ N, where the closure is taken with respect to the norm in `∞,

iii) R(A∗) = c0,
iv) A is injective.
One can show that γn → ∞ as n → ∞ whenever R(A) 6= R(A∗), i.e., A is ill-posed.

Thus, letting A be as in Assumption 1.1, allows us to work with Property 1.2. For a survey
on `1-regularization theory we refer to [14]. We will only give a brief summary here. The
seminal paper [4] sparked the investigation of sparsity-promoting inversion methods with
`1-regularization being one of the most prominent examples. In the context of inverse and
ill-posed problems the question of convergence rates is of highest interest, i.e., one is interested
in estimates of the form

(1.5) ‖xδα − x†‖ ≤ Cϕ(δ),

where C is a positive constant and ϕ a concave index function; i.e., a continuous and mono-
tonically increasing function with ϕ(0) = 0. First results were already given in [4]. Later the
focus shifted to sparse solutions where x† as solution of the unperturbed equation (1.1) has
only finitely many non-zero elements. Convergence rates in this case can be found in, e.g.,
[2, 12, 15], where different kinds of smoothness properties of A and x† are used to derive the
rates. Starting with the paper [3], the case that x† is an infinite sequence in `1 has gathered
attention recently. There, a smoothness condition on the canonical basis with respect to the
operator is crucial. Namely, the authors assume that

(1.6) ei ∈ R(A∗) ∀i ∈ N.

Such a condition already appeared in [2] and can be traced back to [11]. While (1.6) holds
for various types of inverse problems (see [1]), it does not hold in general. A counterexample
was presented in [8]. The authors of [8] thus formulated a relaxed assumption which was
again slightly generalized in [10]. The assumption made in [10] in principle coincides with
Property 1.2. It is an important contribution of [7] to show that Property 1.2 is already a
consequence of Assumption 1.1. Using the weak∗-to-weak continuity ofA, (1.6) is generalized
to item ii) in Proposition 1.3. Please note that (1.6) implies Property 1.2 with µ = 0.
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All proofs of convergence rates in the literature rely on some condition relating the
smoothness of the solution and the smoothing properties of the operator. Such a relation is
typically expressed via the assumption x† ∈ R((A∗A)ν) for some ν > 0; see for example
[5, 16]. In recent years, variational inequalities (sometimes also called variational source
conditions) have been used as link condition. For `1-regularization it was shown in [3] that

(1.7) ‖x− x†‖`1 ≤ ‖x‖`1 − ‖x†‖`1 + ϕ(‖Ax−Ax†‖Y )

holds for all x ∈ `1 assuming (1.6). Here, ϕ is a concave index function given by

(1.8) ϕ(t) := 2 inf
n∈N

(
γnt+ ‖(I − Pn)x†‖`1

)
with γn =

∑n
i=1 ‖fi‖Y ∗ , where due to (1.6), the fi ∈ Y ∗ are such that A∗fi = ei, i ∈ N.

From (1.7) and (1.8), a convergence rate of the form (1.5) with the same ϕ as in (1.8) follows
by standard arguments. These can be found, e.g., in [13].

The aim of this paper is to show that a link condition as for example the variational
inequality (1.7) is not necessary to obtain convergence rates. While the use of a variational
inequality may be more elegant, it is interesting that all the required information is already
contained in the Tikhonov functional (1.2). There is no particular technical difficulty in
our approach in addition to the techniques used in previous works to derive a variational
inequality. In fact, we use several results from this framework. In Section 2 we provide a
proof of the following Theorem 1.4 leading to essentially the same function ϕ as in (1.8)
in an elementary way. In Section 3 we investigate a particular operator for which we can
calculate a convergence rate as in (1.8) explicitly and show that the theoretical rate is achieved
in numerical experiments in Section 4. Our main result is the following.

THEOREM 1.4. Let A : `1 → Y be as in Assumption 1.1. Then there is a concave index
function ϕ : [0,∞)→ [0,∞) of the form

ϕ(t) := inf
n∈N

(
(1 + µ)

∞∑
k=n+1

|x†k|+ γnt

)

with µ and γn from Property 1.2 such that

‖xδα − x†‖ ≤ Cϕ(δ)

holds with a constant C > 0 whenever the regularization parameter is chosen a priori such
that c1 δp

ϕ(δ) ≤ α(δ) ≤ c2
δp

ϕ(δ) for some 0 < c1 ≤ c2 < ∞ or a posteriori via the two-sided
discrepancy principle, i.e., xδα satisfies τ1δ ≤ ‖Axδα − yδ‖Y ≤ τ2δ for some 1 < τ1 ≤ τ2.

In the proof we will explicitly determine the constants C. We avoid their exact expressions
in the theorem due to their complicated structure. Without going into further details, we
would like to remark that the case of a sparse exact solution x†, i.e., for some n0 ∈ N,
supp(x†) ⊆ {1, . . . , n0}, is covered in our assumptions. We then obtain

ϕ(δ) = γn0
δ,

which is the known linear rate.

2. Proof of the main theorem. First observe that for arbitrary n ∈ N we can split

‖xδα − x†‖`1 = ‖(I − Pn)(xδα − x†)‖`1 + ‖Pn(xδα − x†)‖`1
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with the projectors Pn from (1.3). Using the triangle inequality we get

(2.1) ‖xδα − x†‖`1 ≤ ‖(I − Pn)xδα‖`1 + ‖Pn(xδα − x†)‖`1 + ‖(I − Pn)x†‖`1 .

We will estimate the terms on the right-hand side of (2.1). Consider first the term in the middle.
With some ξ ∈ `∞ as in Property 1.2 and by Property 1.2, we have

‖Pn(xδα − x†)‖`1 = 〈ξ, xδα − x†〉`∞×`1 = 〈PnA∗η, xδα − x†〉`∞×`1
= 〈PnA∗η −A∗η, xδα − x†〉`∞×`1 + 〈A∗η, xδα − x†〉`∞×`1
= −〈(I − Pn)A∗η, (I − Pn)(xδα − x†)〉`∞×`1 + 〈A∗η, xδα − x†〉`∞×`1
≤ µ‖(I − Pn)(xδα − x†)‖`1 + γn‖Axδα −Ax†‖Y .

From this we obtain

(2.2) ‖Pn(xδα − x†)‖`1 ≤ µ‖(I − Pn)xδα‖`1 + µ‖(I − Pn)x†‖`1 + γn‖Ax−Ax†‖Y ,

which substituted into (2.1) yields

(2.3) ‖xδα−x†‖`1 ≤ (1+µ)‖(I−Pn)xδα‖`1 +γn‖Axδα−Ax†‖Y +(1+µ)‖(I−Pn)x†‖`1 .

If A is factored through a Hilbert space and the basis is smooth enough such that (1.6)
holds (and consequently µ = 0), then the step from ‖Pn(xδα − x†)‖`1 to γn‖Axδα −Ax†‖Y
in (2.2) corresponds to the observation that the operator is no longer ill-posed but merely
ill-conditioned when operating on a finite-dimensional subspace with the condition number
being based on the dimension of the subspace.

We continue with the right-most terms in (2.1) and (2.3). It describes the smoothness of
the solution as it measures the behavior of the tail of x†. We simply have

(2.4) ‖(I − Pn)x†‖`1 =

∞∑
i=n+1

|x†i |.

Let us for now neglect the term ‖(I−Pn)xδα‖`1 in (2.3) as in the best possible case it vanishes.
Then we have from (2.3) and (2.4)

‖xδα − x†‖`1 ≤ γn‖Axδα −Ax†‖Y + (1 + µ)

∞∑
i=n+1

|x†i |.

Its lowest value is given by taking the infimum over all n. Therefore, we define

(2.5) ϕ(t) := inf
n∈N

γnt+ (1 + µ)

∞∑
i=n+1

|x†i |,

which is the same rate as (1.8) but with a smaller constant. Hence, the proof that ϕ constitutes
a concave index function follows the lines of [3, Theorem 5.2].

So far we only used properties of X and Y without any reference to the regularization
method. Indeed, the splitting of (2.1) is based on properties of the norm we measure the error
in. The rate (2.5) depends on the properties of A and the exact solution x†. There are only
two properties that have to be shown for a concrete regularization method. First, one has
to have an estimate of ‖Axδα − Ax†‖ which is usually not hard to obtain. More tricky is to
show that the term ‖(I − Pn)xδα‖`1 , which we so far neglected, is not too large. It turns out
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that for `1-regularization, estimates for both terms can be derived directly from the Tikhonov
functional (1.2). Namely, it holds that

(2.6)
1

p
‖Axδα − yδ‖

p
Y + α‖xδα‖`1 ≤

1

p
‖Ax† − yδ‖pY + α‖x†‖`1

as the xδα are the minimizers of the functional. Now splitting the `1-terms

‖x‖`1 = ‖Pnx‖`1 + ‖(I − Pn)x‖`1

with x = xδα and x = x†, respectively, using the triangle inequality

‖Pnx†‖`1 ≤ ‖Pn(xδα − x†)‖`1 + ‖Pnxδα‖`1 ,

and subtracting the term ‖Pnxδα‖`1 from both sides, we obtain from (2.6)

1

p
‖Axδα − yδ‖

p
Y + α‖(I − Pn)xδα‖`1

≤ 1

p
‖Ax† − yδ‖pY + α(‖(I − Pn)x†‖`1 + ‖Pn(xδα − x†)‖`1).

Substituting (2.2) yields after reordering

1

p
‖Axδα − yδ‖

p
Y + α(1− µ)‖(I − Pn)xδα‖`1

≤ 1

p
‖Ax† − yδ‖pY + α((1 + µ)‖(I − Pn)x†‖`1 + γn‖Axδα −Ax†‖).(2.7)

So far the dimension n was free. Now we fix it to nϕ which is where the infimum in (2.5)
is attained. Its existence follows since the infimum is taken over a countable set and since
γn →∞ as n→∞. For n = nϕ it is

γnϕ‖Axδα −Ax†‖+ (1 + µ)‖(I − Pnϕ)x†‖`1 = ϕ(‖Axδα −Ax†‖) ≤ 2ϕ(‖Axδα − yδ‖),

where for the last inequality we assumed that ‖Ax − yδ‖Y ≥ δ as in the opposite case we
have ϕ(‖Axδα −Ax†‖Y ) ≤ 2ϕ(δ) trivially. Note to this end that for a concave index function
ϕ it holds that ϕ(C·) ≤ Cϕ(·), C ≥ 1; see [13]. With this, (2.7) reads

(2.8)
1

p
‖Axδα−yδ‖

p
Y +α(1−µ)‖(I−Pnϕ)xδα‖`1 ≤

1

p
‖Ax†−yδ‖pY +2αϕ(‖Axδα−yδ‖).

Ignoring the second term on the left hand side and using ‖y − yδ‖Y ≤ δ we have that

(2.9) ‖Axδα − yδ‖
p
Y ≤ δ

p + 2pαϕ(‖Axδα − yδ‖).

From here we follow the proof of [13, Corollary 1] to deduce that with the parameter choice

(2.10) c1
δp

ϕ(δ)
≤ α ≤ c2

δp

ϕ(δ)
, 0 < c1 ≤ c2 <∞,

it holds that

(2.11) ‖Axδα − yδ‖Y ≤ c̃pδ
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with

(2.12) c̃p = (1 + 2pc2)1/(p−1).

We now move to the term ‖(I − Pn)xδα‖`1 by going back to (2.8) and this time ignoring
the first term on the left-hand side. This yields, recalling that 0 ≤ µ < 1,

(2.13) α(1− µ)‖(I − Pn)xδα‖`1 ≤ ‖Ax† − yδ‖
p
Y + 2pαϕ(‖Axδα − yδ‖).

Inserting the parameter choice (2.10) gives

‖(I − Pnϕ)xδα‖`1 ≤
δ2ϕ(δ)

2c1(1− µ)δ2
+

2p

1− µ
ϕ(‖Axδα − yδ‖)

so that with (2.11)

‖(I − Pnϕ)xδα‖`1 ≤ c̄pϕ(δ)

holds with the constant

c̄p =
1

1− µ

(
1

2c1
+ 2pc̃p

)
.

Going back to (2.3) we have

(2.14) ‖xδα − x†‖`1 ≤ (1 + µ)c̄pϕ(δ) + ϕ(2c̃pδ) ≤ cpϕ(δ)

with the constant

cp =
1

1− µ

(
1 + µ

2c1
+ 4(1 + 2pc2)1/(p−1)

)
.

Thus Theorem 1.4 is proven for the a-priori parameter choice. In practice an explicit expression
forϕ(δ) is only available in special cases, rendering the a-priori choice (2.10) useless otherwise.
One way out of this dilemma is to use an a posteriori choice of the regularization parameter.
We shall employ here the two-sided discrepancy principle, i.e., given 1 < τ1 ≤ τ2 we select
the regularization parameter α such that

(2.15) τ1δ ≤ ‖Axδα − yδ‖ ≤ τ2δ.

At first let us show that under the assumption ‖Axδα−yδ‖ > τ1δ, for τ1 > 1, the regularization
parameter can not become too small. We have from (2.8)

0 ≤ δp − ‖Axδα − yδ‖
p
Y + 2pαϕ(‖Axδα −Ax†‖).

Note that we changed the argument of ϕ(·) back to the basic estimate which is a tighter upper
bound; see (2.9). It follows with the same argumentation as in [13] that

(2.16) α ≥ 21−p
τp1 − 1

τp1 + 1
Φ((τ1 − 1)δ)

with Φ(t) := t2

ϕ(t) . In order for (2.16) to be meaningful we need to require τ1 > 1 in (2.15).
To prove that the discrepancy principle (2.15) yields the same convergence rate as the a-priori
choice, we need to show that also now ‖Axδα − yδ‖ ≤ Cδ and ‖(I − Pnϕ)xδα‖`1 ≤ Cϕ(δ)
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hold with appropriate constants. The first property with C = τ2 is trivial by (2.15). The
second one follows since (2.13) and (2.15) together yield

‖(I − Pn)xδα‖`1 ≤
1

2(1− µ)

δ2

α
+ 2ϕ(τ2δ).

Inserting (2.16) results in the inequality

‖(I − Pn)xδα‖`1 ≤ c̃ϕ(δ),

where the constant c̃ is given by the expression

c̃ =
1

2p(1− µ)

(τ1 − 1)(1−p)(τp1 + 1)

τp1 − 1
+ 2τ2.

This proves ‖xδα − x†‖`1 ≤ cϕ(δ) with c = c̃ + 2τ2 under the discrepancy principle. The
proof of Theorem 1.4 is complete.

REMARK 2.1. By construction, the rate ϕ in (2.5) is optimal up to the behavior of
the sequence {γn}n∈N in Property 1.2 and to a lesser extent the parameter µ. In this sense
our result not only yields the optimal convergence rate for `1-regularization but for any
regularization method of the operator A that measures the regularization error in the `1-norm.
It is an open problem to investigate the relation between µ and γn in Property 1.2. Results in
this direction might lead to a clear definition of optimal convergence rates in `1-regularization.
However, in particular the discrepancy principle does not need any information on the γn. We
believe that the optimal combination of the parameters µ and γn in Property 1.2 is selected
automatically.

3. Case study: a diagonal operator. Examples of convergence rates of type (1.8), (2.5)
can be found in [1, 3, 8, 10]. We will not recall them but focus on a particular problem for
which we improve the known convergence rate and show that numerically our rate is achieved.

We consider the case of an injective, compact operator between Hilbert spaces. This
allows us to use its singular system. Assume Ã : X̃ → Y to be a compact, linear operator
between infinite-dimensional separable Hilbert spaces X̃ and Y . Hence, Ã has the singular
system {σi, ui, vi}i∈N with decreasingly ordered singular values σi tending to zero and {ui},
{vi} are complete orthonormal systems in X̃ andR(A), respectively. We have Ãui = σivi
and Ã∗vi = σiui. Since we consider Hilbert spaces, we may identify the dual spaces with
the original ones. Hence, Ã∗ : Y → X̃ . Using {ui} as Schauder basis in X̃ we write any
x̃ ∈ X̃ via x̃ =

∑
i∈N xiui, where xi = 〈x̃, ui〉 with the scalar product in X̃ . The synthesis

operator L : `2 → X̃ maps the variables x = {xi}i∈N ∈ `2(N) to an element x̃ as above.
Using the embedding E : `1 → `2 we finally obtain our linear, bounded operator A : `1 → Y
via the composition A = Ã ◦ L ◦ E . Due to the factorization through `2, the operator A is
weak∗-to-weak continuous. Note that A still is a diagonal operator since Aei = Ãui = σivi
for all i ∈ N. It fulfills (1.6) due to A∗ viσi = ei ∀i ∈ N. This means we have µ = 0 in
Property 1.2. In general it will still be difficult to calculate the convergence rate in (2.5). In
order to keep the computations simple and to be able to track the constants, we assume that
σi = i−β and x†i = 〈x†, ui〉 = i−η for some positive β and η > 1 such that x† ∈ `1. Then,

∞∑
i=n+1

|x†i | =
∞∑

i=n+1

i−η ≤ 1

η − 1
n1−η.
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In order to estimate γn in (2.5), we follow [9, Example 3.8], where it was shown that

γn ≤ sup
ai∈{−1,0,1}
i=1,...,n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

aifi

∣∣∣∣∣
∣∣∣∣∣
Y

=

√√√√ n∑
i=1

1

σ2
i

.

Instead of proceeding by estimating
√∑n

i=1
1
σ2
i
≤
∑n
i=1

1
σi

, we evaluate the sum directly

and take the square root afterwards. This leads to

(3.1) γn ≤

√√√√ n∑
i=1

1

σ2
i

=

√√√√ n∑
i=1

i2β '
√

1

2β + 1
nβ+

1
2 ,

which is an improvement in comparison to the original bound γn ≤ Cnβ+1, C > 0. In (3.1)
the constant

√
1

2β+1 is meant asymptotically as n → ∞ indicated by the symbol “'”. We
will continue with this constant in order to establish estimates for further constants that are as
sharp as possible.

It is now simple calculus to find the convergence rate from (2.5). We obtain

(3.2) ϕ(δ) = cβδ
η−1

η+β− 1
2

with the constant

cβ =

(
1

2

√
2β + 1

)− 1

η+β− 1
2
.

In comparison to the rates presented in [3, 9] this improves the exponent from η−1
η+β to η−1

η+β− 1
2

and provides an explicit constant.
REMARK 3.1. The polynomial rate as obtained above does not rely on a polynomial

decay of the singular values σi ∼ i−β of the operator and the values 〈x†, ui〉 ∼ i−η. In fact,
assume that σi and 〈x†, ui〉 are such that

γn ≤ cen and
∞∑

i=n+1

|x†i | ≤ ce
−n,

where for the sake of simplicity we use generic constants c > 0. Then one obtains, following
the steps above, the convergence rate

ϕ(δ) = c
√
δ.

The exponentially ill-posed operator yields under the assumption of a particularly smooth
exact solution a moderately ill-posed problem. Therefore, it appears to be impossible to infer
the smoothness of both the operator and solution from a given convergence rate without a
priori knowledge of the type of smoothness of these objects.

4. Numerical examples. Finally we want to illustrate the rates numerically. In order to
arrive at the same setting as above we start with the Volterra operator

(4.1) [Ãx](s) =

∫ s

0

x(t) dt.
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Then we discretize Ã with the rectangular rule at N = 400 points. In order to ensure our
desired properties, we compute the SVD of the resulting matrix and manually set its singular
values σi to σi = i−β . This means that the actual operator A in (1.1) is an operator possessing
the same singular vectors {ui} and {vi} as Ã in (4.1) but has different singular values {σi}.
Using the SVD, we construct our solution such that 〈x†, vi〉 = i−η holds for various values of
η > 0. We add random noise to the data y = Ax† such that ‖y − yδ‖ = δ. The range of δ is
such that the relative error is between 25% and 0.2%. The solutions are computed via

xδα = argmin
x∈`1

1

2
‖Ax− yδ‖2 + α‖x‖`1 ,

where the `1-norm of the coefficients is taken with respect to the basis originating from the
SVD. The minimizer is obtained via iterative soft shrinking [4]. The regularization parameter
is chosen a priori according to (2.10) with c1 = c2 = 1. The constant cp in (2.14) takes—in
our case with p = 2—the value cp = 20.5. We compute the reconstruction error in the
`1-norm as well as the residuals. For larger values of η we can observe the convergence
rate directly. For smaller values of η we have to compensate for the error introduced by the
discretization level. Namely, since we use a discretization level N = 400, numerically we
actually measure ‖P400(xδα − x†)‖`1 with the projectors P400 as in (1.3). In the plots of the
convergence rates we display the quantity ‖P400(xδα − x†) + (I − P400)x†‖`1 . The second
term in the norm can be calculated analytically and is supposed to correct for the fact that we
cannot measure the regularization error for larger coefficients, i.e., we add the tail of x† that
can not be observed due to discretization. For each fixed η, β we calculate the regression for
the hypothesis ‖xδα − x†‖ = cδe.
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log-log plot of l1 reconstruction error vs , =1.1, a= 1.9615
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regression, e=0.038212, expected e=0.038462

FIG. 4.1. Observed convergence rate (solid line) for the diagonal operator, η = 1.1, β = 2 and α = δ1.96

according to (2.10). The regression for the hypothesis ‖xδα − x†‖ = cδe is given dashed. We obtained e ≈ 0.0382;
from theory we expected e ≈ 0.0385.

An example is given in Figure 4.1. From the analysis above, the constant c is found as
c = cpcβ with cp from (2.14) and cβ from (3.2). In Tables 4.1 and 4.2 we present observed
convergence rates for β = 1 and β = 2, respectively, and various values of η > 1. We provide
the exponent e of the rate according to the regression and compare it with the theoretical
exponent. In all tests we observed a nice fit. We also monitored the constants. The theoretical
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upper bounds c ≈ 22.56 and c ≈ 19.6 for β = 1 and β = 2, respectively, have not been
exceeded by the highest observed constant being c = 15.66. However, as η increases the
measured constant decreases. For example for η = 2.5 and β = 1 we obtained c = 0.74. It is
an open topic to understand this behavior and tighten the constants in the convergence rate. In
the tables we additionally give the residual obtained from another regression for the hypothesis
‖Axδα − yδ‖ = Cδd with d given. This hovers nicely around the theoretical value d = 1. The
theoretical constant C = cp = 5 from (2.12) is not achieved as the observed constant C takes
values between 1.1 and 1.4. We only give examples for the a-priori parameter choice here. In
our experiments the discrepancy principle (2.15) yields essentially identical results.

TABLE 4.1
Diagonal operator: Convergence rates for β = 1 and various values η. α in the form α = δa. Measured and

predicted regularization error in the form ‖xδα − x†‖`1 = cδe; cf. (3.2). Residual in the form ‖Axδα − yδ‖ = cδd.

η a measured e predicted e measured d
1.01 1.99 0.0065 0.0066 1.01
1.05 1.97 0.0332 0.0322 1.008
1.1 1.94 0.0625 0.0625 1.009
1.3 1.83 0.1691 0.1667 1.006
1.5 1.75 0.2588 0.25 1.005
2 1.6 0.3961 0.4 1.003

2.5 1.5 0.498 0.5 0.996

TABLE 4.2
Diagonal operator: Convergence rates for β = 2 and various values η. α in the form α = δa. Measured and

predicted regularization error in the form ‖xδα − x†‖`1 = cδe; cf. (3.2). Residual in the form ‖Axδα − yδ‖ = cδd.

η a measured e predicted e measured d
1.01 1.996 0.0039 0.0038 0.999
1.05 1.97 0.02 0.0196 1.001
1.1 1.96 0.0388 0.0385 0.998
1.3 1.89 0.1063 0.1071 1.002
1.5 1.83 0.1681 0.1667 0.999
2 1.71 0.2864 0.2857 1.000

2.5 1.625 0.3617 0.375 1.002

In a second example we consider a diagonal-dominant operator. The reason that we can
not move too far away from the diagonal case is that otherwise we have no analytic reference
to compare those rates to, although, of course, we can still observe the convergence rates
numerically. The construction of our operator is similar to the one in the first part. We start
with (4.1), discretize with the trapezoidal rule on N = 400 points, and use the SVD of the
resulting matrix. The matrix S containing the singular values is then altered as follows. First
we set up the diagonal matrix from the previous setting, now named D, i.e., di,i = i−β ,
i = 1, . . . , N , and D is zero otherwise. Then we take a full random matrix S̃ such that each
element s̃ij is uniformly distributed in [−1, 1] and multiply each row s̃i by 0.075i−β . Finally,
we combine S = D + S̃. Now S is a full matrix whose largest entry in each row is on the
diagonal. All other entries in a row are at most 7.5% of that in magnitude. We also randomized
the solution. For pi, i = 1, . . . , N , being uniformly distributed random variables in [−1, 1],
we set 〈x†, vi〉 = i−η(1 + 0.25pi). In contrast to the previous section we now choose the
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regularization parameter according to the discrepancy principle. This means we start with a
large α = α0 > 0 and reduce it until (2.15) is fulfilled with τ1 = 1.0001 and τ2 = 1.3. To
further move away from the previous setting we now choose β = 0.5 and β = 3. We compare
the observed rates to the ones predicted for the fully diagonal operator. The results are shown
in Table 4.3 for β = 0.5 and Table 4.4 for β = 3. As expected, theoretical and observed
convergence rates do not match as well as in the fully diagonal case. However, they are still
reasonably close.

TABLE 4.3
Diagonally dominant operator: Convergence rates for β = 1

2
and various values η. α in the form α = cδa,

chosen via discrepancy principle (2.15). Measured and estimated regularization error in the form ‖xδα−x†‖`1 = cδe;
cf. (3.2). Residual in the form ‖Axδα − yδ‖ = cδd.

η measured a estimated a measured e estimated e measured d
1.01 1.7 1.99 0.0073 0.0099 1.03
1.05 1.67 1.95 0.038 0.048 1.018
1.1 1.77 1.91 0.081 0.091 1.028
1.3 1.69 1.76 0.21 0.231 1.016
1.5 1.63 1.66 0.316 0.33 1.005
2 1.48 1.5 0.45 0.5 1.003

2.5 1.39 1.4 0.564 0.6 1.005

TABLE 4.4
Diagonally dominant operator: Convergence rates for β = 3 and various values η. α in the form α = cδa,

chosen via discrepancy principle (2.15). Measured and estimated regularization error in the form ‖xδα−x†‖`1 = cδe;
cf. (3.2). Residual in the form ‖Axδα − yδ‖ = cδd.

η measured a estimated a measured e estimated e measured d
1.01 1.88 1.997 0.0021 0.0028 0.98
1.05 1.93 1.99 0.0135 0.014 0.983
1.1 1.98 1.97 0.0238 0.0278 0.986
1.3 1.93 1.92 0.083 0.079 0.976
1.5 1.89 1.88 0.099 0.125 0.98
2 1.82 1.78 0.198 0.222 0.99

2.5 1.72 1.7 0.269 0.3 0.99

5. Conclusion. We have shown that convergence rates for `1-regularization can be
derived based on the tail of the true solution x† in `1 and the smoothness of the operator
expressed by Property 1.2. These objects define the rate. The strategy of the proof is based on
a splitting of the regularization error into a finite-dimensional part and two infinite-dimensional
tail terms. Using this, for any regularization method, one only has to show two properties.
First it is required that ‖Axδα − yδ‖Y ∼ δ, and second, one needs to control the tail of the
regularized solution in the `1-norm. For `1-regularization both estimates can be derived
directly from the Tikhonov functional. For a specific problem involving a diagonal operator
we could verify that the predicted convergence rates are achieved numerically.
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